
 Conversion to 4D v16

Welcome to this "Conversion to 4D v16" manual, which describes various points to be checked before, during, and
after conversion of a 4D v15 database to 4D v16.
Conversion of 4D v15 databases should go smoothly in 4D v16, and we provide a few recommendations to make
sure everything goes well in the "Principles for conversion" chapter. However, once the conversion is done,
there are a couple of things to check, such as "New compatibility options" and "Changes in behavior" both at
the application level and that of the 4D commands, which you need to understand in order to make the best use of
new features in 4Dv16 .
And finally, this manual summarizes deprecated features in 4D v16 that developers needs to spot quickly in
order to assess the time needed to set up new functions.
Note: Some modifications listed in this manual when introduced during the 4D v15 "R-release" program.
When converting earlier or even much older databases, it is often necessary to use intermediate versions. And for
the various points to check, refer to the conversion documents for previous versions:

4D v15: "Conversion to 4D v15" and "Deprecated features in 4D v15 and higher".
4D v14: "Conversion to 4D v14" and "Deprecated features 4D v14 and higher".
4D v13: "Conversion to 4D v13" and "Deprecated features 4D v13 and higher".
4D v12: "Deprecated features 4D v12 and higher" (there was no "Conversion" document for this version).
4D v11: "Conversion to 4D v11 SQL".

 Principles for conversion
 Compatibility dialog
 Changes in behavior
 Name or theme changes
 Obsolete functions
 Disabled functions
 Changing from 32-bit versions to 64-bit versions
 Converting 4D Write documents to 4D Write Pro

 Principles for conversion

What to do before converting

You must have an "interpreted" version of the database (xxxx.4DB file for the structure), as well as the
Designer password to perform a conversion;

Make a copy of your database before conversion;

Perform a syntax check. Even if you do not want to compile your database, this check can help warn you
about possible errors;

Use the Maintenance and Security Center to check and repair the structure and data;

Check whether you have any PICTs using the GET PICTURE FORMATS command (or the 4D Pack _o_AP Is
Picture Deprecated command) and convert them using the CONVERT PICTURE command (in 4D v14,
there is still the possibility of using QuickTime in 32-bit versions by means of a selector for the SET
DATABASE PARAMETER command);

(Optional) Possible to implement primary keys if data journaling is needed (starting with version 14) (see
Primary keys in the Design Reference manual).

Since version 13.5, it is mandatory for Unique fields to be indexed. You will no longer be allowed to
create/modify any records for a non-indexed Unique field: attempting to save the record will generate an
error (-9998 Unique record exists, 1088 Index is invalid or missing). To create missing indexes, or generate a
disk file listing all the non-indexed fields, refer to the Appendix: Useful methods for conversion of the
"Conversion to 4D v15" document.

How to convert

Databases created with version 15 of 4D or 4D Server (as well as ones created in v11, v12, v13 and v14) are
compatible with 4D version 16 (structure and data files). You can convert any interpreted structure file. To do this,
just launch 4D v16 and open your structure file (xxx.4DB file) in interpreted mode.
A dialog warns you that the structure and data files are going to be converted:

After your structure file is converted to 4D v16, it can no longer be opened using a former version.
Data files are not converted for databases in 4D v15 or 4D v15 Rx. However, they are converted for databases in
4D v14 and earlier versions. In this case, a second dialog box is displayed:

This data file is also converted to version 16 but it can still be opened and used with 4D v14.4 and higher or 4D v15
(4D v14 R5).

After conversion

Use the Maintenance and Security Center (MSC) again to check and repair the structure and data.
As a reminder, on the structure:

orphan methods (__Orphan__xxxxx) are indicated by warnings in the log file of the MSC and can be deleted
using the Explorer (after checking that their code is no longer useful);
forms cannot contain duplicate object names: they are signaled by warnings in the log file of the MSC. You
can perform a repair operation on the database in order to modify these names (in this case, make sure you
check the programming of object names).

New feature concerning the structure:

Detection of pictures in the structure that contain a PICT format. See Verifying the application in the MSC
chapter.

New features concerning the data: detection of duplicates in Unique fields. Additional information is provided:

When using the MSC or a command such as VERIFY DATA FILE, the log files generated now include the
names of the tables and fields concerned, as well as each duplicate value.
Note: When entering data, the "Duplicate key" error dialog box now includes the names of the tables and
fields concerned, as well as the dpulicate value, and the GET LAST ERROR STACK command also includes
detailed information about any duplicates found.
When 4D opens a data file, if it is necessary to build (or rebuild) an index, duplicates are now detected
automatically in any associated field(s) which are declared unique. In this case, a specific alert dialog box is
displayed before opening the database, providing the user with the information needed to identify and remove
the duplicates:

Rebuilding indexes
During the upgrade to 4D v16 and because of the update of the Unicode library (ICU - International Components
for Unicode), all text and keyword indexes in 4D were rebuilt. This oepration is performed automaticaly when the
database is opened for the first time (warning: this operation may take a significant amount of time).
Similarly, when you re-open a v16 database with a 4D v15 R5 or earlier version, this automatically triggers the
rebuilding of the text and keyword indexes.
Note: With 4D v16, we have significantly optimized the global reindexing algorithm for the data of the database. All
its processes were reviewed and this operation can now be up to twice as fast. Global reindexing is required, for
example, after repairing the database or when the .4dindx file has been deleted.

 GET PICTURE FORMATS

GET PICTURE FORMATS (picture ; codecIDs)

Parameter Type Description
picture Picture Picture field or variable to analyze
codecIDs Text array Picture codec IDs

Description

The GET PICTURE FORMATS command returns an array of all the codec IDs (picture formats) contained in the
picture passed as parameter. A 4D picture (field or variable) can contain the same picture encoded in different
formats, such as PNG, BMP, GIF, etc.
In the picture parameter, you pass a picture field or a picture variable whose included formats you want to be
returned in the codecIDs array.
The codec IDs returned are established by 4D in exactly the same way as for the PICTURE CODEC LIST command.
They can be returned in the following forms:

As extensions (for example, “.gif”)
As Mime types (for example, “image/jpeg”)
As 4-character QuickTime codes

Notes:

The following codecs, handled internally by 4D, are always returned as extensions: JPEG, PNG, TIFF, GIF,
BMP, SVG, PDF, EMF.
4-character QuickTime codes may be returned in databases where the QuickTime support compatibility option
has been set (using the SET DATABASE PARAMETER command). However, QuickTime is no longer
supported in 4D and we do not recommend using QuickTime codecs.

For more information about picture codec IDs, refer to the Pictures section.

Example

You want to know the picture formats stored in a field for the current record:

 ARRAY TEXT($aTPictureFormats;0)
 //Get all the formats saved
 GET PICTURE FORMATS([Employees]Photo;$aTPictureFormats)

 Compatibility dialog

To go to this dialog, you just need to click on the "Settings" icon in the main tool bar:

Then on the "Compatibility" tab.

Activating a new mecanism

A new option is added in 4D v16 on the Compatibility page: Use new architecture for application
deployments.

This option is checked by default for databases created with 4D v15 R4 and subsequent versions: the
"new architecture" is automatically enabled; no additional setting is required in order to benefit from it.
For compatibility reasons, this option is unchecked by default in databases converted from previous
versions: you need to check it in order to benefit from the new features.

This option is available for all applications starting with 4D v16. It allows you to enable or disable new mechanisms
related to the deployment of 4D applications (it must be defined on the machine generating the final application).
For more details about the mechanisms controlled by this option, see the Data file management in final
applications and Management of connections by client applications sections.

Former options

Other compatibility options can appear in this dialog box. They are added gradually over the successive versions,
so the older the version in which your database was created, the more options you will have:

For more information about these options, see Compatibility page.

Option removed

The "Use 4DVAR Comments instead of Brackets" option was removed from the Compatibility page of this
dialog box in 4D v16.

 Data file management in final applications

Opening the data file

When a user launches a merged application or an update (single-user or client-server applications), 4D tries to
select a valid data file. Several locations are examined by the application successively.
The opening sequence for launching a merged application is:

1. 4D tries to open the Last data file opened, as described below (not applicable during initial launch).
2. If not found, 4D tries to open the data file in a default data folder next to the .4DC file in read-only mode

(new in 4D v15, described below).
3. If not found, 4D tries to open the standard default data file (same name and same location as the .4DC file).
4. If not found, 4D displays a standard "Open data file" dialog box.

Last data file opened

Path of last data file
When the Use new architecture for application deployments compatibility option is checked (see
Compatibility page), any standalone or server applications built with 4D stores the path of the last data file
opened in the application's user preferences folder.
Compatibility note: In previous versions of the program, this information was stored in the structure file.
The location of the application's user preferences folder corresponds to the path returned by the following
statement:

 userPrefs:=Get 4D folder(Active 4D Folder)

The data file path is stored in a dedicated file, named lastDataPath.xml.
Thanks to this architecture, when you provide an update of your application, the local user data file (last data file
used) is opened automatically at first launch.
This mechanism is usually suitable for standard deployments. However for specific needs, for example if you
duplicate your merged applications, you might want to change the way that the data file is linked to the application.
For more information, please refer to the next section "Configuring the data linking mode".

Configuring the data linking mode
With your compiled applications, 4D automatically uses the last data file opened. By default, when the new
architecture is activated (starting with 4D v15 R4, see section above), the path of the data file is stored in the
application's user preferences folder and is linked to the application name.
This may be unsuitable if you want to duplicate a merged application intended to use different data files. Duplicated
applications actually share the application's user preferences folder and thus, always use the same data file -- even
if the data file is renamed, because the last file used for the application is opened.
4D therefore lets you link the data file path to the application path. In this case, the data file will be linked using a
specific path and will not just be the last file opened.
Duplication when data linked by application name:

Duplication when data linked by application path:

You can select the data linking mode during the build application process. You can either:

Use the Application page or Client/Server page of the Build Application dialog box.
Use the LastDataPathLookup (single-user application) or LastDataPathLookup (server application) XML
key.

Defining a default data folder

4D allows you to define a default data file file" at the application building stage. When the application is launched for
the first time, if no local data file is found (see sequence described above), the default data file is automatically
opened silently in read-only mode by 4D. This gives you better control over data file creation and/or opening when
launching a merged application for the first time. More specifically, the following cases are covered:

Avoiding the display of the 4D "Open Data File" dialog box when launching a new or updated merged
application. You can detect, for example in the On Startup database method, that the default data file has
been opened and thus execute your own code and/or dialogs to create or select a local data file.
Allowing the distribution of merged applications with read-only data (for demo applications, for instance).

To define and use a default data file:

You must provide a default data file (named "Default.4DD") and store it in a default folder (named "Default
Data") inside the database package (4dbase). This file must be provided along with all other necessary files,
depending on the database configuration: index (.4DIndx), external Blobs, journal, etc. It is your
responsibility to provide a valid default data file. Note however that since a default data file is opened in read-
only mode, it is recommended to uncheck the "Use Log File" option in the original structure file before
creating the data file.
When the application is built, the default data folder is integrated into the merged application. All files within
this default data folder are also embedded.

The following graphic illustrates this feature:

When the default data file is detected at first launch, it is silently opened in read-only mode, thus allowing you to
execute any custom operations that do not modify the data file itself.

 Compatibility page

The Compatibility page groups together parameters related to maintaining compatibility with previous versions of
4D. Keep in mind that the number of options displayed depends on the version of 4D with which the original
database was created (2004.x, v11, v12, and so on), as well as the settings modified in this database.
Note: This page does not appear in databases created with the current version of 4D (non-converted databases).

Fields are enterable in dialog boxes: In previous versions of 4D, it was not possible to enter values using
fields in dialog boxes (displayed, for example, using the DIALOG command). This limitation has been
removed since 4D 2004. You can still keep the previous behavior, especially if your database uses fields in
dialog boxes to display data. By default, this option is checked for previous databases converted to version
2004 and is unchecked for databases created in version 2004.
Radio buttons grouped by name: In previous versions of 4D, the coordinated behavior of a group of radio
buttons was obtained by giving the same first letter to the variables associated with the buttons (for example,
m_button1, m_button2, m_button3, etc.). Beginning with 4D 2004 this was changed as follows: to operate in
a coordinated manner, a set of radio buttons must simply be grouped in the Form editor. For more
information about this, refer to Radio Buttons and Picture Radio Buttons.
This new mode is valid for radio buttons, 3D radio buttons and picture radio buttons. For compatibility
reasons, the former mode is kept by default in converted databases. However, you can force the use of the
new mode by deselecting this option. Databases created in version 2004 use the new mode.
Reload form for each record during PRINT SELECTION: In previous versions of 4D, the form used during
a print using the PRINT SELECTION command was reloaded for each record. This allowed automatically
reinitializing all object settings that the developer might have changed using language in the On Printing Detail
form event.
In order to optimize performance, this mechanism was deleted beginning with 4D 2004. The 4D developer
must now reinitialize the desired settings in the form method himself ̶ this is identical to how list forms work
with the On Display Detail form event. Nevertheless, you can keep the former mechanism using this option.
Databases created in version 2004 use the new mode.
Do not use new context referencing mode: When this option is not selected (default value), the 4D Web
server places the context number in the basic URL of the HTML documents being sent.
With the former system (option checked), the 4D Web server sends the context number for each item of a
page to the browser, which slows down processing. This option may nevertheless be checked for compatibility
reasons. Keep in mind that you must restart the database after modifying this option in order for the new
operation to become effective.
Remove “/” on unknown URLs: In former versions of 4D, unknown URLs (URLs that do not correspond to
an existing page nor to a 4D special URL) were returned in the On Web Authentication and On Web
Connection ($1) database methods and did not begin with the “/” character. This specificity was removed in
4D 2004. However, if you implemented algorithms based on this operation and wish to keep it, you can
uncheck this option.
Prevent drop of data not coming from 4D:Starting with v11, 4D allows drag and drop of selections, objects
and/or files external to 4D, like picture files for example, in the Application mode.
This possibility must be supported by the database code. In databases converted from previous versions of
4D, this possibility may lead to malfunctioning if the existing code is not adapted accordingly.
This option can be used to anticipate this possible malfunctioning. When it is checked, the dropping of
external objects is refused in 4D forms. Note that inserting external objects is still possible in objects having
the Automatic Drop option, when the application can interpret the data being dropped (text or picture). For
more information, refer to Drag and Drop.
Execute QUERY BY FORMULA On Server and Execute ORDER BY FORMULA OnServer: Starting with 4D
v11, for optimization purposes, the query and order “by formula” commands are executed on the server; only
the result is returned to the client machine. This concerns the following commands: QUERY BY FORMULA,
QUERY SELECTION BY FORMULA and ORDER BY FORMULA. When variables are called directly in the
formula, the query is calculated with the value of the variable on the client machine. For example,

 QUERY BY FORMULA([aTable];[aTable]aField=theVariable)

will be executed on the server but with the contents of the myvariable variable of the client. On the other
hand, this principle does not apply for formulas using methods that, themselves, call variables: in this case the

value of the variables is evaluated on the server.
In converted databases, this new functioning may affect existing algorithms. Consequently, by default in this
context, these commands continue to be executed on the client machine. If you want to take advantage of the
new algorithm in a converted database, you can simply check these options.
Note: This option can be set using the SET DATABASE PARAMETER command.
QUERY BY FORMULA Uses SQL Joins: Starting with 4D v11, the QUERY BY FORMULA and QUERY
SELECTION BY FORMULA commands carry out joins based on the SQL joins model. This means that it is not
necessary for a structural automatic relation to exist between table A and table B in order to use a formula
containing [Table_A]field_X=[Table_B]field_Y.
Since this mechanism could lead to malfunctioning in existing applications, it is deactivated by default in
converted databases. It is recommended to activate it (after checking the code of the database) by checking
this option in order to benefit from the optimization of the query by formula commands.
Notes:

When the "SQL joins" mode is activated, the QUERY BY FORMULA and QUERY SELECTION BY FORMULA
commands nevertheless use automatic relations set in the Structure editor in the following cases:
- If the formula cannot be broken down into elements of the {field ;comparator ;value} form
- If two fields of the same table are compared.
This option can also be set per process using the SET DATABASE PARAMETER command.

Allow Nested Transactions: Enables support of multi-level transactions. Beginning with v11, 4D accepts
nested transactions on an unlimited number of levels. Since this new operation can lead to malfunctioning in
databases developed with former versions of 4D, it is disabled by default in converted databases (transactions
remain limited to a single level). If you want to take advantage of transactions on several levels in a converted
database, you must check this option.
By default, this option is not checked. It is specific to each database.
Note: This option has no effect on transactions carried out in the SQL engine of 4D. SQL transactions are
always multi-level.
Unicode mode: Used to enable or disable the Unicode mode for the current database. In Unicode mode, the
database engine, the language and the menus handle Unicode character strings natively. In non-Unicode
mode (also called ASCII compatibility mode), the ASCII character set is used.
This option allows the compatibility of converted databases to be maintained. It is checked by default for
databases created with 4D v11 and higher, and unchecked in converted databases.
Notes:

This option is specific to each database. You can therefore have a Unicode database coexist with non-
Unicode components (or vice versa) in interpreted mode.
You can also configure the Unicode mode using the SET DATABASE PARAMETER command.

The specific characteristics of Unicode support in 4D are detailed in the Language Reference manual. For more
information, refer to EXPORT TEXT.
Use period and comma as placeholders in numeric formats: starting with v11, 4D uses regional system
parameters for numeric display formats (see “Number formats” in Display formats). 4D automatically
replaces the “,” and “.” characters in numeric display formats by, respectively, the thousand separator and the
decimal separator defined in the operating system. The period and comma are thus considered as placeholder
characters, following the example of 0 or #. In previous versions of 4D, numeric display formats do not take
the regional parameters of the system into account. For example, the “###,##0.00” format is a valid format
for an American system. However, when it is applied to a numeric value displayed on a French or Swiss
system, the result is incorrect.
In converted database, for the sake of compatibility, this new mechanism is not activated. To take advantage
of it, you must check this option.
Automatic variable assignment: In previous versions of 4D, a standard mechanism of the Web server
automatically recopied the value of variables sent by means of an HTTP form or a GET type URL into 4D
process variables. In interpreted mode, the value of any variable received was copied directly into a 4D
process variable with the same name; in compiled mode, the variables must have been pre-declared in a
COMPILER_WEB project method.
Beginning with 4D v13.4, this mechanism is obsolete and no longer available in new databases. For
compatibility, it is maintained in converted databases but you can disable it by unchecking this compatibility
option. We now recommend using the dedicated WEB GET VARIABLES or WEB GET BODY PART
commands.
Use legacy network layer (ignored on OS X 64-bit): Starting with release v14 R5, 4D applications contain
a new network layer, named ServerNet, to handle communications between 4D Server and remote 4D
machines (clients). The former network layer has become obsolete, but it is kept to ensure compatibility with
existing databases. Using this option, you can enable or disable the former network layer at any time in your
converted 4D Server applications depending on your needs, for example, when migrating your client

applications (see the Network and Client-Server options section). ServerNet is used automatically for new
databases, and disabled by default in converted databases (option checked).
Note that in case of a modification, you need to restart the application for the change to be taken into
account. Any client applications that were logged must also be restarted to be able to connect with the new
network layer (the minimum client version for using the ServerNet layer is 4D v14 R4, see the Network and
Client-Server options section).
Notes:

This option can also be managed by programming using the SET DATABASE PARAMETER command.
As specified in its title, this option is ignored in the 64-bit version of 4D Server for OS X; only ServerNet
can be used on this platform.

Save methods as Unicode: allows you to save 4D method code strings in Unicode. In versions of 4D prior to
v15, 4D method code strings (formulas, variable and method names, comments, etc.) were saved using the
current local encoding. This encoding could cause issues, especially when 4D code was shared between
developers from different countries: for example, if a French developer wrote some 4D code that included
accents and then sent the database to an English developer, these accents would be lost. Serious issues could
also occur with code written on Japanese versions. Saving methods as Unicode resolves all these types of
issues and makes it possible to exchange 4D code containing specific local characters. We recommend that
you enable the Unicode mode option for methods as soon as possible in your existing databases, especially if
you work in an international environment.
Notes:

This feature applies to the language itself and its interpretation. Some 4D editor windows, such as the
Property list, still use current local encoding and therefore may display certain strings incorrectly.
However, this does not affect code execution.
If you modify this option, you need to restart the application in order for the change to be taken into
account. You can check or uncheck this option at any time; only methods saved subsequently are
affected.

Use new architecture for application deployments: This option is available for all applications starting with
4D v15 R4. It enables or disables new mechanisms related to the deployment of 4D applications (it has be to
set on the machine that generates the final application). The mechanisms controlled by this option are
described in the Last data file opened and Management of connections by client applications sections.
This option is unchecked by default in converted applications. In order to benefit from these new mechanisms,
you will need to check it explicitly.

 Changes in behavior

Licenses

License management for 4D products has been improved in 4D v16:
First activation simplified: Entering a new license number in the "LIcense Manager" dialog box now automatically
activates, in a single operation, 4D Server and all of its related expansions (additional clients, plug-ins, etc.)
New Refresh button: You can now activate your licenses by simply clicking on the Refresh button in the "License
Manager" dialog box.

This new button connects you to our custoner database and automatically activates all your new licenses or
updates linked to the current license (the current license appears in bold in the Active Licenses list). You just need
to enter your 4D identifiers (account and password). You can click on the Refresh button in the following contexts:

when you have acquired an additional expansion and want to activate it,
when you need to update an expired temporary number (Partners or evolutions).

New auto-activation feature: This feature is triggered when you launch a more recent 4D product for which you
have not yet entered your license, or when the license detected on the machine where the product was launched is
not valid. The auto-activation procedure starts:

when you open/create a local interpreted database with 4D Developer Edition. In this case, a dialog box
informs you that you will be connected to our customer database and your licenses will be activated (you will
have to enter the password for your user account).
when you launch a 4D Server application. In this case, in order to allow its use as a service or to permit
automatic updates, the auto-activation process is transparent to the user and entirely automatic (no dialog
box is displayed).

Language

OBJECT SET FORMAT / OBJECT Get format: These commands now support icons in list box headers.
METHOD GET CODE: This command returns code as indented text.
DELETE FOLDER: This command can now delete a folder that is not empty

Fonts

The FONT LIST command under Windows only returns vectorial fonts.

Printing

64-bit versions only: The new features detailed in this section are only available in 4D v16 64-bit versions (4D
Developer Edition and 4D Volume Desktop, see the Printing architecture (redesign) section).
The printing architecture was entirely rewritten in 4D 64-bit versions to benefit from the most recent OS-based
printing libraries and dialog boxes. Although this internal update is mostly transparent to 4D users, the following
changes should be noted:

The Print job dialog box (Windows and OS X) has been upgraded and is a standard system dialog on both
platforms.

On Windows, the Page Setup dialog box has been updated; it is now provided by the operating system.

PRINT SETTINGS command: The Page Setup dialog box is not longer displayed automatically when a print
command is called. To display it, you need to use the Page setup dialog constant in the dialType parameter.
A second constant has been added to this command: Print dialog lets you indicate whether or not to display
the print dialog.

The following print options (used with GET PRINT OPTION or SET PRINT OPTION commands) have been

modified:

Option
(constant) OS

Status
in 4D
v16

Comments

2 (Orientation
option)

Windows
and OS X Updated

Can be called within a print job, which means that you can switch
to portrait or landscape orientation in the same print job.

8 (Color option) Windows
only Removed Deprecated

13 (Mac spool
file format
option)

OS X
only Removed Replaced by new option of the SET CURRENT PRINTER

command.

Note: The OPEN PRINTING JOB, CLOSE PRINTING JOB, SET PRINT OPTION and SET PRINT OPTION
commands are compatibles wiht the 4D Write Pro WP PRINT command: for more information, see WP PRINT. All
options are supported for 4D Write Pro documents, except for the Paper option and Orientation option options, for
which we recommend using the WP USE PAGE SETUP command instead in order to set the page size and
orientation separately.

List boxes

Row Control Array
A new Row Control Array property gives you the ability to control new interface properties:

hidden or visible (visible by default))
enabled or disabled (enabled by default)
selectable or not selectable (selectable by default)
The Row Control Array property can be set or get using the LISTBOX SET ARRAY and LISTBOX Get array
commands. The array can also be returned by the LISTBOX GET ARRAYS command.
In previous versions of 4D, this property was named "Hidden Rows Array" and expected a Boolean array.
For compatibility's sake, a Boolean array supported as a row control array. In this array, each element
represents the hidden/displayed status of its corresponding row in the list box. True means that the row is
hidden and False means that it is displayed.

Headers and footers

The minimum height for headers, in pixels, depends on the system. If you pass a value that is too small, it is
replaced by the minimum size defined in the system for headers. There is no minimum size for rows and footers.
Under Windows 7, the minimum header height is 24 pixels. Any headers in your converted databases whose height
is less than this are automatically resized to 24 pixels.
You can also set the height of headers and footers dynamically using the LISTBOX SET HEADERS HEIGHT amd
LISTBOX SET FOOTERS HEIGHT commands.
Since the rendering may not entirely match your expectations, this is a something you must remember to check on
your forms.
Converted list boxes
List boxes resulting from the conversion of former grouped scrollable areas are connected. Connected list boxes

List boxes resulting from the conversion of former grouped scrollable areas are connected. Connected list boxes
function in a coordinated manner: selecting a row in one list box leads to the same row being selected in any other
list boxes belonging to the same connected group; scrolling a list box vertically triggers the same scrolling in all the
list boxes belonging to the same connected group.
Note: Converted list boxes are also grouped in the form (standard 4D function).
List boxes can be connected and disconnected using the Connect and Disconnect commands found in the Object
menu of the Form editor:

These commands are enabled when several list boxes are selected in a form. When a connected list box (i.e. a list
box belonging to a connected group) is selected, a specific "badge" is displayed on all the list boxes that belong to
this same connected group:

These principles allow you to reproduce the same operation of the former grouped scrollable areas;
however, we recommend that you adapt your converted forms to use standard list box features.

Forms

The advanced options of the Form wizard have been updated based on the 4D product and hardware evolutions:

The Screen Sizes list now includes "2048x1536" resolution:

In the forms generated, the Variable name property is now left blank for navigation buttons.

Optimization of Replace string

Thanks to a new internal algorithm, the execution of the [#cmd id="233"/] command has been significantly
accelerated in 4D v15 R3 when you replace a string by another of a different length. This is the case for example in
the following replacements:

 vResult:=Replace string(Source_Text;"a";"aa") //based on characters
 vResult2:=Replace string(Source_Text2;"à";"aa";*) //based on character codes

The new algorithm is optimized for both syntaxes: the larger the source text and the more replacements there are,
the more significant the optimization will be.
Our benchmarks show the following results, compared with the previous algorithm:
Replacements based on character code (* passed) Replacements based on character (* omitted)
About 950 times faster About 4400 times faster

These tests were done by replacing "a" with "aa" in a file containing 32,000 occurrences to replace.
Note: Replacement of strings of the same length is just as fast as with the previous algorithm.

Duplicates in Unique fields

Additional information is provided when duplicates are detected in unique fields:

When using the MSC or a command such as VERIFY DATA FILE, resulting logs now contain the names of the
offending tables and fields, as well as each duplicated value
During data entry, the "Duplicated key" error dialog box now contains the name of the offending table and
field, as well as the duplicated value
The GET LAST ERROR STACK command also contains detailed information on any duplicates.
When 4D opens a data file, if an index needs to be built (or rebuilt), duplicates are now automatically detected
in the associated field(s) declared as unique. In this case, a specific warning dialog box is displayed before
database opening, providing the user with the information needed to identify and remove duplicates:

WEB: 4D tags and decimal separators

4D always uses the period character (.) as decimal separator when evaluating a numerical expression using the
4DTEXT, 4DVAR, 4DHTML, 4DHTMLVAR and 4DEVAL tags. Regional settings are now ignored in this context.
For example, whatever the regional settings are:

 value:=10/4
 input:="<!--#4DTEXT value-->"
 PROCESS 4D TAGS(input;output)
 // always outputs 2.5 even if regional settings use the ',' as separator

So if your code evaluates numerical expressions using 4D tags with respect to the regional settings, you need to
adapt it using the String command:

To get value with a period as decimal point: <!--#4DTEXT value-->
To get value with a decimal point based on the regional settings: <!--#4DTEXT String(value)-->

For more information, refer to 4D Transformation Tags.

HTTP server

Disabling of the HTTP TRACE method, error 405. If you need to enable this method, you can use the Web HTTP
TRACE option with the WEB SET OPTION command.

Timestamping of maintenance log files

The names of log files generated during maintenance operations through the MSC or the 4D Server administration
window are now unique and therefore differ each time they are saved to disk. In previous versions, these files
always used the same name so the previous log file (if any) was overwritten by the new one each time a new
maintenance operation was performed, meaning that prior log files were automatically purged. It is now up to the
database administrator to remove older log files as necessary, both for 4D and 4D Server.

4D Internet Commands

Modifications between versions v15.x/v15Rx and v16: concerning management of encoding and charsets, in
particular for attachment filenames when sending emails. In databases where workarounds were implemented, you
need to verify that these modifications do not cause any malfunctions.
Two commands were updated: SMTP_Charset and SMTP_SetPrefs.

SMTP_Charset
Attachment filenames are encoded in base64
- Value 0 for parameters indicates using the default value (and not "Do not manage"), which means:

 For encodeHeaders: UTF-8 charset for "Subject", ISO-8859-1 for other fields
 For bodyCharset: UTF-8 charset encoded in base 64
- Value 1 for parameters indicates using values defined by the SMTP_SetPrefs command.

SMTP_SetPrefs
The second parameter (renamed charset&Encoding) indicates the charset and encoding used in the message
body, as well as the charset of headers and attachment filenames to be sent. The documentation was clarified
and lists all the combinations accepted:

Value Body charset and encoding Headers and attachment filenames charset
(encoding always base64)

-1 No change No change
0 Application & binary; no encoding ISO-8859-1
1 Default: UTF-8 & base64 Default: UTF-8 for subject, ISO-8859-1 for other fields
2 US-ASCII & 7bit ISO-8859-1
3 US-ASCII & quotable-printable ISO-8859-1
4 US-ASCII & base 64 ISO-8859-1
5 ISO-8859-1 & quotable-printable ISO-8859-1
6 ISO-8859-1 & base64 ISO-8859-1
7 ISO-8859-1 & 8bit ISO-8859-1
8 ISO-8859-1 & binary ISO-8859-1
9 Reserved Reserved
10 ISO-2022-JP (Japanese) & 7bit ISO-2022-JP
11 ISO-2022-KR (Korean) & 7 bits ISO-2022-KR

12
ISO-2022-CN (Traditional & Simplified
Chinese) & 7 bit

ISO-2022-CN

13 HZ-GB-2312 (Simplified Chinese) & 7
bit

HZ-GB-2312

14 Shift-JIS (Japanese) & base64 Shift-JIS
15 UTF-8 & quoted-printable UTF-8
16 UTF-8 & base64 UTF-8

 OBJECT SET FORMAT

OBJECT SET FORMAT ({* ;} object ; displayFormat)

Parameter Type Description
* Operator If specified, Object is an Object Name (String) If omitted, Object is a Field or a Variable
object Form object Object Name (if * is specified), or Field or Variable (if * is omitted)
displayFormat String New display format for the object

Description

OBJECT SET FORMAT sets the display format for the objects specified by object to the format you pass in
displayFormat. The new format is only used for the current display; it is not stored with the form.
If you specify the optional * parameter, you indicate an object name (a string) in object. If you omit the optional *
parameter, you indicate a field or a variable in object. In this case, you specify a field or variable reference (field or
variable objects only) instead of a string. For more information about object names, see the Object Properties
section.
OBJECT SET FORMAT can be used for both input forms and output forms (displayed or printed) and can be
applied to fields or variables (enterable/non-enterable).
Naturally, you must use a display format compatible with the type of data found in the object or with the object
itself.

Boolean
To format Boolean fields, there are two possibilities:

You can pass a single value in displayFormat. In this case, the field will be displayed as a checkbox and its label
will be the value specified.
You can pass two values, separated by a semicolon (;), in displayFormat. In this case, the field will be
displayed as two radio buttons.

Date
To format Date fields or variables, pass Char(n) in displayFormat, where n is one of the following predefined
constants provided by 4D:

Constant Type Value Comment
Blank if null date Longint 100 "" instead of 0
Date RFC 1123 Longint 10
Internal date abbreviated Longint 6 Dec 29, 2006
Internal date long Longint 5 December 29, 2006
Internal date short Longint 7 12/29/2006
Internal date short special Longint 4 12/29/06 (but 12/29/1896 or 12/29/2096)
ISO Date Longint 8 2006-12-29T00:00:00 (deprecated)
ISO Date GMT Longint 9 2010-09-13T16:11:53Z
System date abbreviated Longint 2 Sun, Dec 29, 2006
System date long Longint 3 Sunday, December 29, 2006
System date short Longint 1 12/29/2006

Note: The Blank if null date constant must be added to the format; it indicates that in the case of a null value, 4D
must display an empty area instead of zeros.

Time
To format Time fields or variables, pass Char(n) in displayFormat, where n is one of the following predefined
constants provided by 4D:

Constant Type Value Comment

Blank if null time Longint 100 "" instead of 0
HH MM Longint 2 01:02
HH MM AM PM Longint 5 1:02 AM
HH MM SS Longint 1 01:02:03
Hour min Longint 4 1 hour 2 minutes
Hour min sec Longint 3 1 hour 2 minutes 3 seconds
ISO time Longint 8 0000-00-00T01:02:03
Min sec Longint 7 62 minutes 3 seconds
MM SS Longint 6 62:03
System time long Longint 11 1:02:03 AM HNEC (Mac only)
System time long abbreviated Longint 10 1•02•03 AM (Mac only)
System time short Longint 9 01:02:03

Note: The Blank if null time constant must be added to the format; it indicates that in the case of a null value, 4D
must display an empty area instead of zeros.

Picture
To format Picture fields or variables, pass Char(n) in displayFormat, where n is one of the following predefined
constants provided by 4D:

Constant Type Value
On background Longint 3
Replicated Longint 7
Scaled to fit Longint 2
Scaled to fit prop centered Longint 6
Scaled to fit proportional Longint 5
Truncated centered Longint 1
Truncated non centered Longint 4

Alpha and number
To format fields or variables of the Alpha or Number type, pass the label of the format directly in the displayFormat
parameter.
For more information about display formats, see the Number formats and Alpha formats sections of the 4D
Design Reference manual.
Note: In displayFormat, to use custom display formats that you may have created in the tool box, prefix the name
of the format with a vertical bar (|).

Picture buttons
To format picture buttons, in the displayFormat parameter, pass a character string respecting the following syntax:
cols;lines;picture;flags{;ticks}

cols = number of columns in the picture.
lines = number of lines in the picture.
picture = picture used, coming from the picture library or a picture variable:

If the picture comes from the picture library, enter its number, preceded by a question mark (e.g.: "?
250").
If the picture comes from a picture variable, enter the variable name.

flags = display mode and operation of a picture button. This parameter can take any of the following values:
0, 1, 2, 16, 32, 64 and 128. Each of these values represents a display mode or an operation mode. These
values are cumulative; for instance, if you want to enable the modes 1 and 64, pass 65 in the flags parameter.
Here are the details for each value:

flags = 0 (no option)
Displays the next picture in the series when the user clicks the picture. Displays the previous picture in
the series when the user holds down the Shift key and clicks on the picture. When the user reaches the
last picture in the series, the picture does not change when the user clicks it again. That is, it does not
cycle back to the first picture in the series.
flags = 1 (Switch Continuously)

Similar to the previous option except that the user can hold down the mouse button to display the
pictures continuously (i.e., as an animation). When the user reaches the last picture, the object does not
cycle back to the first picture.
flags = 2 (Loop Back to First Frame)
Similar to the previous option except that the pictures are displayed in a continuous loop. When the user
reaches the last picture and clicks again, the first picture appears, and so forth.
flags = 16 (Switch when Roll Over)
The contents of the picture button are modified when the mouse cursor passes over it. The initial picture
is re-established when the cursor leaves the button's area. This mode is frequently used in multimedia
applications or in HTML documents. The picture that is then displayed is the last picture of the thumbnail
table, unless the Use Last Frame as Disabled option is selected (128). If that option is selected, it is the
next-to-last thumbnail that is displayed.
flags = 32 (Switch Back when Released)
This mode operates with two pictures. It displays the first picture all the time except when the user clicks
the button. In that case, the second picture is displayed until the mouse button is released, whereupon it
switches back to the first picture. This mode allows you to create an action button that displays its status
(idle or clicked). You can use this mode to create a 3D effect or display any picture that depicts the
action.
flags = 64 (Transparent)
Used to make the background picture transparent.
flags = 128 (Use Last Frame as Disabled)
This mode allows you to set the last thumbnail as the thumbnail to display when the button is disabled.
When this mode is selected, 4D displays the last thumbnail when the button is disabled. When this mode
is used in addition to the modes 0, 1 and 2, the last thumbnail is not taken into account in the sequence
of the other modes. It will appear only when the button is disabled.

ticks = activates the “Switch every n Ticks” mode and sets the time interval between the display of each
picture. When this optional parameter is passed, it allows you to cycle through the contents of the picture
button at the specified speed. For example, if you enter "2;3;?16807;0;10", the picture button will display a
different picture every 10 ticks. When this mode is active, only the Transparent mode can be used (64).

Picture pop-up menus
To format picture pop-up menus, in the displayFormat parameter, pass a character string respecting the following
syntax:
cols;lines;picture;hMargin;vMargin;flags

cols = number of columns in the picture.
lines = number of lines in the picture.
picture = picture used, coming from the picture library or a picture variable:

If the picture comes from the picture library, enter its number, preceded by a question mark (e.g.: "?
250").
If the picture comes from a picture variable, enter the variable name.

hMargin = margin in pixels between the horizontal limits of the menu and the picture.
vMargin = margin in pixels between the vertical limits of the menu and the picture.
flags = transparency mode of picture pop-up menu. Accepts the values 0 and 64:

flags = 0: the picture pop-up menu is not transparent,
flags = 64: the picture pop-up menu is transparent.

Thermometers and rulers
To format objects of the thermometer or ruler type, in the displayFormat parameter, pass a character string
respecting the following syntax:
min;max;unit;step;flags{;format{;display}}

min = value of the first graduation of the indicator.
max = value of the last graduation of the indicator.
unit = interval between the indicator graduations.
step = minimum interval of cursor movement in the indicator.
flags = display mode and operation of indicators. This parameter accepts the values 0, 2, 3, 16, 32 and 128.
These values can be accumulated in order to set several options (except for 128). Here are the details for each
value:

flags = 0: does not display the units.
flags = 2: displays the units on the right or below the indicator.
flags = 3: displays the units on the left or above the indicator.

flags = 16: displays graduations adjacent to the units.
flags = 32: On Data Change is executed while the user is adjusting the indicator. If this value is not used,
On Data Change occurs only after the user is finished adjusting the indicator.
flags = 128: activates the "Barber shop" (continuous animation) mode. This value cannot be combined
with others. In this mode, the other parameters are ignored (except for the display parameter if passed).
For more information about this mode, please refer to the Design Reference manual.

format = display format of the indicator graduations.
Keep in mind that the units and graduations are automatically hidden if the size of the indicator object does
not permit them to be displayed correctly.
display = specific display options. In the case of thermometers, this parameter is only taken into account
when the flags subparameter is 128.

display = 0 (or is omitted): displays a standard ruler / displays a thermometer in continuous animation of
the "barber shop" type.
display = 1 : activates "Stepper" mode for a ruler / activates the "Asynchronous progress" mode for a
thermometer. For more information about these options, please refer to the Design Reference manual.

Dials
To format objects of the dial type, in the displayFormat parameter, pass a character string respecting the following
syntax:
min;max;unit;step{;flags}

min = value of the first graduation of the indicator.
max = value of the last graduation of the indicator.
unit = interval between the indicator graduations.
step = minimum interval of cursor movement in the indicator.
flags = operation mode of the dial (optional). This parameter only accepts the value 32: On Data Change is
executed while the user is adjusting the indicator. If this value is not used, On Data Change occurs only after
the user is finished adjusting the indicator.

Button grids
To format button grids, in the displayFormat parameter, pass a character string respecting the following syntax:
cols;lines

cols = number of columns of the grid.
lines = number of lines of the grid.

Note: For more information about the display formats for form objects, refer to the 4D Design Reference manual.

3D buttons
To format 3D buttons, in the displayFormat parameter, pass a character string respecting the following syntax:
title;picture;background;titlePos;titleVisible;iconVisible;style;horMargin;vertMargin;iconOffset;popupMenu;hyperlink;numStates

title = Button title. This value can be expressed as text or a resource number (ex.: “:16800,1”)
picture = Picture linked to a button that comes from a picture library or a picture variable:

If the picture comes from a picture library, enter its number, preceded with a question mark (ex.: “?
250”).
If the picture comes from a picture variable, enter the variable name.
If the picture comes from a file stored in the Resources folder of the database, enter a URL of the type
"#{folder/}picturename" or "file:{folder/}picturename".

background = Background picture linked to a button (Custom style), that comes from a picture library, a
picture variable, a PICT resource or a file stored in the Resources folder (see above).
titlePos = position of the button title. Five values are possible:

titlePos = 1: Left
titlePos = 2: Top
titlePos = 3: Right
titlePos = 4: Bottom
titlePos = 5: Middle

titleVisible = Defines whether or not the title is visible. Two values are possible:
titleVisible = 0: the title is hidden
titleVisible = 1: the title is displayed

iconVisible = Defines whether or not the icon is visible. Two values are possible:
iconVisible = 0 : the icon is hidden

iconVisible = 1 : the icon is displayed
style = Button style. The value of this option determines whether various other options are taken into
consideration (for example, background). The following values are possible:

style = 0: None
style = 1: Background offset
style = 2: Push button
style = 3: Toolbar button
style = 4: Custom
style = 5: Circle
style = 6: Small system square
style = 7: Office XP
style = 8: Bevel
style = 9: Rounded bevel
style = 10: Collapse/Expand
style = 11: Help
style = 12: OS X Textured
style = 13: OS X Gradient

horMargin = Horizontal margin. Number of pixels delimiting the inside left and right margins of the button
(areas that the icon and the text must not encroach upon).
vertMargin = Vertical margin. Number of pixels delimiting the inside top and bottom margins of the button
(areas that the icon and the text must not encroach upon).
iconOffset = Shifting of the icon to the right and down. This value, expressed in pixels, indicates the shifting of
the button icon to the right and down when the button is clicked (the same value is used for both directions).
popupMenu = Association of a pop-up menu with the button. Three values are possible:

popupMenu = 0: No pop-up menu
popupMenu = 1: With linked pop-up menu
popupMenu = 2: With separate pop-up menu

hyperlink = TItle is underlined on mouseover to resemble a hyperlink (legacy mechanism). Two values are
possible:

hyperlink = 0: title is not underlined on mouseover
hyperlink = 1: title is underlined on mouseover

numStates = Number of states present in picture used as icon for the 3D button, and which will be used by 4D
to represent the standard button states (from 0 to 4).

Certain options are not taken into account for all 3D button styles. Also, in certain cases, you may wish to not
change all the options. To not pass an option, simply omit the corresponding value. For example, if you do not
want to pass the titleVisible, vertMargin and hyperlink options, you can write:

 OBJECT SET FORMAT(myVar;"NiceButton;?256;:562;1;;1;4;5;;5;0;;2")

List box headers
To format the icon in a list box header, pass a character string in the displayFormat parameter, which respects the
following syntax:
picture;iconPos

picture = header picture, coming from the picture library, a picture variable, or a picture file:
If the picture comes from the picture library, enter its number, preceded by a question mark (e.g.: "?
250").
If it comes from a picture variable, enter the variable name.
If it comes from a file stored in the Resources folder of the database, enter a URL of the type
"#{folder/}picturename" or "file:{folder/}picturename".

iconPos = position of icon in header. Two values are supported:
iconPos = 1: Left
iconPos = 2: Right

This feature is useful, for example, when you want to work with a customized sort icon.

Example 1

The following line of code formats the [Employee]Date Hired field to the fifth format (Internal date long).

 OBJECT SET FORMAT([Employee]Date Hired;Char(Internal date long))

Example 2

The following example changes the format for a [Company]ZIP Code field according to the length of the value
stored in the field:

 If(Length([Company]ZIP Code)=9)
 OBJECT SET FORMAT([Company]ZIP Code;"#####–####")
 Else
 OBJECT SET FORMAT([Company]ZIP Code;"#####")
 End if

Example 3

The following example formats the value of the [Stats]Results field depending on whether it is a positive, negative,
or null number:

 OBJECT SET FORMAT([Stats]Results;"### ##0.00;(### ##0.00);")

Example 4

The following example sets the format of a Boolean field to display Married and Unmarried, instead of the default
Yes and No:

 OBJECT SET FORMAT([Employee]Marital Status;"Married;Unmarried")

Example 5

Provided that you have stored a picture file named "envelope_open.png" in the Resources folder of the database,
you can write:

 vIcon:="#envelope_open.png"
 vPos:="2" // Right
 OBJECT SET FORMAT(*;"Header1";vIcon+";"+vPos)

Example 6

The following example sets the format of a Boolean field to display a checkbox labelled “Classified”:

 OBJECT SET FORMAT([Folder]Classification;"Classified")

Example 7

You have a table of thumbnails containing 1 row and 4 columns, intended to display a picture button (“default”,
“clicked”, “roll over” and “disabled”). You want to associate the Switch when Roll Over, Switch back when Released
and Use Last Frame as Disabled options with it:

 OBJECT SET FORMAT(*;"PictureButton";"4;1;?15000;176")

Example 8

Switching a thermometer to "Barber shop" mode:

 OBJECT SET FORMAT($Mythermo;";;;;128")

 $Mythermo:=1 `Start animation

 METHOD GET CODE

METHOD GET CODE (path ; code {; option} {; *})

Parameter Type Description
path Text, Text

array
Text or Text array containing one or more method path(s)

code Text, Text
array

Code of designated method(s)

option Longint 0 or omitted = simple export (without tokens), 1 = export with tokens
* Operator If passed = command applies to host database when executed from a component (parameter

ignored outside of this context)

Description

The METHOD GET CODE command returns, in the code parameter, the contents of the method(s) designated by
the path parameter. This command can return the code of all types of methods: database methods, triggers,
project methods, form methods and object methods.
You can use two types of syntaxes, based either on text arrays, or text variables:

 C_TEXT(tVpath) // text variables
 C_TEXT(tVcode)
 METHOD GET CODE(tVpath;tVcode) // code of a single method

 ARRAY TEXT(arrPaths;0) // text arrays
 ARRAY TEXT(arrCodes;0)
 METHOD GET CODE(arrPaths;arrCodes) // code of several methods

You cannot mix the two syntaxes.
If you pass an invalid pathname, the code parameter is left empty and an error is generated.
In the text of the code generated by this command:

Command names are written in English for all versions of 4D, except when you use a French version and
check the "Use regional system settings" preference (see Methods Page). When you use the option
parameter, the code can contain language tokens in order to make it independent from the 4D programming
language and version (see below).
To increase code readability, text is indented with tab characters based on programming structures, like in the
Method editor.
A line is added in the header of the code generated containing metadata used when importing code, for
example:

 // %attributes = {"lang":"en","invisible":true,"folder":"Web3"}

During an import, this line is not imported, it is only used to set the corresponding attributes (attributes that
are not specified are reset to their default value). The "lang" attribute sets the export language and prevents
an import into an application in a different language (in this case, an error is generated). The "folder" attribute
contains the name of the methodʼs parent folder; it is not shown when the method does not have a parent
folder.
Additional attributes can be defined. For more information, refer to the description of the METHOD SET
ATTRIBUTES command.

The option parameter allows you to select the code export mode with respect to the tokenized language elements
of the method(s):

If you pass 0 or omit the option parameter, the method code is exported without tokens, i.e. just like it is
displayed in the Method editor.
If you pass 1 or the Code with tokens constant, the method code is exported with tokens, i.e. tokenized
elements are followed by their internal reference in the code exported contents. For example, the expression
"String(a)" is exported "String:C10(a)", where "C10" is the internal reference of the String command.

Tokenized language elements include:

4D commands and constants,
Table and field names,
4D plug-in commands.

Code exported with tokens is independent from any subsequent renaming of language elements. Thanks to tokens,
code provided as text will always be interpreted correctly by 4D, whether by means of the METHOD SET CODE
command or even by copy/paste. For more information about the syntax of 4D tokens, please refer to Using
tokens in formulas.
If the command is executed from a component, it applies by default to the component methods. If you pass the *
parameter, it accesses the methods of the host database.

Example 1

Refer to the example of the METHOD SET CODE command.

Example 2

This example illustrates the effect of the option parameter.
You want to export the following "simple_init" method:

 Case of
 :(Form event=On Load)
 ALL RECORDS([Customer])
 End case

If you execute the following code:

 C_TEXT($code)
 C_TEXT($contents)
 $code:=METHOD Get path(Path project method;"simple_init")
 METHOD GET CODE($code;$contents;0) //no tokens
 TEXT TO DOCUMENT("simple_init.txt";$contents)

The resulting document will contain:

 //%attributes = {"lang":"en"} comment added and reserved by 4D
Case of
 : (Form event=On Load)
 ALL RECORDS([Customer])
End case

If you execute the following code:

 C_TEXT($code)
 C_TEXT($contents)
 $code:=METHOD Get path(Path project method;"simple_init")
 METHOD GET CODE($code;$contents;Code with tokens) //use tokens
 TEXT TO DOCUMENT("simple_init.txt";$contents)

The resulting document will contain:

 //%attributes = {"lang":"en"} comment added and reserved by 4D
Case of
 : (Form event:C388=On Load:K2:1)
 ALL RECORDS:C47([Customer:1])
End case

 DELETE FOLDER

DELETE FOLDER (folder {; deleteOption})

Parameter Type Description
folder String Name or full path of the folder to be deleted
deleteOption Longint Folder deletion option

Description

The DELETE FOLDER command deletes the folder whose name or full path has been passed in folder.
By default, for security reasons, if you omit the deleteOption parameter, DELETE FOLDER only allows empty
folders to be deleted. If you want the command to be able to delete non-empty folders, you must use the
deleteOption parameter. In deleteOption, you can pass one of the following constants, found in the "System
Documents" theme:

Constant Type Value Comment

Delete only if empty Longint 0 Deletes folder only when it is empty
Delete with contents Longint 1 Deletes folder along with everything it contains

When Delete only if empty (0) is passed or if you omit the deleteOption parameter:
The folder specified in the folder parameter is only deleted if it is empty; otherwise, the command does
nothing and an error -47 (The file is already open, or the folder is not empty) is generated.
If the folder specified does not exist , the error -120 (Tried to access a file by using a pathname that
specifies a non existing directory) is generated.

When Delete with contents (1) is passed:
The folder along with all of its contents are deleted.
Warning: Even when this folder and/or its contents are locked or set to read-only, if the current user
has suitable access rights, they are still deleted.
If this folder, or any of the files it contains, cannot be deleted, deletion is aborted as soon as the first
inaccessible element is detected, and an error(*) is returned. In this case, the folder may be only partially
deleted. When deletion is aborted, you can use GET LAST ERROR STACK command to retrieve the
name and path of the offending file.
If the folder specified does not exist, the command does nothing and no error is returned.
(*) under Windows: -54 (Attempt to open locked file for writing)
under OS X: -45 (The file is locked or the pathname is not correct)

You can intercept these errors using a method installed by the ON ERR CALL command.

 FONT LIST

FONT LIST (fonts {; listType | *})

Parameter Type Description
fonts Text array Array of font names
listType | * Longint, Operator Font type list to return or * to return font names under OS X

Description

The FONT LIST command populates the fonts text array with the names of scalable fonts available on your system.
The listType parameter lets you designate the type of font list you want to get. To do so, you can pass one of the
following constants in the listType parameter, available in the "Font Type List" theme:

Constant Type Value Comment

Favorite
fonts

Longint 1

fonts contains the list of favorite fonts.
- Under Windows: list of active font family names.
- Under OS X: list of font family names found in the control panel, entitled
"Favorites" in English, "Favoris" in French, "Favoriten" in German, and so on .
This collection may be blank if the user has not added any favorite fonts.

Recent
fonts Longint 2 fonts contains the list of recent fonts (the ones used during the 4D session). This

list is used in particular by multi-style text areas.
System
fonts Longint 0

fonts contains the list of all the system fonts. Default option when listType is
omitted.

Under OS X, when you pass the optional * parameter, the command populates the fonts array with the names of
the fonts themselves, and not with the names of the font families. The default operation simplifies programmed
management of rich text areas, which use font families. If you pass the * parameter, font names, for example,
"Arial bold", "Arial italic", "Arial narrow italic," are returned instead of families, such as "Arial", "Arial black" or "Arial
narrow".
Under Windows, the * parameter has no effect. The command still returns the font families.
Note: Under OS X, if you use the result of this command with the ST SET ATTRIBUTES, you must not pass the *
parameter.

About scalable fonts
This command returns only scalable fonts. Using non-scalable fonts (i.e. bitmap fonts) to design interfaces is not
recommended since they are based on an outdated technology and suffer from limitations regarding size
variations. They are not supported in cutting-edge features of 4D such as 4D Write Pro areas .
Under OS X, this principle has been in effect since OS X 10.4 (QuickDraw bitmap fonts are obsolete beginning with
this version).
Under Windows, this principle is applied beginning with 4D v15 R4. In order to help developers select only modern
fonts for their interfaces, only "trueType" or "openType" scalable fonts are listed. For example, "ASI_Mono", "MS
Sans Serif" and "System" fonts are no longer available. In addition, GDI names are also ignored; only DirectWrite
font family names are supported. For example, "Arial Black" or "Segoe UI Black" font families are not in the list;
only "Arial" and "Segoe" are returned.
Compatibility notes for Windows:

Bitmap fonts can still be used in your 4D forms (except in 4D Write Pro areas). They are just removed from
the list returned by this command. However, to ensure compatibility with future versions of 4D and Windows,
we recommend using only DirectWrite font families.
Since bitmap fonts are filtered from the fonts parameter on Windows, the resulting list is different in 4D v15
R4 applications and higher, compared to previous releases. Please make sure to adapt your code if you were
using this command to select a non-scalable font.

Example 1

In a form, you want a drop-down list that displays a list of the fonts available on your system. The method of the
drop-down list is as follows:

 Case of
 :(Form event=On Load)
 ARRAY TEXT(asFont;0)
 FONT LIST(asFont)
 ` ...

 End case

Example 2

You want to get a list of recent fonts:

 FONT LIST($arrFonts;Recent fonts)

 GET PRINT OPTION

GET PRINT OPTION (option ; value1 {; value2})

Parameter Type Description
option Longint Option number or PDF option code
value1 Longint, Text Value 1 of the option
value2 Longint, Text Value 2 of the option

Description

The GET PRINT OPTION command returns the current value(s) of a print option.
The option parameter enables you to specify the option to get. You can either get a standard option (longint), or a
PDF option code (string). The command returns, in the value1 and (optionally) value2 parameters, the current
value(s) of the specified option.
To specify a standard printing option, you can use of the following predefined constants, located in the “Print
Options” theme:

Constant Type Value Comment

Paper
option Longint 1

If you use only value1, it contains the name of the paper. If you use both
parameters, value1 contains the paper width and value2 contains the paper
height. The width and height are expressed in screen pixels. Use the PRINT
OPTION VALUES command to get the name, height and width of all the paper
formats offered by the printer.

Orientation
option Longint 2

value1 only: 1=Portrait, 2=Landscape. If a different orientation option is used,
GET PRINT OPTION returns 0 in value1.
64-bit versions: This option can be called within a print job, which means that
you can switch from portrait to landscape, or vice versa, during the same print
job.

Scale
option Longint 3

value1 only: scale value in percentage. Be careful, some printers do not allow
you to modify the scale. If you pass an invalid value, the property is reset to
100% at the time of printing.

Number of
copies
option

Longint 4 value1 only: number of copies to be printed.

Paper
source
option

Longint 5
(Windows only) value1 only: number corresponding to the index, in the array of
trays returned by the PRINT OPTION VALUES command, of the paper tray to
be used. This option can only be used under Windows.

Color
option Longint 8

(Windows only) value1 only: code specifying the mode for handling color:
1=Black and white (monochrome), 2=Color.
64-bit versions: This option is not supported in 4D 64-bit versions (obsolete)

Destination
option

Longint 9

value1: code specifying the type of print destination: 1=Printer, 2=(PC)/PS File
(Mac), 3=PDF file, 5=Screen (OS X driver option).
If value1 is different from 1 or 5, value2 contains pathname for resulting
document. This path will be used until another path is specified. If a file with the
same name already exists at the destination location, it will be replaced. With
GET PRINT OPTION, if the current value is not in the predefined list, value1
contains -1 and the system variable OK is set to 1. If an error occurs, value1 and
the system variable OK are set to 0.
Note: Under Windows, you can set the printing destination to 3 (PDF File) when
the PDF Creator driver has been installed. When the (9;3;path) values are
passed, 4D automatically starts a "silent" PDF printing which takes into account
any option codes that are passed (note that if you pass an empty string in
value2 or omit this parameter, a file saving dialog appears at the time of
printing.) After printing, the current settings are restored. This simplifies control
of printing PDFs for 4D and lets you write multi-platform code. When the
(9;3;path) values are not passed, printing is not controlled by 4D and any PDF
Creator option codes that were passed are ignored.

Double
sided
option

Longint 11

(Windows only) value1: 0=Single-sided or standard, 1=Double-sided. If
value1=1, value2 contains the binding: 0=Left binding (default value), 1=Top
binding.
Note: This option can only be used under Windows.

Spooler
document
name
option

Longint 12

value1 only: name of the current print document, which appears in the list of
spooler documents. The name defined by this statement will be used for all the
print documents of the session for as long as a new name or an empty string is
not passed. To use or restore standard operation (using the method name in
the case of a method, the table name for a record, etc.), pass an empty string in
value1.

Mac spool
file format
option

Longint 13

(Mac only) value1 only: 0=print job in PDF mode (default value) 1=print job in
PostScript mode.
Notes:
- This option has no effect under Windows.
- Under OS X, printing is done as a PDF by default. However, the PDF print
driver does not support PICT pictures with encapsulated PostScript information
̶ these pictures are generated, more particularly, by vectorial drawing
software. To avoid this problem, this option lets you modify the print mode to
use under OS X for the current session. Keep in mind that printing in PostScript

mode can lead to undesired side effects.
64-bit versions: This option is not supported; it is replaced by the Generic PDF
driver option of the SET CURRENT PRINTER command.

Hide
printing
progress
option

Longint 14

value1 only: 1=hide progress windows, 0=display progress windows (default).
This option is particularly useful in the case of PDF printing under OS X.
Note: There is already a Printing progress option found in the Database Settings
dialog box (Interface page). However, it is applied globally to the application
and does not hide all the windows under OS X.

Page range
option Longint 15

value1=first page to print (default value is 1) and (optional) value2=number of
the last page to print (default value -1 = end of document).

Legacy
printing
layer
option

Longint 16

(4D 64-bit versions for Windows only) value1 only: 1=select the GDI-based
legacy printing layer for the subsequent printing jobs. 0=select the D2D printing
layer (default).
64-bit versions: This selector is only supported on 4D 64-bit single-user
applications on Windows; it is ignored on other platforms. It is mainly intended
to allow legacy plug-ins to print inside 4D jobs in 4D 64-bit applications.

A PDF option code consists of two parts, OptionType and OptionName, combined together as
"OptionType:OptionName". For more information on PDF option codes and possible values, refer to the description
of the SET PRINT OPTION command.
Note: The GET PRINT OPTION command mainly supports PostScript printers. You can use this command with
other types of printers, such as PCL or Ink, but in this case, it is possible that some options may not be available.

System variables and sets

The system variable OK is set to 1 if the command has been executed correctly; otherwise, it is set to 0.

 LISTBOX SET HEADERS HEIGHT

LISTBOX SET HEADERS HEIGHT ({* ;} object ; height {; unit})

Parameter Type Description
* Operator If specified, object is an object name (string)

If omitted, object is a variable
object Form object Object Name (if * is specified) or

Variable (if * is omitted)
height Longint Row height
unit Longint Unit of height value:

0 or omitted = pixels, 1 = lines

Description

The LISTBOX SET HEADERS HEIGHT command modifies by programming the height of the header row in the list
box designated by the object and * parameters.
If you pass the optional * parameter, this indicates that the object parameter is an object name (a string). If you do
not pass this parameter, this indicates that the object is a variable. In this case, you pass a variable reference
instead of a string.
You can designate either the list box or any header of the list box.
Pass the height to set in the height parameter. By default, if you omit the unit parameter, this height is expressed
in pixels. To change the unit, you can pass one of the following constants (found in the List Box theme), in the unit
parameter:

Constant Type Value Comment

lk lines Longint 1
Height designates a number of lines. 4D calculates the height of a line according
to the font

lk pixels Longint 0 Height is a number of pixels (default).

Headers must respect the minimum height set by the system. This height is 24 pixels under Windows and 17 pixels
under Mac OS. If you pass a lower value in the height parameter, the minimum height is applied.
Note: For more information about calculation row heights, refer to the Design Reference manual.

 String

String (expression {; format {; addTime}}) -> Function result

Parameter Type Description
expression Expression Expression for which to return the string form (can be Real, Integer, Long Integer, Date, Time

String, Text or Boolean)
format String,

Longint
Display format

addTime Time Time to add on if expression is a date
Function
result

String String form of the expression

Description

The String command returns the string form of the numeric, Date, Time, string or Boolean expression you pass in
expression.
If you do not pass the optional format parameter, the string is returned with the appropriate default format. If you
pass format, you can force the result string to be of a specific format.
The optional addTime parameter adds a time to a date in a combined format. It can only be used when the
expression parameter is a date (see below).
Numeric Expressions
If expression is a numeric expression (Real, Integer, Long Integer), you can pass an optional string format.
Following are some examples:
Example Result Comments
String(2^15) "32768" Default format
String(2^15;"###,##0 Inhabitants") "32,768 Inhabitants"
String(1/3;"##0.00000") "0.33333"
String(1/3) "0.3333333333333" Default format(*)
String(Arctan(1)*4) "3.14159265359" Default format(*)
String(Arctan(1)*4;"##0.00") "3.14"
String(-1;"&x") "0xFFFFFFFF"
String(-1;"&$") "$FFFFFFFF"
String(0 ?+ 7;"&x") "0x0080"
String(0 ?+ 7;"&$") "$80"
String(0 ?+ 14;"&x") "0x4000"
String(0 ?+ 14;"&$") "$4000"
String(50.3;"&xml") "50.3" Always "." as decimal separator
String(Num(1=1);"True;;False") "True"
String(Num(1=2);"True;;False") "False"
String(Log(-1)) "" Undefined number
String(1/0) "INF" Positive infinite number
String(-1/0) "-INF" Negative infinite number

(*) Beginning with 4D v14 R3, the algorithm for converting real values into text is based on 13 significant digits (as
opposed to 15 digits in previous versions of 4D).
The format is specified in the same way as it would be for a number field on a form. See the section Display
formats in the 4D Design Reference manual for more information about formatting numbers. You can also pass the
name of a custom style in format. The custom style name must be preceded by the “|” character.
Note: The String function is not compatible with "Integer 64 bits" type fields in compiled mode.
Date Expressions
If expression is a Date expression, the string is returned using the default format specified in the system.
In the format parameter, you can pass one of the constants described below (Date Display Formats theme).
In this case, you can also pass a time in the addTime parameter. This parameter lets you combine a date with a
time so that you can generate time stamps in compliance with current standards (ISO Date GMT and Date RFC

1123 constants). These formats are particularly useful in the context of XML and Web processing. The addTime
parameter can only be used when the expression parameter is a date.

Constant Type Value Comment
Blank if null date Longint 100 "" instead of 0
Date RFC 1123 Longint 10
Internal date abbreviated Longint 6 Dec 29, 2006
Internal date long Longint 5 December 29, 2006
Internal date short Longint 7 12/29/2006
Internal date short special Longint 4 12/29/06 (but 12/29/1896 or 12/29/2096)
ISO Date Longint 8 2006-12-29T00:00:00 (deprecated)
ISO Date GMT Longint 9 2010-09-13T16:11:53Z
System date abbreviated Longint 2 Sun, Dec 29, 2006
System date long Longint 3 Sunday, December 29, 2006
System date short Longint 1 12/29/2006

Note: Formats can vary depending on system settings.
Here are a few examples of simple formats (assuming that the current date is 12/29/2006):

 $vsResult:=String(Current date) //$vsResult gets "12/29/06"
 $vsResult:=String(Current date;Internal date long) // $vsResult gets "December 29, 2006"
 $vsResult:=String(Current date;ISO Date GMT) // $vsResult gets "2009-03-04T23:00:00" in France

Notes for combined date/time formats:

The ISO Date GMT format corresponds to the ISO8601 standard, containing a date and a time expressed with
respect to the time zone (GMT).

 $mydate:=String(Current date;ISO Date GMT;Current time) // returns, for instance, 2010-09-
13T16:11:53Z

Note that the "Z" character at the end indicates the GMT format.
If you do not pass the addTime parameter, the command returns the date at midnight (local time) expressed
in GMT time, which may cause the date to be moved forward or back depending on the local time zone:

 $mydate:=String(!13/09/2010!;ISO Date GMT) // returns 2010-09-12T22:00:00Z in France

The ISO Date format is similar to the ISO Date GMT, except that it expresses the date and time without respect
to the time zone. Note that since this format does not comply with the ISO8601 standard, its use should be
reserved for very specific purposes.

 $mydate:=String(!13/09/2010!;ISO Date) // returns 2010-09-13T00:00:00 regardless of the
time zone
 $mydate:=String(Current date;ISO Date;Current time) // returns 2010-09-13T18:11:53

The Date RFC 1123 format formats a date/time combination according to the standard defined by RFC 822
and 1123. You need this format for example to set the expiration date for cookies in an HTTP header.

 $mydate:=String(Current date;Date RFC 1123;Current time) // returns, for example Fri, 10
Sep 2010 13:07:20 GMT

The time expressed takes the time zone into account (GMT zone). If you only pass a date, the command
returns the date at midnight (local time) expressed in GMT time which may cause the date to be moved
forward or back depending on the local time zone:

 $mydate:=String(Current date;Date RFC 1123) // returns Thu, 09 Sep 2010 22:00:00 GMT

Time Expressions
If expression is a Time expression, the string is returned using the default HH:MM:SS format. In the format
parameter, you can pass one of the following constants (thème Time Display Formats theme):

Constant Type Value Comment

Blank if null time Longint 100 "" instead of 0
HH MM Longint 2 01:02
HH MM AM PM Longint 5 1:02 AM
HH MM SS Longint 1 01:02:03
Hour min Longint 4 1 hour 2 minutes
Hour min sec Longint 3 1 hour 2 minutes 3 seconds
ISO time Longint 8 0000-00-00T01:02:03
Min sec Longint 7 62 minutes 3 seconds
MM SS Longint 6 62:03
System time long Longint 11 1:02:03 AM HNEC (Mac only)
System time long abbreviated Longint 10 1•02•03 AM (Mac only)
System time short Longint 9 01:02:03

Notes:

The ISO Time format corresponds to the ISO8601 standard and contains, in theory, a date and a time. Since
this format does not support combined dates/times; the date part is filled with 0s. This format expresses the
local time.
The Blank if null time constant must be added to the format; it indicates that in the case of a null value, 4D
must return an empty string instead of zeros.

These examples assume that the current time is 5:30 PM and 45 seconds:

 $vsResult:=String(Current time) ` $vsResult gets "17:30:45"
 $vsResult:=String(Current time;Hour Min Sec) ` $vsResult gets "17 hours 30 minutes 45 seconds"

String Expressions
If expression is of the String or Text type, the command returns the same value as the one passed in the
parameter. This can be useful more particularly in generic programming using pointers.
In this case, the format parameter, if passed, is ignored.
Boolean Expressions
If expression is of the Boolean type, the command returns the string “True” or “False” in the language of the
application (for example, “Vrai” or “Faux” in a French version of 4D).
In this case, the format parameter, if passed, is ignored.

 4D Transformation Tags

4D provides a set of transformation tags which allow you to insert references to 4D variables or expressions, or to
perform different types of processing within a source text, referred to as a "template". These tags are interpreted
when the source text is executed and generate an output text.
This principle is used in particular by the 4D Web server to build the Semi-dynamic pages.
These tags must generally be inserted as HTML type comments (<!--#Tag Contents-->) in the source text.
However, other comments such as <!--Beginning of list--> are also possible.
Note: An alternative $-based syntax is used in certain conditions for tags that return values, in order to make them
XML-compliant. For more information, refer to the following paragraph Alternative syntax for 4DTEXT,
4DHTML, 4DEVAL.
The following 4D transformation tags are available:

4DTEXT, to insert 4D variables and expressions as text,
4DHTML, to insert HTML code,
4DEVAL, to evaluate any 4D expression
4DSCRIPT, to execute a 4D method,
4DINCLUDE, to include a page within another one,
4DBASE, to modify the default folder used by the 4DINCLUDE tag,
4DCODE, to insert blocks of 4D code,
4DIF, 4DELSE, 4DELSEIF and 4DENDIF, to insert conditions in the tagged code,
4DLOOP and 4DENDLOOP, to make loops in the tagged code.

It is possible to mix several types of tags. For example, the following HTML structure is entirely feasible:

<HTML> ... <BODY> <!--#4DSCRIPT/PRE_PROCESS--> (Method call) <!--#4DIF (myvar=1)--
> (If condition) <!--#4DINCLUDE banner1.html--> (Subpage insertion) <!--
#4DENDIF--> (End if) <!--#4DIF (mtvar=2)--> <!--#4DINCLUDE
banner2.html--> <!--#4DENDIF--> <!--#4DLOOP [TABLE]--> (Loop on the current
selection) <!--#4DIF ([TABLE]ValNum>10)--> (If [TABLE]ValNum>10) <!--#4DINCLUDE
subpage.html--> (Subpage insertion) <!--#4DELSE--> (Else) Value:
<!--#4DTEXT [TABLE]ValNum-->
 (Field display) <!--
#4DENDIF--> <!--#4DENDLOOP--> (End for) </BODY> </HTML>

Executing templates

Parsing the contents of 'template' pages can be done in two ways:

Using the PROCESS 4D TAGS command; this command accepts a 'template' as input, as well as (optional)
parameters and returns a text resulting from the processing.

Using 4D's integrated HTTP server: Semi-dynamic pages sent by means of the WEB SEND FILE (.htm,
.html, .shtm, .shtml), WEB SEND BLOB (text/html type BLOB), or WEB SEND TEXT commands, or called
using URLs. In this last case, for reasons of optimization, pages that are suffixed with “.htm” and “.html” are
NOT parsed. In order to "force" the parsing of HTML pages in this case, you must add the suffix “.shtm” or
“.shtml” (for example, http://www.server.com/dir/page.shtm). For more information on this point, refer to
the Semi-dynamic pages section in the Web Server chapter.

4DTEXT

Syntax: <!--#4DTEXT VarName--> or <!--#4DTEXT 4DExpression-->
Alternative syntax: $4DTEXT(VarName) or $4DTEXT(4DExpression) (see Alternative syntax for 4DTEXT,
4DHTML, 4DEVAL)
The tag <!--#4DTEXT VarName--> allows you to insert a reference to the 4D variable or expression returning a
value. For example, if you write (in an HTML page):
<P>Welcome to <!--#4DTEXT vtSiteName-->!</P>

The value of the 4D variable vtSiteName will be inserted in the HTML page when it is sent. This value is inserted as
simple text, special HTML characters such as ">" are automatically escaped.
You can also insert 4D expressions using the 4DTEXT tag. You can for example directly insert the contents of a field
(<!--#4DTEXT [tableName]fieldName-->), an array element (<!--#4DTEXT tabarr{1}-->) or a method returning
a value (<!--#4DTEXT mymethod-->). The expression conversion follows the same rules as the variable ones.
Moreover, the expression must comply with 4D syntax rules.
Note: Executing a 4D method with 4DTEXT from a Web request depends on the value of the “Available through 4D
tags and URLs (4DACTION...)” attribute set in the Method properties. For more information about this, refer to the
Connection Security section.
Although an expression can contain direct calls to 4D functions, this is not recommended for localization issues. For
example, <!--#4DTEXT Current date-->, although correctly interpreted with a 4D in English will not be understood
by an French version. The same applies to real numbers (the decimal separator can be different according to the
language). In both cases, we strongly advise you to assign a variable through programming.
To ensure that expressions will be evaluated correctly regardless of the 4D language or version used, we
recommend using the token syntax for elements whose name might vary between different versions (commands,
tables, fields, constants). For example, to insert the Current time command, enter 'Current time:C178'. For
more information about this, refer to Using tokens in formulas.
In case of an evaluation error, the inserted text will appear as “<!--#4DTEXT myvar--> : ## error # error code”.
Notes:

You work with process variables.
For security reasons, it is recommended to use this tag when processing data introduced from outside the
application, in order to prevent the insertion of malicious code (see the Usage notes section below).
You can display a picture field content. However, it is not possible to display the content of a picture array
item.
It is possible to display the contents of an object field by means of a 4D formula. For example, you can write
<!--#4DTEXT OB Get:C1224([Rect]Desc;\"color\")-->.
You will usually work with Text variables. However, you can also use BLOB variables. You just need to
generate the BLOB in Text without length mode.

4DHTML

Syntax: <!--#4DHTML VarName--> or <!--#4DHTML 4DExpression-->
Alternative syntax: $4DHTML(VarName) or $4DHTML(4DExpression) (see Alternative syntax for 4DTEXT,
4DHTML, 4DEVAL)
Just like the 4DTEXT tag, this tag lets you assess a variable or 4D expression that returns a value, and insert it as
an HTML expression. Unlike the 4DTEXT tag, this tag does not escape HTML special characters.
For example, here are the processing results of the 4D text variable myvar with the available tags:
myvar Value Tags Result
myvar:="" <!--#4DTEXT myvar-->
myvar:="" <!--#4DHTML myvar-->

To ensure that expressions will be evaluated correctly regardless of the 4D language or version used, we
recommend using the token syntax for elements whose name might vary between different versions (commands,
tables, fields, constants). For example, to insert the Current time command, enter 'Current time:C178'. For
more information about this, refer to Using tokens in formulas.
In case of an interpretation error, the inserted text will be “<!--#4DHTML myvar--> : ## error # error code”.
Notes:

Executing a 4D method with 4DHTML from a Web request depends on the value of the “Available through 4D
tags and URLs (4DACTION...)” attribute set in the Method properties. For more information about this, refer
to the Connection Security section.
For security reasons, it is recommended to use the 4DTEXT tag when processing data introduced from outside
the application, in order to prevent the insertion of malicious code (see the Usage notes section below).

4DEVAL

Syntax: <!--#4DEVAL VarName--> or <!--#4DEVAL 4DExpression-->
Alternative syntax: $4DEVAL(VarName) or $4DEVAL(4DExpression) (see Alternative syntax for 4DTEXT,

4DHTML, 4DEVAL)
The 4DEVAL tag allows you to assess a variable or a 4D expression. Like the existing 4DHTML tag, 4DEVAL does
not escape HTML characters when returning text. However, unlike 4DHTML or 4DTEXT, 4DEVAL allows you to
execute any valid 4D statement, including assignments and expressions that do not return any value.
For example, you can execute:

 $input:="<!--#4DEVAL a:=42-->" //assignment
 $input:=$input+"<!--#4DEVAL a+1-->" //calculation
 PROCESS 4D TAGS($input;$output)
 //$output = "43"

To ensure that expressions will be evaluated correctly regardless of the 4D language or version used, we
recommend using the token syntax for elements whose name might vary between different versions (commands,
tables, fields, constants). For example, to insert the Current time command, enter 'Current time:C178'. For
more information about this, refer to Using tokens in formulas.
In case of an error during interpretation, the text inserted will be in the form: “<!--#4DEVAL expr-->: ## error #
error code”.
Notes:

Executing a 4D method with 4DEVAL from a Web request requires that the "Available through 4D tags and
URLs (4DACTION...)" option is set in the Method properties. For more information, refer to the Connection
Security section.
For security reasons, it is recommended to use the 4DTEXT tag when processing data introduced from outside
the application, in order to prevent the insertion of malicious code (see the Usage notes section below).

4DSCRIPT/

Syntax: <!--#4DSCRIPT/MethodName/MyParam-->
The 4DSCRIPT tag allows you to execute 4D methods when processing the template.. The presence of the <!--
#4DSCRIPT/MyMethod/MyParam--> tag as an HTML comment forces the execution of the MyMethod method with
the Param parameter as a string in $1.
Note: If the tag is called in the context of a Web process, when the page is loaded, 4D calls the On Web
Authentication Database Method (if it exists). If it returns True, 4D executes the method.
The method must return text in $0. If the string starts with the code character 1, it is considered as HTML (the
same principle is true for the 4DHTML tag).
Note: The execution of a method with 4DSCRIPT depends on the value of the “Available through 4D tags and URLs
(4DACTION...)” attribute defined in the Method properties. For more information about this, refer to the
Connection Security section.
For example, letʼs say that you insert the following comment “Today is <!--#4DSCRIPT/MYMETH/MYPARAM-->”
into a semi-dynamic Web page. When loading the page, 4D calls the On Web Authentication Database Method
(if it exists), then calls the MYMETH method and passes the string “/MYPARAM” as the parameter $1. The method
returns text in $0 (for example “12/31/14”); the expression “Today is <!--#4DSCRIPT/MYMETH/MYPARAM––>”
therefore becomes “Today is 12/31/14”.
The MYMETH method is as follows:

 C_TEXT($0)\\This parameter must always be declared
 C_TEXT($1)\\This parameter must always be declared
 $0:=String(Current date)

Warning: You must always declare the $0 and $1 parameters in the called method.
Note: A method called by 4DSCRIPT must not call interface elements (DIALOG, ALERT...).
As 4D executes methods in their order of appearance, it is absolutely possible to call a method that sets the value
of many variables that are referenced further in the document, whichever mode you are using. You can insert as
many <!--#4DSCRIPT...--> comments as you want in a template.

4DINCLUDE

Syntax: <!--#4DINCLUDE Path-->
This tag is mainly designed to allow another HTML page (indicated by the path parameter) to be included in an
HTML page. By default, only the body of the HTML page that is specified is included, in other words, the contents

HTML page. By default, only the body of the HTML page that is specified is included, in other words, the contents
found within the <body> and </body> tags (the tags themselves are not included). This lets you avoid conflicts
related to meta tags present in the headers. However, if the HTML page specified does not contain
<body></body> tags, the entire page is included. It is up to you to verify the consistency of the meta tags.
The <!--#4DINCLUDE --> comment is very useful for tests (<!--#4DIF-->) or loops (<!--#4DLOOP-->). It is very
convenient to include tags according to a criteria or randomly.
When including, regardless of the file name extension, 4D analyzes the called page and then inserts the contents
(modified or not) in the page originating the 4DINCLUDE call.
An included page with the <!--#4DINCLUDE --> comment is loaded in the Web server cache the same way as
pages called via a URL or sent with the WEB SEND FILE command.
In path, put the path leading to the document to include. Warning: In the case of a 4DINCLUDE call, the path is
relative to the document being analyzed, that is, the “parent” document. Use the slash character (/) as a folder
separator and the two dots (..) to go up one level (HTML syntax).
Notes:

When you use the 4DINCLUDE tag with the PROCESS 4D TAGS command, the default folder is the folder
containing the database structure file.
You can modify the default folder used by the 4DINCLUDE tag in the current page, using the <!--#4DBASE --
> tag (see below).

The number of <!--#4DINCLUDE path--> within a page is unlimited. However, the <!--#4DINCLUDE path--> calls
can be made only at one level. This means that, for example, you cannot insert <!--#4DINCLUDE mydoc3.html-->
in the mydoc2.html body page, which is called by <!--#4DINCLUDE mydoc2--> inserted in mydoc1.html.
Furthermore, 4D verifies that inclusions are not recursive.
In case of error, the inserted text is "<!--#4DINCLUDE path--> :The document cannot be opened".
Examples

<!--#4DINCLUDE subpage.html--> <!--#4DINCLUDE folder/subpage.html--> <!--#4DINCLUDE
../folder/subpage.html-->

4DBASE

Syntax: <!--#4DBASE folderPath-->
The <!--#4DBASE --> tag designates a working directory that is used by the <!--#4DINCLUDE--> tag.
When it is called in a Web page, the <!--#4DBASE --> tag modifies all subsequent <!--#4DINCLUDE--> calls on
this page, until the next <!--#4DBASE -->, if any. If the <!--#4DBASE --> folder is modified from within an
included file, it retrieves its original value from the parent file.
The folderPath parameter must contain a pathname relative to the current page and it must end with a slash (/).
The designated folder must be located inside the Web folder.
Pass the WEBFOLDER keyword to restore the default path (relative to the page).
Thus the following code (4D v12), which must specify a relative path for each call:

<!--#4DINCLUDE subpage.html--> <!--#4DINCLUDE folder/subpage1.html--> <!--#4DINCLUDE folder/subpage2.html--> <!-
-#4DINCLUDE folder/subpage3.html--> <!--#4DINCLUDE ../folder/subpage.html-->

... can be rewritten using the <!--#4DBASE --> tag:

<!--#4DINCLUDE subpage.html--> <!--#4DBASE folder/--> <!--#4DINCLUDE subpage1.html--> <!--#4DINCLUDE
subpage2.html--> <!--#4DINCLUDE subpage3.html--> <!--#4DBASE ../folder/--> <!--#4DINCLUDE subpage.html--> <!--
#4DBASE WEBFOLDER-->

Example
Setting a directory for the home page using the <!--#4DBASE --> tag:

/* Index.html */ <!--#4DIF LangFR=True--> <!--#4DBASE FR/--> <!--#4DELSE--> <!--
#4DBASE US/--> <!--#4DENDIF--> <!--#4DINCLUDE head.html--> <!--#4DINCLUDE body.html--> <!--
#4DINCLUDE footer.html-->

In the head.html file, the current folder is modified through <!--#4DBASE -->, without this changing its value in
Index.html:

/* Head.htm */ /* the working directory here is relative to the included file (FR/ or US/) */

<!--#4DBASE Styles/--> <!--#4DINCLUDE main.css--> <!--#4DINCLUDE product.css--> <!--#4DBASE
Scripts/--> <!--#4DINCLUDE main.js--> <!--#4DINCLUDE product.js-->

4DCODE

The 4DCODE tag allows you to insert a multi-line 4D code block in a template.
When a "<!--#4DCODE" sequence is detected that is followed by a space, a CR or a LF character, 4D interprets all
the lines of code up to the next "-->" sequence. The code block itself can contain carriage returns, line feeds, or
both; it will be interpreted sequentially by 4D.
For example, using the 4DCODE tag, you can write in a template:

<!--#4DCODE
//PARAMETERS initialization

$graphType:=1
If(OB Is defined:C1231($graphParameters;"graphType")) //US language only
 $graphType:=OB GET:C1224($graphParameters;"graphType")
 If($graphType=7)
 $nbSeries:=1
 If($nbValues>8)
 DELETE FROM ARRAY:C228 ($yValuesArrPtr{1}->;9;100000)
 $nbValues:=8
 End if
 End if
End if
-->

Note: In a 4DCODE tag, the 4D code must always be written using the English-US language. Therefore, 4DCODE
ignores the "Use regional system settings" user preferences for the 4D language (see Language for commands
and constants).
Here are the 4DCODE tag features:

The TRACE command is supported and activates the 4D debugger, thus allowing you to debug your template
code.
Any error will display the standard error dialog that lets the user stop code execution or enter debugging
mode.
The text in between <!--#4DCODE and --> is split into lines accepting any line-ending convention (cr, lf, or
crlf).
The text is tokenized within the context of the database that called PROCESS 4D TAGS. This is important for
recognition of project methods for example.
Note: The "Available through 4D tags and URLs 4DACTION" method property is not taken into account (see
also the Note about security below).
Even if the text always uses English-US, it is recommended to use the token syntax (:Cxxx) for command and
constant names to protect against potential problems due to commands or constants being renamed from one
version of 4D to another.
Note: For more information on the :Cxxx syntax, please refer to the Using tokens in formulas section.

Note about security: The fact that 4DCODE tags can call any of the 4D language commands or project methods
could be seen as a security issue, especially when the database is available through HTTP. However, since it
executes server-side code called from your own template files, the tag itself does not represent a security issue. In
this context, as for any Web server, security is mainly handled at the level of remote accesses to server files.

4DIF, 4DELSE, 4DELSEIF and 4DENDIF

Syntax: <!--#4DIF expression--> {<!--#4DELSEIF expression2-->...<!--#4DELSEIF expressionN-->} {<!--
#4DELSE-->} <!--#4DENDIF-->

Used with the <!--#4DELSEIF--> (optional), <!--#4DELSE--> (optional) and <!--#4DENDIF--> comments, the
<!--#4DIF expression--> comment offers the possibility to execute portions of code conditionally.
The expression parameter can contain any valid 4D expression returning a Boolean value. It must be indicated
within parenthesis and comply with the 4D syntax rules.
To ensure that expressions will be evaluated correctly regardless of the 4D language or version used, we

recommend using the token syntax for elements whose name might vary between different versions (commands,
tables, fields, constants). For example, to insert the Current time command, enter 'Current time:C178'. For
more information about this, refer to Using tokens in formulas.
The <!--#4DIF expression--> ... <!--#4DENDIF--> blocks can be nested in several levels. Like in 4D, each <!--
#4DIF expression--> should match a <!--#4DENDIF-->.
In case of an interpretation error, the text “<!--#4DIF expression-->: A Boolean expression was expected” is
inserted instead of the contents located between <!--#4DIF --> and <!--#4DENDIF-->.
Likewise, if there are not as many <!--#4DENDIF--> as <!--#4DIF -->, the text “<!--#4DIF expression-->:
4DENDIF expected” is inserted instead of the contents located between <!--#4DIF --> and <!--#4DENDIF-->.
Using the <!--#4DELSEIF--> tag, you can test an unlimited number of conditions. Only the code that follows the
first condition evaluated as True is executed. If no conditions are true, no statement is executed (if there is no final
<!--#4DELSE-->).
You can use a <!--#4DELSE--> tag after the last <!--#4DELSEIF-->. If all the conditions are false, the statements
following the <!--#4DELSE--> are executed.
The two following codes are equivalent.

Code using 4DELSE only:

<!--#4DIF Condition1--> /* Condition1 is true*/ <!--#4DELSE--> <!--#4DIF Condition2--> /*
Condition2 is true*/ <!--#4DELSE--> <!--#4DIF Condition3--> /* Condition3 is true
*/ <!--#4DELSE--> /*None of the conditions are true*/ <!--#4DENDIF--> <!--
#4DENDIF--> <!--#4DENDIF-->

Similar code using the 4DELSEIF tag:

<!--#4DIF Condition1--> /* Condition1 is true*/ <!--#4DELSEIF Condition2--> /* Condition2 is
true*/ <!--#4DELSEIF Condition3--> /* Condition3 is true */ <!--#4DELSE--> /* None of the
conditions are true*/ <!--#4DENDIF-->

Example 1
This example of code inserted in a static HTML page displays a different label according the vname#"" expression
result:

<BODY> ... <!--#4DIF (vname#"")--> Names starting with <!--#4DTEXT vname-->. <!--#4DELSE--> No
name has been found. <!--#4DENDIF--> ... </BODY>

Example 2
This example inserts different pages depending on which user is connected:

<!--#4DIF LoggedIn=False--> <!--#4DINCLUDE Login.htm --> <!--#4DELSEIF User="Admin" -->
 <!--#4DINCLUDE AdminPanel.htm --> <!--#4DELSEIF User="Manager" --> <!--#4DINCLUDE
SalesDashboard.htm --> <!--#4DELSE--> <!--#4DINCLUDE ItemList.htm --> <!--#4DENDIF-->

4DLOOP and 4DENDLOOP

Syntax: <!--#4DLOOP condition--> <!--#4DENDLOOP-->

This comment allows repetition of a portion of code as long as the condition is fulfilled. The portion is delimited by
<!--#4DLOOP--> and <!--#4DENDLOOP-->.
The <!--#4DLOOP condition--> ... <!--#4DENDLOOP--> blocks can be nested. Like in 4D, each <!--#4DLOOP
condition--> should match a <!--#4DENDLOOP-->.
There are five kinds of conditions:

<!--#4DLOOP [table]-->
This syntax makes a loop for each record from the table current selection in the current process. The code
portion located between the two comments is repeated for each current selection record.

Note: When the 4DLOOP tag is used with a table, records are loaded in Read only mode.
The following code:

<!--#4DLOOP [People]--> <!--#4DTEXT [People]Name--> <!--#4DTEXT [People]Surname-->
 <!--
#4DENDLOOP-->

... could be expressed in 4D language in the following way:

 FIRST RECORD([People])
 While(Not(End selection([People])))
 ...
 NEXT RECORD([People])
 End while

<!--#4DLOOP array-->
This syntax makes a loop for each item array. The array current item is increased when each code portion is
repeated.

Note: This syntax cannot be used with two dimension arrays. In this case, it is better to combine a method with
nested loops.
The following code example:

<!--#4DLOOP arr_names--> <!--#4DTEXT arr_names{arr_names}-->
 <!--#4DENDLOOP-->

... could be expressed in 4D language in the following way:

 For($Elem;1;Size of array(arr_names))
 arr_names:=$Elem
 ...
 End for

<!--#4DLOOP method-->
This syntax makes a loop as long as the method returns True. The method takes a Long Integer parameter
type. First it is called with the value 0 to allow an initialization stage (if necessary); it is then called with the
values 1,then 2, then 3 and so on, as long as it returns True.

For security reasons, within a Web process, the On Web Authentication database method can be called once
just before the initialization stage (method execution with 0 as parameter). If the authentication is OK, the
initialization stage will proceed.
Warning: C_BOOLEAN($0) and C_LONGINT($1) MUST be declared within the method for compilation purposes.
The following code example:

<!--#4DLOOP my_method--> <!--#4DTEXT var-->
 <!--#4DENDLOOP-->

... could be expressed in 4D language in the following way:

 If(AuthenticationWebOK)
 If(my_method(0))
 $counter:=1
 While(my_method($counter))
 ...
 $counter:=$counter+1
 End while
 End if
 End if

The my_method method can be as follow:

 C_LONGINT($1)
 C_BOOLEAN($0)
 If($1=0)
 `Initialisation
 $0:=True
 Else
 If($1<50)
 ...
 var:=...
 $0:=True
 Else

 $0:=False `Stops the loop
 End if
 End if

<!--#4DLOOP 4DExpression-->
With this syntax, the 4DLOOP tag makes a loop as long as the 4D expression returns True. The expression
can be any valid Boolean expression and must contain a variable part to be evaluated in each loop to avoid
infinite loops.
For example, the following code:

<!--#4DEVAL $i:=0--> <!--#4DLOOP ($i<4)--> <!--#4DEVAL $i--> <!--#4DEVAL $i:=$i+1--> <!--
#4DENDLOOP-->

produces the following result:

0
1
2
3

To ensure that expressions will be evaluated correctly regardless of the 4D language or version used, we
recommend using the token syntax for elements whose name might vary between different versions
(commands, tables, fields, constants). For example, to insert the Current time command, enter
'Current time:C178'. For more information about this, refer to Using tokens in formulas.

<!--#4DLOOP pointerArray-->
In this case, the 4DLOOP tag works like it does with an array: it makes a loop for each element of the array
referenced by the pointer. The current array element is increased each time the portion of code is repeated.
This syntax is useful when you pass an array pointer as a parameter to the PROCESS 4D TAGS command.
Example:

 ARRAY TEXT($array;2)
 $array{1}:="hello"
 $array{2}:="world"
 $input:="<!--#4DEVAL $1-->"
 $input:=$input+"<!--#4DLOOP $2-->"
 $input:=$input+"<!--#4DEVAL $2->{$2->}--> "
 $input:=$input+"<!--#4DENDLOOP-->"
 PROCESS 4D TAGS($input;$output;"elements = ";->$array)
 // $output = "elements = hello world "

In case of an interpretation error, the text “<!--#4DLOOP expression-->: description” is inserted instead of the
contents located between <!--#4DLOOP --> and <!--#4DENDLOOP-->.
The following messages can be displayed:

Unexpected expression type (standard error);
Incorrect table name (error on the table name);
An array was expected (the variable is not an array or is a two dimension array);
The method does not exist;
Syntax error (when the method is executing);
Access error (you do not have the appropriate access privileges to access the table or the method).
4DENDLOOP expected (the <!--#4DENDLOOP--> number does not match the <!--#4DLOOP -->).

Alternative syntax for 4DTEXT, 4DHTML, 4DEVAL

Several existing 4D transformation tags can be expressed using a $-based syntax:
$4dtag (expression) can be used instead of <!--#4dtag expression-->
This alternative syntax is available only for tags used to return processed values:

4DTEXT
4DHTML

4DEVAL

(Other tags, such as 4DIF or 4DSCRIPT, must be written with the regular syntax).
For example, you can write:

$4DEVAL(UserName)

instead of:

<!--#4DEVAL(UserName)-->

The main advantage of this syntax is that it allows you to write XML-compliant templates. Some 4D developers
need to create and validate XML-based templates using standard XML parser tools. Since the "<" character is
invalid in an XML attribute value, it was not possible to use the "<!-- -->" syntax of 4D tags without breaking the
document syntax. On the other hand, escaping the "<" character will prevent 4D from interpreting the tags
correctly.
For example, the following code would cause an XML parsing error because of the first "<" character in the
attribute value:

<line x1="<!--#4DEVAL $x-->" y1="<!--#4DEVAL $graphY1-->"/>

Using the $ syntax, the following code is validated by the parser:

<line x1="" y1=""/>

Note that $4dtag and <--#4dtag --> are not strictly equivalent: unlike <--#4dtag -->, $4dtag processing does not
interpret 4D tags recursively. $ tags are always evaluated once and the result is considered as plain text.
Note: For more information on recursive processing, please refer to the Recursive processing paragraph.
The reason for this difference is to prevent malicious code injection. As explained below, it is strongly
recommended to use 4DTEXT tags instead of 4DHTML tags when handling user text to protect against unwanted
reinterpretation of tags: with 4DTEXT, special characters such as "<" are escaped, thus any 4D tags using the <!--
#4dtag expression --> syntax will lose their particular meaning. However, since 4DTEXT does not escape the $
symbol, we decided to break support for recursion in order to prevent malicious injection using the $4dtag
(expression) syntax.
The following examples show the result of processing depending on the syntax and tag used:

 // example 1
 myName:="<!--#4DHTML QUIT 4D-->" //malicious injection
 input:="My name is: <!--#4DHTML myName-->"
 PROCESS 4D TAGS(input;output)
 //4D will quit!

 // example 2
 myName:="<!--#4DHTML QUIT 4D-->" //malicious injection
 input:="My name is: <!--#4DTEXT myName-->"
 PROCESS 4D TAGS(input;output)
 //output is "My name is: & lt;!--#4DHTML QUIT 4D-->"

 // example 3
 myName:="" //malicious injection
 input:="My name is: <!--#4DTEXT myName-->"

 PROCESS 4D TAGS(input;output)
 //output is "My name is: ERROR: missing ')'"

Note that the $4dtag syntax supports matching pairs of enclosed quotes or parenthesis. For example, suppose that
you need to evaluate the following complex (unrealistic) string:

String(1) + "\"(hello)\""

You can write:

 input:="$4DEVAL(String(1)+\"\\\"(hello)\\\"\")"
 PROCESS 4D TAGS(input;output)
 -->output is 1"(hello)"

Usage notes

Recursive processing
4D tags are interpreted recursively: 4D always attempts to reinterpret the result of a transformation and, if a new
transformation has taken place, an additional interpretation is performed, and so on until the product obtained no
longer requires any further transformation. For example, given the following statement:

<!--#4DHTML [Mail]Letter_type-->

If the [Mail]Letter_type text field itself contains a tag, for example <!--#4DSCRIPT/m_Gender-->, this tag will be
evaluated recursively after the interpretation of the 4DHTML tag.
This powerful principle meets most needs related to text transformation. Note, however, that in some cases this
can also allow malicious code to be inserted. For more information about this point, refer to the following section.

Prevention of malicious code insertion
4D transformation tags accept different types of data as parameters: text, variables, methods, command names,
etc. When this data is provided by your own code, there is no risk of malicious code insertion since you control the
input. However, your database code often works with data that was, at one time or another, introduced through
an external source (user input, import, etc.).
In this case, it is advisable to not use transformation tags such as 4DEVAL or 4DSCRIPT, which evaluate
parameters, directly with this sort of data.
In addition, according to the principle of recursion (see previous section), malicious code may itself include
transformation tags. In this case, it is imperative to use the 4DTEXT tag.
Imagine, for example, a Web form field named "Name", where users must enter their name. This name is then
displayed using a <!--#4DHTML vName--> tag in the page. If text of the "<!--#4DEVAL QUIT 4D-->" type is
inserted instead of the name, interpreting this tag will cause the application to be exited.
To avoid this risk, you can just use the 4DTEXT tag systematically in this case. Since this tag escapes the special
HTML characters, any malicious recursive code that may have been inserted will not be reinterpreted. To refer to
the previous example, the "Name" field will contain, in this case, "<!--#4DEVAL QUIT 4D-->" which will not
be transformed.

Using the "." as decimal separator
Starting from v15 R4, 4D always uses the period character (.) as decimal separator when evaluating a numerical
expression using a 4D tag (4DTEXT, 4DVAR, 4DHTML, 4DHTMLVAR, and 4DEVAL). Regional settings are now
ignored.
This feature facilitates code maintenance and compatibility between 4D languages and versions.
For example, whatever the regional settings:

 value:=10/4
 input:="<!--#4DTEXT value-->"
 PROCESS 4D TAGS(input;output)
 // always outputs 2.5 even if regional settings use the ',' as separator

Compatibility note: If your code evaluates numerical expressions using 4D tags with respect to the regional
settings, you need to adapt it using the String command:

To get value with a period as decimal point: <!--#4DTEXT value-->
To get value with a decimal point based on the regional settings: <!--#4DTEXT String(value)-->

 WEB SET OPTION

WEB SET OPTION (selector ; value)

Parameter Type Description
selector Longint Option code
value Longint, Text Option value

Description

The WEB SET OPTION command modifies the current value of various options concerning the functioning of the
4D Web server.
In the selector parameter, pass one of the constants from the Web Server theme and pass the new value of the
option in value:

Constant Type Value Comment

Web
character
set

Longint 17

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Character set that the 4D Web Server (with 4D in local mode and
4D Server) should use to communicate with browsers connecting to the
database. The default value actually depends on the language of the operating
system. This parameter is set in the Database settings.
Possible values: The possible values depend on the operating mode of the
database relating to the character set.

Unicode Mode: When the application is operating in Unicode mode, the
values to pass for this parameter are character set identifiers (MIBEnum
longint or Name string, identifiers defined by IANA, see the following
address: http://www.iana.org/assignments/character-sets). Here is the
list of identifiers corresponding to the character sets supported by the 4D
Web server:
4=ISO-8859-1
12=ISO-8859-9
13=ISO-8859-10
17=Shift-JIS
2024=Windows-31J
2026=Big5
38=euc-kr
106=UTF-8
2250=Windows-1250
2251=Windows-1251
2253=Windows-1253
2255=Windows-1255
2256=Windows-1256

ASCII compatibility mode:
Western European
1: Japanese
2: Chinese
3: Korean
4: User-defined
5: Reserved
6: Central European
7: Cyrillic
8: Arabic
9: Greek
10: Hebrew
11: Turkish
12: Baltic

Web debug
log Longint 84

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted (a new log file is used in this case)
Description: Allows you to get or set the status of the HTTP request log file of
the 4D Web server. When enabled, this file, named
"HTTPDebugLog_nn.txt", is stored in the "Logs" folder of the application (nn
is the file number). It is useful for debugging issues related to the Web server.
It records each request and each response in raw mode. Whole requests,
including headers, are logged; optionally, body parts can be logged as well.
Values: One of the constants prefixed with "wdl" (refer to the descriptions of
these constants in this theme).
Default value: 0 (not enabled)
Scope: Local Web server
Kept between two sessions: No
Description: Compression level for all compressed HTTP exchanges for the 4D
HTTP server (client requests or server replies, Web and Web Service). This

Web HTTP
compression
level

Longint 50

selector lets you optimize exchanges by either privileging speed of execution
(less compression) or the amount of compression (less speed). The choice of a
value depends on the size and type of data exchanged. Pass 1 to 9 in the value
parameter where 1 is the fastest compression and 9 the highest. You can also
pass -1 to get a compromise between speed and rate of compression. By
default, the compression level is 1 (faster compression).
Possible values: 1 to 9 (1 = faster, 9 = more compressed) or -1 = best
compromise.

Web HTTP
compression
threshold

Longint 51

Scope: Local HTTP server
Kept between two sessions: No
Description: In the framework of optimized HTTP exchanges, size threshold
for requests below which exchanges should not be compressed. This setting is
useful in order to avoid losing machine time by compressing small exchanges.
Possible values: Any Longint type value. Pass the size expressed in bytes in
vaue. By default, the compression threshold is set to 1024 bytes

Web HTTP
TRACE Longint 85

Scope: Local Web server
Kept between two sessions: No
Description: Allows you to disable or enable the HTTP TRACE method in the
4D Web server. For security reasons, starting with 4D v15 R2, by default the
4D Web server rejects HTTP TRACE requests with an error 405 (see HTTP
TRACE disabled). If necessary, you can enable the HTTP TRACE method for the
session by passing this constant with value 1. When this option is enabled, the
4D Web server replies to HTTP TRACE requests with the request line, header,
and body.
Possible values: 0 (disabled) or 1 (enabled)
Default value: 0 (disabled)

Web HTTPS
port ID

Longint 39

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: TCP port number used by the Web server of 4D in local mode
and of 4D Server for secure connections via SSL (HTTPS protocol). The HTTPS
port number is set on the “Web/Configuration” page of the Database settings
dialog box.
By default, the value is 443 (standard value). You can use the constants of the
TCP Port Numbers theme for the value parameter.
Possible values: 0 to 65535

Web inactive
process
timeout

Longint 78

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted
Description: Modifies the life duration of the inactive processes associated
with sessions. At the end of the timeout, the process is killed on the server, the
On Web Close Process database method is called then the session context
is destroyed.
Possible values: Longint (minutes)
Default value: 480 minutes (pass 0 to restore the default value)

Web inactive
session
timeout

Longint 72

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted
Description: Modifies the life duration of inactive sessions (duration set in
cookie). At the end of this period, the session cookie expires and is no longer
sent by the HTTP client.
Possible values: Longint (minutes)
Default value: 480 minutes (pass 0 to restore the default value)

Web IP
address to
listen

Longint 16

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: IP address on which the 4D Web server will receive HTTP
requests with 4D in local mode and 4D Server. By default, no specific address
is defined (value = 0). This parameter can be set in the Database settings. The
Web IP Address to listen selector is useful for 4D Web Servers compiled and
merged with 4D Desktop (in which there is no access to the Design mode).
You pass a hexadecimal IP address in the value parameter. In other words, to

designate a IP address such as "a.b.c.d", you should write:

 C_LONGINT($addr)
 $addr:=($a<<24)|($b<<16)|($c<<8)|$d
 WEB SET OPTION(Web IP address to listen;$addr)

Web keep
session

Longint 70

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted
Description: Enables or disables the session management mode (described in
the Web Sessions Management section)
Possible values: 1 (enable mode) or 0 (disable mode)
Default value: 1 for databases created in v13, 0 for converted databases.
Note that this mode also enables the mechanism for reusing temporary
contexts in remote mode. For more information about this mechanism, refer to
the description of this option in the Web Server Settings section.

Web log
recording

Longint 29

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Starts or stops the recording of Web requests received by the
Web server of 4D in local mode or 4D Server. By default, the value is 0
(requests not recorded).
The log of Web requests is stored as a text file named "logweb.txt" that is
automatically placed in the Logs folder of the database, next to the structure
file. The format of this file is determined by the value that you pass. For more
information about Web log file formats, please refer to the Information about
the Web Site section.
This file can also be activated on the "Web/Log" page of the Database settings.
Possible values: 0 = Do not record (default), 1 = Record in CLF format, 2 =
Record in DLF format, 3 = Record in ELF format, 4 = Record in WLF format.
Warning: Formats 3 and 4 are custom formats whose contents must be set
beforehand in the Database settings. If you use one of these formats without
any of its fields having been selected on this page, the log file will not be
generated.

Web max
concurrent
processes

Longint 18

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Strictly upper limit of concurrent Web processes of any type
supported by the 4D Web Server with 4D in local mode and 4D Server. When
this number (minus one) is reached, 4D will not create any other processes
and returns the HTTP status 503 - Service Unavailable to all new requests.
This parameter can prevent the 4D Web Server from saturation, which can
occur when an exceedingly large number of concurrent requests are sent, or
when too many context creations are requested. This parameter can also be
set in the Database settings.
In theory, the maximum number of Web processes is the result of the
following formula: Available memory/Web process stack size. Another solution
is to view the information on Web processes displayed in the Runtime
Explorer: the current number of Web processes and the maximum number
reached since the Web server boot are indicated.
Possible values: Any value between 10 and 32 000. The default value is 100.

Web max
sessions Longint 71

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted
Description: Limits the number of simultaneous sessions. When you reach the
limit set, the oldest session is closed (and On Web Close Process database
method is called) if the Web server needs to create a new one.
Possible values: Longint. The number of simultaneous sessions cannot
exceed the total number of Web processes (Web Max Concurrent Processes
option, 100 by default)
Default value: 100 (pass 0 to restore the default value)
Scope: 4D local, 4D Server
Kept between two sessions: Yes

Web
maximum
requests
size

Longint 27

Description: Maximum size (in bytes) of incoming HTTP requests (POST) that
the Web server is authorized to process. By default, the value is 2 000 000,
i.e. a little less than 2 MB. Passing the maximum value (2 147 483 648) means
that, in practice, no limit is set.
This limit is used to avoid Web server saturation due to incoming requests that
are too large. When a request reaches this limit, the 4D Web server refuses it.
Possible values: 500 000 to 2 147 483 648.

Web port ID Longint 15

Scope: 4D in local mode and 4D Server.
Kept between two sessions: No
Description: Sets or gets the number of the TCP port used by the 4D Web
server with 4D in local mode and 4D Server. By default, the value is 80. The
TCP port number is set on the "Web/Configuration" page of the Database
Settings dialog box. You can use one of the constants in the TCP Port
Numbers theme for the value parameter. This selector is useful within the
framework of 4D Web servers that are compiled and merged using 4D Desktop
(no access to the Design environment).
Possible values: For more information about the TCP port number, refer to
the Web Server Settings section.
Default value: 80

Web session
cookie
domain

Longint 81

Scope: local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted.
Description: Sets or gets the value of the "domain" field of the session cookie.
This selector (as well as selector 82) is useful for controlling the scope of the
session cookies: If you set, for example, the value "/*.4d.fr" for this selector,
the client will only send a cookie when the request is addressed to the domain
".4d.fr", which excludes servers hosting external static data.
Possible values: Text

Web session
cookie name Longint 73

Scope: Local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted
Description: Sets the name of the cookie used for saving the session ID.
Possible values: Text
Default value: "4DSID" (pass an empty string to restore the default value)

Web session
cookie path Longint 82

Scope: local Web server
Kept between two sessions: No, but remains valid even if the HTTP server is
restarted.
Description: Sets or gets the value of the "path" field of the session cookie.
This selector (as well as selector 81) is useful for controlling the scope of the
session cookies: If you set, for example, the value "/4DACTION" for this
selector, the client will only send a cookie for dynamic requests beginning with
4DACTION, and not for pictures, static pages, etc.
Possible values: Text

Web session
enable IP
address
validation

Longint 83

Scope: Local Web server
Kept between two sessions: No
Description: Enables or disables IP address validation for session cookies. For
security reasons, by default the 4D Web server checks the IP address of each
request containing a session cookie and rejects it if this address does not
match the IP address used to create the cookie. In some specific applications,
you may want to disable this validation and accept session cookies, even when
their IP addresses do not match. For example when mobile devices switch
between Wifi and 3G/4G networks, their IP address will change. In this case,
you must pass 0 in this option to allow clients to be able to continue using their
Web sessions even when the IP addresses change. Note that this setting
lowers the security level of your application.
When it is modified, this setting is effective immediately (you do not need to
restart the HTTP server).
Possible values: 0 (disabled) or 1 (enabled)
Default value: 1 (IP addresses are checked)

When you use the Web debug log selector, you can pass one of the following constants in the value parameter:

Constant Type Value Comment
wdl disable Longint 0 Web HTTP debug log is disabled
wdl enable with all body
parts Longint 7 Web HTTP debug log is enabled with body parts in response and

request
wdl enable with request
body

Longint 5 Web HTTP debug log is enabled with body part in request only

wdl enable with
response body Longint 3 Web HTTP debug log is enabled with body part in response only

wdl enable without body Longint 1 Web HTTP debug log is enabled without body parts (body size is
provided in this case)

Example

Enabling the HTTP debug log without body parts:

 WEB SET OPTION(Web debug log;wdl enable without body)

A log entry looks like this:

REQUEST
SocketID: 1592
PeerIP: 127.0.0.1
PeerPort: 54912
TimeStamp: 39089388
GET /4DWEBTEST HTTP/1.1
Connection: Close
Host: 127.0.0.1
User-Agent: 4D_HTTP_Client/0.0.0.0

RESPONSE
SocketID: 1592
PeerIP: 127.0.0.1
PeerPort: 54912
TimeStamp: 39089389 (elapsed time: 1 ms)
HTTP/1.1 200 OK
Accept-Ranges: bytes
Connection: close
Content-Length: 3555
Content-Type: text/plain; charset=UTF-8
Date: Tue, 20 Jan 2015 10:51:29 GMT
Expires: Tue, 20 Jan 2015 10:51:29 GMT
Pragma: no-cache
Server: 4D/14.6.0

[Body Size: 3555]

 Name or theme changes

On Web Session Suspend database method

Previous
name

New
name Comments

On Web
Session
Suspend
database
method

On Web
Close
Process
database
method

Note: In the context of a 4D Mobile session (which can generate several processes),
the On Web Close Process database method is called for each Web process that is
closed, allowing you to save all types of data (variables, selection, etc.) generated by
the 4D Mobile session process.

Listbox constants renamed

List box constants, previously prefixed with "Listbox..." are now prefixed with "lk...". See List Box and Listbox
Footer Calculation themes.

List Box

Constant Type Value Comment
lk add to
selection

Longint 1
The row selected is added to the existing selection. If the row specified already
belongs to the existing selection, the command does nothing.

lk all Longint 0
The command affects all sub-levels (default value, used when parameter is
omitted).

lk
background
color

Longint 1

lk
background
color array

Longint 1

lk break
row

Longint 2

The command affects the sub-level to which the "cell" designated by the row and
column parameters belongs. Note that these parameters represent the row and
column numbers in the list box in standard mode and not in its hierarchical
representation. If the row and column parameters are omitted, the command does
nothing.

lk control
array Longint 3

lk display
footer

Longint 8

Display Footers property
Applies to: List box
Possible values:

lk no (0): hidden
lk yes (1): shown

lk display
header

Longint 0

Display Headers property
Applies to: List box
Possible values:

lk no (0): hidden
lk yes (1): shown

lk display
hor
scrollbar

Longint 2 0=hidden, 1=shown

lk display
ver
scrollbar

Longint 4 0=hidden, 1=shown

lk font
color Longint 0

lk font color
array Longint 0

lk footer
height

Longint 9 Height in pixels

lk header
height

Longint 1 Height in pixels

lk hor
scrollbar
height

Longint 3 Height in pixels

lk hor
scrollbar
position

Longint 6 Position of the cursor in pixels

lk inherited Longint -255

lk last
printed row
number

Longint 0

Returns in info the number of the last row printed. Lets you find out the number of
the next row to be printed.
The number returned may be greater than the number of rows actually printed if
the list box contains invisible rows or if the OBJECT SET SCROLL POSITION
command has been called. For example, if rows 1, 18 and 20 have been printed,
info is 20.

lk level Longint 3

The command affects all the break rows corresponding to the level column. This
parameter designates a column number in the list box in standard mode and not in
its hierarchical representation. If the level parameter is omitted, the command does
nothing.

lk lines Longint 1 Height designates a number of lines. 4D calculates the height of a line according to
the font

lk pixels Longint 0 Height is a number of pixels (default).

lk printed
height

Longint 3
Returns in info the height in pixels of the object actually printed (including headers,
lines, etc.). Remember that if the number of rows to print is less than the "capacity"
of the list box, its height is automatically reduced.

lk printed
rows

Longint 1

Returns in info the number of rows actually printed during the last call to the Print
object command. This number includes any break rows added in the case of a
hierarchical list box. For example, info is 10 if the list box contains 20 rows and the
odd-numbered rows were hidden.

lk printing
is over

Longint 2 Returns in info a Boolean indicating whether the last (visible) row of the list box has
actually been printed. True = row has been printed; Otherwise, False.

lk remove
from
selection

Longint 2
The row selected is removed from the existing selection. If the row specified does
not belong to the existing selection, the command does nothing.

lk replace
selection Longint 0

The row selected becomes the new selection and replaces the existing selection.
The command has the same effect as a user click on a row (however, the On Clicked
event is not generated). This is the default action (if the action parameter is
omitted).

lk row
height
array

Longint 4 (4D View Pro license required)

lk row is
disabled Longint 2

The corresponding row is disabled. The text and controls such as check boxes are
dimmed or grayed out. Enterable text input areas are no longer enterable. Default
value: Enabled

lk row is
hidden Longint 1

The corresponding row is hidden. Hiding rows only affects the display of the list
box. The hidden rows are still present in the arrays and can be managed by
programming. The language commands, more particularly LISTBOX Get number
of rows or LISTBOX GET CELL POSITION, do not take the displayed/hidden
status of rows into account. For example, in a list box with 10 rows where the first
9 rows are hidden, LISTBOX Get number of rows returns 10. From the userʼs
point of view, the presence of hidden rows in a list box is not visibly discernible.
Only visible rows can be selected (for example using the Select All command).
Default value: Visible

lk row is
not
selectable

Longint 4

The corresponding row is not selectable (highlighting is not possible). Enterable
text input areas are no longer enterable unless the "Single-Click Edit" option is
enabled. Controls such as check boxes and lists are still functional however. This
setting is ignored if the list box selection mode is "None". Default value: Selectable

lk selection Longint 1 The command affects selected sub-levels.
lk style
array

Longint 2

lk ver
scrollbar
position

Longint 7 Position of the cursor in pixels

lk ver
scrollbar
width

Longint 5 Width in pixels

 Obsolete functions

Obsolete commands

To find all the obsolete commands in your databases, you can just search for "_o_" using Find in Design in the
Edit menu or the Find in design area of the tool bar. We strongly recommend that you replace any obsolete
commands with new commands or functions. However, keep in mind that commands which are not indicated as
"disabled" will nevertheless continue to work temporarily.
To get a list of all the obsolete commands: Language: deprecated and/or removed commands

Obsolete commands in 4D v16

Previous
name New name Comments

C_GRAPH _o_C_GRAPH
Starting with 4D v15 R5 this command was renamed and is no longer provided
in the list of 4D commands. Graph area variables are obsolete and no longer
supported since 4D v14. You have to use picture variables (see GRAPH)

INTEGRATE
LOG FILE

_o_INTEGRATE
LOG FILE

The _o_INTEGRATE LOG FILE command is now obsolete. We recommend
using INTEGRATE MIRROR LOG FILE. Unlike the _o_INTEGRATE LOG FILE
command, the new INTEGRATE MIRROR LOG FILE command does not
replace the current log file with the integrated one: the current log file of the
database continues to be used. Accordingly, any changes made during
integration are saved in the current log file.

Open
external
window

_o_Open
external
window

The _o_Open external window command does not work in 64-bit versions
of 4D and 4D Server. This command will no longer be supported in future
versions of the program.

Obsolete 4D Pack commands

4D Pack commands Replaced with Obsolete since Current status
_o_AP BLOB to print settings BLOB to print settings v16 Deprecated
_o_AP Print settings to BLOB Print settings to BLOB v16 Deprecated
_o_AP Is picture deprecated GET PICTURE FORMATS v16 Deprecated
_o_AP NORMAL SCREEN, _o_AP FULL SCREEN - v16 Deprecated
_o_AP Get field infos, _o_AP Get table infos - v16 Deprecated
_o_AP Get tips state, _o_AP SET TIPS STATE - v16 Deprecated

 _o_C_GRAPH

_o_C_GRAPH ({method ;} variable {; variable2 ; ... ; variableN})

Parameter Type Description
method String Name of method
variable Variable Name of variable(s) to declare

Compatibility note

Variables of the Graph area type are obsolete and no longer supported since 4D v14. You need to use picture
variables (see GRAPH).

 BLOB to print settings

BLOB to print settings (printSettings {; params}) -> Function result

Parameter Type Description
printSettings BLOB BLOB containing print settings
params Longint 0=Restore saved values for number of copies and page range, 1=Reset to default values
Function
result

Longint Status code: 1=Operation successful, 0=No current printer, -1=Incorrect parameters, 2=Printer
changed

Description

The BLOB to print settings command replaces the current 4D print settings with the parameters stored in the
printSettings BLOB. This BLOB must have been generated by the Print settings to BLOB command or the _o_AP
Print settings to BLOB 4D Pack command (see below).
The params parameter allows you to define how to handle the basic "number of copies" and "page range" settings:

If you pass 0 or omit this parameter, the values stored in the BLOB are restored,
If you pass 1, the values are reset to default: the number of copies is set to 1 and the page range is set to "all
pages".

The print settings are applied to the current printer and for the whole session, as long as no command such as
PAGE SETUP, SET PRINT OPTION or PRINT SELECTION without the > parameter modifies them. The
parameters set are used more particularly by the PRINT SELECTION, PRINT LABEL, PRINT RECORD, Print
form and QR REPORT commands, as well as by the menu commands of 4D, including those of the Design
environment.
The PRINT SELECTION, PRINT LABEL, and PRINT RECORD commands must be called with the > parameter (if
applicable) in order for the settings defined by BLOB to print settings to be kept.
The command returns one of the following status codes:

-1: the BLOB is incorrect,
0: no current printer is selected (in this case the command does nothing),
1: the BLOB has been correctly loaded,
2: the BLOB has been correctly loaded but the current printer name has changed(*).
Note: Code (2) is always returned if the BLOB was created by the _o_AP Print settings to BLOB 4D Pack
command, even if the printer name did not actually change, since this information was not included in the 4D
Pack BLOBs.

(*) Settings depend on the currently selected printer at the moment the BLOB was saved. Applying these settings
to a another printer is supported if both printers are of the same model. If the printers are different, only common
parameters will be restored.

Windows / OS X
The printSettings BLOB can be saved and read on both platforms. However, even if some print settings are
common, some others are platform-specific and depend on the drivers and system versions. If the same
printSettings BLOB is shared between both platforms, you may lose parts of the information.
When used in a heterogeneous environment, in order to restore the maximum settings available for each platform
(and not only the common part), it is recommended that you work with two printSettings BLOBs, one for each
platform.

Compatibility with 4D Pack commands
The print settings BLOBs generated by the legacy _o_AP Print settings to BLOB command from 4D Pack can be
loaded and used by the BLOB to print settings command. Note however that if they are saved using Print
settings to BLOB, they are converted and can no longer be opened using _o_AP BLOB to print settings. The
BLOB to print settings command stores much more printing information than _o_AP Print settings to BLOB.

Example

You want to apply print settings previously saved to disk to the current 4D printing context:

 C_BLOB(curSettings)
 DOCUMENT TO BLOB(Get 4D folder(Active 4D Folder)+"current4Dsettings.blob";curSettings)
 //current4Dsettings has been created by Print settings to BLOB
 $err:=BLOB to print settings(curSettings;0)
 Case of
 :($err=1)
 //everything is OK
 :($err=2)
 CONFIRM("Printer has changed!\n\nCheck the print settings?")
 If(OK=1)
 PRINT SETTINGS
 End if
 :($err=0)
 ALERT("There is no current printer.")
 :($err=-1)
 ALERT("Invalid settings file.")
 End case

 Disabled functions

_o_AP Save BMP 8 bit: command removed

Certain functions are disabled in 64-bit versions of 4D, for more information refer to the:
Disabled 4D features and Unsupported 4D features paragraphs found in the Using 4D Developer
Edition 64-bit versions section
Print options, Printing section

 Using 4D Developer Edition 64-bit versions

With 4D v16, 4D provides 4D Developer Edition and 4D Volume Desktop in 64-bit versions for OS X.
Notes:

Under Windows, 64-bit versions of 4D Developer and 4D Volume Desktop are provided in preview versions.
Keep in mind that 4D also allows Using 4D Server 64-bit version (Windows) and Using 4D Server 64-bit
version (OS X).

These versions allow your 4D stand-alone applications, as well as your 4D remote applications, to take full
advantage of the power of 64-bit operating systems. The main advantage of the 64-bit architecture is that more
RAM can be addressed. Moreover, implementing this architecture provided us with an opportunity to support
powerful features, such as the ability to handle Preemptive 4D processes, to modernize printing as well as the
Quick Report editor, or yet again, to allow your applications to take advantage of Native object animations (4D
64-bit versions on OS X).
Although widely rewritten, 4D 64-bit applications are highly compatible with 4D databases developed in 32-bit
versions. However, since they use the most recent technologies, we needed to update some features, as well as to
stop supporting others. All these evolutions are detailed in the Specific features of 64-bit versions section
below.

System requirements

4D Developer 64-bit versions require the following minimum configuration:
Windows OS X

OS Windows 7 or higher (64-bit versions) OS X version 10.10 (Yosemite) or higher
RAM 8 GB 8 GB

Please refer to the certification matrices available on 4D's Web site to find out which operating systems are
compatible with your version of 4D.

Architecture

4D applications intended for 64-bit architectures are specific versions dedicated to this environment; (they will not
run on a 32-bit OS).
In interpreted mode, the same 4D databases can be executed with either a 64-bit or a 32-bit 4D application (server
or local). Development is identical regardless of which application is used (except for the limitations listed in this
documentation).
In compiled mode, databases must have been compiled for the appropriate processor: 64-bit in order to be
executed with a 64-bit 4D application, and 32-bit to be executed with a 32-bit 4D application. A database which has
been compiled in 32-bit only and which does not contain interpreted code cannot be executed with a 64-bit 4D
application, and vice versa. You can compile your database for just one specific architecture, or for both. For more
information about compilation, please refer to the next section.
The following table summarizes compatibility between the various 4D execution environments and the database
code:

Available code 4D Dev 32-bit 4D Dev 64-bit
4D Server 32-bit Interpreted OK OK(*)

32-bit compiled only OK -
32-bit and 64-bit compiled OK OK(*)

4D Server 64-bit Interpreted OK OK(*)
64-bit compiled only - OK(*)
64-bit and 32-bit compiled OK OK(*)

Local database Interpreted OK OK
32-bit compiled only OK -
64-bit compiled only - OK
32-bit and 64-bit compiled OK OK

(*) With 32-bit versions of 4D Server (both platforms) and 64-bit versions of 4D Server for Windows, you need to
make sure that the ServerNet network layer is activated on the server side, since the legacy network layer is not
available in 64-bit versions of 4D. For more information, please refer to the New ServerNet Network Layer
(compatibility) section.

Components and plug-ins
The following plug-ins and components can be loaded and executed interchangeably by 4D Server, 4D Developer
Edition or 4D Volume Desktop in 32- or 64-bit versions:

4D for OCI
4D Internet Commands(*)
4D ODBC Pro
4D Pack
4D Progress
4D SVG
4D Widgets
4D Write Pro Interface

(*) Not available in 4D Developer Edition 64-bit version for Windows (preversion)
4D View and 4D Write
4D View and 4D Write are 32-bit plug-ins and normally can only be used with 32-bit versions of 4D. However, 4D
provides the following arrangements:

Non-executable 64-bit versions of these plug-ins are available as placeholders so that developers can load
them and work in 64-bit versions (OS X or Windows) and then compile/deploy for 32-bit versions.
4D Server 64-bit for Windows can execute these plug-ins in faceless mode (no interface).

Specific features of 64-bit versions

This section covers particularities and evolutions concerning the implementation of the current 64-bit versions of
4D Developer Edition on Windows and on OS X.

Updated 4D features
Many 4D features and dialogs have been adapted or even rewritten to support the 64-bit architecture. Most of the
changes are transparent and will work just like in 32-bit releases. However, some editors have been modified and
now differ from their 32-bit versions, and some elementary features such as printing have been updated.

Feature
Impacted
4D
version

Comment

Quick Report
editor

OS X &
Win

Completely rewritten. See Quick reports (64-bit) section.

Label editor
OS X &
Win

Completely rewritten. See Label editor (64-bit) section.

Charts
OS X &
Win

The GRAPH command accepts an Object type parameter that allows you to define
graph settings.

Printing
OS X &
Win

Update of "Printing" dialog boxes (use of standard system dialog boxes). The "Print
settings" dialog box is no longer displayed automatically (see the PRINT
SETTINGS command). Modification of the SET CURRENT PRINTER and SET
PRINT OPTION commands.

Import/Export
dialog boxes

OS X &
Win

Work as in 32-bit version, except XSL support for XML exports (XSLT is no longer
supported, see below) and via an ODBC source (disabled, see below)

Disabled 4D features
Some features are disabled in the 4D Developer Edition 64-bit version:

Feature/Technology
Impacted
4D version

Comment

Import/Export via
ODBC Data source OS X & Win Disabled

Quick Report cross-
table reports OS X & Win Disabled

Quick Report editor:
borders

OS X & Win Disabled

Label Editor standard
codes

OS X & Win Disabled

Using integrated Web
Kit in Web areas

OS X & Win
Disabled. If option used, automatic switching to system Web engine.
Under OS X, access to 4D $4d methods is maintained

4D Internet
Commands

Win Currently not available

Unsupported 4D features
The following deprecated features or technologies are not supported in the 4D Developer Edition 64-bit version:

Feature/Technology
Impacted
4D
version

Comment

XSLT with Xalan
OS X &
Win

_o_XSLT APPLY TRANSFORMATION, _o_XSLT SET PARAMETER,
and _o_XSLT GET ERROR do nothing. Use the PROCESS 4D TAGS
command or the PHP libxslt module instead.

PICT format
OS X &
Win

'Unsupported image format' picture + file extension is displayed instead.
PICT format is globally deprecated in 4D, see also Pictures in PICT
format.

QuickTime OS X &
Win

QuickTime for pictures is not supported. The QuickTime support
database parameter is ignored.

cicn icons
OS X &
Win

GET ICON RESOURCE command is not supported; it returns an error.

Database .RSR files
OS X &
Win

Database .RSR files are not opened automatically. You need to use Open
resource file.

Writable resource files
OS X &
Win

_o_Create resource file is not supported; you can only open resource
files in read-only.

_o_Font number OS X &
Win

This command is not supported; it returns an error.

_o_Open external
window

OS X &
Win

This command is not supported; it returns an error.

Legacy network layer
OS X &
Win

Only ServerNet is supported.

ASCII compatibility
mode

OS X &
Win

Only Unicode mode is supported.

4D Write and 4D View
plug ins

OS X &
Win

Legacy plug-ins are not compatible with 64-bit versions of 4D; use 4D
Write Pro Reference and 4D View Pro.

AP Print settings to
BLOB / AP BLOB to print
settings (4D Pack)

OS X &
Win

Replaced by the Print settings to BLOB / BLOB to print settings
commands.

OLE Tools Win Not supported.

 Changing from 32-bit versions to 64-bit versions

Upgrading an existing 4D application on OS X from a 32-bit version of 4D to a 64-bit version requires some
preparation work.
If your application runs on 4D Server 64-bit Windows or OS X, most of the work is already done. 64-bit versions of
desktop applications may require a few additional steps. This section provides a step-by-step checklist to help you
verify all the necessary points both before and after the upgrade.
Several features have been updated, disabled or even declared as deprecated for the 64-bit migration of our
products. All details are listed in the Specific features of 64-bit versions section.
Note: Like with any upgrade process, it is good practice to use the MSC and launch a verification process before
each major step to make sure both the data and structure are OK.

Check your plug-ins

 The first requirement consists in upgrading your plug-ins (if any) to their 64-bit version:

4D plug-ins:
All plug-ins already exist in 64-bit versions, except for 4D Write and 4D View.

If your application uses 4D Write, you need to consider migrating your code to 4D Write Pro. Good
practice is to keep your existing 32-bit code and start a new 64-bit based module with 4D Write Pro
alongside it.
If your application uses 4D View, you will have to use 4D View Pro features or other alternatives.

Third-party plug-ins:
Contact your providers to get 64-bit versions.

Prepare for the upgrade to the 32-bit version

1. Upgrade your application to the latest 32-bit release, for example 4D v16 32-bit or higher.
2. Make sure Unicode mode is activated.
3. Convert any PICT/cicn/QuickTime pictures.

To detect deprecated pictures in your data, you can use the GET PICTURE FORMATS command.
You also need to replace all unsupported pictures in the structure of your database. A verification with the
MSC will detect deprecated pictures in resources files for picture and 3D buttons as well as for static pictures.

4. Replace XSLT-based features (_o_XSLT APPLY TRANSFORMATION, _o_XSLT SET PARAMETER or
_o_XSLT GET ERROR commands), with the PROCESS 4D TAGS command for example.

5. Replace _o_Font number calls with font name calls.
6. Remove any code that creates or modifies resource files.

At this point, you are ready to open your database with a 64-bit version of 4D.

Open and check the database in a 64-bit version

1. Open your application with a 4D Developer Edition 64-bit version.
2. If you use the integrated WebKit for your Web areas, check them since they are automatically switched to the

System engine (access to 4D methods through $4d is still valid).
3. If your code uses the Mac spool file format option of the SET PRINT OPTION command, you need to replace

it with a call to SET CURRENT PRINTER with the Generic PDF driver constant.
4. Check Label editor calls and usages (refer to Label editor (64-bit)).
5. Check Quick Report calls and usages (refer to Quick reports (64-bit))

Your application is now fully 64-bit compatible and you can benefit from all the new 64-bit features in 4D.

Benefit from 64-bit features

In particular:

The 64-bit architecture pushes back database cache limits. Improve your database's performances simply
by using a larger cache.
Adopt powerful 64-bit features such as preemptive processes, animated form objects, or new printing
features.
Build your applications with 4D Runtime Volume License 64-bit..
Use final 64-bit versions of 4D Server on Win and Mac OS - refer to the Using 4D Server 64-bit version (OS
X) and Using 4D Server 64-bit version (Windows) sections

New Quick report editor, compatible with reports created using previous versions. See Quick reports (64-
bit).

New Label editor, compatible with label files created using previous versions. See Label editor (64-bit).

Create graphs using an Object type parameter with the GRAPH command.

 SET PRINT OPTION

SET PRINT OPTION (option ; value1 {; value2})

Parameter Type Description
option Longint Option number or PDF option code
value1 Longint, Text Value 1 of the option
value2 Longint, Text Value 2 of the option

Description

The SET PRINT OPTION command is used to modify, by programming, the value of a print option. Each option
defined using this command is applied to the entire database and for the duration of the session as long as no other
command that modifies print parameters (PRINT SETTINGS, PRINT SELECTION without the > parameter, etc.)
is called. If a print job has been opened, the option is set for the job and cannot be modified as long as the job has
not terminated.
The option parameter allows you to indicate the option to be modified. You can pass either one of the predefined
constants of the “Print Options” theme, or a PDF option code (usable with the PDFCreator driver under Windows
only).
Pass the new value(s) of the specified option in the value1 and (optionally) value2 parameters. The number and
nature of the values to be passed depend on the type of option specified.

Using an option number (constant)
The following table lists the options and their possible values:

Constant Type Value Comment

Paper
option Longint 1

If you use only value1, it contains the name of the paper. If you use both
parameters, value1 contains the paper width and value2 contains the paper
height. The width and height are expressed in screen pixels. Use the PRINT
OPTION VALUES command to get the name, height and width of all the paper
formats offered by the printer.

Orientation
option

Longint 2

value1 only: 1=Portrait, 2=Landscape. If a different orientation option is used,
GET PRINT OPTION returns 0 in value1.
64-bit versions: This option can be called within a print job, which means that
you can switch from portrait to landscape, or vice versa, during the same print
job.

Scale
option Longint 3

value1 only: scale value in percentage. Be careful, some printers do not allow
you to modify the scale. If you pass an invalid value, the property is reset to
100% at the time of printing.

Number of
copies
option

Longint 4 value1 only: number of copies to be printed.

Paper
source
option

Longint 5
(Windows only) value1 only: number corresponding to the index, in the array of
trays returned by the PRINT OPTION VALUES command, of the paper tray to
be used. This option can only be used under Windows.

Color
option

Longint 8
(Windows only) value1 only: code specifying the mode for handling color:
1=Black and white (monochrome), 2=Color.
64-bit versions: This option is not supported in 4D 64-bit versions (obsolete)

Destination
option

Longint 9

value1: code specifying the type of print destination: 1=Printer, 2=(PC)/PS File
(Mac), 3=PDF file, 5=Screen (OS X driver option).
If value1 is different from 1 or 5, value2 contains pathname for resulting
document. This path will be used until another path is specified. If a file with the
same name already exists at the destination location, it will be replaced. With
GET PRINT OPTION, if the current value is not in the predefined list, value1
contains -1 and the system variable OK is set to 1. If an error occurs, value1 and
the system variable OK are set to 0.
Note: Under Windows, you can set the printing destination to 3 (PDF File) when
the PDF Creator driver has been installed. When the (9;3;path) values are
passed, 4D automatically starts a "silent" PDF printing which takes into account
any option codes that are passed (note that if you pass an empty string in
value2 or omit this parameter, a file saving dialog appears at the time of
printing.) After printing, the current settings are restored. This simplifies control
of printing PDFs for 4D and lets you write multi-platform code. When the
(9;3;path) values are not passed, printing is not controlled by 4D and any PDF
Creator option codes that were passed are ignored.

Double
sided
option

Longint 11

(Windows only) value1: 0=Single-sided or standard, 1=Double-sided. If
value1=1, value2 contains the binding: 0=Left binding (default value), 1=Top
binding.
Note: This option can only be used under Windows.

Spooler
document
name
option

Longint 12

value1 only: name of the current print document, which appears in the list of
spooler documents. The name defined by this statement will be used for all the
print documents of the session for as long as a new name or an empty string is
not passed. To use or restore standard operation (using the method name in
the case of a method, the table name for a record, etc.), pass an empty string in
value1.

Mac spool
file format
option

Longint 13

(Mac only) value1 only: 0=print job in PDF mode (default value) 1=print job in
PostScript mode.
Notes:
- This option has no effect under Windows.
- Under OS X, printing is done as a PDF by default. However, the PDF print
driver does not support PICT pictures with encapsulated PostScript information
̶ these pictures are generated, more particularly, by vectorial drawing
software. To avoid this problem, this option lets you modify the print mode to
use under OS X for the current session. Keep in mind that printing in PostScript

mode can lead to undesired side effects.
64-bit versions: This option is not supported; it is replaced by the Generic PDF
driver option of the SET CURRENT PRINTER command.

Hide
printing
progress
option

Longint 14

value1 only: 1=hide progress windows, 0=display progress windows (default).
This option is particularly useful in the case of PDF printing under OS X.
Note: There is already a Printing progress option found in the Database Settings
dialog box (Interface page). However, it is applied globally to the application
and does not hide all the windows under OS X.

Page range
option

Longint 15
value1=first page to print (default value is 1) and (optional) value2=number of
the last page to print (default value -1 = end of document).

Legacy
printing
layer
option

Longint 16

(4D 64-bit versions for Windows only) value1 only: 1=select the GDI-based
legacy printing layer for the subsequent printing jobs. 0=select the D2D printing
layer (default).
64-bit versions: This selector is only supported on 4D 64-bit single-user
applications on Windows; it is ignored on other platforms. It is mainly intended
to allow legacy plug-ins to print inside 4D jobs in 4D 64-bit applications.

Once set using this command, a print option is kept throughout the duration of the session for the entire 4D
application. It will be used by the PRINT SELECTION, PRINT RECORD, Print form, QR REPORT and WP PRINT
commands, as well as for all 4D printing, including that in Design mode.
Notes:

It is indispensable to use the optional > parameter with the PRINT SELECTION, PRINT RECORD and PAGE
BREAK commands in order to avoid resetting the print options that were set using the SET PRINT OPTION
command.
The SET PRINT OPTION command mainly supports PostScript printers. You can use this command with
other types of printers, such as PCL or Ink, but in this case, it is possible that some options may not be
available.

Using a PDF option code (Windows)
In order to be able to use a PDF option code in the option parameter, you must have installed the PDFCreator
driver in your 4D environment (for more information, refer to the Integration of PDFCreator driver under
Windows section). Moreover, in order for option codes to be taken into account, you need to have enabled control
of PDF printing for 4D using the following statement:

 SET PRINT OPTION(Destination option;3;fileName)

Otherwise, option codes are ignored.
A PDFoption code is a Text type value consisting of two parts, OptionType and OptionName, combined together as
"OptionType:OptionName". Here is the description of this code:

OptionType Indicates whether you are specifying a native PDFCreator option or a 4D PDF administration
option. Two values are accepted:

PDFOptions = native option
PDFInfo = internal option.

OptionName Specifies the option to be set (depending on the OptionType value).
If OptionType = PDFOptions, you can pass one of several PDFCreator native options in OptionName. For
example, the UseAutosave option affects the automatic backup. In order to be able to modify this option,
pass "PDFOptions:UseAutosave" in the option parameter and the value to be used in the value1
parameter. For a complete description of the PDFCreator native options, please refer to the
documentation provided with the PDFCreator driver.
If OptionType = PDFInfo, you can pass one of the following specific selectors in OptionName:

Reset print: used to reset the internal waiting status in order, more particularly, to exit from an
infinite loop. In this case, value1 is not used.
Reset standard options: used to reset all the PDFCreator options to their default values. If
printing is in progress, the default settings are applied after its completion. In this case, value1 is
not used.
Start: used to start or stop the PDFCreator spooler. Pass 0 in value1 to stop it and 1 to start it.
Reset options: used to reset all the options modified since the beginning of the session using the
SET PRINT OPTION command and the PDFOptions selector.
Version: used to read the current version number of the PDFCreator driver. This selector can only

be used with the GET PRINT OPTION command. The number is returned in the value1 parameter.
Last error: used to read the last error returned by the PDFCreator driver. This selector can only be
used with the GET PRINT OPTION command. The error number is returned in the value1
parameter.
Print in progress: used to find out if 4D is waiting for printing by PDFCreator. This selector can
only be used with the GET PRINT OPTION command. The value1 parameter returns 1 if 4D is
waiting for PDFCreator and 0 otherwise.
Job count: used to find out the number of jobs waiting in the printing queue. This selector can only
be used with the GET PRINT OPTION command. The number of jobs is returned in the value1
parameter.
Synchronous Mode: used to set the synchronization mode betwen printing requests sent by 4D
and the PDFCreator driver. Since 4D cannot get information about the current status of a print job
that is in the printing queue, this option can be used to better control the execution of the jobs by
only sending them when the status of the PDFCreator driver is "free". In this case, 4D is
synchronized with the driver. Pass 0 in value1 for 4D to send print requests immediately (default
value) and 1 in order for 4D to be synchronized and to wait for the driver to have finished the job in
progress before sending another one.

Note: After each printing, 4D automatically re-establishes the previous settings of the PDFCreator driver in order to
avoid any interference with other programs using PDFCreator.

Example 1

The following method enables the PDF driver so as to print all the records of the table at the C:\Test\Test_PDF_X
location where X is the sequence number of the record:

 SET CURRENT PRINTER(PDFCreator Printer Name)
 // Under Windows, select the virtual printer installed by PDFCreator
 If(OK=1) // If PDFCreator is actually installed

 ALL RECORDS([Table_1])
 For($i;1;Records in selection([Table_1]))
 SET PRINT OPTION(Destination option;3;"C:\\Test\\Test_PDF_"+String($i))
 // Destination option 3 launches a PDFCreator print job
 PRINT RECORD([Table_1];*)
 NEXT RECORD([Table_1])
 End for
 // Resetting of the PDFCreator driver options
 SET PRINT OPTION("PDFInfo:Reset standard options";0)
 End if

Example 2

In 64-bit versions, the value of Orientation option can be modified within the same print job (special case). Note
that the option must have been set before the PAGE BREAK command:

 ALL RECORDS([People])
 PRINT SETTINGS
 If(OK=1)
 OPEN PRINTING JOB
 SET PRINT OPTION(Orientation option;1) //portrait
 Print form([People];"Vertical_Form")

 SET PRINT OPTION(Orientation option;2) //landscape
 PAGE BREAK //must be called imperatively AFTER the option
 Print form([People];"Horiz_Form")
 CLOSE PRINTING JOB
 End if

System variables and sets

The system variable OK is set to 1 if the command has been executed correctly; otherwise, it is set to 0.
If you pass an invalid option code (option not recognized by PDFCreator for example), OK is set to 0.

Error management

If the value passed for an option is invalid or if it is not available on the printer, the command returns an error (that
you can intercept using an error-handling method installed by the ON ERR CALL command) and the current value
of the option remains unchanged.

 Converting 4D Write documents to 4D Write Pro

Converting a 4D Write document

4D Write Pro can open and convert legacy 4D Write documents while supporting most of their specific properties:

In the picture above, we have a 4D Write area on the left and a 4D Write Pro area on the right (created using the
new library object - see below). The contents of the 4D Write area were recovered simply using the WP New
command:

 // we retrieve the contents of the 4D Write area in the 4D Write Pro area
 [WRITEAREAS]AreaNTWP:=WP New([WRITEAREAS]AreaNT_)

But since 4D Write can only be used with 32-bit versions of 4D v16, you must convert your 4D Write documents
before changing to the 64-bit version.
Unlike 4D Write, 4D Write Pro is not a plug-in but is fully integrated into 4D itself. Note that 4D Write Pro uses the
same license as 4D Write. You need to have this license installed in your application in order to enable the feature.
4D Write Pro objects permit 4D Write documents to be imported in two ways:

For 4D Write files stored on disk, you can use the WP Import document command,
For 4D Write files stored in BLOB fields, you can use the WP New command.

Compatibility notes:

Only 4D Write documents of the last generation ("4D Write v7") are supported.
Check which features and objects can be imported by consulting: Which properties will be recovered from
4D Write?
Copying-pasting from a 4D Write document to a 4D Write Pro area is not supported for the moment. A 4D
Write document can only be imported using 4D Write Pro language commands.
Under Windows, 4D Write Pro features rely on Direct2D. WIth machines under Windows 7 or Windows Server
2008, make sure that the Platform Update for Windows component has been installed so that you can benefit
from the required Direct2D version.

New 4D Write Pro object in the object library

In 4D v16, the library of preconfigured objects in the Form editor includes the new 4D Write Pro form object.
Dragging and dropping this object onto a form automatically inserts a preconfigured 4D Write Pro area with an
associated 4D Write Pro Widget subform containing control panels to manage the area's contents:

For more information, see 4D Write Pro area.

4D Write Pro: Associating an Object field

In your database structure, any 4D Object field can be used to store 4D Write Pro documents. Once the Object field
intended to store your 4D Write Pro documents is defined, you can just reference it from the form containing the
area. In the Form editor, enter the field name using the standard "[Table]Field" notation in the Variable Name
area of the Property List for the 4D Write Pro area:

Your 4D Write Pro area is then associated with the Object type field.

Filtering 4D expressions

Filtering was not enabled for 4D Write Pro documents in previous versions. If your 4D Write Pro documents
reference 4D methods, they will no longer be evaluated correctly once they are converted into 4D v16 or higher.
"## Error # 48" messages will be displayed instead.
In this case, you must add the methods to the list of allowed methods using the SET ALLOWED METHODS
command.

Modified commands

New commands have been added and existing ones have evolved to work with 4D Write Pro:

OBJECT SET HORIZONTAL ALIGNMENT: This command supports 4D Write Pro objects. For 4D Write Pro
areas only, a new wk justify constant is now available for the alignment parameter for 4D Write Pro objects,
allowing you to set a justified alignment.
OB SET: This command supports the definition of attributes in 4D Write Pro objects, the same way as WP
SET ATTRIBUTES. The following syntax is supported:
OB SET (objSel | wpDoc; attribName ; attribValue {; attribName2 ; valeurAttrib2 ; ... ; attribNameN
; attribValueN})
Limitation: you cannot pass a picture field or variable directly as an attribute value.
OB Get: This command supports the definition of attributes in 4D Write Pro objects, the same way as WP
GET ATTRIBUTES. The following syntax is supported:
OB Get (objSel | wpDoc; attribName) -> Function result
This command has the same limitation as OB SET: you cannot use a picture field or variable directly as an
attribute value.
"Stringifying" 4D Write Pro attributes: If you convert a 4D Write Pro object into JSON using JSON Stringify,
only the "title" attribute will be available in the output string.
Custom attributes, if any, will be "stringified" (see "Using custom attributes" in the Storing 4D Write Pro
documents in 4D Object fields section).
QUERY BY ATTRIBUTE: As specified in the Storing 4D Write Pro documents in 4D Object fields section,
the QUERY BY ATTRIBUTE command supports 4D Write Pro attributes (internal and custom) when the
documents are stored in Object fields.

.4wp document format

Starting with 4D v16, you can can save and reopen 4D Write Pro documents to and from disk without any loss
using the native .4wp format.
The .4wp format consists of a zip folder whose name is the document title and whose contents are HTML text and
images:

HTML text combines regular HTML with 4D expressions (which are not computed) as well as 4D-specific tags,
images are stored in a folder with the same name as the document title, next to the HTML file.

Since .4wp documents are based on HTML, they can be imported or opened in any external application supporting

HTML.
Note: The 4D Write Pro internal document format is a proprietary HTML extension, compatible with
HTML5/XHTML5, but which supports its own subset of HTML/CSS attributes and tags. As a result, only HTML
documents exported by 4D Write Pro can be opened by 4D Write Pro without any risk of data loss.

 WP New

WP New {(source)} -> Function result

Parameter Type Description
source String, BLOB, Object String: 4D HTML source,

BLOB: 4D Write Blob document (.4w7/.4wt) or 4D Write Pro document (.4wp)
Object: a 4D Write Pro object range

Function result Object 4D Write Pro object

Description

The WP New command creates and returns a 4D Write Pro object.
By default, if you omit the source parameter, the command returns an empty 4D Write Pro object.
You can also use the source parameter, in which case the new 4D Write Pro object will be filled with the contents of
the source. You can pass:

a string parameter: In this case, you pass a 4D HTML source, i.e. a text exported by WP EXPORT VARIABLE
with the wk web page html 4D option. This text can contain references (4D tags and expressions) and
embedded images.
a blob parameter: In this case, you pass either:

a 4D Write Pro (.4wp) format document stored in a BLOB. For more information about the 4D Write Pro
document format, please refer to .4wp document format.
a legacy 4D Write area loaded in a BLOB (BLOBs containing .4w7 or .4wt documents are supported). For
a detailed list of 4D Write features that are currently supported in 4D Write Pro objects, please refer to
the Importing 4D Write documents section.
If you want to import a 4D Write document (.4w7 or .4wt) stored on disk, you can also consider using
the WP Import document command.

an object parameter: In this case, you pass a 4D Write Pro range object. WP New will return a new document
created from the specified range. Note that, if the range is not equal to the full document range, only the first
section is exported and bookmarks are not exported, if any.

The returned object is a complete document that can be passed to the MissingRef command, for example.

Example 1

You want to create an empty 4D Write Pro object:

 myWPObject:=WP New

Example 2

You want to create a 4D Write Pro object containing a simple 4D expression reference:

 C_TEXT(myText)
 myText:="Today is "
 ST INSERT EXPRESSION(myText;"string(current date;System date long)";ST End text)
 myWPA:=WP New(myText)

Example 3

You want to initialize your Write Pro area with a previously-created template:

 //Export template from an existing area
 C_TEXT(wpTemplate)
 WP EXPORT VARIABLE(myWPArea;wpTemplate;wk web page html 4D)

 // use the template for a new area

 C_OBJECT(myNewWPA)
 myNewWPA:=WP New(wpTemplate)

Example 4

You want to import a 4D Write document stored in a 4D field of the current record into a new 4D Write Pro area:

 C_OBJECT(wpArea)
 wpArea=WP New([Templates]Reference_)

Example 5

You have defined a template document with different preformatted parts, each of them being stored as a
bookmark. When producing a final document from the template, you can extract any bookmark as a new document
and insert it in the final document.

 ARRAY TEXT($_BookmarkNames;0)
 WP GET BOOKMARKS([TEMPLATES]WP;$_BookmarkNames) //get the bookmarks from the template
 $targetRange:=WP New //create an empty document (will be the final document)

 $p:=Find in array($_BookmarkNames;"Main_Header") //handle the main header part
 If($p>0)
 $Range:=WP Get bookmark range(WParea;$_BookmarkNames{$p}) //select the range
 $RangeDoc:=WP New($Range) //create a new document from the range
 WP INSERT DOCUMENT($targetRange;$RangeDoc;wk append+wk freeze expressions) //wk append=after
replacement, $targetRange is equal to end of replaced text
 End if

 SET ALLOWED METHODS

SET ALLOWED METHODS (methodsArray)

Parameter Type Description
methodsArray String array Array of method names

Description

The SET ALLOWED METHODS command sets the methods that are displayed in the Formula editor for the current
session. The designated methods will appear at the end of the list of commands and can be used in formulas. By
default (if this command is not used), no methods are visible in the Formula editor. If a formula uses an
unauthorized method name, a syntax error is generated and the formula cannot be validated.
Pass the name of an array containing the list of methods to offer in the Formula editor in the methodsArray
parameter. The array must have been set previously.
You can use the wildcard character (@) in method names to define one or more authorized method groups.
If you would like the user to be able to call 4D commands that are unauthorized by default or plug-in commands,
you must use specific methods that handle these commands.
Note: The mechanism for restricting access to commands and methods in the Formula editor can be disabled for all
users or for the Designer and Administrator by means of an option on the "Security" page of the Database Settings.
If the "Disabled for all" option is checked, the SET ALLOWED METHODS command will have no effect.

Example

This example authorizes all methods starting with “formula” and the “Total_general” method in the Formula editor:

 ARRAY STRING(15;methodsArray;2)
 methodsArray{1}:="formula@"
 methodsArray{2}:="Total_general"
 SET ALLOWED METHODS(methodsArray)

	Conversion to 4D v16
	Principles for conversion
	What to do before converting
	How to convert
	After conversion
	Rebuilding indexes

	GET PICTURE FORMATS
	Description
	Example

	Compatibility dialog
	Activating a new mecanism
	Former options
	Option removed
	Data file management in final applications
	Opening the data file
	Last data file opened
	Defining a default data folder

	Compatibility page

	Changes in behavior
	Licenses
	Language
	Fonts
	Printing
	List boxes
	Forms
	Optimization of Replace string
	Duplicates in Unique fields
	WEB: 4D tags and decimal separators
	HTTP server
	Timestamping of maintenance log files
	4D Internet Commands
	OBJECT SET FORMAT
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	METHOD GET CODE
	Description
	Example 1
	Example 2

	DELETE FOLDER
	Description

	FONT LIST
	Description
	Example 1
	Example 2

	GET PRINT OPTION
	Description
	System variables and sets

	LISTBOX SET HEADERS HEIGHT
	Description

	String
	Description

	4D Transformation Tags
	Executing templates
	4DTEXT
	4DHTML
	4DEVAL
	4DSCRIPT/
	4DINCLUDE
	4DBASE
	4DCODE
	4DIF, 4DELSE, 4DELSEIF and 4DENDIF
	4DLOOP and 4DENDLOOP
	Alternative syntax for 4DTEXT, 4DHTML, 4DEVAL
	Usage notes

	WEB SET OPTION
	Description
	Example

	Name or theme changes
	On Web Session Suspend database method
	Listbox constants renamed
	List Box

	Obsolete functions
	Obsolete commands
	Obsolete commands in 4D v16
	Obsolete 4D Pack commands
	_o_C_GRAPH
	Compatibility note

	BLOB to print settings
	Description
	Example

	Disabled functions
	Using 4D Developer Edition 64-bit versions
	System requirements
	Architecture
	Specific features of 64-bit versions

	Changing from 32-bit versions to 64-bit versions
	Check your plug-ins
	Prepare for the upgrade to the 32-bit version
	Open and check the database in a 64-bit version
	Benefit from 64-bit features
	SET PRINT OPTION
	Description
	Example 1
	Example 2
	System variables and sets
	Error management

	Converting 4D Write documents to 4D Write Pro
	Converting a 4D Write document
	New 4D Write Pro object in the object library
	4D Write Pro: Associating an Object field
	Filtering 4D expressions
	Modified commands
	.4wp document format
	WP New
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	SET ALLOWED METHODS
	Description
	Example

