
The HashTools Component

By David Adams

Technical Note 05-43

Overview
--

Hashing is a technique for rendering a block of data, such as a string, BLOB, picture,
or document, as a single longint. Hashes can be used as check sums or to optimize
lookup and query operations. The HashTools component implements nine different
hashing algorithms and provides code for hashing text, pictures, BLOBs, and
documents. In addition, the component includes code to perform hash-optimized
searches on text, BLOB, and picture fields. This technical note describes the public and
protected methods in the component. Several complementary technical notes describe
other applications for hashing in 4th Dimension or discuss details of the design and
implementation of the HashTools code:

• Technical Note 05-44 Optimizing Searches with Hashes describes the source
code of the HashTools component and how hashing can optimize text and BLOB
queries. Detailed test results are provided to compare the performance
characteristics of different hashing algorithms. The sample database from that note
is included here to illustrate various HashTools features.

• Technical Note 05-41 Case-Sensitive Operations in 4th Dimension discusses
how to perform case-sensitive searches in 4th Dimensions using several different
techniques, including using the HashTools component.

• Technical Note 05-42 Scanning Text and BLOBs Efficiently explores in detail how
to design 4th Dimension code to analyze text and BLOB values most efficiently for
best speed and best memory conservation.

Why a Component?
--

Components provide a way of packaging a collection of 4th Dimension resources for
easy distribution. Some developers avoid building or using components because of
problems in historical versions of 4th Dimension or because the code of protected
methods is not visible once they are installed in a database. In counterpoint to these
potential drawbacks, packaging the HashTools code as a component delivers several
benefits:

• Reduced Complexity: The source code includes over 50 methods, most of which
should not be called directly. The component exposes about 10 methods, half of
which are devoted to error management, compilation, and documentation.

• Simplified Updating: The HashTools routines are used in several related technical
notes and databases, as mentioned. Using a component makes it easy to keep the
hashing code in these systems up-to-date. The same is true of any databases in
which you install HashTools.

• Efficient Error Testing: Internally, the hashing functions need to test that
parameters, such as pointers and document references, are valid. Requiring each
low-level method, such as HashText_RS, to perform these checks renders the
routines larger and more complex. Instead, the low-level routines are made private
and do no parameter testing of any kind. Protected methods, such as
HashTools_HashText, act as gateways to the private methods. The gateway
methods test parameters comprehensively before calling the private methods. This
strategy lets the component protect thoroughly against bad inputs without
redundancy and with the least complexity possible.

Note Technical Note 05-44 Optimizing Searches with Hashes includes the original
source code for the HashTools component, if you want or need to rewrite or extend
the existing component.

Compilation
--

The code in the HashTools component is designed to be run compiled, not interpreted.
The component includes complete declarations for all variables, arrays, and
parameters used. You may compile with any of 4th Dimensions compilation options,
including "all variables are typed".

Internal Documentation
--

Each visible method in the component includes Explorer comments documenting the
method's parameters and a relevant code sample. Additionally, the HashTools Read
Me Public method describes and documents each method.

Supported Hash Algorithms
--

There are hundreds of existing text hashing functions. The ideal hashing function for
any particular situation depends on the data itself. The HashTools component adapts C
code for eight high-quality functions into 4th Dimension code. Additionally, a ninth
function called SumBytes is included for didactic purposes. The original C source code,
and versions in C++, Object Pascal, and Java, can be found at this Arash Partow's
site:

http://www.partow.net/programming/hashfunctions/

The table below, adapted from Arash Patrow's site, briefly describes the nine
algorithms supported by the HashTools component.

Algorithm Notes
AP A new hashing algorithm designed by Arash Partow, the programmer

who provides the sample C code used as the basis for HashTools.
BKDR An algorithm adapted from The C Programming Language by

Kernighan and Ritchie.
DJB A highly efficient hashing function developed by Daniel J. Bernstein and

first published on the comp.lang.c newsgroup.
ELF A 32-bit version of the PJW hash.
JS A bitwise hashing function developed by Justin Sobel.
PJW An algorithm first developed by Peter J. Weinberger at AT&T Bell Labs.
RS An optimized version of a hashing function found in Robert Sedgwick's

Algorithms in C.
SDBM A good low-collision algorithm used in many database projects.
SumBytes A low-quality but simple and easy to understand hash that sums the

value of each byte in a string, text, BLOB, picture, or document.

If you need to retrieve the list of valid hashing algorithm names within code, use the
HashTools_GetHashTypeNames function:

ARRAY TEXT($hashMethodNames;0)
HashTools_GetHashTypeNames(->$hashMethodNames)

Note You may pass a pointer to a string or a text array to HashTools_GetHashTypeNames.
If you pass a string array, be sure the elements are at least 8 characters long.

Selecting a Hashing Algorithm
--

Hashing algorithms differ in the time they need to create a hash and the number of
collisions (duplicate hashes from distinct inputs) they produce. Technical Note 05-44
Optimizing Searches with Hashes explains in detail how hashing works, what
collisions are, and how to test different algorithms. That note also provides summaries
of test results for the nine hashing algorithms when applied to different data sets.
Based on those tests, you may consider the AP, BKDR, RS, and SDBM algorithms
functionally equivalent for your 4th Dimension projects.

Hashing Values
--

The HashTools component includes four routines for hashing different types of values.
Each routine requires a reference to a value of the correct type, and the name of a
valid hashing algorithm, and returns a hash in a longint. The valid hashing algorithms
names can be read in code using the HashTools_GetHashTypeNames routine. If there
is an error, such as a bad pointer being passed in or an unrecognized hash method
name, the HashTools component sets an error. See the error management
documentation below for details.

HashTools_HashBlob
HashTools_HashBlob (Pointer;Text): Longint
HashTools_HashBlob (->BLOB;"Hash Method"): Hash

Hashes a BLOB and returns a result, as in the example below:

C_LONGINT($hash)
$hash:=HashTools_HashBlob(->[Sample]BLOB;"BKDR")

Note The BLOB is passed in by pointer but is duplicated internally to improve performance.
If this behavior causes memory problems in your environment, you can rewrite the
underlying private hashing routines to operate on pointers.

HashTools_HashDocument
HashTools_HashDocument (Time;Text): Longint
HashTools_HashDocument (DocRef;"Hash Method"): Hash

Hashes a document and returns a result, as in the example below:

C_TIME($docref)
$docref:=Open document(" ")

If (OK=1)
 CREATE RECORD([StoredDocumentData])
 [StoredDocumentData]Hash:=HashTools_HashDocument ($docref;"AP")
 [StoredDocumentData]Path:=Document
 SAVE RECORD([StoredDocumentData])
 UNLOAD RECORD([StoredDocumentData])

 CLOSE DOCUMENT($docref)
End if

The document reference must be to a document that has already been opened or else
an error is set. After running HashTools_HashDocument, the document is left open
and the document position is restored.

Note The document is hashed by reading in a stream by 32,000 character chunks rather
than by copying the entire document into a BLOB. This procedure is relatively quick
and enables the HashTools_HashDocument routine to hash enormous documents
without consuming much memory.

HashTools_HashPicture
HashTools_HashPicture (Pointer;Text): Longint
HashTools_HashPicture (->Picture;"Hash Method"): Hash

This routine hashes a picture and returns the result, as in the example below:

C_LONGINT($hash)
$hash:=HashTools_HashPicture(->[Sample]Picture;"SDBM")

Note The picture is passed in by pointer and is then converted internally to a BLOB and
then passed as a parameter, thus consuming extra memory. If this causes memory
problems in your environment, you can rewrite the underlying private hashing
routines to operate on pointers or on a dedicated process variable.

HashTools_HashText
HashTools_HashText (Pointer;Text): Longint
HashTools_HashText (->Text;"Hash Method"): Hash

Hashes a string or block of text and returns a result, as in the example below:

C_LONGINT($hash)
$hash:=HashTools_HashText (->[Sample]Text;"SDBM")

Note The text is passed in by pointer but is copied locally to avoid scanning an alpha
through a pointer. In some versions of 4th Dimension, scanning blocks of text with
about 15,000 characters or more can be 100 times slower than expected. See
Technical Note 05-42, Scanning Text and BLOBs Efficiently, for more details.

Finding Records by Stored Hashes
--

The HashTools_FindByHash routine can automatically match alpha, text, BLOB, and
picture fields using a stored hash. The parameters and behavior of this method are
documented below

HashTools_FindByHash (Pointer;Longint;Pointer;Pointer;Boolean) : Longint
HashTools_FindByHash (->Value to match;Hash to match;->Value field;

->Hash field;{Search selection?}): Hash matches

Special notes on each parameter are included below:

Parameter # Type Notes
Hash
matches

$0 Longint How many records matched the hash? This value is
useful during hash analysis but typically not needed
during routine use. To find the number of records
located, use Records in selection.

Value to
match

$1 Pointer Pointer to the alpha, text, BLOB, or picture to match.

Hash to
match

$2 Longint Hash of value to match. You must prepare and supply
the hash as HashTools_FindByHash doesn’t do any
hashing.

Value field $3 Pointer A pointer to the field that stores the alpha, text, BLOB, or
picture you want to find. The type of the value field ($3)
and the value to match ($1) must agree.

Hash Field $4 Pointer A pointer to the field that stores hashes.
Search
selection?

$5 Boolean Search the current selection? The default value for this
optional parameter is False, meaning "search the table".

This routine depends entirely on stored and supplied hashes. This routine doesn’t do
any hashing at all. For this system to work, you must pre-calculate and store the
hashes of the field you are interested on searching. As an example, imagine a table
that stores large BLOBs, such as the one pictured below:

In this imaginary table structure, the [Data]Hash_of_BLOB field stores the SDBM hash
of the contents of the [Data]BLOB field. The sample code below shows how to find
values in [Data]BLOB that match a BLOB stored in a local variable named
$BlobToMatch_blob:

C_LONGINT($hash)
` Hash the local BLOB using the same method used to hash the stored BLOBs.
$hash:=HashTools_HashBLOB (->$BlobToMatch_blob;"SDBM")
HashTools_FindByHash (->BlobToMatch_blob ;$hash;->[Data]BLOB;
->[Data]Hash_of_BLOB)

Internally, HashTools_FindByHash routine first performs an indexed search on the
[Data]Hash_of_BLOB field, eliminating from consideration all BLOBs that don’t have a
hash value identical to the hash of the test BLOB. If you are storing unique BLOBs, the
indexed search is likely to reduce the selection to only the matching BLOB, if any.
Once the indexed search is completed, the HashTools_FindByHash routine tests the
remaining records to see if the test value and the value stored in the record are

identical. HashTools_FindByHash is able to do this with alpha, text, BLOB, and picture
fields.

Tip Triggers are a good place to put the code needed to maintain stored hashes.

Error Management
--

The routines in the HashTools component install a custom error handler before
performing any work. If you have another error handler installed already, it is restored
at the end of any HashTools routine. If an error is encountered by HashTools, the
method that encountered the error and an error code are set. You can read these
values with the functions documented below.

HashTools_GetLastErrorLocation
HashTools_GetLastErrorLocation (): Text
HashTools_GetLastErrorLocation (): Name of last method to set an error, if any.

HashTools_GetLastErrorCode
HashTools_GetLastErrorCode (): Longint
HashTools_GetLastErrorCode (): Error code or 0, if there was no error.

HashTools_GetErrorText
HashTools_GetErrorText (Longint): Text
HashTools_GetErrorText (Error code): Error text

A string translation of any HashTools error code can be read using the
HashTools_GetErrorText function. If you want the text of the last error code set, call
the code shown below:

HashTools_GetErrorText (HashTools_GetLastErrorCode)

Defined Error Strings
The table below lists all defined HashTools errors.

Error Text
1 Required parameter(s) not passed to HashTools.
2 Bad hash method type passed to HashTools.
3 Bad document reference passed to HashTools.
4 Unrecognized hash method type, HashTools internal error.
5 Nil pointer passed to HashTools.
6 Pointer to wrong data type passed to HashTools, BLOB pointer expected.
7 Pointer to wrong data type passed to HashTools, alpha/text pointer expected.
8 Bad pointer passed to HashTools, pointer to search field expected.
9 Bad pointer passed to HashTools, pointer to hash field expected.
10 Pointer to wrong search field type, string, text, BLOB, or picture field expected.
11 Pointer to wrong hash field type, numeric field expected.

12 Search value and search field types do not agree.
13 Calling HashTools_GetErrorText without the required error code parameter.
14 Bad pointer passed to HashTools, pointer to picture expected.

Summary
--

The HashTools component provides an easy-to-use suite of hashing functions that can
be applied to alphas, text, pictures, BLOBs, and documents. Moreover, the component
includes a routine for performing highly-optimized hash-based searches on alpha,
text, BLOB, and picture fields. Additional technical notes describe and discuss hashing,
applications for hashing, and the design of text or BLOB code, in more detail, including
Technical Note 05-44 Optimizing Searches with Hashes, Technical Note 05-41
Case-Sensitive Operations in 4th Dimension, and Technical Note 05-42 Scanning
Text and BLOBs Efficiently.

