
Getting an XML Element's Full Path

By David Adams
Technical Note 07-03

Abstract
--

This technical note explains how to build the full path to an XML node using the
built-in 4th Dimension DOM commands and includes a sample database with the
code implemented.

Overview
--

XML has become nearly universal as a scheme for formatting data for exchange
between systems and as a storage format for program settings and other data. One
of the challenges of dealing with XML is its best feature: the ability to store and
organize information hierarchically. As an example, consider the short XML sample
below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<contacts>

<contact>
<name>Dan West</name>
<business>

<phone>
<area_code>04</area_code>
<number>0035-9110</number>

</phone>
</business>
<home>

<phone>
<area_code>02</area_code>
<number>6493-3250</number>

</phone>
</home>

</contact>
</contacts>

In the example above, the following elements appears twice:

<phone>
<area_code>
<number>

These elements appear as children of the <business> and the <home> elements.
When processing XML documents, repeated element names are commonplace. In
such cases, knowing the full path to the node helps distinguish between identically
named elements. For example, the paths to the two instances of the <area_code>
element are listed below:

/contacts/contact/business/phone/area_code/
/contacts/contact/home/phone/area_code/

This technical note explains how to build the full path to a node and includes a
sample database with the code implemented.

Review: Native DOM Commands
--

4th Dimension already includes native path-oriented DOM (Document Object Model)
commands. For example, selecting the two <area_code> elements mentioned
above is straightforward, as shown in the fragment below (whitespace adjusted for
legibility):

C_STRING($16;$businessPhone_xmlref)
C_STRING($16;$homePhone_xmlref)
$businessPhone_xmlref:=DOM Find XML element($root_xmlref;
 "/contacts/contact/business/phone/area_code/")
$homePhone_xmlref:=DOM Find XML element($root_xmlref;
 "/contacts/contact/home/phone/area_code/")

The DOM Find XML element function is simple and effective but only works in
situation where the full path is known beforehand. The command addresses many
XML processing needs, but not all. For example:

• XML trees are often examined generically using a top-down tree walk, a technique
used in several existing technical notes, sample databases, and within several of
the examples in The 4D Web Services Companion. Within a generic tree walk, the
full path is not known from the outset. Instead, the code works with each node in
sequence. The DOM Find XML element function works from the point of view of
the top of the tree down while generic tree walks work from the point of view of
the node up.

• The DOM Find XML element function path syntax is not expressive enough to
match all patterns. As an example, it offers no way to locate nodes that end with
the path /phone/area_code/, regardless of antecedents. It is often convenient or
necessary to deal with nodes and tree fragments consistently, regardless of the
exact document root or full path.

Fortunately it is easy to add a function that generates a full path for the current
node using other native commands.

Note XML paths, element names, and attribute names are all case-sensitive. See 4D
Technical Note 05-41, Case-Sensitive Operations in 4th Dimension, for code to
handle case-sensitive comparisons.

The Routines
--

The code of the DOM_GetFullPath routine and its error handler are listed below.

DOM_GetFullPath
The code below calculates the full path to the current node. If an invalid or null XML
node reference is passed into the routine, an empty string is returned.

C_TEXT($0;$fullPath_text)
C_STRING(16;$1;$noderef)` <-- The calling routine must pass in this parameter.

$noderef:=$1

$fullPath_text:=""

` Store existing error/error handling state.
If (Undefined(Error))

Error:=0
End if
C_LONGINT($previousValueOfErrorVariable_l)
$previousValueOfErrorVariable_l:=Error
C_STRING(31;$previousErrorMethodName_s)
$previousErrorMethodName_s:=Method called on error
ON ERR CALL("DOM_ErrorTrappingRoutine")

C_TEXT($name_text)
$name_text:=""
DOM GET XML ELEMENT NAME($noderef;$name_text)` Default to starting element name.

While (OK=1)
Case of

: ($name_text="#document")` The #document node is a synthetic node above the tree.
OK:=0` Get out of routine.

: ($name_text="")` Bad reference.
OK:=0` Get out of routine.

Else ` Valid name.
$fullPath_text:="/"+$name_text+$fullPath_text
OK:=1` Continue processing.

$noderef:=DOM Get parent XML element($noderef;$name_text)` Try to get a parent.
End case

End while

` Restore previous error/error handling state.
Error:=$previousValueOfErrorVariable_l`Restore original error value.
ON ERR CALL($previousErrorMethodName_s)`Restore original error handler.

If ($fullPath_text#"")` A path was built.
$fullPath_text:=$fullPath_text+"/"` Add final slash.

End if

` Return result.
$0:=$fullPath_text

DOM_ErrorTrappingRoutine
The DOM_ErrorTrappingRoutine is installed by DOM_GetFullPath to trap errors
arising from using invalid node references. The error handler includes a single line
of code, listed below:

DOM_Error:=Error

The Sample Database
--

The sample database includes the code listed above and a simple test routine
named Test_GetFullPath. The test code is designed to exercise the
DOM_GetFullPath in various conditions, including passing in good nodes, bad nodes,
and the synthetic #document node. For each test the code displays a simple status
alert which reports if the test conditions were met, such as the screen shown
below:

Summary
--

The native DOM XML commands do not include a function to return the full path to
a specified XML node. Fortunately, this functionality is easy to write using the DOM
Get parent XML element command. The sample database includes a method
named DOM_GetFullPath that provides the full path building feature.

