
Macro Pack for 4D 2004

Welcome to 4D 2004 Macro Pack!

Macro Pack is a component that contains seventeen macros designed to help increase
your productivity when programming in the 4D 2004 environment! This guide describes
each of the Macros in Macro Pack and demonstrates how to use them.

What is a Macro?
A macro is a section of 4D code that is permanently accessible and that can be inserted
anywhere in your methods. Macros are stored in an XML format (text) file. They can
contain all types of 4D text, commands and constants, as well as special tags which are
replaced at the time of macro insertion by values derived from the method context. You
can now use the 4th Dimension 2004 Method editor to generate and use macros that
execute 4D project methods. This allows developers to create sophisticated functions
broadcast using macro-commands linked to components. To call 4D code within a
method, a new double tag has been added to the 4th Dimension 2004 macro language:
<method> </method>. For more information on macros, please see the 4D 2004
Upgrade Reference Manual.

Macro Pack Macros

Macro Name Macro Function

Doc4DHeader - Generates a comment block
Doc4D - Generates API documentation for comment block

Modularize - Helps to break down methods
TestMethod - Tests the method
NameParameters - Creates named variables and assigns parameters
AssignNamedParameters - Assigns parameters to named variables
OrganizeDeclarations - Organizes compiler declarations
MakeNewProcess - Makes new process calls from project method calls

DeclareSOAPInput - Generates soap declarations from compiler
declarations

DeclareSOAPOutput - Same as above but for output
XPathToSAX - Generates SAX commands that creates XML documents

CVSInit - Initializes cvs
CVSAdd - Adds a method to the cvs repository
CVSOptions - Sets cvs preferences
CVSCheckout - Checks out source from the cvs repository
CVSRemove - Removes a method from the cvs repository

CreateObject - Examines COM objects, their members, and generates
scripts that can access those objects from 4D.

2 -
2

Installing Macro Pack

The Macro Pack installer copies the Macro Pack macros into a folder named “Macros”
which resides next to the “Macros.xml” file which is located in the active 4D folder of the
machine.

The Macro Pack package comes with two distributions so there are two different ways to
get started using Macro Pack.

1. Macro Pack Component
1. To install the component, you will need 4D Insider.

2. Create a new database using 4th Dimension or use an existing one and open it
with 4D Insider.

3. From the menu bar, Select Components > Install/Update
4. Choose Macro Pack.4CP from the Macro Pack Component folder of the

Macro Pack package.
5. Copy the folders named doc, Scripts, and Macros next to your data file.
6. Open your database with 4th Dimension and from User Mode, execute the

method named MEM_InstallMacros.
7. Repeat the steps above on different databases with which you would like to

use Macro Pack.

2. Macro Pack Source
The Macro Pack source can be used by developers to explore, create, or extend Macro
Pack macros.

1. Open Macro Pack.4DB using 4th Dimension.
2. From User Mode, execute the method named MEM_InstallMacros.
3. The Macro Pack source database automatically generates the required files and

folders so no further installation is required.

Once installation is complete, Macro Pack macros are ready to be used.

Accessing Macros in 4D 2004

4D 2004 lets you access Macros several ways:

Macros Button: The new 4D 2004 Macros button is located in the Method editor
toolbar. Click the Macros button to open a pulldown list from which you can choose the
macro you want to run.

Insert Macros Command: From the Method Editor, choose Method > Insert Macro. Or
Right-click (Windows) or Ctrl-click (Macintosh) in the editing area of the Method Editor
pane and choose Insert Macros.

3 -
3

Type Ahead: 4th Dimension automatically displays the Macro based on the first few
characters you type in the editing area of the Method Editor. Type name of the macro or
the first few letters of the macro name to display a list. When the correct macro is
displayed, press the Tab key again to insert the Macro.

Working with Macro Pack Macros

Below you will find a description of each Macro in Macro Pack along with instructions
on how to run them.

1. Doc4DHeader
Doc4Header allows you to quickly document a method in your database. It generates a
chunk of commented text at the point where the cursor is placed in the Method editor.
The comments contain useful information such as Author, Version, and a parameter list
that is generated based on the compiler declarations at the time of the call to this macro.

For example, suppose the following Compiler declarations are contained in the method.

C_TEXT($1;$myText;$2)

Calling this macro generates the following comments:

``
`
`
` Author: Jonathan Le
` Timestamp: 09/08/04 15:38:57
` Version:
`
` Parameters:
` $1 TEXT myText -
` $2 TEXT -
``

Notice that the comment block starts and ends with double-grave characters (``). The
documentation tags allow the author of the method to document important information
like Author, Timestamp, and Version. The author can then fill this information by typing
after the colon of each tag.

After the call to this macro, the cursor is placed immediately below the opening double-
grave (``) characters. The area below the (``) and before the first tag is considered the
Description Area. This is where the author of a method describes what the method does.
All formatting is kept intact.

To run Doc4Header:

4 -
4

1. Simply set your cursor anywhere you want to generate the Doc4D comment block.
You will most likely want to do this at the very beginning of your method.

2. Run the macro called Doc4DHeader

3. The cursor is placed in the description area so you may type a short description of the
current method.

5 -
5

2. Doc4D

A call to the Doc4D macro generates API documentation using Doc4D comment blocks
as described in Doc4Dheader above. You can use the Doc4DHeader to generate the
comment blocks and enter the information you choose.

The following tags are allowed in Doc4D comment blocks:

Author:
Version:
Timestamp:
See:
Modified:

Each of these tags must appear on its own line after an opening double-grave (``). See
Doc4DHeader above for an example. Note that each tag is a special word that Doc4D
recognizes, so it must be separated by a space. For example,

` See: myMethodName

and not

6 -
6

` See:myMethodName

The parameter list is a list of all parameters available to the method. This list appears
after the "Parameter" tag following the syntax:

` $n TYPE variableName -

where n is the parameter number, TYPE is the parameter's type { TEXT | LONGINT |
BOOLEAN | ... } and variableName is the named variable to which this parameter is
assigned.

After the hyphen symbol (-) the user can enter the description for that parameter.

To run Doc4D Macro:

After a comment block has been either generated using Doc4DHeader or typed in
manually, Doc4D can be run. It will generate an API documentation XML document in a
special folder called "doc" that is placed next to your database's data file. This document
can be opened using a browser with built in XML/XSL capabilities like Internet Explorer
6.0, Mozilla, Firefox. Safari currently does not yet provide XML and XSL support.

7 -
7

3. Modularize

The Modularize macro helps break down large methods into smaller components. All the
user has to do is highlight some chunk of code that needs to be modularized and run the
macro.

The macro opens a dialog that allows the user to name a new method. Then, it will
output a call to that method. All the user has to do is, from Design mode, create a method
with the same name and paste the contents of the clipboard into that new method.

The macro catches all variables that are used in the chunk of code and attempts to re-
declare them in the new method as parameters.

To run the Modularize macro:

1. Select a block of code from a method that you want broken down.

2. Run the Modularize macro. A message box will appear asking you to enter the name
of the method.

8 -
8

3. Create a method in 4D that matches the name of the method you entered in the dialog
in step 2.

4. In the body of that new method, paste the contents of the clipboard.

You should have created a new method that contains your original code and a callback
from the original method to the newly created one.

9 -
9

4. TestMethod

This macro simply prompts the user with a dialog asking to input some values for each
declared parameter, then runs the method. Next, it copies a call back to the method with
the same values passed to the clipboard. A user is then able to paste that into a new
method that can be used as a method for running test suites.

To run this macro, simply open the method you want to test and run the TestMethod
macro. A dialog appears asking you to enter values for any parameters you may have
declared in that method.

10 -
10

Pressing the "Test a Method" button will execute the method using the values you supply
as arguments. In addition, your clipboard is filled with a callback to that method with the
arguments you entered.

5. NameParameters & AssignNamedParameters

AssignNamedParameters takes some compiler declarations of the form

C_TYPE($1;$varName1;...;$n;$varNameN)

where $n is the number of parameters and $varname is any variable name, and assigns the
parameters to the variables following. For example,

C_TEXT($1;$myText;$0;$output)

will generate

$myText:=$1

$0:=$output

Likewise, NameParameters takes compiler declarations without a following named
variable and generates assignments by asking the user to enter a variable name.

C_TEXT($1)

would then generate

$myText:=$1

provided the user entered $myText in the dialog prompt.

11 -
11

6. OrganizeDeclarations

This macro will organize cluttered compiler declarations and group them by type, declare
them at the top of the selection, and leave the rest of the code intact. For example:

C_TEXT($a;$b)

ALERT($a)

C_TEXT($c)

would be reorganized to

C_TEXT($a;$b;$c)

ALERT($a)

Note: the declarations will be grouped as long as the variables are declared in sequential
order.

7. MakeNewProcess

This macro replaces a project method call with a call to New Process passing in the call
to the project method.

To use this method, you only have to highlight a call to a project method.

Run the macro named MakeNewProcess. This should change the call to that same project
method into a call to the project method but in a new process, preserving any arguments
that you may have passed.

8. DeclareSOAPInput/DeclareSOAPOutput

Given some compiler declarations, this macro generates SOAP declarations of either
input or output. This is especially useful for transforming regular methods into web
service methods.

To run DeclareSOAP:

12 -
12

1. To start, select one or more compiler declarations from a method.

2. Next run the DeclareSOAPInput or DeclareSOAPOutput macro to create input or
output soap declarations.

Note that the soap declarations appear immediately below the compiler declarations once
the macro finishes. The parameters are labeled with "arg_N," where N is the number of
the parameter.

9. XPathToSAX

Using this macro will generate code to create an XML document based on a given XPath.

Take the following XML structure as an example:

13 -
13

<a>

 <c/>

To create this XML document, you can use XPathToSAX to generate 4D code that would
produce this document. All you have to provide is the XPath to the deepest element in an
XML structure.

In the example, the deepest element is "c." And the XPath notation to this element is

/a/b/c

From the method editor, type in the XPath as shown above. Highlight the XPath, then
run the macro XPathToSAX. What is generated is 4D code that looks something like the
following:

C_TIME($document)
$document:=Create document("XML_Filename";"XML")

SAX OPEN XML ELEMENT($document;"a")

SAX OPEN XML ELEMENT($document;"b")

SAX OPEN XML ELEMENT($document;"c")
SAX CLOSE XML ELEMENT($document)

SAX CLOSE XML ELEMENT($document)

SAX CLOSE XML ELEMENT($document)

CLOSE DOCUMENT($document)

Now all you have to do is rename the XML file.

10.CVS

CVS stands for Concurrent Versions System. CVS has a number of different uses
including source code management, backup, and of course versioning. The system is
particularly useful when there are a large amount of source files in a project and when
there are more than one developer working on the project. It also allows you to “branch
out,” and create different releases of a product (alpha, beta, production, etc) and makes it
easy to “roll back” in case a certain release does not pass testing.

When we use CVS with 4D, we are only interested in the source code of project methods.
The project methods can be exported into C4D format which can be added and

14 -
14

committed into a version control system like CVS. This would involve going to the
menu bar, exporting to a C4D file, then from CVS adding it through by typing CVS
commands in the command line. We simplify this process by providing you with CVS
macros:

• CVSOptions - This macro simply prompts the user with a dialog that allows them to
set preferences like cvs executable* and repository location.

• CVSInit - initializes a repository for storing source files, then requests the user to
perform an initial check out in a working directory.

• CVSAdd - adds the current method to the repository by outputting a C4D method file
and committing it to the repository.

• CVSRemove - removes the currently selected method from the repository and deleting
its corresponding C4D file from the working directory.

• CVSCheckout - Checks out a copy of the source files from the repository into a new
working directory.

*Note: the CVS Executable needs to be the command-line version of the CVS tool. For
both Mac and Windows, this executable can be retrieved from http://www.cvshome.org.

To set up CVS for Mac:
1. First, make sure Xcode 1.0 or above is installed.
2. Download and set up fink from http://fink.sourceforge.net
3. After fink has been completely installed and configured, run the following commands

from the command line:

% sudo apt-get update
% sudo apt-get install cvs

Once successfully installed, CVS is ready for use and does not need to be further
configured from Macro Pack.

To set up CVS under Windows:
1. Download WinCVS from http://www.wincvs.org
2. Use the CVSOptions macro to open the CVS preferences dialog. Make sure you point

to the cvs executable contained in CVSNT folder of the WinCVS installation
directory.

Once CVS has been installed and configured on your machine:

The first thing you would need to do is run the macro named CVSOptions. This prompts
you with a dialog that you can use to select specific required paths such as:

• The working directory: This is where all your source files will be contained following

15 -
15

a CVSCheckout, CVSAdd and from which files will be removed using CVSRemove.

• The repository: This is the location of your CVS repository. This folder is where all
source files get committed in and out. Essentially, this is where source code is backed
up and tracked using CVS.

• The CVS executable path: On Macintosh, this can be ignored. However, under
Windows, you will need to point to the executable file of the CVS command-line tool.
This is usually located under c:\WinCVS\CVSNT\cvs.exe assuming your installation
directory was c:\WinCVS.

Next you will need to run the macro called CVSInit. The macro will initialize your
repository as well as perform the initial checkout. Once your repository has been
initialized, you can freely Add or Remove methods.

To check out additional copies of your source, use the CVSCheckout macro. You can
either use the working directory you initially used during setup, or you can check out the
source to a new one.

Adding and removing using CVSAdd and CVSRemove immediately commits your
method into or out of the repository. The method's body is saved in C4D format.

16 -
16

11. CreateObject (available to Windows users only)

COM objects are code libraries that expose methods for world access. For example,
Microsoft Outlook has includes an Outlook COM object that exposes methods that allow
a user to add a contact, add a meeting, query for an appointment, and so on.

That said, the CreateObject macro allows you to browse through objects and their
members (methods and properties) and create 4D project methods that can access them.
It does this by dynamically generating VBScripts based on your selections and using a
command called LAUNCH EXTERNAL PROCESS to execute them.

To use CreateObject:

1. Create a new method. In this example we'll name it "COMObjects."

2. Run the CreateObject macro. A dialog listing some Microsoft Windows pre-bundled
COM objects should be listed. Clicking on one of the objects will display all its
members and clicking on a member will display detailed information about that
member.

3. Select an Object as well as a member and note its parameters:

17 -
17

4. When you are satisfied, click the "OK" button. The macro will generate a script based
on your selection and save it in the Scripts folder located next to your database's data
file. It also generates code that executes the script.

4. Now, from another method, you can call the new COM object method and pass it the
same parameters as required by the COM object:

5. Test the method and verify your results:

18 -
18

Additional Resources:

1. Macro Pack Source

Each of these macros can be found within the following three XML files:

MethodEditorMacros.xml
ComObjectMacros.xml
CVSMacros.xml

To start modifying methods that are called by these macros, explore each of these xml
files that can be identified by looking in between the <method></method> tags.

You can then use the Macro Pack Source to modify or add on to these methods. For
example, the Doc4D macro uses the DOC_Doc4D method which can be found in the
Method Editor Macros > AutoDocumenter Methods group from the Home theme of the
Explorer.

2. CVS

For more information on CVS, please refer to http://www.cvshome.org

There is also a graphical user interface for CVS which can be found on the following
sites:

Windows users: http://www.wincvs.org
Mac users: http://www.maccvs.org

19 -
19

