
Case-Sensitive Operations in 4th Dimension

By David Adams

Technical Note 05-41

Overview
--

The 4th Dimension language and database engine don’t automatically compare values
case-sensitively. Instead, upper- and lower-case versions of a letter, and many of
their diacritically marked variations, are considered equal. For example, the QUERY
command treats the following characters as identical:

e é E É Ë

It is often helpful that 4th Dimension doesn’t distinguish between case and diacritically
distinct characters. This behavior is an obstacle, however, when you need to compare
values case-sensitively. There are several situations when case-sensitivity is desirable
or necessary:

• Testing values, such as names, where specific case rules must be observed.

• Searching for stored paths that refer to documents on a case-sensitive volume.

• Comparing and testing XML element and attribute names.

Note The exact behavior when comparing text values depends on the version of 4th
Dimension, the operating system in use, the script system in use, and the Script
Manager database properties selected. Regardless, case-sensitive comparisons are not
a native feature.

This note explains how to compare text case-sensitively and examines several
strategies for optimizing case-sensitive searches. The sample database includes code
to perform the following tasks:

• Comparing alpha/text values case-sensitively.

• Comparing alpha/text arrays case-sensitively.

• Finding values in string/text arrays case-sensitively.

• Counting values in string/text arrays case-sensitively.

• Comparing BLOBs exactly.

• Accelerating case-sensitive text searches with an optimized replacement for QUERY
BY FORMULA or stored hashes.

Related Technical Notes
--

This technical note and the accompanying sample database are part of a collection of
related notes. The following may also be of interest:

• Technical Note 05-42 Scanning Text and BLOBS Efficiently explores in detail how
to design 4th Dimension code to analyze text and BLOB values most efficiently for
best speed and best memory conservation.

• Technical Note 05-43 The HashTools Component documents the hashing routines
employed by the searching portions of the sample database included with the note
you are reading.

• Technical Note 05-44 Optimizing Text and BLOB Searches with Hashes
describes the source code of the HashTools component and how hashing can
optimize text and BLOB queries. Detailed test results are provided to compare the
performance characteristics of different hashing algorithms.

Before examining case-sensitivity in 4th Dimension in detail, let’s revisit one of the
reasons why it is important: XML.

Recommendation: Pay Special Attention to XML Names
--

Now that XML is ubiquitous, 4th Dimension programmers are increasingly called upon
to create and consume XML. Web Service messages, for example, are always written
in XML. In these cases, 4th Dimension's native “case-blind” behavior is a problem. The
XML standards are 100% clear on this point: XML element and attribute names
are always case-sensitive. The following element names, for example, are distinct
in XML but identical in 4th Dimension:

customer
Customer
CUSTOMER

As an example, the following text is not legal XML because the opening and close tags
don’t match case-sensitively:

<?xml version="1.0" encoding="UTF-8"?>
<customer>
</Customer>

In practice, although most people writing XML don’t depend on case to distinguish
elements, some do. If your 4th Dimension code is case-blind, it may work. Then
again, it may not. Worse, it may work today and then behave improperly if the
underlying XML changes. It goes without saying that leaving the ultimate success of
your code to luck is a poor practice. Rather, it is far better to make the effort to write
case-sensitive code for case-sensitive operations. The explanations and sample code
provided with this note should facilitate adding case-sensitivity to your project.

Now let’s look at string comparisons in the 4th Dimension language. After that, we’ll
look at case-sensitive searching. First, let’s take a glimpse at the demonstration
interface.

String, BLOB, and Array Comparison Test Screen
--

The sample database includes a demonstration screen that lets you experiment with
the string, BLOB, and alpha array comparison routines, pictured below:

As you use this demonstration, keep a few points in mind:

• If you’re interested in the code, you can trace it to see exactly how the various
routines work.

• If you’re testing performance, run the system compiled.

• The “speed mode” describes one option as faster and the other slower. Depending
on the size of your samples, the faster option may be slower. In fact, the
time/speed trade-off controlled by the speed mode setting only becomes meaningful
with larger samples. We’ll look into the speed mode next as it applies to many of the
routines in the sample database.

Speed Mode and Performance Considerations
--

The pointer-based comparison routines documented below support an optional
parameter called “speed mode”. While these routines always take pointers to the
values, the speed mode setting controls what is done with the pointer internally. The
table below documents the behavior:

Code Mode Name Text Blob
0 Default Copy value Read value through pointer
1 Faster but uses RAM Copy value Copy value
2 Slower but saves RAM Scan through pointer Scan through pointer

Internally, when a routine is told to copy a value, it takes the pointer and copies the
text or BLOB value into a local variable. The scanning code then uses the local copy
instead of reading the original through the pointer. Duplicating the value in this
manner requires more RAM but saves time. In the case of BLOBs, scanning through a
pointer is roughly 1.67 times slower than scanning a BLOB directly. You will certainly
find different results if you test this yourself, but the figure cited here is a reasonable
rule-of-thumb. For text, the behavior depends on the size of the text pointed to. In
some versions of 4th Dimension, the rate of scanning a text value through a pointer
changes dramatically when the text reaches around 15,000 characters. The scanning
rate can slow down overall by as much as 100 times. Given this behavior, it is safer to
copy the text than to scan text through a parameter. Since text values in 4th
Dimension are limited to 32,000 characters, duplicating a single text value is unlikely
to produce memory-related problems. The research and test code behind the
information in this paragraph is included in Technical Note 05-42 Scanning Text and
BLOBs Efficiently.

Note Internally, 4th Dimension pointers are unlike pointers in languages like C and are
considerably more expensive to dereference.

Comparing Strings and Text
--

Compare Character Values, Not Characters
As noted, 4th Dimension ignores case and other character variations when making
comparisons. For example, the following expression returns True in 4th Dimension:

" a"="A"

Reworking this behavior for text is easy: compare the ASCII codes of each character
in a string rather than the characters themselves. The following expression returns
False in 4th Dimension:

Ascii("a")=Ascii("A")

Sample Implementation
The expression shown above is all there is to case-sensitive string comparisons. To
compare two string/text values case-sensitively, confirm that they have the same
length and then loop through the values comparing each character’s ASCII value. The
following code fragment from the CS_AlphasAreEqual routine in the sample database
fleshes out this idea:

C_LONGINT($base_length)
C_LONGINT($index)
C_BOOLEAN($continue)

$base_length:=Length($baseString_t)
$index:=1 ` Strings are not empty, based on a test performed before this code fragment.

C_LONGINT($base_ascii)
C_LONGINT($comparison_ascii)

$continue:=True
$stringsAreEqual_b:=True

While ($continue)
$base_ascii:=Ascii($baseString_t[[$index]])
$comparison_ascii:=Ascii($comparisonString_t[[$index]])

If ($base_ascii=$comparison_ascii) ` Equal: continue examination
$index:=$index+1 ` Set counter for next character in string

If ($index>$base_length)` The counter is now larger than the string, therefore we should stop.
$continue:=False

End if

Else ` Not equal: stop examination
$stringsAreEqual_b:=False
$continue:=False

End if

End while

String Comparison Routines Provided
The sample database includes two string-comparison routines for your convenience.
Their behavior is identical but one takes pointers to the string/text values, and the
other takes the string/text values directly as a parameter. See “Speed Mode and
Performance Considerations” above for more discussion on these two approaches to
passing values. The string-comparison routines are documented below.

CS_AlphasAreEqual
CS_AlphasAreEqual (Text;Text) Boolean
CS_AlphasAreEqual (Base text;Comparison text) Strings are equal?

This routine takes two string/text values as parameters and compares them case-
sensitively. If the strings are identical, the function returns True; otherwise, it returns
False. The example fragment below shows how a trigger can use CS_AlphasAreEqual
to test if a customer’s name has changed case-sensitively.

If (CS_AlphasAreEqual ([Customer]Name;Old([Customer]Name))
` The name has changed

Else
` The name has not changed.

End if

CS_AlphasAreEqual_Pointer
CS_AlphasAreEqual_Pointer (Pointer; Pointer;Longint) : Boolean
CS_AlphasAreEqual_Pointer (->Base text;->Comparison text;{Speed mode}) :
Strings are equal?

This routine takes two string/text values by pointer and compares them case-
sensitively. If the strings are identical, the function returns True; otherwise, it returns
False. The example fragment below shows how a trigger can use CS_AlphasAreEqual
to test if a customer’s name has changed case-sensitively.

C_TEXT($oldName_text)
$oldName_text:=Old([Customer]Name)
If (CS_AlphasAreEqual_Pointer (->[Customer]Name;->$ oldName_text)

` The name has changed
Else

` The name has not changed.
End if

The default speed mode for this routine is 1, “copy values”.

Comparing BLOBs
--

Why Compare BLOBs
4th Dimension’s text fields can hold less than 32KB of text. In modern applications,
it’s often necessary to store text values far longer than 32KB. 4th Dimension’s BLOB
fields can hold enormous blocks of data but, unfortunately, are not as easily searched
or compared as text values. For example, 4th Dimension’s equals (=) operator doesn’t
work on BLOBs.

This note and the sample database include some code to help compare and find BLOB
values. The string comparison code shown earlier is nothing more than a loop that
steps through each character in the two strings comparing their ASCII values. The
same code can be reworked slightly to operate on BLOBs. In fact, scanning BLOBs in
this manner is slightly faster than scanning text because the Ascii function doesn’t
need to be called on each byte since BLOB bytes are already treated as numeric
values.

Sample Implementation
The code fragment below from the CS_BlobsAreEqual routine shows how to compare
two BLOBs:

C_LONGINT($index)
C_BOOLEAN($continue)

$index:=0 ` Bytes in a BLOB are numbered from 0, not 1. (Strings are numbered from 1.)

$continue:=True
$blobsAreEqual_b:=True

While ($continue)
If ($1{$index}=$2{$index}) ` Compare bytes directly.

$index:=$index+1 ` Set counter for next character in string

If ($index=$base_length) ` The counter is now larger than the string so stop.
$continue:=False

` Notice that the test is = $base_length because BLOBs are numbered from 0.
` So, if we had a BLOB of 1 byte, the first time through the While loop, the counter
` is set to 0 before the comparison and 1 after the comparison. 1 = the second physical
` byte. There isn't a 2nd byte, so the loop should finish.

End if

Else ` Bytes are not equal.
$blobsAreEqual_b:=False
$continue:=False

End if

End while

Note As the comments in the code fragment indicate, BLOBs are numbered as offsets from
the start of the BLOB. Therefore, the first byte is numbered 0 and the last byte is
numbered Size of blob-1.

BLOB Comparison Routines Provided
The sample database includes two BLOB-comparison routines for your convenience.
Their behavior is identical, but one takes pointers to the BLOBs to compare, and the
other takes the BLOB value directly as parameters. See “Speed Mode and
Performance Considerations” above for more discussion on these two approaches to
passing values. The BLOB-comparison routines are documented below.

CS_BlobsAreEqual
CS_BlobsAreEqual (BLOB; BLOB) Boolean
CS_BlobsAreEqual (Base BLOB;Comparison BLOB) BLOBs are equal?

This routine takes two BLOBs as parameters and compares them case-sensitively. If
the BLOBs are identical, the function returns True; otherwise, it returns False. The
example fragment below tests if an incoming BLOB matches the value stored in a
record that is already loaded:

If (CS_BlobsAreEqual (IncomingData_blob;[Sample_Data]BLOB)
` The incoming value is a duplicate of the BLOB stored in this record.

Else
` The incoming value is different from the BLOB stored in this record.

End if

Tip You can test if two pictures are identical by converting them to BLOBs and then
comparing the BLOBs.

CS_BlobsAreEqual_Pointer
CS_BlobsAreEqual_Pointer (Pointer; Pointer;Longint) : Boolean
CS_BlobsAreEqual_Pointer (->Base BLOB;->Comparison BLOB;{Speed mode}) :
BLOBs are equal?

This routine takes two BLOB values by pointer and compares them case-sensitively. If
the BLOBs are identical, the function returns True; otherwise, it returns False. The
example fragment below tests if an incoming BLOB matches the value stored in a
record that is already loaded:

If (CS_BlobsAreEqual_Pointer (->IncomingData_blob;->[Sample_Data]BLOB)
` The incoming value is a duplicate of the BLOB stored in this record.

Else
` The incoming value is different from the BLOB stored in this record.

End if

The default speed mode for this routine is 2, “scan through pointer”.

Tip You can test if two pictures are identical by converting them to BLOBs and then
comparing the BLOBs.

Comparing String/Text Arrays
--

As a convenience, the sample database includes a routine named
CS_AlphaArraysAreEqual_Pointer that compares two string/text arrays. If the arrays
are equal in size and each element has case-sensitively identical contents, the
function returns True; otherwise it returns False. The parameters for this routine are
listed below:

CS_ArraysAreEqual_Pointer (Pointer; Pointer;Longint) : Boolean
CS_ArraysAreEqual_Pointer (->Base array;->Comparison array;{Speed mode}) :
Arrays are equal?

The default speed mode for this routine is 1, “copy values”.

General Comparison Routine
--

The sample database includes a general comparison routine named
CS_ContentsAreEqual_Pointer. Internally, this routine tests what sorts of values are
pointed to and then dispatches the call to the appropriate comparison routine:
CS_AlphaArraysAreEqual_Pointer, CS_AlphasAreEqual_Pointer, or
CS_BlobsAreEqual_Pointer. The parameters for this routine are listed below:

CS_ContentsAreEqual_Pointer (Pointer; Pointer;Longint) : Boolean
CS_ContentsAreEqual_Pointer (->Base value;->Comparison value;{Speed mode}) :
Values are equal?

The items pointed to in $1 and $2 must agree. Therefore, you may pass pointers to
two string/text arrays, two string/text values, or two BLOBs.

The default speed mode for this routine is based on the objects pointed to, as listed
below:

Type Code Behavior
Alpha/text arrays 1 Copy value
Alpha/text 1 Copy value
BLOBs 2 Scan through pointer

Case-Sensitive String/Text Array Utilities
--

The sample database also includes case-sensitive versions of 4th Dimension’s Find in
array and Count in array routines, as documented below.

Note These routines are not shown in the sample database demonstration interface.

CS_CountInAlphaArray_Pointer
CS_CountInAlphaArray_Pointer (Pointer; Pointer;Longint) : Longint
CS_CountInAlphaArray_Pointer (->String/text array;->String/text value;{Starting
element}) : Count

CS_CountInAlphaArray_Pointer is a case-sensitive replacement for 4th Dimension’s
Count in array function. By default, the routine tests all items in the array.
Alternatively, you may pass a starting element position in $3. The code fragment
below shows the command in use:

C_LONGINT($count)
$count:=CS_CountInAlphaArray_Pointer (->LegalElementNames_at;->$currentElementName_t)

CS_FindInAlphaArray_Pointer
CS_FindInAlphaArray_Pointer (Pointer; Pointer;Longint) : Longint
CS_FindInAlphaArray_Pointer (->Array;->Text value;{Starting element}) : Position

CS_FindInAlphaArray_Pointer is a case-sensitive replacement for 4th Dimension’s
Find in array function. By default, the routine looks starting at element 1 of the
array. Alternatively, you may pass a starting element position in $3. The code
fragment below shows the command in use:

C_LONGINT ($element)
$element:=CS_FindInAlphaArray_Pointer (->CustomerXMLElementNames_at;->$currentElementName_t)

Case-Sensitive Searching
--

So far this note has considered code for comparing pairs of values case-sensitively.
For many developers, a more pressing concern is searching records case-sensitively.
This can be a critical requirement if, for example, you’re working on a database that
defines XML elements or case-sensitive paths within records. In such cases, 4th
Dimension’s QUERY command doesn’t work satisfactorily. Additionally, if you are
searching on text fields using 4th Dimension’s standard QUERY commands, the =
operator doesn’t actually do a full equals comparison, even case-insensitively. As an
undocumented behavior, the QUERY command appears to only scan the first 80
characters of text fields. Therefore, even if you are unconcerned about case-sensitive
searches, the materials in this section may be of use to you. After taking a quick look
at the demonstration database’s test interface, we’ll discuss four approaches to case-
sensitive text searches:

• Searching with QUERY BY FORMULA.

• Replacing QUERY BY FORMULA with a better-optimized alternative called
CS_QueryTextField.

• Searching on stored ASCII block translations of stored text.

• Searching on hashes of stored text.

As a general rule, hashing is the best-performing and most scalable of these
alternatives, particular under 4D Server. As we’ll see, however, other techniques are
worth considering in special cases.

Note Any comments made about QUERY also apply to QUERY SELECTION and, likewise,
any comments made about QUERY BY FORMULA also apply to QUERY SELECTION
BY FORMULA.

Search Speed Test Screen
--

The demonstration database includes pre-configured sample data and test screen for
comparing the four text searching strategies listed above. A sample of the test screen
is pictured below:

The test screen lets you select a data set to search and a number of searches to
perform. Perform at least a few searches as you’ll find that there is some variation in
results. For each test, you’ll see a result time for each search strategy in milliseconds
and the number of records that were found in each case. The number of records found
should always be one, given the contents of the sample data. (The sample data was
constructed to deliberately produce unique results to help verify that the search code
is working correctly.) If you’re interested in performance, be sure to run the database
compiled. If you plan to deploy code under 4D Server, make sure to test under 4D
Server.

After reviewing the four search strategies, we’ll compare some search results under
4th Dimension and 4D Server. You’ll see that the two environments can produce very
different results.

QUERY BY FORMULA
--

The most obvious way to perform case-sensitive text searches in 4th Dimension is to
use the QUERY BY FORMULA command, as in the example below:

QUERY BY FORMULA([Sample_Data];CS_AlphasAreEqual ([Sample_Data]Text;$valueToMatch_text))

The line of code shown above works correctly. Unfortunately, the QUERY BY
FORMULA command is inexplicably slow, particularly under 4D Server. Depending on
the data being searched, the other techniques described here can offer performance
dozens and sometimes hundreds of times faster than QUERY BY FORMULA. First,
we’ll look at the most straightforward alternative.

Replacing QUERY BY FORMULA with Custom Code
--

The QUERY BY FORMULA code shown above does nothing but apply the
CS_AlphasAreEqual function to each record in the table to see if the stored field
matches a test value. The demonstration database includes a generalized routine to
perform this task called CS_QueryTextField, illustrated in the line below:

CS_QueryTextField (->[Sample_Data]Text;$valueToMatch_text;)

The internal behavior of this command is outlined in pseudo-code below:

Build an empty numeric array to hold the record numbers of matching values

Load the record numbers of the records to test into an array
Load the text values from the records to test into an array

For (each element in the array of text values)
If (the current element’s value = the value we're looking for)

Add the current record number to the array of matching values
End if

End for

Build a selection from the array of matching values (may be empty)

The pseudo-code outline above is functionally equivalent to what QUERY BY
FORMULA does: the value in each text field is compared case-sensitively with the
value in a text variable, and a selection of matching records, if any, is built. Internally,
both approaches use CS_AlphasAreEqual to perform the text comparison. Despite
performing similar work, the two strategies often operate at vastly different rates.
Depending on the data being tested, QUERY BY FORMULA is sometimes faster but
generally slower than the replacement code under 4th Dimension. Under 4D Server,
QUERY BY FORMULA is 55-81 times slower in some simple tests.

Note Internally, the CS_AlphasAreEqual function implements the code outlined above with
some refinements to avoid using up too much memory. Instead of loading all records
into arrays, it only loads 256 values at a time. You can adjust this value, as you like, if
you include CS_AlphasAreEqual in your own work.

Storing Additional Data to Optimize Searches
--

A nice feature of QUERY BY FORMULA and the CS_QueryTextField approaches to
searching is that they don’t require any special preparation and can be used with any
text field. You can, however, achieve greater performance gains by storing additional
data. The idea is to store data that is small enough to be used in an indexed QUERY,
or that is smaller than the original text but still unique, or that is easier to compare
than the original text. Anything that reduces the number of records that have to be
tested sequentially and/or that simplifies the necessary sequential operations can
improve performance. We’ll look at two approaches to stored data: ASCII blocks and
hashes.

Working with ASCII Blocks
--

One way to work around 4th Dimension’s inability to compare values case-sensitively
is to convert the values into case-insensitive forms. ASCII blocks are one simple, if
less than ideal, approach. The demonstration database includes a simple routine
named Demo_ConvertTextToAsciiBlock that takes a block of text and converts it into
an “ASCII block”. The idea is straightforward: scan through the text block and convert
each character into a new text block based on the ASCII codes of the original
characters. For example, the string abc consists of three characters a, b, and c. The
ASCII codes for these characters are 97, 98, and 99 respectively. Converted to an
ASCII block, abc becomes 097098099, the combination of each ASCII value. This
numeric string is a complete and case-sensitive representation of the original string
abc. While 4th Dimension can’t see the difference between abc and ABC, it can easily
see the difference between their ASCII block representations 097098099 and
065066067. In practice, ASCII blocks can work well for values stored in arrays as they
enable you to use 4th Dimension’s Find in array command. For searches, however,
ASCII blocks are less than ideal for several reasons:

• The ASCII block representation of a text is three times longer than the original text.
Ideally, a rendered representation should be smaller, not larger. You could improve
the situation by converting to hex, base-64, or another case-insensitive base.

• Under 4D Server, the ASCII block system doesn’t deliver better results than
CS_QueryTextField.

• The ASCII block value is a text field so, like the original, it can’t be indexed for
searching.

• The ASCII block representation of the text value must be updated each time the
original text is modified, so the processing time is increased.

• The ASCII block increases the size of each record, effectively quadrupling the size of
each text field. The ASCII block will, ultimately, need to be moved into a BLOB field
if it is to completely represent text values longer than about 10,000 characters.

Despite these many disadvantages, the ASCII block system is a simple-to-understand
example of how one value can be transformed into another to simplify some
operation. For example, imagine a database that stores the names of 1,000 legal XML
elements. Incoming XML documents and SOAP requests are validated against this
catalog of 1,000 legal names. Instead of storing the ASCII blocks, they can be
generated at startup in an array parallel to an array of legal names. In this situation,
the ASCII block system and Find in array are all that is needed to validate each
incoming XML element case-sensitively. Because Find in array is used instead of
custom case-comparison codes, these comparisons will work very quickly, even in
interpreted mode.

Using Stored Hashes
--

An excellent way to optimize searching for text case-sensitively is through stored
hashes. Hashing is a technique for rendering a block of data, such as a string, BLOB,
picture, or document, as a single longint. Hashes can be used as signatures or to
simplify lookups. A powerful application for hashing in 4th Dimension is to optimize
searches. Instead of performing sequential comparisons on all of the records in a table
or selection, an indexed search can be run on the stored hashes of large data types to
exclude most, or all, of the non-matching values from consideration. Imagine a table
that stores 100,000 unique 1KB URLs. Searching through these values accurately is a
lengthy operation using QUERY BY FORMULA or CS_QueryTextField. Why? Because
all 100,000 records need to be compared sequentially. That’s a lot of work. With a
stored hash, the process is greatly improved, as outlined in the pseudo-code below:

Hash the test value
Search on an indexed stored hash field
Compare the resulting selection for matching values sequentially

The final comparison step is still a sequential comparison, but the number of records
being tested should be significantly reduced. With a good hashing function, the
chances are that the number of records to be compared will have been reduced to a
single value or just a handful of values. As an example, many of the hashing
algorithms from the HashTools component used in the sample database for this note

produce 30,000 unique hash values for a data set of 30,000 unique words. If you’re
searching 100,000 text fields, it’s a lot faster to first eliminate 99,999 or so from
consideration.

Of course, nothing comes for free. The costs of stored hashes are listed below:

• The hash value needs to be rebuilt each time the source value changes. This task
adds processing time. Fortunately, the hashing functions used here were refined
with the chip in mind. These hashing functions are very, very fast once compiled.

• The hash value needs to be stored, so the size of each record increases. Since these
values are longints, each hash only adds a few bytes per record and should not be a
worry for most databases.

• During any particular search, the test value needs to be hashed, a procedure which
takes some time. The exact time required depends on the hash function and the size
of the search value.

• During any particular search, an indexed search is performed before any direct
comparisons are made. Under certain situations, the time required for the search
doesn’t pay for itself. We’ll discuss this point in more detail later when we review
some test results.

Within the sample database, the HashTools_HashText routine is used in the
[Sample_Data] trigger to maintain a hash of [Sample_Data]Text, as shown in the
code fragment below:

[Sample_Data]AP_Hash_of_Text:=HashTools_HashText (->[Sample_Data]Text;"AP")

Drawing on this stored hash value, the demonstration database can use the
HashTools_FindByHash routine to locate records. For more information on these
routines, see Technical Note 05-43 The HashTools Component. For more
information on the design and inner-workings of the component, see Technical Note
05-44 Optimizing Text and BLOB Searches with Hashes.

Discussion of Sample Test Results
--

The sample database includes two different sets of sample data, as indicated in the
search test screen interface:

The main differences between the two data sets are the lengths of the text field’s
contents (about 80 characters version about 1,024 characters) and the number of
records (500 versus 3,360). The system includes these different data sets because,
depending on your equipment and network environment, they can lead to very

different conclusions about how to perform case-sensitive searching. Consider some
sample results with these two data sets running compiled under 4th Dimension:

Method 500 Short 3,360 Long
QUERY BY FORMULA 18.0 146.0
CS_QueryTextField 13.0 159.0
ASCII Blocks 8.0 161.0
Hashes 0.3 1.1

All times in milliseconds.

With the small data set, the differences between these techniques is relatively
pronounced, with hashes performing 60 times better than QUERY BY FORMULA and
43 times better than CS_QueryTextField. With the larger data set of longer text
values, the differences amongst the techniques change. Now, all of the techniques
apart from hashing perform roughly the same. Next, let’s look at the same tests run
under 4D Server:

Method 500 Short 3,360 Long
QUERY BY FORMULA 1,495.0 43,354.0
CS_QueryTextField 27.0 535.0
ASCII Blocks 36.0 1,344.0
Hashes 110.0 112.0

All times in milliseconds.

There are some surprises in these results. For the smaller data set, the hashing
system is slower than the ASCII block and CS_QueryTextField techniques. On the face
of it, these results makes no sense at all. Both the ASCII block and CS_QueryTextField
approaches require the code on 4D Client to download 500 text values for comparison.
The hashing system, however, only requires one text value to be downloaded for final
comparison. What these results show, however, is that there is a cost to performing
an indexed longint search under 4D Server. In the case of these 500 records with very
short text values (about 80 characters), the threshold where the indexed search pays
for itself has not been crossed. The test results with 3,360 1KB text values produces
more expected results. Here, the speed of using a hash doesn’t change meaningfully
(in both cases it returns one record in our sample data). The other techniques,
however, suffer markedly.

Note The exact numbers shown here aren’t important as only the overall performance
trends are relevant. You will certainly see different values if you run the tests on your
own equipment or even if you run the tests more than once.

Summary
--

This note discusses two different areas of case-sensitivity: comparisons within the
language and comparisons by the database engine. Given the search results shown

above, a few guidelines and conclusions can be offered about case-sensitivity and the
4th Dimension database engine:

• Performance under 4th Dimension and 4D Server can be very different. Test in the
environment you plan to use.

• Artificial test data, such as the 500 record data set discussed above, can lead to bad
conclusions if considered in isolation of other results.

• QUERY BY FORMULA is always slow. Use CS_QueryTextField or stored hashes.

• Stored hashes pay for themselves rapidly if you are working with anything but trivial
amounts of data. Additionally, they scale beautifully. If you are dealing with large
blocks of text, pictures, BLOBs, or linked documents, hashes work well. All of the
other techniques mentioned here are as flexible, extensible, or scalable as hashing.

For case-sensitive operations through the language, the note and its sample database
provide a suite of utility routines to compare all sorts of data, including alpha/text
fields, alpha/text arrays, and BLOBs. Given that this code is already written for you, it
is worth the effort to add case-sensitivity to your databases, when needed. Pay
particular note to handling case-sensitive comparisons correctly if you are doing any
work with SOAP messages or XML documents. XML element and attribute names
should always be considered case-sensitively. With the materials available to you
here, you should be able to support XML name comparisons easily.

