
Optimizing Searches with Hashes

By David Adams

Technical Note 05-44

Overview
--

4th Dimension's database engine doesn’t natively support searching strings case-
sensitively, searching text fields completely, or searching BLOBs, picture fields, or
documents at all. Hashing is a conceptually simple, well-known technique for
optimizing all of these operations, in specific cases. This technical note explains what
hashing is and how to apply it to various problems, including searching, document
comparison, and validation check sums. By the end of this technical note, you should
understand:

• How hashing works.

• When to use hashing.

• How to select a hashing algorithm.

• How to further optimize searches to avoid QUERY BY FORMULA.

Code is included that supports hashing alphas, text, BLOBs, pictures, and documents.
It also provides a hash-optimized query method for alpha, text, BLOB, and picture
fields. After briefly describing the contents of the sample database, we'll review some
background information about hashing.

Note The hashing techniques and tools discussed here can be applied to alphas, text,
BLOBs, pictures, and documents. For simplicity, the discussion usually refers to
strings, text, or BLOBs.

About the Samples
--

Packaging
The sample code is included as a component called HashTools, as a sample database,
and as a source code database. The component is documented in Technical Note 05-
43 The HashTools Component. The sample code and source code databases are
nearly identical as each of them has the same example interface, which we’ll review
briefly. The main difference between the two is how the HashTools code is included. In
the sample database, the code is in a component and this is helpful in day-to-day use
or when you only want to look at the functionality of the system. The source code
database includes the code the HashTools component and examples are based on. If
you want or need to look at the internals of the HashTools system, run the source
code database, which enables you to trace inside methods that are protected and
private once they’re installed as a component.

Supported Hashing Algorithms
The HashTools code implements eight high-quality string hashes named AP, BKDR,
DJB, ELF, JS, PJW, RS, and SDBM adapted from code published at:

http://www.partow.net/programming/hashfunctions/index.html

Additionally, a simple-to-understand but lower quality hashing function named
SumBytes is included for comparison. The object hashing and hash-optimized query
methods each support all nine hashing algorithms listed in this paragraph.

Data Sets
As we’ll discuss, the ideal hashing function depends partially on the specific data being
hashed. To illustrate and support testing this principle, the database includes several
different sample data sets for comparison. You can import values from your own
systems to test and compare how each hashing performs in three areas:

• The time needed to hash the data.

• The number of collisions (duplicate hashes from distinct values) created.

• The speed gains achieved using a stored hash when querying.

We’ll address each of these points in more detail throughout the note.

The Demonstration Test Screens
--

The demonstration window consists of four screens, pictured and briefly described
below.

Hashing Tests

The hashing test screen lets you type or paste in a block of text for hashing. The value
can be hashed using any and all of the available algorithms as text or as a BLOB. This
screen is useful if you want to double-check a value or, in the source code database,
to see the actual functioning of a hashing algorithm.

Hashing Speed Tests

The hashing speed test screen lets you check how long it takes to hash data using the
different algorithms. You can use any of the included sample data sets or import your
own data for more meaningful results. Run this screen compiled for an accurate sense
of performance.

Hashing Search Speed Tests

The search speed test screen lets you check how much different hashing algorithms
assist searches for any particular data set. A few notes:

• Performance can be very different under 4th Dimension and 4D Server. Test in the
environment you plan to deploy in.

• Test compiled for an accurate sense of performance.

• QUERY BY FORMULA can significantly slow the tests, particularly under 4D Server.
If it’s too slow, don’t include it in the tests.

• Import your own data for more meaningful results.

Hashing Collision Tests

Any hashing algorithm can produce collisions, duplicate hashes from distinct values.
This screen lets you test how many collisions each algorithm produces for any
particular data set. Additionally, you can display the collisions for any particular
algorithm. Import your own data to help select the best algorithm for your
environment.

Source Code Only: Sanity Checking Screen

The source code database includes a form named [Dialogs];"HashTest_SanityCheck"
that calls a private method named HashUtility_SanityCheckFunction. This routine
passes a specific input with known correct outputs to each of the text and BLOB
hashing routines and reports the results. If any of the functions returns an unexpected
result, you can spot the problem quickly. This sanity checking screen is useful only if
you are reworking the source code of the hashing functions themselves.

Related Technical Notes
--

A series of complementary notes discusses other applications for hashing and
performance considerations contributing to the design of the code found in the sample
database.

• Technical Note 05-43 The HashTools Component documents the public and
protected methods in the HashTools component. This component is built from the
full source code accompanying this note.

• Technical Note 05-42 Scanning Text and BLOBS Efficiently explores in detail
how to design 4th Dimension code to analyze text and BLOB values most efficiently
for best speed and best memory conservation.

• Technical Note 05-41 Case-Sensitive Operations in 4th Dimension discusses
how to perform case-sensitive searches in 4th Dimensions using several different
techniques, including using the HashTools component.

What Is Hashing?
--

Hashing is a fundamental programming technique that applies a formula or set of
formulas to a block of data and returns a single number. If the same data is passed to
a hashing function more than once, an identical number is always returned. Because
the number produced by a hash is consistent for any input string/BLOB, the hash
number can be used as a substitute for the original, much larger, data. This is, for
example, a common way to produce check sum values used to help verify that
documents have been correctly duplicated over a network. Since a hash is a very
small and readily indexed number, operations are significantly faster than on the
original data. Hashes can dramatically optimize searches by quickly excluding most, if
not all, non-matching data with a single indexed search. Let's look at an example
hashing function and then return to seeing how it helps with searching.

SumBytes: A Simple Example Hashing Function
--

If you're new to hashing, it’s easier to understand with an example. Imagine the
following string:

abc

A trivial, but valid, hashing technique is to take the sum of the ASCII values of each
character in the string. In the example above, the ASCII values of the three
characters are 97 (a), 98 (b), and 99 (c), with a sum of 294. Instead of searching for
abc, the system can search for 294 and locate all strings that might be equal to abc.
The sample code below shows a slightly longer example string with a sum of 3,372:

C_TEXT($text)
C_LONGINT($length;$character;$sum)

$text:="abcdefghijklmnopqrstuvwxyz1234567890"
$length:=Length($text)

C_LONGINT($sum)
For ($character;1;$length)

$sum:=$sum+(Ascii($text[[$character]]))
End for

We'll look at better hashing algorithms later, but even the simple summing function
serves to illustrate several key features about hashing that hold true for the eight
high-quality functions implemented in the sample database:

• Any particular stream of data always produces the same number when passed
through a hashing function.

• There is no guarantee that every unique string will produce a unique hash value. For
example, the sum of the bytes abc is the same as the sum of the bytes for cab or
bca. When a hashing function creates identical numbers from distinct strings, it's
called a collision. The high-quality string hashing functions included with this note
tend to produce very few, if any, collisions.

• Large chunks of data are reduced to a single number. Even a 1MB BLOB reduces
quickly to a single longint.

• The number produced by a hashing function represents the entire string/BLOB.
Therefore, hash values are only useful for = and ≠ comparisons, not for >, <, >=,
<=, or contains comparisons.

• Hashing is not a full-text indexing system.

• The number produced by a hashing function doesn't mean anything in itself and is
not useful for sorting the original data.

• Hashing functions work on raw character/byte values and are, therefore, always
case-sensitive. We'll look at a simple technique for creating case-insensitive text
hashes later.

Now let's look in more detail at how hashes optimize searching for text, BLOBs,
pictures, and linked documents.

Optimizing Searches with Hashing
--

Searching through large blocks of text or BLOBs is naturally slow in any environment.
Database engines may use a variety of supplemental data, including hashes, to
optimize queries on large data types. Unfortunately, the current 4th Dimension
database engine includes no native text, BLOB, or picture search optimization
features. Let’s consider an imaginary example database that stores unique paths in
text fields. Paths are typically needed when managing stored documents, URLs, URIs,
and in a variety of XML-oriented applications. (If you've never needed to store paths,
just imagine any kind of textual or BLOB data.) This imaginary database already has
1,000 unique paths and needs to make sure that new paths are also unique. Take the
following text as the new path in the examples below:

/Volumes/Echidna/Documents/Projects/Writing/Materials/Tech_Notes_and_Presentatio
ns/1_In_Progress/Hashing/HashingFunctions/4D_2004_2.app/Contents/4D\
Extensions/Spellcheck/CordialSpeller.bundle/Contents/MacOS/CordialSpeller

The obvious way to check for this path in the database is to do a search, as in the
fragment below:

C_TEXT($1;$new_path)
$new_path:=$1
QUERY([Stored_Paths];[Stored_Paths]Path=$new_path)

The code above works correctly for short paths and fails for larger paths. The 4th
Dimension search engine doesn’t compare the full contents of text fields and never
compares them case-sensitively.

Note The exact details of how the QUERY command treats comparisons on text fields
doesn’t appear to be documented. The number of characters used in equals (=),
starts with (value@) and contains (@value@) searches may differ. For safety's sake,
you may not wish to rely on search strings longer than 80 characters, including the @,
when using 4th Dimension's native search tools and commands.

If you need to make a complete comparison on a text field, the native alternative is to
use the QUERY BY FORMULA command, as in the fragment below:

C_TEXT($1;$new_path)
$new_path:=$1
QUERY BY FORMULA([Stored_Paths];[Stored_Paths]Path=$new_path)

The search can be performed case-sensitively using a custom function, as in the
fragment below:

QUERY BY FORMULA([Stored_Paths];CS_AlphasAreEqual([Stored_Paths]Path;$new_path))

Note The HashUtility_AlphasAreEqual function is found in the sample database. For more
details on case-sensitive searches in 4th Dimension, see technical note 05-41 Case-
Sensitive Operations in 4th Dimension.

We'll consider case-sensitivity in more detail, later. Note that QUERY BY FORMULA
works correctly, but it’s very slow, particularly under 4D Server. In order to perform a
formula-based search, 4th Dimension loads each record and examines the complete
contents of the text field. Under 4D Server, the records are transferred to the client
over the network for analysis, and, as a result, performance can be dragged down to
unacceptable levels. This is a situation where hashing can really pay off. Imagine the
table structure shown below:

The Hash field stores the hash of the path stored in the record. This hash value is
easily maintained using a trigger:

 ` Trigger for [Stored_Paths]
Case of

: (Database event=On Saving Existing Record Event)
[Stored_Paths]Hash:=HashTools_HashText(->[Stored_Paths]Path;"SumBytes")

: (Database event =On Saving New Record Event)
[Stored_Paths]Hash:=HashTools_HashText(->[Stored_Paths]Path;"SumBytes")

End case

The sum of the bytes for the example path shown earlier is 3,372. Now, searching for
a duplicate path is far easier. Instead of sequentially comparing every record in the
table with QUERY BY FORMULA, all or nearly all non-matching records can be
excluded from consideration using the hash value alone following the steps below:

1. Hash the new path as a starting point for comparisons.

2. Search the existing data using the indexed hash value. This step should exclude
all, or virtually all, records that don't match.

3. If any records are found, test each one to determine if the stored path equals the
new path.

The code below implements the steps listed above:

C_TEXT($1;$new_path)
$new_path:=$1

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path;"SumBytes")

QUERY([Stored_Paths];[Stored_Paths]Hash=$hash)
QUERY SELECTION BY FORMULA([Stored_Paths]; CS_AlphasAreEqual ([Stored_Paths]Path;$new_path))

The QUERY statement in the method above reduces the selection to only those
records that have the same hash value as the path we're testing. If the database has
10,000 records and only two of them share the target hash value ($hash), the QUERY
SELECTION BY FORMULA command only tests two records, not the full 10,000 that
are required without the hash.

Next, we should look at the subject of collisions to explain exactly why the QUERY
SELECTION BY FORMULA command is needed. Finally, we'll look at how to replace
QUERY SELECTION BY FORMULA with better-optimized code.

Collisions and the Need for Sequential Comparisons
--

It’s tempting to rewrite the code listed above as follows:

C_TEXT($1;$new_path)
$new_path:=$1

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path; "SumBytes")

If (Records in selection[Stored_Paths>1)
QUERY([Stored_Paths];[Stored_Paths]Hash=$hash)
QUERY SELECTION BY FORMULA([Stored_Paths]; CS_AlphasAreEqual

([Stored_Paths]Path;$new_path))
End if

If there is only one record with a matching hash value, doesn't this indicate a
matching record? It might and it might not. Different strings can produce the same
hash value. For example, the sum of the bytes abc is the same as the sum of the
bytes cab or bca. The QUERY statement listed above finds all records with a hash
value of 3,372, the sum of the bytes in the string below:

/Volumes/Echidna/Documents/Projects/Writing/Materials/Tech_Notes_and_Presentatio
ns/1_In_Progress/Hashing/HashingFunctions/4D_2004_2.app/Contents/4D\
Extensions/Spellcheck/CordialSpeller.bundle/Contents/MacOS/CordialSpeller

If no records are found, the string doesn’t exist. If one record is found, it may or may
not match the original string. Since collisions are possible, any matching values may
be false positives. Additionally, many databases need to store non-unique data. In
such a case, several records may share the same hashing value through a
combination of matching values (legitimate duplicates) and false positives (collisions).
Therefore, each record that has a matching hash value needs to be examined exactly.

Note Hashes can produce false positives but not false negatives. If the hash value for the
source string is not found, it means the source string doesn’t exist.

Collisions Rates of Different Hashing Algorithms
--

Hashing doesn’t eliminate the need for sequential comparison; it simply provides a
tool for dramatically reducing the number of sequential comparisons required. The
better is the hashing function, the fewer are the false positives and the greater are the
time savings. As should already be clear, the SumBytes hashing algorithm isn't very
good as it easily produces false positives. Any hashing function can produce false
positives, but high-quality hashing functions produce far fewer. The table below
summarizes the collision rates for each function when applied to various sets of case-
sensitively unique values.

Data Set Values SDBM BKDR RS AP DJB JS ELF PJW SumBytes

Huge English Word List 118,925 2 3 4 5 14 23 327 327 3,147

Large English Word List 30,405 0 0 0 0 0 3 77 77 1,183

Large Dutch Word List 4,754 0 0 0 0 0 0 1 1 791

Paths - Roughly 1 KB long 1,000 0 0 0 0 0 0 0 0 88

Paths - Roughly 16 KB long 1,000 0 0 0 0 0 0 0 0 88

Small English Word List 977 0 0 0 0 0 0 0 0 250

Small Irish-Gaelic Word List 831 0 0 0 0 0 1 3 3 218

Sum 2 3 4 5 14 27 408 408 5,765

The columns in the table above are ranked from left-to-right in ascending frequency of
collisions. Reading across, it shows that the SDBM function created the fewest
collisions and the SumBytes function created the most collisions. The rows are ranked
by the number of distinct values being hashed. There are several points worth
making about the data in the table and about hashing functions in general:

• Even a poor hashing function, like SumBytes, does surprisingly well at avoiding
collisions. For example, it only produces about a 2.6% collision rate when hashing
nearly 120,000 distinct words and phrases (3,147 / 118,925 = 2.64 %). During a
search, quickly eliminating nearly 98% of the records from consideration (115,778
values) is a dramatic optimization. And, remember, this is the worst of the hashing
functions described.

• It pays to find the lowest-collision function for the data. The point of using hashes is
to avoid sequential operations, particularly under 4D Server.

• All of the functions, other than SumBytes, perform remarkably well. In fact, the
results for SDBM, BKDR, RS, and AP are so close they may be considered
equivalent. Keep in mind that the test data used is artificial and not representative
of your data.

Testing Your Data
--

If you don't have the time or inclination to test out the various hashing algorithms,
you can pretty well pick any of them and be done with it as they're all quite good.
BKDR and SDBM are generally cited as good defaults if you don't want to test your

data. If you do want to test your data, export it and import it into the sample
database. For the import, prepare a file with two columns:

Data_Set_Name Alpha 60
Sample_Text Text

The demonstration system treats all records with the same [Sample]Data_Set_Name
value as a data set. Triggers automatically build the various hashes during the import.
Once your data is in the database, you can use the test screens on your data.

Note Many of the operations in the database are substantially faster compiled. The code in
this system is intended for testing and deployment in compiled mode.

More Information About Collisions and Why You Should Test
--

Having just said that you don't have to test the hashing functions against your data,
it's worth stating why you should consider testing. Using the data sets tested and
summarized above, the rankings for the various functions are consistent. This may not
be the case with all data sets. High-quality hashing functions produce "evenly
distributed" output. In other words, the resulting numbers are evenly spread over the
range of possible longints and don't tend to produce any one number more frequently
than another. However, a perfect hashing function can only create an evenly
distributed output if it’s given evenly distributed inputs. In the real world, there is
effectively no chance that the inputs will be even. For example, the letter "t" occurs
far more often in English than the letter "z" and the letters "j", "k", "w", "x", and "y"
are not native to Italian. Given the realities of letter frequencies, even a perfect
hashing function is unable to produce a completely collision-free output.

Replacing QUERY SELECTION BY FORMULA
--

Now let's return to talking about optimizing searches, a subject also addressed in
Technical Note 05-41 Case-Sensitive Operations in 4th Dimension. Below is the
hash-based search code we presented earlier:

C_TEXT($1;$new_path)
$new_path:=$1

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path;"SumBytes")

QUERY([Stored_Paths];[Stored_Paths]Hash=$hash)
QUERY SELECTION BY FORMULA([Stored_Paths];

CS_AlphasAreEqual([Stored_Paths]Path;$new_path))

Unfortunately, this code may still be too slow, particularly under 4D Server, because
of the QUERY SELECTION BY FORMULA command. The larger the selection of
records returned by the hash query, the more sequential operations performed by
QUERY SELECTION BY FORMULA will result. The selection will include any false
duplicates (collisions) and matching values (valid duplicates). Fortunately, with a bit of

work, it’s possible to replace QUERY SELECTION BY FORMULA with an optimized
replacement. The steps involved in the improved code are listed below:

1. Hash the new path as a starting point for comparisons.

2. Search the existing data using the indexed hash value. This step should exclude
all, or virtually all, records that don't match.

3. If any records are found, load the text values using SELECTION TO ARRAY.

4. Loop through the array, testing each item. If the item is equal to the target string,
add the corresponding array to the final selection.

The code required to implement these steps is more complicated than calling QUERY
SELECTION BY FORMULA but delivers enormous performance benefits. Below is a
simplified version of the new code for a system using the SDBM hashing algorithm.

C_TEXT($1;$new_path)
$new_path:=$1

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path;"SDBM")

QUERY([Stored_Paths];[Stored_Paths]Hash=$hash)

If (Records in selection([Stored_Paths])>0)
ARRAY LONGINT($record_numbers_that_might_match;0)
ARRAY TEXT($text_values_to_check;0)

SELECTION TO ARRAY([Stored_Paths];$record_numbers_that_might_match)
SELECTION TO ARRAY([Stored_Paths]Path;$text_values_to_check)

ARRAY LONGINT($record_numbers_that_do_match;0)

For ($loop_counter;1;Size of array($text_values_to_check))
If (HashUtility_AlphasAreEqual ($new_path;$text_values_to_check{$loop_counter}))

 ` The new path matches the current element in the text array.
 ` Add the original record number the array of record numbers
 ` we'll use below to build the resulting selection.
C_LONGINT($record_number)
$matching_record_number:=$record_numbers_that_might_match{$loop_counter}

APPEND TO ARRAY($record_numbers_that_do_match;$matching_record_number)
End if

End for

 ` The array below is either empty or has record numbers of records whose
 ` Path field = the new path we're looking for.
CREATE SELECTION FROM ARRAY([Stored_Paths];$record_numbers_that_do_match)

End if

Note See the HashTools_FindTextByHash method in the source code database for a more
generalized implementation of the code shown above.

The key optimization feature of the new code is the use of SELECTION TO ARRAY
and CREATE SELECTION FROM ARRAY. Both of these commands are network-
optimized under 4D Server. Instead of transferring entire records, SELECTION TO
ARRAY only transfers the actual field data requested. For large records, the time
savings can be substantial. But just how substantial? Let's look at some speed results.

How Much Time Can Hashing Save?
--

Before adopting any optimization strategy, it’s worth doing a reality check on the
costs and benefits of the technique. It’s easy to invent artificial scenarios that suggest
an optimization is useful when, in real applications, the optimization makes typical
operations slower. The table below shows some results when searching various data
sets under 4th Dimension. All results shown are the averaged (mean) results of
repeated tests reported in milliseconds (1/1000ths of a second) shown to two decimal
places:

Source Values AP BKDR DJB ELF JS PJW RS SDBM SumBytes
QUERY BY
FORMULA

Paths - Roughly 1
KB long 1000 0.86 0.81 0.81 0.88 0.82 0.83 0.82 0.83 1.67 108.46
Paths - Roughly
16 KB long 1000 6.67 6.84 6.50 6.32 6.18 6.18 7.13 6.40 23.57 301.41
Small English
Word List 977 0.43 0.38 0.44 0.43 0.37 0.40 0.45 0.41 1.11 251.89
Small Set with
Duplicates 11 0.18 0.27 0.64 0.18 0.18 0.36 0.18 0.36 0.55 268.64
Tiny English Word
List 100 0.37 0.27 0.27 0.22 0.30 0.31 0.27 0.33 0.57 267.02

Avg 1.70 1.71 1.73 1.60 1.57 1.62 1.77 1.67 5.49 239.48

The data sets used have relatively short, unique values. If anything, using such simple
data should minimize the benefits of hashing. The larger the data and the larger the
sample, the more obvious the speed improvements from hashing become. For more
discussion, see the searching section of Technical Note xx-xx Case-Sensitive
Operations in 4th Dimension.

Note The QUERY BY FORMULA results should be nearly constant for any particular data
set because the number of records inspected is always exactly the same. Real-world
testing shows variation in the test results because of outside factors, such as the
behavior of the operating system or 4th Dimension buffer flushing distorting values.
To minimize distortion, tests were repeated and averaged for this note.

The performance of the AP, BKDR, DJB, ELF, JS, PJW, RS, and SDBM hashes are all
similar enough to be considered equivalent. Taking an average of their performances
as a basis for comparison, the table below shows how much slower the SumBytes and
QUERY BY FORMULA approaches are for any particular data set:

Source Values
Main
Hashes

SumBytes
Hash

QUERY BY
FORMULA

Paths - Roughly 1 KB long 1000 1.00 2.01 130.46

Paths - Roughly 16 KB long 1000 1.00 3.61 46.19

Small English Word List 977 1.00 2.69 609.54

Small Set with Duplicates 11 1.00 1.85 909.23

Tiny English Word List 100 1.00 1.95 912.89

Avg 1.00 2.42 521.66

Reading the overall averages shows that the SumBytes hash is about 2.4 times slower
than the other hashes and that QUERY BY FORMULA is over 500 times slower than
the better hashing functions. It's important not to get carried away by factors alone.
Also consider actual clock times. In the examples above, even the SumBytes function
reduces the time needed to find a unique 1 KB path to a tiny fraction of a second.
Only QUERY BY FORMULA requires more than a second to locate the same value.
After looking at the relative and actual times above, it's clear that hashing does
dramatically optimize performance we need to match unique text values. But what
about when we work under 4D Server, or when we look for non-unique values? Let's
look at performance under 4D Server first. (Times shown in full milliseconds.)

Source Values AP BKDR DJB ELF JS PJW RS SDBM SumBytes
QUERY BY
FORMULA

Paths - Roughly 1 KB long 1000 324 398 401 392 399 400 392 399 399 5,064
Paths - Roughly 16 KB
long 1000 338 396 393 395 396 397 395 396 395 8,267

Small English Word List 977 333 392 400 395 394 398 397 393 398 9,490

Small Set with Duplicates 11 328 394 404 400 382 399 405 391 396 9,400

Tiny English Word List 100 332 396 398 394 394 396 397 391 397 9,510

Avg 331 395 399 395 393 398 397 394 397 8,346

There are several interesting differences between these results and the numbers from
the same tests run under 4th Dimension using identical data:

• The actual average time needed to find a value remains under one second for the
hashing functions and climbs to over eight seconds for QUERY BY FORMULA.

• The speed difference between SumBytes and the other functions disappears. This
result is an artifact of the data sets used as we’ll explain in a moment.

• The performance of QUERY BY FORMULA is dramatically worse in actual clock time
than under 4th Dimension but produces a less dramatic relative difference.

These points are easier to see by factoring relative performance as we did earlier with
the 4th Dimension results:

Source Values
Main
Hashes

SumBytes
Hash

QUERY BY
FORMULA

Paths - Roughly 1 KB long 1000 1.00 1.00 12.75

Paths - Roughly 16 KB long 1000 1.00 1.00 20.91

Small English Word List 977 1.00 1.01 23.99

Small Set with Duplicates 11 1.00 1.00 23.72

Tiny English Word List 100 1.00 1.00 24.07

Avg 1.00 1.00 21.09

The table above illustrates why it’s so important to consider your actual running
environment and the clock. Comparing the results for 4th Dimension and 4D Server, it
would be easy to come away with the conclusion that QUERY BY FORMULA is
optimized for 4D Server. Indeed, it’s 521 times slower than the main hashing
functions under 4th Dimension and only 21 times slower than the main hashing
functions under 4D Server. So QUERY BY FORMULA is about 25 times better under
4D Server. Of course, this is not the case; the results for the other strategies have all
increased, making the relative performance of QUERY BY FORMULA less
dramatically poor in comparison. Looking at the clock again, we see that the hash-
based queries take, on average, about 0.3-0.4 seconds to find a value and that
QUERY BY FORMULA takes about 5-9.5 seconds to find. In real terms, QUERY BY
FORMULA is slow.

A Few Words About Performance Tests
--

Please take all of the speed test values presented in this technical note as suggestive.
Many factors influence test results, and none of the numbers presented should
assume to hold true for your system. Likewise, the relative results should be treated
as suggestive. It’s reasonable to take the trends shown by these tests as valid for a
wider range of systems, but the actual performance characteristics of your system are
bound to differ. As already mentioned, the sample data is not typical of real-world
data.

4th Dimension Versus 4D Server
--

One of the more interesting comparative results above is that, under 4D Server, the
performance of SumBytes is no longer distinguishable from the better functions. For
example, under 4th Dimension, SumBytes is, on average, 1.8-3.6 times slower than
the functions that produce fewer collisions (AP, BKDR, and so on.). Why does this
difference disappear under 4D Server? There is a threshold cost to the indexed longint
search and an effective minimum time for 4D Client to perform the basic tasks
required by the optimized search code discussed already:

1. Hash the new path as a starting point for comparisons on the client.

2. Call 4D Server to perform an indexed query using the hash value.

3. Retrieve the record numbers and text values for any matching records from
4D Server.

4. Examine each text value in the array locally and build an array of matching record
numbers.

5. Send 4D Server the finial array of record numbers.

6. Wait for 4D Server to build a selection using CREATE SELECTION FROM ARRAY.

The data sets used in the tests are small and have very short values, both of which
increase the visibility of the cost of an indexed search in the results. Even so,
4D Client and 4D Server manage to do all of the steps listed above in a fraction of a
second but it appears that there is a minimum time required to perform the work. If
this is true, testing should show that processing ten possible matching values should
take less than ten times as long as processing one possible matching value. In fact,
this is so. Some basic testing on data sets with short strings shows that matching 500
records out of 1,000 only takes about 350 milliseconds compared with over 16,000
when using QUERY SELECTION BY FORMULA. A natural and appropriate question
is, then: can we find the point where it’s better to use QUERY SELECTION BY
FORMULA instead of the customized replacement? Logically, the worst case scenario
where all records in the table match should favor QUERY SELECTION BY FORMULA.
In reality, it is not so simple. QUERY SELECTION BY FORMULA is always worth
replacing. For example, finding 1,000 records out of 1,000 using the hash-optimized
approach takes 400 milliseconds versus over 16,000 milliseconds using QUERY
SELECTION BY FORMULA.

Why Is QUERY SELECTION BY FORMULA So Slow?
--

A reasonable question is why are QUERY BY FORMULA and QUERY SELECTION BY
FORMULA so slow compared to the custom code discussed above? One obvious
answer is that QUERY BY FORMULA has to load entire records, not just individual
fields as SELECTION TO ARRAY. The larger the record, the more of a penalty there
is. This answer, however, doesn't explain the results cited here. The test records
contain nothing but the sample text and nine hash (longint) values. The only way to
know for certain why QUERY BY FORMULA and QUERY SELECTION BY FORMULA
are so inexplicably slow is to review the internals of 4th Dimension itself. It’s easy
enough to come up with theories about why this behavior exists, but, at the end of
the day, the theories don't matter. What matters is reproducible behavior and how
you work with it. In this case, we need to avoid QUERY BY FORMULA and QUERY
SELECTION BY FORMULA whenever possible. With this important point behind us,
let's turn to some other practical ways to optimize otherwise sequential queries and
address some subjects I promised earlier to cover in more detail.

Technique: Refining Query Results with Multiple Hashes
--

The heart of the optimization provided by hashing is the absolute reduction in the
number of sequential operations required. If there are 1,000 records in a table, a
native QUERY BY FORMULA must compare all 1,000 records. If a hash eliminates
600 records, then only 400 records need to be compared sequentially. Under
4D Server, even comparing 400 records sequentially may be slower than you wish. If
a particular hash produces collisions in your data, consider maintaining two or more
hashes. In this case, be sure to test the hash functions with your data to identify
functions that don't produce collisions on the same input values. The imaginary path
database structure below stores hashes from three different functions: AP, ELF, and
BKDR:

The search code can then use more than one hash to reduce the selection, as in the
example below:

C_TEXT($1;$new_path)
$new_path:=$1

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path;"AP")

QUERY([Stored_Paths];[Stored_Paths]AP_Hash=$hash)

If (Records in selection([Stored_Paths])>1)` Refine the selection with the second hash.
$hash:= HashTools_HashText (->$new_path;"ELF")

QUERY SELECTION([Stored_Paths];[Stored_Paths]ELF_Hash=$hash)

If (Records in selection([Stored_Paths])>1)` Refine the selection with the third hash.
$hash:= HashTools_HashText (->$new_path;"BKDR")
QUERY SELECTION([Stored_Paths];[Stored_Paths]BKDR_Hash=$hash)

End if
End if

Assume SELECTION TO ARRAY based code is used here.

Before implementing multiple hashes as discussed above, do some testing in your
environment. The speed benefits of avoiding scanning text sequentially for equality
has to be measured against the time needed to hash the text more than once and do

additional indexed searches. Keep in mind that the longer the source data, the longer
it takes to hash. Let's take a look at how expensive the various hashing algorithms are
in more detail. After that, we’ll look at how to reduce false-positives again a bit more.

Speed Cost of Hashing
--

Hashing is not free because it requires sequentially scanning the complete contents of
a string, text block, BLOB, or document. Hashes are, however, designed to be as
quick as possible compiled. The table below summarizes how long it takes the various
functions to hash different data sets in a compiled application. Altogether, each
function hashes over 150,000 values of different lengths. The tests were run on
modest contemporary hardware. All times are in milliseconds.

Data Set Values AP RS ELF BKDR DJB SDBM JS PJW Average
Small English Word List 977 1 1 1 2 2 2 1 5 2
Small Irish-Gaelic Word List 831 1 1 2 2 1 2 1 5 2
Large Dutch Word List 4,754 9 9 16 34 13 12 10 31 17
Large English Word List 30,405 39 41 49 46 56 56 46 185 65
Paths - Roughly 1 KB long 1,000 98 129 105 103 129 137 143 156 125
Huge English Word List 118,925 270 203 238 215 325 265 251 727 312
Paths - Roughly 16 KB long 1,000 1,682 1,753 1,734 1,767 2,223 2,388 2,423 2,400 2,046

Sum 157,892 2,100 2,137 2,145 2,169 2,749 2,862 2,875 3,509 2,568

The columns are ordered by overall time per hashing function, with the shortest time
being on the left. It’s easy to see that the AP hash is the fastest function at 2,100
milliseconds (2.1 seconds) and the PJW function is the slowest at 3,509 milliseconds
(3.5 seconds.) Given these results, it hardly matters which hashing function you
choose. Even on modest equipment, the overall speed difference between the fastest
and slowest functions is less than one and half seconds when applied to over 150,000
values. Hashing is effectively free in many real-world situations.

The rows in the table above are ordered by overall time per data set, with the shortest
times being on top and the slowest on the bottom. Reading from top-to-bottom, you
can easily see which data sets took longer to process. Notice that the overall speed
doesn’t depend on the raw number of values. Hashing is a purely sequential function,
requiring the code to examine each byte in a string, BLOB, or document from start to
finish. Consequently, the overall time is based on the sum of the lengths of all of the
values. In the data sets analyzed, the word lists consist of relatively short phrases and
the paths are considerably longer. Consequently, nearly 120,000 words and phrases
can be hashed more quickly than 1,000 16 KB paths. Restated simply, it takes longer
to hash longer data.

Note The test results shown above are for values stored as text. The results would be
quicker for identical data stored as BLOBs. See technical note xx-xx Scanning Text
and BLOBs Efficiently for detailed information and sample code. Be sure to read this
note if you plan to access text through pointers.

Technique: Building Longer Hash Keys
--

If you are obtaining too many false positives from a single hash, there are a few ways
to improve your results. As mentioned earlier, you can create multiple hashes.
However, instead of storing these values in distinct fields or records, you can combine
them into a single string field. Imagine, for example, code like the following:

C_LONGINT($ap_hash)
C_LONGINT ($elf_hash)
C_LONGINT ($bkdr_hash)
$ap_hash:=HashTools_HashText (->[Element_Map]XML_Path;"AP")
$elf_hash:=HashTools_HashText (->[Element_Map]XML_Path;"ELF")
$bkdr_hash:=HashTools_HashText (->[Element_Map]XML_Path;"BKDR")

` Convert the three hashes to a single string.
 ` Put a dash between hashes, like so:
 ` 24554-89099-34566
C_STRING(20;$longHashKey_s)
$longHashKey_s:=""
$longHashKey_s:=$longHashKey_s+String($ap_hash)
$longHashKey_s:=$longHashKey_s+"-"
$longHashKey_s:=$longHashKey_s+String($elf_hash)
$longHashKey_s:=$longHashKey_s+"-"
$longHashKey_s:=$longHashKey_s+String($bkdr_hash)

[Element_Map]Long_Hash_Key:=$longHashKey_s

This idea is very similar to the idea of storing multiple hashes, already discussed.
However, using a single string field is well worth considering as it can be quicker for
4th Dimension to search on one string index than an three longint indexes.

If you do decide to build a long string hash key, you can format the string in a variety
of ways, depending on your requirements. For example, including forcing the numeric
conversion to use a specific number of digits, encode the results as hex, or encode
them in base 64. As long as the final string is 80 characters or less, it can be stored
and indexed in a alpha field.

Creating multiple hashes is not the only way to create a long hash key with the
HashTools component. For example, instead of hashing 32,000 characters of text to
get a single longint, hash the text in four blocks of 8,000 characters and then combine
the four hashes into a single long key. If you need to generate longer hash-based
keys regularly, consider rewriting the internal hashing routines to accept two new
parameters: starting position and maximum length of data to hash. If you do go this
route, use the private HashUtility_SanityCheckFunction to verify the text and BLOB
hashing routines are functioning correctly. Alternatively, you can pull chunks of data
out of the source value and pass them in turn to the existing code. The later
approach, of course, is less runtime time and memory efficient than rewriting the
source code. On the other hand, rewriting the source code is less developer time and
stress efficient!

Technique: Hashing Only Part of the Data
--

If you are using hashes to optimize searching for large objects, such as BLOBs,
documents, and pictures, consider not hashing all of the data. For example, instead of
hashing a full document, hash only the first 8,000 bytes. The advantage of this
approach is that it reduces the time needed to produce each hash, if the objects are
large. Also, it makes the time required easier to predict. If you know how long it takes
to hash 8,000 bytes and you need to hash 1,000 documents, it’s easy to estimate the
maximum time required. If you have to hash full documents, the time varies
depending on the combined lengths of all of the documents.

It’s worth stating explicitly why partial hashing doesn’t eliminate any of the benefits of
hashing. When you match two blocks of data because of a shared hash, all that means
is that the two blocks of data might be identical. Then again, these objects may be
different but, by chance, produce the same hash. A final, byte-by-byte comparison is
still required to confirm if two objects are, in fact, the same. If you can reduce the
portion of an object hashed without increasing the number of false positives
unacceptably, partial hashing can save processing time.

Technique: Case-Insensitive Comparisons
--

Hashing functions work on raw byte values and are, therefore, always and necessarily
case-sensitive, contrarily to how 4th Dimension's native searches behave. If you need
or prefer to search case-insensitively, it’s easily done by normalizing the case of the
source text before building the hash. Our imaginary path database structure can be
extended to hold case-sensitive and case-insensitive hash values:

The trigger code can be updated to maintain both hashes:

` Trigger for [Stored_Paths]
Case of
: (Database event=On Saving Existing Record Event)

[Stored_Paths]Hash:=HashTools_HashText (->[Stored_Paths]Path;"SumBytes")
C_TEXT($uppercase_text)
$uppercase_text:= Uppercase([Stored_Paths]Path)
[Stored_Paths]Hash_Case_Insensitive:= HashTools_HashText (->$uppercase_text;"SumBytes")

: (Database event=On Saving New Record Event)
[Stored_Paths]Hash:=HashTools_HashText (->[Stored_Paths]Path;"SumBytes")
C_TEXT($uppercase_text)
$uppercase_text:= Uppercase([Stored_Paths]Path)
[Stored_Paths]Hash_Case_Insensitive:= HashTools_HashText (->$uppercase_text;"SumBytes")

End case

The key lines of code are repeated below:

C_TEXT($uppercase_text)
$uppercase_text:= Uppercase([Stored_Paths]Path)
[Stored_Paths]Hash_Case_Insensitive:= HashTools_HashText (->$uppercase_text;"SumBytes")

The source text is converted to all uppercase before the hash is built. Uppercase was
chosen arbitrarily, you could use Lowercase just as well. A simple version of search
code using this hash is shown below:'

C_TEXT($1)
C_TEXT($new_path_uppercase)
$new_path_uppercase:= Uppercase ($1)

C_LONGINT($hash)
$hash:=HashTools_HashText (->$new_path_uppercase;"SumBytes")

QUERY([Stored_Paths];[Stored_Paths]Hash_Case_Insensitive=$hash)
QUERY BY FORMULA([Stored_Paths]; [Stored_Paths]Path=$new_path)

Technique: Searching for BLOBs, Pictures, and Documents
--

The original impetus for implementing hash functions in 4th Dimension was to find a
way to quickly search through a large collection of XML paths case-sensitively.
Hashing is a great solution for that problem but, as it turns out, hashing is also an
excellent solution for a variety of other unrelated search problems. The
HashTools_HashDocument command can automatically search for strings, text,
pictures, and BLOBs based on stored hashes. The HashTools_HashDocument
command hashes documents and serves as a basis for you to write hash-optimized
document query and retrieval code. Below are some example scenarios that illustrate
some different uses of hashing:

• The health and safety department for a large international construction company
needs to distribute the latest version of hundreds of documents to offices in over 20
countries. As part of the synchronization process, the hash of each document
transmitted is also transferred as a check sum. When each document is received,
it’s hashed using HashTools_HashDocument and the value compared with the
original check sum. If the values don’t agree, the document is retransmitted.

• A talent agency recently started a new Web-based system that allows models and
actors to submit their résumé’s and photographs. Unfortunately, some hopefuls are
submitting their photograph more than once using slightly different names and
addresses. To detect these duplicates, the system hashes each photograph

submitted over the Web. When a new photograph is submitted, the system calls
HashTools_HashPicture to hash the photograph and then calls
HashTools_FindByHash to find any duplicates.

• The legal department for a major Hong Kong merchant bank maintains a centralized
repository of each version of each contract they negotiate. Internally, the 4D Server
system stores a path to each document and a hash of its contents. When an
associate submits a new document to the system, the database checks if it’s a
duplicate. Instead of comparing the document directly with tens of thousands of
other documents, the system hashes the document with HashTools_HashDocument,
searches for documents with matching hashes, and then compares these documents
individually with the submission.

Tip: Constructing "Not Equals" Searches Correctly
--

As emphasized throughout this discussion, hashes optimize searches by reducing the
number of values that need to be inspected sequentially. The fewer sequential
operations, the better. All of the examples have been geared towards finding equal
values. If you want to find values that are not equal, think ahead how you'll build the
selection. Imagine you have 10,000 records and 9,999 or them are not equal to a
particular value and one is equal. It’s far quicker to find the 1 that is equal (1
sequential operation) and reverse the selection through set operations than to find all
of the not equals values (9,999 sequential operations.)

A Few Words for People Who Don't Like Math
--

This note has not addressed the code for the various hashing functions implemented
in the source code database. Apart from SumBytes, the hashing functions in the
database are translations of code available in Java, C, C++, Pascal, and Object Pascal
at:
http://www.partow.net/programming/hashfunctions/index.html

The 4th Dimension code is written to look very much like the original code. As an
example, below is the source of the ELF hash in C followed by its translation into 4th
Dimension code:

unsigned int ELFHash(char* str, unsigned int len)
{

 unsigned int hash = 0;
 unsigned int x = 0;
 unsigned int i = 0;

 for(i = 0; i < len; str++, i++)
 {
 hash = (hash << 4) + (*str);
 if((x = hash & 0xF0000000L) != 0)
 {
 hash ^= (x >> 24);
 hash &= ~x;
 }
 }

 return (hash & 0x7FFFFFFF);

}
/* End Of ELF Hash Function */

C_LONGINT($0;$hash)
C_TEXT($1;$str)

$str:=$1

$hash:=0

C_LONGINT($x)
C_LONGINT($len)
$x:=0
$len:=Length($str)

C_LONGINT($i)
For ($i;1;$len) ` Note: 4D numbers strings from 1, not 0.

$hash:=($hash << 4)+(Ascii(stri))

$x:=$hash & 0xF0000000
If ($x#0)

$hash:=$hash ^| ($x >> 24)
$hash:=$hash & ($x ^| -1)

End if

End for

$0:=$hash

Unless you use bit-wise operators regularly and really like math, the code above is
almost certainly incomprehensible. If this is the case for you, don't worry about it. For
those who are mathematically minded, hashes are an intriguing subject. For the rest
of us, we can say they work through magic and leave it at that.

A Note About MD5
--

Many people are familiar with, or have at least heard of the MD5 hashing algorithm.
MD5 is a cryptographic hash, not just a simple string hash. Cryptographic hashing
functions produce results that are very difficult to reverse, so they are good
candidates for sensitive data such as passwords. Producing secure hashes, however, is
more complex than producing simple hashes. The hashing functions implemented in
the source code database and packaged into the HashTools component each require
only a few lines of code in C while the MD5 algorithm requires several hundred lines in
C. Unless you need a cryptographic hash, MD5 is a poor choice as a hashing algorithm
as it’s slower to run than non-cryptographic hashes.

More Details About the Source Code
--

The sample database includes a suite of tools for testing speed and collision rates for
different hashing functions applied to different data sets. Apart from testing and
various support utilities, the heart of the system is found in the hashing functions.
Listed below are the main routines in the database. The methods visible in the
HashTools component are highlighted in bold.

Method Scope Description
Compiler_HashTools Protected Includes all compiler declarations needed

by component methods.
HashBlob_AP Private Returns AP hash of a BLOB.
HashBlob_BKDR Private Returns BKDR hash of a BLOB.
HashBlob_DJB Private Returns DJB hash of a BLOB.
HashBlob_ELF Private Returns ELF hash of a BLOB.
HashBlob_JS Private Returns JS hash of a BLOB.
HashBlob_PJW Private Returns PJW hash of a BLOB.
HashBlob_RS Private Returns RS hash of a BLOB.
HashBlob_SDBM Private Returns SDBM hash of a BLOB.
HashBlob_SumBytes Private Returns SumBytes hash of a BLOB.
HashDocument_AP Private Returns AP hash of a document.
HashDocument_BKDR Private Returns BKDR hash of a document.
HashDocument_DJB Private Returns DJB hash of a document.
HashDocument_ELF Private Returns ELF hash of a document.
HashDocument_JS Private Returns JS hash of a document.
HashDocument_PJW Private Returns PJW hash of a document.
HashDocument_RS Private Returns RS hash of a document.
HashDocument_SDBM Private Returns SDBM hash of a document.
HashDocument_SumBytes Private Returns SumBytes hash of a document.
HashText_AP Private Returns AP hash of a text/string.
HashText_BKDR Private Returns BKDR hash of a text/string.
HashText_DJB Private Returns DJB hash of a text/string.
HashText_ELF Private Returns ELF hash of a text/string.
HashText_JS Private Returns JS hash of a text/string.
HashText_PJW Private Returns PJW hash of a text/string.

HashText_RS Private Returns RS hash of a text/string.
HashText_SDBM Private Returns SDBM hash of a text/string.
HashText_SumBytes Private Returns SumBytes hash of a text/string.
HashTools Read Me Private Private Documents all code.
HashTools Read Me Public Public Documents public and protected code.
HashTools_FindBlobByHash Private Finds BLOB by stored hash.
HashTools_FindByHash Protected Finds alpha, text, BLOB, or picture by

stored hash.
HashTools_FindPictureByHash Private Finds picture by stored hash.
HashTools_FindTextByHash Private Finds alpha or text by stored hash.
HashTools_GetErrorText Protected Returns error string associated with a

HashTools error code.
HashTools_GetHashTypeNames Protected Returns array of supported hash types.
HashTools_GetLastErrorCode Protected Returns last recorded error code, if any.
HashTools_GetLastErrorLocation Protected Returns name of last method to record an

error, if any.
HashTools_HashBlob Protected Hashes a BLOB.
HashTools_HashDocument Protected Hashes an open document.
HashTools_HashPicture Protected Hashes a picture.
HashTools_HashText Protected Hashes a string or block of text.
HashTools_InitializeErrorText Private Loads static error strings.
HashTools_InitializeTypeNames Private Loads static list of hash types.
HashTools_InstallErrorSystem Private Installs HashTools error handler and sets

current error location.
HashTools_RestoreErrorHandler Private Restores original error handler, if any.
HashTools_SetError Private Sets error code.
HashUtility_AlphasAreEqual Private Tests if two alphas are identical case-

sensitively.
HashUtility_DocRefIsValid Private Tests if a document reference refers to an

open document.
HashUtility_PicturesAreEqual Private Tests if two pictures are identical.
HashUtility_SanityCheckFunction Private Sanity checks the low-level hashing

routines by passing in a fixed input with
known outputs.

HashUtility_TypeNameIsValid Private Tests if a hash type name is recognized.

Summary
--

Hashing is a reliable and efficient technique for optimizing locating strings, text,
BLOBs, pictures, and documents. Using the materials presented in this note and the
code provided in the accompanying database, you should be able to implement high-
speed "equals" and "not equals" searches on strings, text, pictures, BLOBs and
documents. Additionally, code and background materials explain why and how to
replace QUERY BY FORMULA and QUERY SELECTION BY FORMULA when
performing sequential searches.

