Macro Pack for 4D 2004

4)

Welcome to 4D 2004 Macro Pack!

Macro Pack is a component that contains seventeen macros designed to help increase
your productivity when programming in the 4D 2004 environment! This guide describes
each of the Macros in Macro Pack and demonstrates how to use them.

What is a Macro?

A macro isasection of 4D code that is permanently accessible and that can be inserted
anywherein your methods. Macros are stored in an XML format (text) file. They can
contain all types of 4D text, commands and constants, as well as special tags which are
replaced at the time of macro insertion by values derived from the method context. Y ou
can now use the 4th Dimension 2004 Method editor to generate and use macros that
execute 4D project methods. This allows devel opers to create sophisticated functions
broadcast using macro-commands linked to components. To call 4D code within a
method, a new double tag has been added to the 4th Dimension 2004 macro language:
<method> </method>. For more information on macros, please see the 4D 2004

Upgrade Reference Manual.

Macro Pack Macros
Macro Name

Doc4DHeader
Doc4D

Modularize

TestMethod
NameParameters
AssignNamedParameters
OrganizeDeclarations
MakeNewProcess

DeclareSOAPInput

DeclareSOA POutput
XPathToSAX

CVSInit
CVSAdd

CV SOptions
CV SCheckout
CVSRemove

CreateObject

Macro Function

- Generates a comment block
- Generates APl documentation for comment block

- Helps to break down methods

- Tests the method

- Creates named variables and assigns parameters

- Assigns parameters to named variables

- Organizes compiler declarations

- Makes new process calls from project method calls

- Generates soap declarations from compiler

declarations

- Same as above but for output

- Generates SAX commands that creates XML documents

- Initializes cvs

- Adds a method to the cvs repository

- Sets cvs preferences

- Checks out source from the cvs repository
- Removes a method from the cvs repository

- Examines COM abjects, their members, and generates
scripts that can access those objects from 4D.

Installing Macro Pack

The Macro Pack installer copies the Macro Pack macros into a folder named “Macros’
which resides next to the “Macros.xml” file which islocated in the active 4D folder of the
machine.

The Macro Pack package comes with two distributions so there are two different ways to
get started using Macro Pack.

1. Macro Pack Component
1. Toingall the component, you will need 4D Insider.

2. Create anew database using 4th Dimension or use an existing one and open it
with 4D Insider.

3. From the menu bar, Select Components > Install/Update

4. Choose Macro Pack.4CP from the Macro Pack Component folder of the

Macro Pack package.

Copy the folders named doc, Scripts, and Macros next to your datafile.

Open your database with 4th Dimension and from User Mode, execute the

method named MEM _InstallMacros.

7. Repeat the steps above on different databases with which you would like to
use Macro Pack.

2L

2. Macro Pack Source
The Macro Pack source can be used by developers to explore, create, or extend Macro
Pack macros.

1. Open Macro Pack.4DB using 4th Dimension.

2. From User Mode, execute the method named MEM _InstallMacros.

3. The Macro Pack source database automatically generates the required files and
folders so no further installation is required.

Once installation is complete, Macro Pack macros are ready to be used.

Accessing Macros in 4D 2004

4D 2004 lets you access Macros several ways.

M acr os Button: The new 4D 2004 Macros button is located in the Method editor
toolbar. Click the Macros button to open a pulldown list from which you can choose the
macro you want to run.

Insert Macros Command: From the Method Editor, choose Method > Insert Macro. Or
Right-click (Windows) or Ctrl-click (Macintosh) in the editing area of the Method Editor
pane and choose Insert Macros.

Type Ahead: 4th Dimension automatically displays the Macro based on the first few
characters you type in the editing area of the Method Editor. Type name of the macro or
thefirst few letters of the macro name to display alist. When the correct macro is
displayed, press the Tab key again to insert the Macro.

Working with Macro Pack Macros

Below you will find a description of each Macro in Macro Pack along with instructions
on how to run them.

1. Doc4ADHeader

Doc4Header allows you to quickly document a method in your database. It generates a
chunk of commented text at the point where the cursor is placed in the Method editor.
The comments contain useful information such as Author, Version, and a parameter list
that is generated based on the compiler declarations at the time of the call to this macro.

For example, suppose the following Compiler declarations are contained in the method.
C_TEXT($1; $nyText ; $2)

Cdling this macro generates the following comments:

° Aut hor: Jonat han Le
© Timestanp: 09/08/04 15: 38:57
Ver si on:

Par anet er s:
$1 TEXT nyText -
T $2 TEXT -

Notice that the comment block starts and ends with double-grave characters (). The
documentation tags allow the author of the method to document important information
like Author, Timestamp, and Version. The author can then fill thisinformation by typing
after the colon of each tag.

After the call to this macro, the cursor is placed immediately below the opening double-
grave () characters. The areabelow the (") and before the first tag is considered the
Description Area. Thisiswhere the author of a method describes what the method does.
All formatting is kept intact.

To run Doc4Header:

1. Simply set your cursor anywhere you want to generate the Doc4D comment block.
Y ou will most likely want to do this at the very beginning of your method.

80 &3 Method: AutoDocumentation
y -\ Q B 'T - = = - = = = - = - =

B> - (@ RrannamEsci T I P I I 0
1 C_LONGINTC$G Sy ar $3 $mryint) =
2 C_TEXT(E2;SrnyStuff)

=

4 enter code here

=}

=} " more declarations be low

T C_TEXT($hello; $3F $third ;$¢ $fourth)

g

9 C_TEXTCES $five $6 $zix $7 $zeven $8eight)
10 C_POINTER($%;nine)

2. Run the macro called Doc4DHeader

3. The cursor is placed in the description area so you may type a short description of the
current method.

(S Na) £» Method: AutoDocumentation

e
TN L o Ty R g g o o S = =
> - (o - i DAl
1 1
2 * Thiz is surnmary . This is ry deseription.
z 5
4 * Author : jonathanle
5 * Tirnestarnp: 0910404 1447 32
& *Merzion: 1
7 5
a " Fararneters:
El *H0 LONGINT myar - output variable
10 “$1 LONGINT rayint - my first pararmeter
11 * 42 TEST e Stuff -
12 “ 43 TEXT third -
13 * §4 TEXT fourth -
14 " 45 TEST five -
15 * 6 TEST zix -
16 47 TEXT =ewven -
17 *§8 TEXT <reight -
18 49 POINTER nine -
19 X
20 C_LONGINTC$E Sroyvar £1 Sy int)
z1 C_TEXT($2 %y Stuff)
22
23 “enter code here
24
23 *more declarations below
26 C_TEXT($hello; $3;$third ; $& Ffourth)
27
z8 C_TEXT($5 $1ive ; $6 $six $7 5seven $8;2eight)
29 C_POINTERC$%;nine)
A~
2. Doc4dD

A call to the Doc4D macro generates APl documentation using Doc4D comment blocks
as described in Doc4Dheader above. Y ou can use the Doc4DHeader to generate the
comment blocks and enter the information you choose.

The following tags are allowed in Doc4D comment blocks:

Author:

Version:

Timestamp:

See:

Modified:

Each of these tags must appear on its own line after an opening double-grave (). See
Doc4DHeader above for an example. Note that each tag is a special word that Doc4D
recognizes, so it must be separated by a space. For example,

© See: myMet hodNane

and not

See: myMet hodNane

The parameter list isalist of al parameters available to the method. Thislist appears
after the "Parameter” tag following the syntax:

* $n TYPE vari abl eNane -

where n is the parameter number, TY PE isthe parameter'stype{ TEXT |LONGINT |
BOOLEAN | ... } and variableName is the named variable to which this parameter is
assigned.

After the hyphen symbol (-) the user can enter the description for that parameter.
To run Doc4D Macro:

After acomment block has been either generated using Doc4DHeader or typed in
manually, Doc4D can be run. It will generate an APl documentation XML document in a
special folder called "doc" that is placed next to your database's data file. This document
can be opened using a browser with built in XML/XSL capabilities like Internet Explorer
6.0, Mozilla, Firefox. Safari currently does not yet provide XML and XSL support.

806 Method Detail =

7 =
Iill‘fﬁ /J;r @ file:// fUsers /jonathanle [Desktop/Macro%2 0Pack/Macro2 0Pack%2 05ource /doc/AutoDy v | [|Gl

Firefox Help Firefox Support Plug-in FAQ

5AutoDocumentation

Contents

Usage: AutoDocumentation (myInt; myStuff; third; fourth; five; six; seven; eight; nine)

Type: Function

Parameters: & LONGINT - my first parameter
® TEXT -
e TEXT -

. Z
& POINTER -
Return: LONGINT - output variable
Author: jonathanle
Version: 1
Timestamp: 09/10/04 14:47:32
Description:

This is summary. This is my description.

Done

3. Modularize

The Modularize macro helps break down large methods into smaller components. All the
user hasto do is highlight some chunk of code that needs to be modularized and run the
macro.

The macro opens a dialog that allows the user to name a new method. Then, it will
output a call to that method. All the user hasto do is, from Design mode, create a method
with the same name and paste the contents of the clipboard into that new method.

The macro catches all variables that are used in the chunk of code and attempts to re-
declare them in the new method as parameters.

To run the Modularize macro:

1. Select ablock of code from a method that you want broken down.

866 &» Method: ModularizeTest

= Dg- i i D il EEE

1 C_TEXTCET frnyTewetd 1
2 C_LONGINTCEmyInt $ooncatenate)
z
<4 * Select the three lines of code below these comments and run the "Modularize” maceo. Enter a narme
2 * for the new "module” and follow its instructions. %hen finished, tokenize the method by prezsing Cirl+Enter.
&
7 ALERT($rnyText)
2 Sy Tewt =5y Text+String($eoncatenate)
] ALERT(frny Text)
10
11 * Try it again with the line below . After it finishes, highlight the method call and try Funning
12 * the "MakeMewPFrocess" macrao,
12
14 ALERT($my Text+Stringfooncatenate+330)
15
16 * Run the racro "TestMethod" within this riethod. This macro executes the current method and also
17 Tinzerts a callback into the clipboard. Create a new method uzing Ctrl+M and paste the contents of your clipboard
18 *inta the method body by prezzing Clrl+y.
[2 -5 L BES
V]

2. Run the Modularize macro. A message box will appear asking you to enter the name
of the method.

Request

What would you to name the new method?

‘MyNewMethod |

(Cancel)f——ﬁé—a

3. Create amethod in 4D that matches the name of the method you entered in the dialog
in step 2.

4. Inthe body of that new method, paste the contents of the clipboard.

8ec6 £ Method: MyNewMethod

> - (9 - (i D-EN
|

C_TEXTCE ! FmyText)

Iy Text =1
C_LONGINT $2 $concatenate)
Feoncatenate =§2

ALERT($rnyText]

FrvText =$my Text+String($ooncatenate)
ALERT $ry Text)

L TS TR R o) O o

————————————————3% a4
e

Y ou should have created a new method that contains your original code and a callback
from the original method to the newly created one.

°

B - (@] DE- i i D i EEEEE

Method: ModularizeTest

1 C_TEXT($1 By Text)
2 C_LONGINTCHmyint Fooncatenate)
2
4 " Select the three lines of code below these comments and run the "Modularize” maceo, Enter a narme
0 *for the new "rodule” and follew itz instructionz, When finished, tokenize the method by prezsing Ciri+Enter.
&
7 MyNewMethod (FryText Fooncatenate)
g
2 * Try it again with the line below. After it finishes, highlight the method call and try Funning
10 * the "MakeNewProcess" macto.
1
12 ALERT Sy Text+String(fooncatenate+330)
12
14 * Fun the rnacro "TestMethod” within this riethod, This macro executes the current rmethod and also
15 Tinzerts a callback into the clipboard. Creste a new rethod uzing Ctr4+M and paste the contents of your clipboard
16 *into the rethod body by presging Cirl+W .

4. TestMethod

This macro simply prompts the user with a dialog asking to input some values for each
declared parameter, then runs the method. Next, it copies acall back to the method with
the same values passed to the clipboard. A user is then able to paste that into a new
method that can be used as a method for running test suites.

To run this macro, simply open the method you want to test and run the TestMethod
macro. A dialog appears asking you to enter values for any parameters you may have
declared in that method.

eenN Test a Method

Method: ModularizeTest

f Type | Parameter | Value
IC_TEXT (51

{ Cancel :}(mmm}

10 -

Pressing the "Test a Method" button will execute the method using the values you supply
asarguments. In addition, your clipboard isfilled with a callback to that method with the
arguments you entered.

5. NameParameters & AssignNamedParameters

AssignNamedParameters takes some compiler declarations of the form

C TYPE($1; $var Nanel; ... ; $n; $var NaneN)

where $n is the number of parameters and $varnameis any variable name, and assigns the
parameters to the variables following. For example,

C_TEXT($1; $nyText ; $0; $out put)
will generate

$nmyText : =$1
$0: =$out put

Likewise, NameParameters takes compiler declarations without a following named
variable and generates assignments by asking the user to enter avariable name.

C _TEXT($1)

would then generate

Sy Text : =$1

provided the user entered $myText in the dialog prompt.

8eon Create Naming Variables

Enter names for your variables:

Type Parameter Variable Name | '
__REAL §3 SmyVar
C_BOOLEAN 54
(cancel) 0K

11 -

6. OrganizeDeclar ations

This macro will organize cluttered compiler declarations and group them by type, declare
them at the top of the selection, and |eave the rest of the code intact. For example:

C _TEXT($a; $b)
ALERT($a)

C_TEXT($c)

would be reorganized to
C _TEXT($a; $b; $¢)
ALERT($a)

Note: the declarations will be grouped as long as the variables are declared in sequential
order.

7. M akeNewPr ocess

This macro replaces a project method call with a call to New Process passing in the call
to the project method.

To use this method, you only have to highlight a call to a project method.
MyNewMethod (SrivText Sooncatenate)

Run the macro named MakeNewProcess. This should change the call to that same project
method into a call to the project method but in anew process, preserving any arguments
that you may have passed.

C_LONGINT($proc _MyMewethod)
fproc_MyMewMethod :=Hew process(MyMewMethod” ;1024 %32 "Proc_MyMewklethod ™ Sry Text fooncatenate])
I

8. Declar eSOAPI nput/DeclareSOAPOutput

Given some compiler declarations, this macro generates SOAP declarations of either
input or output. Thisis especially useful for transforming regular methods into web
service methods.

To run DeclareSOAP:

12 -

1. To start, select one or more compiler declarations from a method.

C_LONGINTCE? ;rmyint)
C_TEXT($2;myText)
C_REALCST $<¢ myReal ;$5)

2. Next run the DeclareSOAPInput or DeclareSOA POutput macro to create input or
output soap declarations.

606 &» Method: SoapDeclare

-G DRI DA

Nz Highlight the three lines of -:;é-de belnw_a.nd run the macro "DeclareSD‘.";PInput"

C_LONGINTC$2 mylnt)
C_TEXT($2,;myText)
C_REAL(ET $4 ;mvReal; $5)

SOAP DECLARATIONC$? ;s Longint ;SOAP Input ;"arg_1"]
SOAFP DECLARATION(myInt;ls Longint ;S0AF Input ;"mywint™)
SOAF DECLARATIONCEZ;]z Text ;S0AF Input ;"arg_2")

L i R) B N q;?

10 SOAP DECLARATIONCmyText |z Text ;SO&P Input ;"riyText™)

i1 SOAP DECLARATION($3 ;)= Real ;504F Input ;"arg_3")

12 SOAF DECLARATIONC$4 1z Real ;50AF Input ;"arg_4")

13 SOAP DECLARATION(myReal;|s Real ;S0AP Input ;"rayReal™)

14 SOAP DECLARATIONCES 1z Real ;504F Input ;"arg_5")

13

16 * Now highlight the line of code below and run the "DeclareS0 AP Output” macra
17 C_STRING(1 ;$

Note that the soap declarations appear immediately below the compiler declarations once
the macro finishes. The parameters are labeled with "arg_N," where N is the number of
the parameter.

9. XPathToSAX

Using this macro will generate code to create an XML document based on a given XPath.

Take the following XML structure as an example:

13 -

<a>

<c/ >
</ b>
</ a>

To create this XML document, you can use XPathToSA X to generate 4D code that would
produce this document. All you haveto provide is the XPath to the deepest element in an
XML structure.

In the example, the deepest element is"c." And the XPath notation to thiselement is

[alblc

From the method editor, type in the XPath as shown above. Highlight the XPath, then
run the macro XPathToSAX. What is generated is 4D code that |ooks something like the
following:

C_TI ME($docunent)
$docunent : =Creat e docunent (" XM__Fi | enane"; " XM.")

SAX OPEN XML ELEMENT($docunent;"a")
SAX OPEN XM. ELEMENT($docunent;"b")

SAX OPEN XM. ELEMENT($docunent;"c")
SAX CLOSE XM. ELEMENT($docunent)

SAX CLOSE XM. ELEMENT($docunent)

SAX CLOSE XM. ELEMENT($docunent)

CLOSE DOCUMENT($docunent)

Now all you haveto do is rename the XML file.

10.CVS

CV S stands for Concurrent Versions System. CV S has a number of different uses
including source code management, backup, and of course versioning. The systemis
particularly useful when there are alarge amount of source filesin a project and when
there are more than one developer working on the project. It also alows you to “branch
out,” and create different releases of a product (alpha, beta, production, etc) and makes it

easy to “roll back” in case a certain rel ease does not pass testing.

When we use CVSwith 4D, we are only interested in the source code of project methods.
The project methods can be exported into C4D format which can be added and

14 -

committed into aversion control system like CVS. Thiswould involve going to the
menu bar, exporting to a C4D file, then from CV S adding it through by typing CVS
commands in the command line. We simplify this process by providing you with CVS
macros.

e CVSOptions - This macro simply prompts the user with adialog that allows them to
set preferences like cvs executable* and repository location.

e CVSInit - initializes arepository for storing source files, then requests the user to
perform aninitial check out in aworking directory.

e CVSAdd - adds the current method to the repository by outputting a C4D method file
and committing it to the repository.

o CVSRemove - removes the currently selected method from the repository and deleting
its corresponding C4D file from the working directory.

e CVSCheckout - Checks out a copy of the source files from the repository into a new
working directory.

*Note: the CV'S Executabl e needs to be the command-line version of the CVStool. For
both Mac and Windows, this executable can be retrieved from http://www.cvshome.org.

To set up CVSfor Mac:

1. First, make sure Xcode 1.0 or above isinstalled.

2. Download and set up fink from http:/fink.sourceforge.net

3. After fink has been completely installed and configured, run the following commands
from the command line:

% sudo apt-get update
% sudo apt-get install cvs

Once successfully installed, CVSisready for use and does not need to be further
configured from Macro Pack.

To set up CVS under Windows:

1. Download WinCV S from http://www.wincvs.org

2. Use the CV SOptions macro to open the CV S preferences dialog. Make sure you point
to the cvs executable contained in CVSNT folder of the WinCV S installation
directory.

Once CV S has been installed and configured on your machine:

The first thing you would need to do is run the macro named CV SOptions. This prompts
you with adialog that you can use to select specific required paths such as:

e Theworking directory: Thisiswhere al your source files will be contained following

15 -

a CV SCheckout, CV SAdd and from which files will be removed using CV SRemove.

e Therepository: Thisisthe location of your CV Srepository. Thisfolder iswhereall
source files get committed in and out. Essentialy, thisiswhere source code is backed
up and tracked using CVS.

e The CV S executable path: On Macintosh, this can be ignored. However, under
Windows, you will need to point to the executable file of the CVS command-line tool.
Thisisusualy located under c:\WinCV S\CV SNT\cvs.exe assuming your installation
directory was c\WinCVS.

806 CVS Options
Repositony Folder
(Change..)
Working Folder
|;: Change...)

CV5 Executable Path cvs

Gy

A

Next you will need to run the macro called CV SInit. The macro will initialize your
repository as well as perform the initial checkout. Once your repository has been
initialized, you can freely Add or Remove methods.

To check out additional copies of your source, use the CV SCheckout macro. Y ou can
either use the working directory you initially used during setup, or you can check out the
source to anew one.

Adding and removing using CV SAdd and CV SRemove immediately commits your
method into or out of the repository. The method's body is saved in C4D format.

Confirm

You are about to initialize a new repository. Would you
D like to continue?
S i

(N)@ J

16 -

11. CreateObject (available to Windows usersonly)

COM objects are code libraries that expose methods for world access. For example,
Microsoft Outlook has includes an Outlook COM object that exposes methods that allow
auser to add a contact, add a meeting, query for an appointment, and so on.

That said, the CreateObject macro allows you to browse through objects and their
members (methods and properties) and create 4D project methods that can access them.
It does this by dynamically generating VB Scripts based on your selections and using a
command called LAUNCH EXTERNAL PROCESS to execute them.

To use CreateObject:

1. Create anew method. In this example well nameit "COMObjects.”

2. Run the CreateObject macro. A diaog listing some Microsoft Windows pre-bundled
COM objects should be listed. Clicking on one of the objectswill display al its
members and clicking on amember will display detailed information about that
member.

3. Select an Object aswell as amember and note its parameters:

17

4) COM Object Browser

Bromise, ..

Dbjects Members i
Dictionary _ GetDrivehame
Enn:cu:ler GetExtensiontame
FlleSystemObject . Gethie

GetFieMame

GetFolder =
GetIDsOfames
GetParentFolderame
GatspeciaFaler v

Method GetFleversion(FileMarme as String) as String
Rettieve the fle version of the specified file into a string

[Caricel][oK |

4. When you are satisfied, click the "OK" button. The macro will generate a script based
on your selection and save it in the Scripts folder located next to your database's data
file. It also generates code that executes the script.

C_TEXT{SO
C_TEXT{3T

LAUNCH EXTERNAL PROCESS(Mwscript.exe ™ +MEM_GetScriptPath +"myscript] vbst' "+Char(34)+8 +Char(34)inout) * GetFileVersion(§1)
L0=MEM_ComGetResult

4. Now, from another method, you can call the new COM object method and passit the
same parameters as required by the COM object:

ALERT(COMOHects ("ChProgram FilesidD, Inci4D Product Line 200404th Dimensioni4D.exe))

5. Test the method and verify your results:

18 -

2.0.0.4

Additional Resources:
1. Macro Pack Source

Each of these macros can be found within the following three XML files:

M ethodEditorM acros.xml
ComObjectMacros.xml
CVSMacros.xml

To start modifying methods that are called by these macros, explore each of these xml
files that can be identified by looking in between the <method></method> tags.

Y ou can then use the Macro Pack Source to modify or add on to these methods. For
example, the Doc4D macro uses the DOC_Doc4D method which can be found in the

Method Editor Macros > AutoDocumenter Methods group from the Home theme of the
Explorer.

2.CVS

For more information on CV'S, please refer to http://www.cvshome.org

Thereisalso agraphical user interface for CV'S which can be found on the following
Sites:

Windows users; http://www.wincvs.org
Mac users: http://www.maccvs.org

19 -

