
 4D Write Pro Reference

 Presentation
 Defining a 4D Write Pro area
 Storing 4D Write Pro documents in 4D Object fields
 Using a 4D Write Pro area
 Printing 4D Write Pro documents
 Filter expressions contained in a 4D Write Pro document
 Importing 4D Write documents
 4D Write Pro Language
 What&#command_539;s new

 Presentation

Overview

4D Write Pro offers 4D users an advanced word-processing tool, fully integrated with your 4D database. Using 4D
Write Pro, you can write pre-formatted emails and/or letters containing images, a scanned signature, formatted
text and placeholders for dynamic variables. You can also create invoices or reports dynamically, including
formatted text and images.
The key features of the product are:

4D Write compatibility: a 4D Write Pro object can open and convert legacy 4D Write documents while
supporting most of their specific properties.
Word processing: a 4D Write Pro object embedded in a form provides standard word-processing features,
including text and style manipulation, image insertion, import and export, and much more.
Database integration:

A 4D Write Pro object can display variable parts which will be filled with data from the database, or data
computed by 4D.
4D Write Pro documents can be stored within database fields or on disk.

Installation and activation

4D Write Pro is no longer a plug-in but is fully integrated into 4D itself, making it easier to deploy and manage. No
additional installation is required; you can add 4D Write Pro areas to your forms and handle 4D Write Pro variables
directly in your 4D applications.
However, note that 4D Write Pro uses the same license as 4D Write. You need to have this license installed in your
application in order to enable the feature.
Requirements: On Windows, 4D Write Pro features rely on Direct2D. With Windows 7 or Windows Server 2008
machines, make sure the Platform Update for Windows has been installed so that the required Direct2D version is
available.

About this manual

This manual is the 4D Write Pro Reference Guide. It covers all 4D Write Pro features, including the user interface
and language commands.
Note that 4D Write Pro objects can be handled using specific commands ("4D Write Pro" theme) as well as
commands from other 4D themes ("Objects (Forms)" and "Styled Text" themes), documented in the 4D
Language Reference manual.

 4D Write Pro

 WP CREATE BOOKMARK New 16.0
 WP DELETE BOOKMARK New 16.0
 WP EXPORT DOCUMENT
 WP EXPORT VARIABLE
 WP GET ATTRIBUTES
 WP Get bookmark range New 16.0
 WP GET BOOKMARKS New 16.0
 WP Get page count New 16.0
 WP Get paragraphs
 WP Get pictures
 WP Get range
 WP Get selection
 WP Import document
 WP INSERT BREAK New 16.0
 WP INSERT DOCUMENT New 16.0
 WP INSERT PICTURE New 16.0
 WP Is font style supported
 WP New Updated 16.0
 WP PRINT Updated 16.0
 WP RESET ATTRIBUTES
 WP SELECT
 WP SET ATTRIBUTES
 WP USE PAGE SETUP

 Defining a 4D Write Pro area

Creating the area

In 4D, 4D Write Pro documents are displayed and edited manually in a 4D form object named 4D Write Pro. This
object is available as part of the last tool (Plug-in Area, Web Area, etc.) found in the object bar:

A 4D Write Pro form area is configured by means of standard properties found in the Property List, such as Object
Name and Variable Name, Coordinates, Entry, Display, Appearance, and/or Events.

The Variable Name property can be used in the language as a reference to the 4D Write Pro area. Note that the
variable must be of the Object type (for more information, refer to the C_OBJECT command).
"Entry" properties manage basic features for text entry:

Enterable: enables you to lock/unlock the area in order to allow or prevent editing
Auto Spellcheck: available for 4D Write Pro areas
Context Menu: allows you to enable/disable the context menu in Application mode (see the Using a 4D
Write Pro area section)
Selection always visible: handles text selection as in standard text areas.

Using the 4D Write Pro Widget of the Object library
You can create a preconfigured 4D Write Pro area using the 4D Write Pro object found in the Object library
("Entry areas" theme):

This area comes with a control panel for managing all the attributes of the area (font, color, style, etc.):

For more information, refer to the 4D Write Pro area section.

Configuring Drag and Drop

To configure the drag and drop features for your 4D Write Pro areas, you need to select the appropriate options in
the "Action" theme of the Property List:

4D Write Pro areas support two drag and drop modes:

Custom mode: only "Draggable" and "Droppable" options checked.
In this mode, you can select text and start to move it. The object method is then called with the On Begin
Drag Over event, and you can define the drop action using custom code.
Automatic mode: "Draggable", "Droppable", "Automatic Drag" and "Automatic Drop" options checked.
In this mode, you can automatically move or copy (by pressing the Alt/Option key) the selected text. The On
Begin Drag Over event is not triggered.

Note: Selecting only "Automatic Drag" and "Automatic Drop" options will have no effect in the 4D Write Pro area.

Configuring View properties

Document view properties are directly available in the Property list for 4D Write Pro areas to allow you to define
how a 4D Write Pro document will be displayed by default in this area. These properties let you customize, for
example, whether 4D Write Pro documents are displayed as they would be printed, or as they would be rendered
in a browser. You can set different views of the same 4D Write Pro document in the same form.
Document view settings are handled through specific items in the Appearance theme of the Property list for 4D
Write Pro form objects:

Resolution: Sets the screen resolution for the 4D Write Pro area contents. By default, it is set to 72 dpi (Mac
OS), which is the standard resolution for 4D forms on all platforms. Setting this property to Automatic
means that document rendering will differ between Mac OS and Windows platforms. Setting a specific dpi
value will make the document rendering the same on both Mac OS and Windows platforms.

Zoom: Sets the zoom percentage for displaying 4D Write Pro area contents. Default is 100%.

View mode: Sets the mode for displaying the 4D Write Pro document in the form area. Three values are
available:

Page (default): the most complete view mode, which includes page outlines, orientation, margins, page
breaks, headers and footers, etc. For more information, please refer to the Page view features
paragraph.
Draft: draft mode with basic document properties
Embedded: view mode suitable for embedded areas; it does not display margins, footers, headers, page
frames, etc.
This mode can also be used to produce a Web-like view output (if you also select the 96 dpi resolution
and the Show HTML WYSIWYG option).

Note: The View mode property is only used for onscreen rendering. Regarding printing settings, specific
rendering rules are automatically used (see Printing 4D Write Pro documents).

Show page frame: Displays/hides the page frame when Page view mode is set to "Page". Default is hidden.

Show references: Displays all inserted 4D expressions in the document as references. When this option is
unchecked (default), 4D expressions are displayed as values. When you insert a 4D field or expression, 4D
Write Pro computes and displays its current value. If you wish to know which field or expression is displayed,
check this option. The field or expression references then appear in your document, with a gray background.
For example, you have inserted the current date along with a format, the date is displayed:

If you check the Show references option, the reference is displayed:

Note: 4D expressions can be inserted using the ST INSERT EXPRESSION command.

Show headers/footers: Displays/hides the headers and footers when Page view mode is set to "Page"
(displayed by default). For more information on headers and footers, please refer to the section.

Show background: Displays/hides both background images and background color (displayed by default).

Show hidden characters: Displays/hides invisible characters (hidden by default).

Show HTML WYSIWYG: Enables/disables the HTML WYSIWYG view, in which any 4D Write Pro advanced
attributes which are not compliant with all browsers are removed (disabled by default).

Compatibility note: 4D Write Pro documents created with versions up to 4D v15 R5 are displayed using the
default values for these properties, with the exception of the Resolution property, which is set to Automatic in this
case.

 Storing 4D Write Pro documents in 4D Object fields

You can store your 4D Write Pro documents automatically in the 4D data file. If you created a 4D Write Pro area on
a form and created an Object field to store the areaʼs contents, any text entered in the area is saved automatically
with each record when the record is validated. You can then use the QUERY BY ATTRIBUTE command in order to
select records based on the value of their internal attributes. You can also add and query your own attributes with
4D Write Pro areas.
This section describes the following features:

Binding a 4D Object field to a 4D Write Pro area in a form
Setting, getting, and querying custom attributes of stored 4D Write Pro documents using the OB SET, OB
Get standard object commands, and QUERY BY ATTRIBUTE.

Assigning a 4D Object field to a 4D Write Pro area

To bind a 4D Write Pro area with a 4D Object field, you just need to reference the field in the Variable Name
property of the area.

Creating the Object field in the Structure
In your database structure, any 4D Object field can be used to store 4D Write Pro documents. As with any Object
field, you just have to define its standard properties, according to your needs:

the field name,
its attributes, such as "Expose with 4D Mobile Service," as well as its index,
its storage option (for more on this, see External data storage).

Assigning the Object field to the 4D Write Pro area
Once you have defined an Object field to store your 4D Write Pro document, you just need to reference it in the

form containing the area. You can use any table or a project form.
In the Form editor, enter the field name using the standard "[Table]Field" notation in the Variable Name area of
the Property list for the 4D Write Pro area:

Your 4D Write Pro area is then associated with the field, ensuring that its contents will be saved automatically with
each record. Note that if you do not use the 4D automatic action buttons, you will have to save the area manually
using 4D commands.

Using custom attributes

When 4D Write Pro areas are stored in Object fields, you can save and read any custom attributes with the 4D
Write Pro document, such as, for example, the writer's name, the document category, or any additional
information you may find useful. You can then query your custom attributes to select records matching the criteria.
Custom attributes will be exported with the WP EXPORT DOCUMENT or WP EXPORT VARIABLE commands.
They will be exported as well when converting a 4D Write Pro Object field to JSON using the JSON Stringify
command (along with the 4D Write Pro main document attributes).
To set or get custom attributes, you just need to use the standard OB Get and OB SET commands.
For example, in the form method, you can write:

 If(Form event=On Validate)
 OB SET([MyDocuments]My4DWP;"myatt_Last edition by";Current user)
 OB SET([MyDocuments]My4DWP;"myatt_Category";"Memo")
 End if

You can also read custom attributes of the documents:

 vAttrib:=OB Get([MyDocuments]My4DWP;"myatt_Last edition by")

If you have saved custom 4D Write Pro attributes in your data file, you can query these attributes to create a
selection of records containing the appropriate attribute value. In the following example, you query the table
containing the Object field to select records:

 QUERY BY ATTRIBUTE([MyDocuments];[MyDocuments]My4DWP;"myatt_Category";=;"Memo")
 //selects all records in MyDocuments whose "myatt_Category" custom attribute has the value
"Memo"
 //in the My4DWP Object field (bound to a 4D Write Pro area)

Note about custom attribute names: Since custom attributes share the same naming space as 4D Write Pro
internal attributes, we strongly recommend that you use prefixes when defining your own attribute names in order
to avoid any conflicts between internal and custom attributes. Non-prefixed names are reserved for 4D Write Pro
internal attributes. You can use any custom prefix (for instance, we used "myatt_" as a prefix in the above
example).
Note: Starting with 4D v15 R4, 4D Write Pro internal attributes can also be accessed through programming using
the standard QUERY BY ATTRIBUTE, OB Get and OB SET commands, but also using WP SET ATTRIBUTES, WP

GET ATTRIBUTES and WP RESET ATTRIBUTES. For more information, please refer to the 4D Write Pro
Attributes section.

 QUERY BY ATTRIBUTE

QUERY BY ATTRIBUTE ({aTable}{;}{conjOp ;} objectField ; attributePath ; queryOp ; value {; *})

Parameter Type Description
aTable Table Table for which to return a selection of records, or Default table if omitted
conjOp Operator Conjunction operator to use to join multiple queries (if any)
objectField Field Object field to query attributes
attributePath String Name or path of attribute
queryOp Operator, String Query operator (comparator)
value Text, Number, Date, Time Value to compare
* Operator Continue query flag

Description

QUERY BY ATTRIBUTE looks for records matching the query string defined using the objectField, attributePath,
queryOp and value parameters, and returns a selection of records for aTable.
Note: For more information on Object fields (new in 4D v15), please refer to the section of the Design Reference
manual.
QUERY BY ATTRIBUTE changes the current selection of aTable for the current process and makes the first record
of the new selection the current record. If the aTable parameter is omitted, the command applies to the default
table. If no default table has been set, an error occurs.
The optional conjOp parameter is used to join QUERY BY ATTRIBUTE calls when defining multiple queries. The
conjunction operators available are the same as the ones for the QUERY command:
Conjunction Symbol to use with QUERY BY ATTRIBUTE
AND &
OR |
Except #command_5

The conjOp parameter is not used for the first QUERY BY ATTRIBUTE call of a multiple query, or if the query is a
simple query. If you omit it within a multiple query, the AND (&) operator is used by default.
In objectField, pass the Object field whose attribute(s) you want to query. If it belongs to a One table related to
aTable with an automatic or manual relation, the objectField may belong to another table.
QUERY BY ATTRIBUTE supports 4D Write Pro custom attributes when documents are stored in Object fields. For
more information about this point, please refer to the Storing 4D Write Pro documents in 4D Object fields
section.
In attributePath, pass the path of the attribute whose values you want to compare for each record, for example
"children.girls.age". If you pass a single name, for example "place", you designate the corresponding attribute
found at the first level of the object field.
If an attribute "x" is an array, QUERY BY ATTRIBUTE will search records which contain an attribute "x" in which at
least one element matches the criteria. To search in array attributes, it is necessary to indicate to the QUERY BY
ATTRIBUTE command that attribute "x" is an array by appending "[]" to its name in attributePath (see example
3).
Notes:

Keep in mind that attribute names are case-sensitive: you can have different "MyAtt" and "myAtt" attribute
names in the same record.
Attribute names are trimmed to eliminate extra spaces. For example, " my first attribute .my second attribute
" is interpreted as "my first attribute.my second attribute".

The queryOp parameter is the comparison operator that is applied between objectField and value. You can pass
one of the symbols shown here:

Comparison Symbol to use with QUERY BY ATTRIBUTE
Equal to =
Not equal to #command_5
Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=

Note: It is also possible to specify the comparison operator as an text expression instead of a symbol. See the
QUERY command description for more information.
value is the data against which attributePath will be compared. The value can be any expression that evaluates to
the same data type as attributePath. The value is evaluated once, at the beginning of the query. The value is not
evaluated for each record. To query for a string contained within a string (a "contains" query), use the wildcard
symbol (@) in value to isolate the string to be searched for as shown in this example: "@Smith@". Note that in this
case, the search only partially benefits from the index (compactness of data storage).
Here is the structure of a query by attribute:

 QUERY BY ATTRIBUTE([Table] ;[Table]ObjectField ;"attribute1.attribute2";=;value)

Note: An implicit criteria for all operators (except #command_5) is that the Object field contains an attribute.
However, for the #command_5 operator, it can be undefined (see below).

Using the #command_5 operator (support for Null values)
Queries by attribute using the "#command_5" operator can have different results depending on whether or not the
property is checked for the object field:

Map NULL values to blank values property checked (default option, recommended in most cases).
In this case, the "#command_5" operator should be seen as selecting records where "no attribute" of the field
contains the value searched for. In this context, 4D considers in a similar manner:

fields where the value of the attribute is different from the value searched for,
fields where the attribute is not present (or contains a Null value).

For example, the following query returns records for people who have a dog whose name is not Rex, as well
as records for people who do not have a dog, or who have a dog with no name:

 QUERY BY ATTRIBUTE([People];[People]Animals;"dog.name";#command_5;"Rex")

Another example: this query will return all records for which [Table]ObjectField contains an object which
contains an attribute1 attribute which is itself an object containing an attribute2 attribute whose value is not
value, as well as records where the object field does not contain attribute1 or attribute2):

 QUERY BY ATTRIBUTE([Table];[Table]ObjectField;"attribute1.attribute2";#command_5;value)

This principle also applies to array attributes. For example:

 QUERY BY ATTRIBUTE([People];[People]OB_Field;"locations[].city";#command_5;"paris")

This query will return records for people who do not have any address in Paris.
To specifically obtain records where the attribute is undefined, you can use an empty object (see example 2).
Note however that searching for NULL values in array elements is not supported.

Map NULL values to blank values property unchecked ("SQL" mode).
In this case, undefined attributes (attributes not present in the field or whose value is Null) are not considered
as equivalent to blank values by default. As a result, queries of the type "attribute A is different from attribute
B" will not return records where attribute A is undefined.
To use the same example as above, when the Map NULL values to blank values option is not checked for
the [People]Animals field, the following query will only return records for people who have a dog whose

"name" attribute does not contain "Rex". Records for people who do not have a dog, or who have a dog with
no name will not be returned in this case.

 QUERY BY ATTRIBUTE([People];[People]Animals;"dog.name";#command_5;"Rex")

This operation, closer to the SQL logic, is reserved for specific needs.

Building multiple queries
Here are the rules for building multiple queries by attribute:

The first query argument must not contain a conjunction.
Each successive query argument can begin with a conjunction. If you omit it, the AND (&) operator is used by
default.
The first query and every other query, except the last, must use the * parameter.
QUERY BY ATTRIBUTE can be mixed with QUERY commands (see example).
To perform the query, do not specify the * parameter in the last QUERY BY ATTRIBUTE command.
Alternatively, you can execute the QUERY command without any parameters other than the table.

Note: Each table maintains its own currently-built query. This means that you can create multiple queries
simultaneously, one for each table.
No matter which way a query has been defined:

If the actual query operation is going to take some time to be performed, 4D automatically displays a message
containing a progress thermometer. These messages can be turned on and off by using the MESSAGES ON
and MESSAGES OFF commands. If a progress thermometer is displayed, the user can click on the Stop
button to interrupt the query. If the query is completed, OK is set to 1. Otherwise, if the query is interrupted,
OK is set to 0 (zero).
If any indexed object fields are specified, the query is optimized every time that it is possible (indexed fields
are searched first) resulting in a query that takes the least amount of time possible.

Date values in the object
Dates are stored in objects according to database settings; by default, the time zone is taken into account (see
the JSON use local time selector in the SET DATABASE PARAMETER command).

!1973-05-22! -> "1973-05-21T23:00:00.000Z"

This setting is also taken into account during queries, so you do not have to worry about it if you always use your
database at the same place and if settings are the same on all machines that access the data. In this case, the
following query will correctly return records whose Birthday attribute equals !1973-05-22! (saved as "1973-05-
21T23:00:00.00Z"):

 QUERY BY ATTRIBUTE([Persons];[Persons]OB_Info;"Birthday";=;!1973-05-22!)

If you do not want to use the GMT settings, you can modify these settings using the following instruction:

 SET DATABASE PARAMETER(JSON use local time;0)

Keep in mind that the scope of this setting is the process only. If you execute this instruction, then October 1st,
1965 will be stored "1965-10-01T00:00:00.000Z" but you will need to set the same parameter before launching
your queries:

 SET DATABASE PARAMETER(JSON use local time;0)
 QUERY BY ATTRIBUTE([Persons];[Persons]OB_Info;"Birthday";=;!1976-11-27!)

Using the virtual length property
You can use the virtual "length" property with this command. This property is available automatically for all array
type attributes and returns the size of the array, i.e. the number of elements it contains. It can be used in the
context of executing the QUERY BY ATTRIBUTE command (see example 4).

Example 1

In this example, the "age" attribute is either a string or an integer and we want to find people whose age is
between 20 and 29. The first two lines query the attribute as an integer (>=20 and < 30) and the last ones query
the field as a string (starts with "2" but is different from "2".)

 QUERY BY ATTRIBUTE([Persons];[Persons]OB_Info;"age";>=;20;*)
 QUERY BY ATTRIBUTE([Persons]; & ;[Persons]OB_Info;"age";<;30;*)
 QUERY BY ATTRIBUTE([Persons];|;[Persons]OB_Info;"age";=;"2@";*)
 QUERY BY ATTRIBUTE([Persons]; & ;[Persons]OB_Info;"age";#command_5;"2") //no final * to launch
execution

Example 2

The QUERY BY ATTRIBUTE command can be used to find records where certain attributes are defined (or are not
defined). To do this, you have to use an empty object.

 //Find records where e-mail is defined in the object field
 C_OBJECT($undefined)
 QUERY BY ATTRIBUTE([Persons];[Persons]Info;"e-mail";#command_5;$undefined)

 //Find records where zip code is NOT defined in the object field
 C_OBJECT($undefined)
 QUERY BY ATTRIBUTE([Persons];[Persons]Info;"zip code";=;$undefined)

Note: This specific syntax is not supported with array type attributes. Searching for NULL values in array elements
will give invalid results.

Example 3

You want to search a field containing array attributes. With the following two records:
Record1:
[People]name: "martin"
[People]OB_Field:
 "locations" : [{
 "kind":"office",
 "city":"paris"
 }]
Record2:
[People]name: "smith"
[People]OB_Field:
 "locations" : [{
 "kind":"home",
 "city":"lyon"
 } , {
 "kind":"office",
 "city":"paris"
 }]
... QUERY BY ATTRIBUTE will find people with a location in "paris" using this statement:

 //flag the array attribute with "[]" syntax
 QUERY BY ATTRIBUTE([People];[People]OB_Field;"locations[].city";=;"paris")
 //selects "martin" and "smith"

Note: If you defined several criteria on the same array attribute, the matched criteria will not necessarily apply to

the same array element. In the following example, the query returns "smith" because it has a "locations" element
whose "kind" is "home" and a "locations" element whose "city" is "paris", even if it's not the same element:

 QUERY BY ATTRIBUTE([People];[People]OB_Field;"locations[].kind";=;"home";*)
 QUERY BY ATTRIBUTE([People]; & ;[People]OB_Field;"locations[].city";=;"paris")
 //selects "smith"

Example 4

This example illustrates the use of the virtual "length" property. Your database has a [Customer]full_Data object
field with the following data:

You want to get the records for any customers who have two or more children. To do this, you can write:

 QUERY BY ATTRIBUTE([Customer];[Customer]full_Data;"Children.length";>=;2)

System variables and sets

If the query is carried out correctly, the OK system variable is set to 1.
The OK variable is set to 0 if:

the user clicks on the Cancel/Stop button,
in 'query and lock' mode (see the SET QUERY AND LOCK command), the query has found at least one locked
record. In this case as well, the LockedSet system set is updated.

 WP EXPORT DOCUMENT

WP EXPORT DOCUMENT (wpDoc ; filePath {; format {; options}})

Parameter Type Description
wpDoc Object 4D Write Pro variable
filePath String Path of exported file
format Longint Document output format
options Longint Export options

Description

The WP EXPORT DOCUMENT command exports the wpDoc 4D Write Pro object to a document on disk defined by
the filePath parameter as well as any optional parameters.

For more information, refer to the description of this command in the 4D Write Pro Language chapter of the 4D
Write Pro Reference manual.

 OB Get

OB Get (object ; property {; type}) -> Function result

Parameter Type Description
object Object, Object Field Structured object
property Text Name of property to read
type Longint Type to which to convert the value
Function result Boolean, Date, Object, Pointer, Real, Text Current value of property

Description

The OB Get command returns the current value of the property of the object, optionally converted into the type
specified.
object must have been defined using the C_OBJECT command or designate a 4D object field.
Note: This command supports attribute definitions in 4D Write Pro objects, like the WP GET ATTRIBUTES
command (see example 9). However, unlike WP GET ATTRIBUTES, OB Get does not allow you to handle a
picture variable or field directly as an attribute value.
In the property parameter, pass the label of the property to be read. Note that the property parameter is case
sensitive.
By default, 4D returns the value of the property in its original type. You can "force" the typing of the value returned
using the optional type parameter. To do this, in type you pass one of the following constants found in the Field
and Variable Types theme:

Constant Type Value

Is Boolean Longint 6
Is date Longint 4
Is longint Longint 9
Is object Longint 38
Is pointer Longint 23
Is real Longint 1
Is text Longint 2
Is time Longint 11

The command returns the value of the property. Several types of data are supported. Note that:

a pointer is returned as such; it can be evaluated using the JSON Stringify command,
dates are returned in the format "YYYY-MM-DDTHH:mm:ss.SSSZ"
in real values, the decimal separator is always a period "."
times are returned as a number. Note that OB SET stores times as milliseconds, in compliance with the
JavaScript standard, while 4D expects a number of seconds. In order for OB Get to interpret a stored time
correctly, you need to use the Is time constant.

Example 1

Retrieving a text type value:

 C_OBJECT($ref)
 C_TEXT($FirstName)
 OB SET($ref;"FirstName";"Harry")
 $FirstName:=OB Get($ref;"FirstName") // $FirstName = "Harry" (text)

Example 2

Retrieving a real number value converted into a longint:

 OB SET($ref ;"age";42)
 $age:=OB Get($ref ;"age") // $age is a real number (default)
 $age:=OB Get($ref ;"age";Is longint) // $age is a longint

Example 3

Retrieving the values of an object:

 C_OBJECT($ref1;$ref2)
 OB SET($ref1;"LastName";"Smith") // $ref1={"LastName":"Smith"}
 OB SET($ref2;"son";$ref1) // $ref2={"son":{"LastName":"Smith"}}
 $son:=OB Get($ref2;"son") // $son={"LastName":"john"} (object)
 $sonsName:=OB Get($son ;"name") // $sonsName="john" (text)

Example 4

Modifying the age of an employee twice:

 C_OBJECT($ref_john;$ref_jim)
 OB SET($ref_john;"name";"John";"age";35)
 OB SET($ref_jim;"name";"Jim";"age";40)
 APPEND TO ARRAY($myArray;$ref_john) // we create an object array
 APPEND TO ARRAY($myArray;$ref_jim)
 // we change the age for John from 35 to 25
 OB SET($myArray{1};"age";25)
 // We replace the age of "John" in the array
 For($i;1;Size of array($myArray))
 If(OB Get($myArray{$i};"name")="John")
 OB SET($myArray{$i};"age";36) // instead of 25
 // $ref_john={"name":"John","age":36}
 End if
 End for

Example 5

Deserializing a data string formatted in ISO:

 C_OBJECT($object)
 C_DATE($birthday)
 C_TEXT($birthdayString)
 OB SET($object;"Birthday";"1990-12-25T12:00:00Z")
 $birthdayString:=OB Get($object;"Birthday")
 // $birthdayString="1990-12-25T12:00:00Z"
 $birthday:=OB Get($object;"Birthday";Is date)
 // $birthday=25/12/90

Example 6

Using nested objects:

 C_OBJECT($ref1;$child;$children)
 C_TEXT($childName)
 OB SET($ref1;"firstname";"John";"lastname";"Monroe")
 //{"firstname":"john","lastname";"Monroe"}
 OB SET($children;"children";$ref1)

 $child:=OB Get($children;"children")
 //$son = {"firstname":"John","lastname":"Monroe"} (object)
 $childName:=OB Get($child;"lastname")
 //$childName = "Monroe" (text)
 //or
 $childName:=OB Get(OB Get($children;"children");"lastname")
 // $childName = "Monroe" (text)

Example 7

Recovery in 4D of a time stored in an object:

 C_OBJECT($obj_o)
 C_TIME($set_h;$get_h)

 $set_h:=?01:00:00?+1
 OB SET($obj_o;"myHour";$set_h)
 // $obj_o == {"myHour":3601000}
 // The time is stored in milliseconds
 $get_h:=OB Get($obj_o;"myHour";Is time)
 // $get_h == ?01:00:01?
 // The time is read correctly

Example 8

Examples of working with 4D object fields:

 // Define a value
 OB SET([People]Identity_OB;"First name";$firstName)
 OB SET([People]Identity_OB;"Last name";$lastName)

 // Get a value
 $firstName:=OB Get([People]Identity_OB;"First name")
 $lastName:=OB Get([People]Identity_OB;"Last name")

Example 9

In the method of a form containing a 4D Write Pro area, you can write:

 If(Form event=On Validate)
 OB SET([MyDocuments]My4DWP;"myatt_Last edition by";Current user)
 OB SET([MyDocuments]My4DWP;"myatt_Category";"Memo")
 End if

You can also read custom attributes of the documents:

 vAttrib:=OB Get([MyDocuments]My4DWP;"myatt_Last edition by")

 Using a 4D Write Pro area

Managing documents in 4D Write Pro areas

In 4D applications, 4D Write Pro documents are created, imported, and exported by means of specific commands
found in the 4D Write Pro theme (WP EXPORT DOCUMENT, WP EXPORT VARIABLE, WP Import document,
WP New).
You can also associate a 4D Write Pro area with an Object field in a database form. This way, each 4D Write Pro
document is automatically saved with the record and stored in the database's data (see Storing 4D Write Pro
documents in 4D Object fields).

.4wp document format

You can save and reopen 4D Write Pro documents to and from disk without any loss using the native .4wp format.
The .4wp format consists of a zip folder whose name is the document title and whose contents are HTML text and
images:

HTML text combines regular HTML with 4D expressions (which are not computed) as well as 4D-specific tags,
images are stored in a folder with the same name as the document title, next to the HTML file.

Since .4wp documents are based on HTML, they can be imported or opened in any external application supporting
HTML.
Note: The 4D Write Pro internal document format is a proprietary HTML extension, compatible with
HTML5/XHTML5, but which supports its own subset of HTML/CSS attributes and tags, specified in this manual. As a
result, only HTML documents exported by 4D Write Pro can be opened by 4D Write Pro without any risk of data
loss. Importing HTML documents that were created externally could produce errors.

User interface

If the Context menu property is checked for a 4D Write Pro area (see Defining a 4D Write Pro area), a
comprehensive context menu is available to users in the Application mode:

This menu offers access to all the 4D Write Pro user features.

Selecting the view mode

4D Write Pro documents can be displayed in one of three page view modes:

Draft: draft mode with basic properties
Page (default): "print view" mode
Embedded: view mode suitable for embedded areas; it does not display margins, footers, headers, page
frames, etc.
This mode can also be used to produce a Web-like view output (if you also select the 96 dpi resolution and the
HTML WYSIWYG option).

The page view mode can be configured by means of the area pop-up menu:

Note: The page view mode is not stored with the document.
For areas embedded in 4D forms, the view mode can also be set by default using the Property list. In this case, the
view mode is stored as a property of the 4D Write Pro form object (for more information, please refer to the
Configuring View properties paragraph).

Page view features
When the document is in Page view mode, the following document properties are displayed for the user:

Page outlines to represent printing limits
Page width and Page height (default: 21x29.7 cm)
Page orientation (default: Portrait)
Page margin (default: 2.5 cm)

In addition, new paragraph properties are available in the Paragraph... submenu:

Widow and orphan control: When this option is checked for a paragraph, 4D Write Pro does not allow
widows (last line of a paragraph isolated at the top of a page) or orphans (first line of a paragraph isolated at
the bottom of a page) in the document. In the first case, the previous line of the paragraph is added to the top
of the page so that two lines are displayed there. In the second case, the single first line is moved onto the
next page.
Avoid page break inside: When this option is checked for a paragraph, 4D Write Pro prevents this
paragraph from being broken into parts on two or more pages.

You can also use the following commands found in the context menu:

Insert page break: Adds a page break attribute at the cursor location. If any text is selected, it is replaced by
the page break.
Document.../Page size: Allows you to select a page size. Various standard page sizes are available.
Document.../Page orientation: Standard orientation (Portrait/Landscape) property.

Note: When a document is in Embedded or Draft view mode, page properties can be set, even if their effect is not
visible. In Draft view mode, the following paragraph property effects are visible:

Page height limitation (lines drawn)
Avoid page break inside property
Widow and orphan control.

Handling headers, footers, and sections

4D Write Pro documents support headers and footers. These headers and footers are related to sections.
A section is a part of a document which is defined by a page range and can have its own paging and common
attributes. A document can contain any number of sections (from just one, up to the total number of pages). Each
page can only belong to one section.
You can define a set of headers and footers for each section.

Defining a section
A section is a subset of continuous pages in a 4D Write Pro document. A document can contain one or more
sections. A section can contain any number of pages, from a single page to the total number of pages in the
document.
By default, a document contains a single section, named Section 1. The 4D Write Pro contextual menu displays
this section number wherever you click in the document:

You create a new section by adding a session break in the text flow:

When a section break has been added, the contextual menu displays an incremented number for each section. You
can, however, rename any section:

The name you entered is then used as the section name everywhere in the document:

Note that if you have defined a different first page or different left/right pages for a section, the page type is also
displayed in the menu (see below).

Section attributes
Sections inherit attributes from the document. However, common document attributes, including headers and
footers, can be modified separately for each section. The contextual pop-up menu displays the properties and
attributes available at the section level:

Page orientation: allows you to set a specific page orientation (Portrait or Landscape) per section
Different first page: allows you to set different attributes for the first page of the section; this feature can be
used to create flyleaves, for example. When this attribute is checked, the first page of the section is handled as
a subsection itself and can have its own attributes.

Different left and right pages: allows you to set different attributes for left and right pages of the section.
When this attribute is checked, left and right pages of the section are handled as subsections and can have
their own attributes.

Header and Footer commands: these options allow you to define separate headers and footers. These
options are detailed below.
Margins / Paddings / Borders / Background: these attributes can be defined separately for each section.
For more information on these attributes, please refer the 4D Write Pro Attributes article.

Inserting headers and footers
Each section can have specific header and footer. Headers and footers are displayed only when the document page
view mode is Page.
Within a section, you can define up to three different headers and footers, depending on the enabled options:

first page,
left page(s),
right page(s).

To create a header or a footer:

1. Make sure the document is in Page view mode.
2. Double-click in the header or footer area of the desired section and page to switch to editing mode.

The header area is at the top of the page:

The footer area is at the bottom of the page:

You can then enter any static contents, which will be repeated automatically on each page of the section (except for
the first page, if enabled).

You can also insert dynamic contents such as the page number or the page count using the ST INSERT
EXPRESSION command (for more information, please refer to the Inserting document and page expressions
paragraph).
Once a header or a footer has been defined for a section, you can configure its common attributes using the
contextual menu:

For more information on Margins, Paddings, Borders, and Background attributes, please refer the 4D Write
Pro Attributes section.
You can remove the entire definition of a header or a footer (contents and attributes) by selecting the Remove
header or Remove footer command in the contextual menu.

Compatibility
4D Write Pro handles headers and footers of documents converted from the 4D Write plug-in.
The following expressions and properties are also supported and converted from the 4D Write plug-in headers and
footers:

page number and page count variables
distinct first page
distinct left/right pages

 WP EXPORT DOCUMENT

WP EXPORT DOCUMENT (wpDoc ; filePath {; format {; option}})

Parameter Type Description
wpDoc Object 4D Write Pro variable
filePath String Path of exported file
format Longint Document output format
option Longint Export options

Description

The WP EXPORT DOCUMENT command exports the wpDoc 4D Write Pro object to a document on disk according
to the filePath parameter as well as any optional parameters.
In wpDoc, pass the 4D Write Pro object that you want to export.
In filePath, pass the destination path and the name of the document to be exported. If you pass only the document
name, it will be saved at the same level as the 4D structure file. By default, if you omit the format parameter, the
command uses the document extension to select the file format.
You can also pass a constant from the 4D Write Pro Constants theme in the format parameter. In this case, 4D
adds the appropriate extension to the file name if needed. The following formats are supported:

Constant Type Value Comment

wk 4wp Longint 4

The 4D Write Pro document is saved in a native archive format (zipped HTML and
images saved in a separate folder). 4D specific tags are included and 4D
expressions are not computed. This format is particularly suitable for saving and
archiving 4D Write Pro documents on disk without any loss.

wk web
page
complete

Longint 2

.htm or .html extension. The document is saved as standard HTML and its
resources are saved separately. 4D tags are removed and expressions are
computed. This format is particularly suitable when you want to display a 4D
Write Pro document in a web browser.

Notes:

"4D specific tags" means 4D XHTML with a 4D namespace and 4D CSS styles.
Expressions can be frozen at any time before export using ST FREEZE EXPRESSIONS.
For more information about the 4D Write Pro format, refer to .4wp document format.

In the options parameter, you pass options that will configure the export. You can pass a longint value to define the
style of the HTML code. The following constants are available:

Constant Type Value Comment

wk html debug Longint 1 Formatted HTML code ("pretty print"), easier to debug
wk normal Longint 0 Standard HTML code

HTML debug option off (default):

HTML debug option on:

Example 1

You want to export the contents of the myArea 4D Write Pro object to a document in your database folder. You can
set the debug option using a 'pprint' button:

 C_TEXT($filePath)
 $filePath:=Get 4D folder(Database folder)+"Exported files"+Folder
separator+"WriteProExport.html"
 If(pprint=0) //if the debug option is off
 WP EXPORT DOCUMENT(myArea;$filePath;wk web page complete;wk normal)
 Else
 WP EXPORT DOCUMENT(myArea;$filePath;wk web page complete;wk html debug)
 End if

Example 2

You want to export the contents of the myArea 4D Write Pro object in .4wp format:

 C_TEXT($path)
 C_LONGINT($docRef)

 Case of
 :(Form event=On Clicked)

 $path:=Get 4D folder(Database folder)+"Export"+Folder separator
 $path:=Select document($path;".4wp";" title";File name entry)

 If($path#command_5"")
 WP EXPORT DOCUMENT(myArea;document;wk 4wp;wk normal)
 Else
 ALERT("An error occurred.")
 End if
 End case

 ST INSERT EXPRESSION

ST INSERT EXPRESSION ({* ;} object ; expression {; startSel {; endSel}})

Parameter Type Description
* Operator If specified, object is an object name (string) If omitted, object is a field or variable
object Object Object name (if * is specified) or Field or variable (if * is omitted)
expression Text Expression and (optional) format to insert
startSel Longint Start of selection
endSel Longint End of selection

Description

The ST INSERT EXPRESSION command inserts a reference to the expression in the styled text field or variable
designated by the object parameter.
Passing the optional * parameter indicates that the object parameter is an object name (string). If you do not pass
this parameter, it indicates that the object parameter is a field or variable. In this case, you pass a field or variable
reference instead of a string (field or variable object only).
In the expression parameter, you pass the 4D expression to evaluate in the object. A valid 4D expression is a string
returning a value. expression can be a field, a variable, a 4D command, a statement returning a value, a project
method, and so on.
The expression must be placed in quotation marks ("").
Note: The expression parameter cannot be a Picture type variable.
If expression returns a value containing carriage returns and tabs, 4D formats the text according to the object
hosting the expression; carriage return characters are interpreted as line breaks.
You can format the expression by including formatting information in the expression parameter. In this case, the
parameter must be in the form:

"String(value;format)"

... where value contains the expression itself and format contains the format to apply. The format parameter can
have the following values:

for numbers: any number display format (existing or not), for example
"#command_5_command_5#command_5,#command_5#command_5".
for dates: a number designating an existing date format. You can use the constants of the "Date Display
Formats" theme, for example System date short .
for times: a number designating an existing time format. You can use the constants of the "Time Display
Formats" theme, for example System time short .

For example:

 "String([Table_1]Field_1;System date short)"

By default, the expression values are displayed in the multi-style text areas. You can force the display of the
references instead using the ST SET OPTIONS command.
The optional startSel and endSel parameters designate a selection of text in object. The startSel and endSel values
express a plain text selection, without taking into account any style tags that may be present.

If you only pass startSel, the result of the expression is inserted at the specified location.
If you omit startSel and endSel, the result of the expression is inserted at the location of the cursor.
If you pass startSel and endSel, ST INSERT EXPRESSION replaces the text in this selection with the result of
the expression. If the value of endSel is greater than the total number of characters in the object, all the
characters between startSel and the end of the text are replaced by the result of the expression.

4D provides predefined constants so that you can designate the selection limits automatically in the startSel and
endSel parameters. These constants are found in the "Multistyle Text" theme:

Constant Type Value Comment

ST End highlight Longint -1001 Designates last character of current text selection in object (*)
ST End text Longint 0 Designates last character of text contained in object
ST Start highlight Longint -1000 Designates first character of current text selection in object (*)
ST Start text Longint 1 Designates first character of text contained in object

(*) You must pass an object name in object to be able to use this constant. If you pass a reference to a field or
variable, the command is applied to all the text of the object.
Note: If startSel is greater than endSel (except when endSel is 0), the command does nothing and the OK variable
is set to 0.

Example

You want to replace the highlighted text with the result of a project method:

 ST INSERT EXPRESSION(*;"myText";"MyMethod";ST Start highlight;ST End highlight)

 4D Write Pro Attributes

4D Write Pro attributes allow you to control all the graphical aspects of text and images stored in your documents.
These attributes are handled by the following commands:

WP SET ATTRIBUTES
WP GET ATTRIBUTES
WP RESET ATTRIBUTES

Note: The generic 4D commands OB SET and OB Get can also be used to work with 4D Write Pro area attributes,
but with a limitation concerning the direct use of pictures (for more information, please refer to the description of
these commands).

Background

Background attributes are used to define background effects in your documents. They can be applied to:

Documents Paragraphs Characters Pictures
X X X

Constant Comment

wk
background
clip

Specifies painting area of background. Possible values:

wk border box (default): background is painted to outside edge of the border
wk content box: background is painted within the content box
wk padding box: background is painted to outside edge of the padding (or to inside edge of
the border, if any)

wk
background
color

Specifies background color of an element. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

Default for documents is "#command_5FFFFFF" and wk transparent, or "transparent" for
paragraphs and images.

wk
background
image

Specifies image to use as background. Possible values to set:

Image URL (string). Can be absolute or relative to the structure file.
Picture variable or field.

Value returned (WP GET ATTRIBUTES): URI (network URL or data URI). It may not be equal to
the initial URL for an image not referenced with the network URL (only network URLs are kept).
For local file URLs, the image stream itself is kept in the document and thus the URL returned is a
data URI with the image stream encoded in base64.

wk
background
origin

Specifies where background image is positioned. Possible values:

wk padding box (default): background image starts at padding (or inside border edge)
rectangle
wk border box: background image starts at border (outside edge) rectangle
wk content box: background image starts at content rectangle

wk
background
position h

Specifies horizontal starting position of a background image. Possible values:

wk left (default): background image starts horizontally on left side of the element
wk center: background image starts horizontally at center of the element
wk right: background image starts horizontally on right side of the element

wk
background
position v

Specifies vertical starting position of a background image. Possible values:

wk top (default): background image starts vertically at top of the element
wk middle: background image starts vertically at middle of the element
wk bottom: background image starts vertically at bottom of the element

wk
background
repeat

Specifies if and how a background image is repeated. Possible values:

wk repeat (default): background image is repeated both vertically and horizontally
wk no repeat: background image is not repeated
wk repeat x: background image is repeated only horizontally
wk repeat y: background image is repeated only vertically

wk
background
size h

Specifies horizontal size of background image. Possible values:

wk auto (default): background image contains its width
wk contain: scales image to largest size so that it fits entirely in the content area, while
preserving its aspect ratio. This option also modifies the value of the other size attribute.
wk cover: scales background image to be as large as possible so that the background area is
entirely covered by the background image, while preserving its aspect ratio. Some parts of
the background image may be cropped. This option also modifies the value of the other size
attribute.

Defined size: background image horizontal size expressed using a real or string value:
Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt. A relative value
(percentage %) is supported.

wk
background
size v

Specifies vertical size of background image. Possible values:

wk auto (default): background image contains its height
wk contain: scales image to largest size so that it fits entirely in the content area, while
preserving its aspect ratio. This option also modifies the value of the other size attribute.
wk cover: scales background image to be as large as possible so that the background area is
entirely covered by the background image, while preserving its aspect ratio. Some parts of
the background image may be cropped. This option also modifies the value of the other size
attribute.
Defined size: background image vertical size expressed using a real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt. A relative value
(percentage %) is supported.

Borders

Border attributes are used to specify the style, width, and color of an element's border. They can be applied to:

Documents Paragraphs Characters Pictures
X X X

Constant Comment

wk
border
color

Sets color of all four borders. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

Default is "#command_5000000" (if string value). If there are multiple colors, WP GET
ATTRIBUTES returns an empty string.

wk
border
color
bottom

Sets color of bottom border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red"). Default is
"#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk
border
color left

Sets color of left border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red"). Default is
"#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk
border
color
right

Sets color of right border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red"). Default is
"#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk
border
color top

Sets color of top border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red"). Default is
"#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk
border
radius

Specifies a rounded border. Possible values:

wk none (default): the border does not have rounded angles
Radius value expressed using an integer or a string value:

Integer: Radius in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters.

wk
border
style

Specifies style of all four borders. Possible values:

wk none (default): no border
wk hidden: same as wk none, except in border conflict resolution
wk solid: solid border
wk dotted: dotted border
wk dashed: dashed border
wk double: double border
wk groove: 3D groove border (the actual effect depends on the border color)
wk ridge: 3D ridged border (the actual effect depends on the border color)
wk inset: 3D inset border (the actual effect depends on the border color)

Specifies style of bottom border. Possible values:

wk none (default): no bottom border

wk
border
style
bottom

wk hidden: same as wk none, except in border conflict resolution
wk solid: solid bottom border
wk dotted: dotted bottom border
wk dashed: dashed bottom border
wk double: double bottom border
wk groove: 3D groove bottom border (the actual effect depends on the border color)
wk ridge: 3D ridged bottom border (the actual effect depends on the border color)
wk inset: 3D inset bottom border (the actual effect depends on the border color)

wk
border
style left

Specifies style of left border. Possible values:

wk none (default): no left border
wk hidden: same as wk none, except in border conflict resolution
wk solid: solid left border
wk dotted: dotted left border
wk dashed: dashed left border
wk double: double left border
wk groove: 3D groove left border (the actual effect depends on the border color)
wk ridge: 3D ridged left border (the actual effect depends on the border color)
wk inset: 3D inset left border (the actual effect depends on the border color)

wk
border
style
right

Specifies style of right border. Possible values:

wk none (default): no right border
wk hidden: same as wk none, except in border conflict resolution
wk solid: solid right border
wk dotted: dotted right border
wk dashed: dashed right border
wk double: double right border
wk groove: 3D groove right border (the actual effect depends on the border color)
wk ridge: 3D ridged right border (the actual effect depends on the border color)
wk inset: 3D inset right border (the actual effect depends on the border color)

wk
border
style top

Specifies style of top border. Possible values:

wk none (default): no top border
wk hidden: same as wk none, except in border conflict resolution
wk solid: solid top border
wk dotted: dotted top border
wk dashed: dashed top border
wk double: double top border
wk groove: 3D groove top border (the actual effect depends on the border color)
wk ridge: 3D ridged top border (the actual effect depends on the border color)
wk inset: 3D inset top border (the actual effect depends on the border color)

wk
border
width

Specifies width of all four borders. You need to specify the border style before setting the border
width. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

Default value: 2pt

wk
border
width

Specifies width of bottom border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm

bottom for 1.5 centimeters
Default value: 2pt

wk
border
width left

Specifies width of left border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

Default value: 2pt

wk
border
width
right

Specifies width of right border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

Default value: 2pt

wk
border
width top

Specifies width of top border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

Default value: 2pt

wk inside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding inter-paragraph property (not outside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

wk
outside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding paragraph external property (not inside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

Document

Document attributes are used to set or get standard document information such as the document subject, the
author's name, the company name and the notes. They can be applied to:

Documents Paragraphs Characters Pictures
X

Constant Comment

wk author Specifies name of author of the document (string)
wk company Specifies a company associated with the document (string)
wk date
creation

Returns creation date of document (date). This value is read-only and cannot be set.

wk date
modified

Returns last modification date of document (date). This value is read-only and cannot be set.

wk dpi DPI used for internal pixels <->points conversion (integer). Always 96 (read-only)

wk layout
unit

Specifies unit of dimension of some attributes when value is set or get as a integer or real.
Possible values:

wk unit cm (default): centimeters
wk unit pt: points
wk unit px: pixels
wk unit percent (only for wk line height and wk background size h / wk background size v)
wk unit mm: millimeters
wk unit inch: inches

wk notes Specifies comments about the document (string).
wk subject Specifies document subject (string)
wk title Specifies document title (string). Default is "New 4D Write Pro Document"

wk version Returns internal 4DWP version of the document (real). This number is only read using WP GET
ATTRIBUTES; it cannot be set.

Fonts and text

These attributes define the font family, size, and style of the text. They can be applied to:

Documents Paragraphs Characters Pictures
X

Constant Comment

wk font
Specifies complete font name with styles, as returned by the FONT STYLE LIST command. If you
set an invalid font name, the command does nothing. Default value: "Times New Roman".

wk font
bold

Specifies thickness of text (depends on available font styles). Possible values:

wk true to set selected characters to bold font style; with the WP GET ATTRIBUTES
command, wk true is returned if at least one selected character supports a bold font style.
wk false (default) to remove the bold font style from selected characters if any; with the WP
GET ATTRIBUTES command, wk false is returned if none of the selected characters supports
a bold font style.

wk font
family

Specifies font family name as defined by wk font. Default value is "Times New Roman".
An empty string is returned by the WP GET ATTRIBUTES command if the selected characters
contain different font family properties.

wk font
italic

Specifies italic style of text (depends on available font styles). Possible values:

wk true to set selected characters to italic or oblique font style; with the WP GET
ATTRIBUTES command, wk true is returned if at least one selected character supports an
italic or oblique font style.
wk false (default) to remove the italic or oblique font style from selected characters if any;
with the WP GET ATTRIBUTES command, wk false is returned if none of the selected
characters supports an italic or oblique font style.

wk font
size

Specifies font size for text. Possible values (in points only):

Real value (default = 12)
CSS string with value and unit concatenated. E.g.: 12pt for 12 points.

wk text
color

Specifies color of text. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red"). Default is
"#command_5000000" if string.
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk text
linethrough
color

Specifies color of text linethrough. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

Default is "currentColor" if string, or wk default if longint.

wk text
linethrough
style

Specifies style of text linethrough (if any). Possible values:

wk none (default): no linethrough effect
wk solid: draw a solid line on the selected text
wk dotted: draw a dotted line on the selected text
wk dashed: draw a dashed line on the selected text
wk double: draw a double line on the selected text
wk semi transparent: dimmed line on the selected text. Can be combined with another line
style.
wk word: draw a line on words only (exclude blank spaces). Can be combined with another
line style.

wk text
shadow
color

Specifies shadow color of the selected text. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

wk transparent (default)

wk text
shadow
offset

Specifies offset for shadow effect. Possible values:

Size expressed in points. Default value: 1pt

wk text
transform

Specifies uppercase and lowercase letters in the text. Possible values:

wk capitalize: first letters are set to uppercase
wk lowercase: letters are set to lowercase
wk uppercase: letters are set to uppercase
wk small uppercase: letters are set to small uppercase
wk none (default): no transformation

wk text
underline
color

Specifies color of text underline. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF" or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B component (0-255)

Default is "currentColor" if string, or wk default if longint.

wk text
underline
style

Specifies style of text underline (if any). Possible values:

wk none (default): no underline
wk solid: draw a solid underline
wk dotted: draw a dotted underline
wk dashed: draw a dashed underline
wk double: draw a double underline
wk semi transparent: dimmed underline. Can be combined with another line style.
wk word: draw an underline for words only (exclude blank spaces). Can be combined with
another line style.

wk vertical
align

Sets vertical alignment of an element. Can be used with characters, paragraphs, and pictures.
Possible values:

wk baseline (default): aligns baseline of element with baseline of parent element
wk top: aligns top of element with top of tallest element on the line
wk bottom: aligns bottom of element with lowest element on the line
wk middle: element is placed in middle of parent element
wk superscript: aligns element as if it were superscript
wk subscript: aligns element as if it were subscript

For characters, wk top and wk bottom have the same effect as wk baseline.
For paragraphs, wk baseline, wk superscript and wk subscript have the same effect as wk top.

Height/Width

Height/width attributes are used to set the height and width of paragraphs and images. They can be applied to:

Documents Paragraphs Characters Pictures
X X

Constant Comment

wk height

Sets height of element. The height property does not include padding, borders, or margins; it sets
the height of the area inside the padding, border, and margin of the element. Possible values:

wk auto (default): height is based upon the contents of the element
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt.

The wk height attribute is overridden by wk min height (if defined).
Note: In the current implementation, wk height can only be used with pictures.

wk min
height

Sets minimum height of the element. It prevents the value of the wk height property from becoming
smaller than wk min height. Possible values:

wk auto (default): minimum height is based upon the contents of the element
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt.

The wk min height value overrides the wk height attribute.
Note: In the current implementation, can only be used with pictures.

wk min
width

Sets minimum width of element. It prevents the value of the wk width property from becoming
smaller than wk min width. Possible values:

wk auto (default): minimum width is based upon the contents of the element
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt.

The wk min width value overrides the wk width attribute.
Note: In the current implementation, can only be used with pictures.

wk width

Sets width of element. Possible values:

wk auto (default): width is based upon the contents of the element
Defined size: size expressed using a real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt.

The wk width attribute is overridden by wk min width if defined.
Note: In the current implementation, wk width can only be used with pictures.

Image

Image attributes are used to handle pictures inserted in the area. They can be applied to:

Documents Paragraphs Characters Pictures
X

Constant Comment

wk image

Specifies an image. Possible values to set:

Image URL (string). Can be absolute or relative to the structure file.
Picture variable or field.

Value returned (WP GET ATTRIBUTES): URI (network URL or data URI). It may not be equal to
the initial URL for an image not referenced with the network URL (only network URLs are kept). For
local file URLs, the image stream itself is kept in the document and thus the URL returned is a data
URI with the image stream encoded in base64.

wk image
alternative
text

Specifies alternative text for image, if image cannot be displayed.

wk
vertical
align

Sets vertical alignment of an element. Can be used with characters, paragraphs, and pictures.
Possible values:

wk baseline (default): aligns baseline of element with baseline of parent element
wk top: aligns top of element with top of tallest element on the line
wk bottom: aligns bottom of element with lowest element on the line
wk middle: element is placed in middle of parent element
wk superscript: aligns element as if it were superscript
wk subscript: aligns element as if it were subscript

For characters, wk top and wk bottom have the same effect as wk baseline.
For paragraphs, wk baseline, wk superscript and wk subscript have the same effect as wk top.

Lists

4D Write Pro supports two main types of lists:

unordered lists: where list items are marked with bullets
ordered lists: where list items are marked with numbers or letters

List attributes are used to configure your lists and set different list item fonts or markers. They can be applied to:

Documents Paragraphs Characters Pictures
X

Constant Comment

wk list
font

Specifies complete font name, as returned by the FONT STYLE LIST command, to display the list
item marker (but not the paragraph text). If the system does not recognize the font name, it
handles the substitution. If you set an invalid font name, the command does nothing. Default value:
"Times".

wk list
font
family

Specifies font family name as defined by wk list font used to display the list item marker (but not the
paragraph text). Default value is "Times New Roman".

wk list
start
number

Sets starting value of an ordered list. Possible values:

wk auto (default): starting value depends on previous list items if any.
an integer value: starting value

wk list
string
format
LTR

List item marker string format for left-to-right paragraph direction. If defined, it overrides default list
item marker string format for the list.

For unordered lists: string used as list item marker (usually a single character string, e.g. "-")
For ordered lists: string containing the "#command_5" character. "#command_5" is a
placeholder for the computed number or letter(s). Default is “#command_5.”, so for instance if
current list item number is 15 and list style type is decimal, list item marker string will be "15."

wk list
string
format
RTL

List item marker string format for right-to-left paragraph direction. If defined, it overrides default list
item marker string format for the list.

For unordered lists: string used as list item marker (usually a single character string, e.g. "-")
For ordered lists: string containing the "#command_5" character. "#command_5" is a
placeholder for the computed number or letter(s). Default is “#command_5.”, so for instance if
current list item number is 15 and list style type is decimal, list item marker string will be "15."

wk list
style
image

Specifies an image as the list item marker in an unordered list. Possible values:

wk none (default): list item marker is not defined by an image
Local file image URL (string). Can be absolute or relative to the database resource directory

Value returned (WP GET ATTRIBUTES): URI (network URL or data URI). It may not be equal to
the initial URL for an image not referenced with the network URL (only network URLs are kept). For
local file URLs, the image stream itself is kept in the document and thus the URL returned is a data
URI with the image stream encoded in base64.

wk list
style
image
height

Sets height of image used as list item marker. Possible values:

wk auto (default): height is based upon image size
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. Minimum value: 0pt, maximum value: 10000pt.

Specifies type of ordered or unordered list item marker. Possible values are:

wk disc (default)
wk circle
wk square
wk decimal: 1 2 3
wk decimal leading zero: 01 02 03
wk lower latin: a b c
wk lower roman: i ii iii iv
wk upper latin: A B C
wk upper roman: I II III IV
wk lower greek: alpha, beta, gamma, etc.

wk list
style type

wk armenian
wk georgian
wk hebrew
wk hiragana
wk katakana
wk cjk ideographic
wk hollow square
wk diamond
wk club
wk decimal greek
wk custom: unordered list with "-" as default list item marker; this is a convenience style used
in order to customize a list item marker with wk list string format LTR or wk list string format
RTL without modifying standard list item markers
wk none

Margins

Margins are the area that is outside the border of an element. They are transparent. The following picture
illustrates the various elements that can be configured for a "box" element:

Margin attributes can be applied to:

Documents Paragraphs Characters Pictures
X X X

Constant Comment

wk inside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding inter-paragraph property (not outside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

wk
margin

Specifies size for all margins of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific margin

wk
margin
bottom

Specifies size for bottom margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific margin

wk
margin
left

Specifies size for left margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific margin

wk
margin
right

Specifies size for right margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific margin

wk
margin
top

Specifies size for top margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific margin

wk
outside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding paragraph external property (not inside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

Padding

Padding is the white space between the element content and the element border. Padding is affected by the
background color of the element.
The following picture illustrates the various elements that can be configured for a "box" element:

Padding attributes can be applied to:

Documents Paragraphs Characters Pictures
X X X

Constant Comment

wk inside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding inter-paragraph property (not outside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

wk
outside

When the selected area contains several paragraphs, specifies that the attribute should affect only
the corresponding paragraph external property (not inside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See example 2 of the WP SET
ATTRIBUTES command.

wk
padding

Specifies size of padding for all sides of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific padding

wk
padding
bottom

Specifies size of padding for bottom of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific padding

wk
padding
left

Specifies size of padding for left side of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific padding

wk
padding
right

Specifies size of padding for right side of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific padding

wk
padding
top

Specifies size of padding for top of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters

wk none (default): no specific padding

Paragraphs

Paragraph attributes are used to define properties for the text organization within a paragraph. They can be
applied to:

Documents Paragraphs Characters Pictures
X

Constant Comment

wk
direction

Specifies text direction of paragraph. Possible values:

wk left to right (default)
wk right to left

wk line
height

Specifies space between lines. Possible values:

wk normal (default): use value based upon text size
Height expressed using an integer or a string value:

Integer: height in wk layout unit.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm
for 1.5 centimeters. A relative value (percentage %) is supported.

wk tab
stop
offsets

Specifies tab stops for the paragraph. Possible values:

Scalar value (default is 35.45pt): default offset for the whole paragraph. The WP GET
ATTRIBUTES command returns the last offset (which is the default relative offset for offsets
beyond the last absolute offset).
Array of tab values: an ordered list of absolute values, starting from the left margin. The tab
offset defined by the last value is repeated for each additional tab character entered in the
paragraph. If the tab offset is greater than the paragraph width, the text goes on the next line
and starts from the first tab value. If a value in the array is smaller than the previous value, it is
ignored.

Note: You cannot use arrays and scalars in the same call for different attributes.
Values are expressed using CSS strings (default) or Real values in wk layout unit. Maximum value is
10000pt.

wk tab
stop
types

Specifies tab stop type for the paragraph. Possible values:

wk left (default): text extends to the right from the tab stop
wk right: text extends to the left from the tab stop until the tab's space is filled
wk center: text is centered at the tab stop
wk decimal: text before the decimal point extends to the left, and text after the decimal point
extends to the right
wk bar: a vertical line at the specified position
array of tab stop type values (if tab stops have been defined through an array).

wk text
align

Specifies horizontal alignment of text in the paragraph. Possible values:

wk left (default)
wk right
wk justify
wk center

wk text
indent

Specifies indentation of first line in the paragraph. Possible values:

Real: Size in wk layout unit. Default is 0.
String: CSS string with value and unit concatenated. E.g.: 12pt for 12 points, or 1.5cm for 1.5
centimeters. Minimum value: 0pt, maximum value: 10000pt.

wk
vertical
align

Sets vertical alignment of an element. Can be used with characters, paragraphs, and pictures.
Possible values:

wk baseline (default): aligns baseline of element with baseline of parent element
wk top: aligns top of element with top of tallest element on the line
wk bottom: aligns bottom of element with lowest element on the line
wk middle: element is placed in middle of parent element
wk superscript: aligns element as if it were superscript

wk subscript: aligns element as if it were subscript

For characters, wk top and wk bottom have the same effect as wk baseline.
For paragraphs, wk baseline, wk superscript and wk subscript have the same effect as wk top.

Style sheets

Style sheet attributes are used to handle specified style sheets. They can be applied to:

Documents Paragraphs Characters Pictures
X X

Constant Comment

wk new line style sheet

Specifies style sheet to use when adding a new line in the paragraph. Possible values:

existing style sheet name
wk none (default)

wk style sheet

Specifies current style sheet for the selected element(s). Possible values:

wk none (default)
existing style sheet name

 Printing 4D Write Pro documents

4D Write Pro documents can be printed in two ways:

As parts of 4D forms
As independent documents

Printing documents in 4D forms

You can print 4D Write Pro embedded objects as part of any kind of 4D form (project, table, input, or output)
using standard 4D printing commands such as PRINT SELECTION or PRINT RECORD.
The standard Print Variable Frame option is also supported(*) for 4D Write Pro areas, allowing you to manage
size during printing. When this option is checked, the margins (outside and inside) and top border are only applied
to the first page, and the margins (outside and inside) and bottom border are only applied to the last page.
Pagination properties of the document are ignored: widow and orphan control is disabled and page breaks are not
applied (these properties are only used for page rendering on screen, or for standalone printing of the document).
When the Print Variable Frame option is selected, only objects located above the form area are printed. For more
information about this option, refer to "Print Variable Frame" in the Design Reference manual.
(*) The Print object and Print form commands are not compatible with this option.

View mode for printing
Regardless of the View mode set for the 4D Write Pro area (see Configuring View properties), it is always
printed as in the Embedded mode when you use a 4D printing command such as Print form. In this case, the
following Appearance settings are not taken into account for the 4D Write Pro form objects: Page view mode
(always "Embedded"), Show headers, Show footers, Show page frame (always "No"), Show hidden characters
(always "No").

Example
The following example shows the effect of the Print Variable Frame option on a 4D Write Pro area embedded in
the default output form. The following code is executed:

 ALL RECORDS([Movies])
 ORDER BY([Movies]Title)
 PRINT SELECTION([Movies])

Here is the result with the Print Variable Frame option unchecked (off):

Here is the result with the Print Variable Frame option checked (on):

(Sample text source: Wikipedia)

Printing independent documents

Starting with 4D v15 R5, 4D Write Pro includes printing features allowing you to print independent 4D Write Pro
documents as well as to control standard printing options such as the format, orientation, or page numbers.

4D Write Pro commands
Basically, two commands handle the 4D Write Pro printing features: WP PRINT and WP USE PAGE SETUP.

WP PRINT launches a print job for a 4D Write Pro document or adds the document to a current print job.
WP USE PAGE SETUP modifies the current printer page settings based on the 4D Write Pro document
attributes for page size and orientation.

Configuration notes:

4D Write Pro print commands are based on the new internal architecture designed for 64-bit versions of 4D.
However, they are still supported in 32-bit versions, just not within print jobs launched with OPEN PRINTING
JOB (see WP PRINT).
On machines with Windows 7 or Windows Server 2008 R2, make sure that the Platform Update for Windows 7
has been installed so that the printing features are supported.

Regular 4D commands
The following 4D commands support 4D Write Pro printing features:

SET PRINT OPTION and GET PRINT OPTION: All options are supported for 4D Write Pro documents
printed by WP PRINT. For Paper option and Orientation option, you may find it more efficient to call WP USE
PAGE SETUP in order to easily synchronize these attributes with the 4D Write Pro document settings. The
Page range option (15) allows you to specify the page range to print.
PRINT SETTINGS: Defines print settings for the current printer; if WP PRINT is called afterwards, it takes
any print settings modified by means of the Print Settings dialog boxes into account (except for margins,
which are always based on the 4D Write Pro document).
OPEN PRINTING JOB and CLOSE PRINTING JOB: WP PRINT can be called between these commands in
order to insert one or more 4D Write Pro documents into a single print job.

 PRINT SELECTION

PRINT SELECTION ({aTable}{;}{* | >})

Parameter Type Description
aTable Table Table for which to print the selection, or Default table, if omitted
* | > Operator * to delete the printing dialog boxes, or > to not reinitialize print settings

Description

PRINT SELECTION prints the current selection of aTable. The records are printed with the current output form of
the table in the current process. PRINT SELECTION performs the same action as the Print menu command in the
Design environment. If the selection is empty, PRINT SELECTION does nothing.
By default, PRINT SELECTION displays the printer dialog boxes (in 4D 32-bit versions) or the Print job dialog box
(in 4D 64-bit versions) before printing. If the user cancels either of the printer dialog boxes, the command is
canceled and the report is not printed.
You can delete these dialog boxes by using either the optional asterisk (*) parameter or the optional “greater than”
(>) parameter:

The * parameter causes a print job using the current print parameters (default parameters or those defined
by the PAGE SETUP and/or SET PRINT OPTION commands).
Furthermore, the > parameter causes a print job without reinitializing the current print parameters. This
setting is useful for executing several successive calls to PRINT SELECTION (e.g., inside a loop) while
maintaining previously set customized print parameters. For an example of the use of this parameter, refer to
the PRINT RECORD command description.

During printing, the output form method and/or the formʼs object methods are executed depending on the events
that are enabled for the form and objects using the Property List window in the Design environment, as well as on
the events actually occurring:

An On Header event is generated just before a header area is printed.
An On Printing Detail event is generated just before a record is printed.
An On Printing Break event is generated just before a break area is printed.
An On Printing Footer event is generated just before a footer is printed.

You can check whether PRINT SELECTION is printing the first header by testing Before selection during an On
Header event. You can also check for the last footer, by testing End selection during an On Printing Footer event.
For more information, see the description of these commands, as well as those of Form event and Level.
To print a sorted selection with subtotals or breaks using PRINT SELECTION, you must first sort the selection.
Then, in each Break area of the report, include a variable with an object method that assigns the subtotal to the
variable. You can also use statistical and arithmetical functions like Sum and Average to assign values to variables.
For more information, see the descriptions of Subtotal, BREAK LEVEL and ACCUMULATE.
Warning: Do not use the PAGE BREAK command with the PRINT SELECTION command. PAGE BREAK is to be
used with the Print form command.
After a call to PRINT SELECTION, the OK variable is set to 1 if the printing has been completed. If the printing was
interrupted, the OK variable is set to 0 (zero) (i.e., the user clicked Cancel in the printing dialog boxes).
4D Server: This command can be executed on 4D Server within the framework of a stored procedure. In this
context:

Make sure that no dialog box appears on the server machine (except for a specific requirement). To do this, it
is necessary to call the command with the * or > parameter.
In the case of a problem concerning the printer (out of paper, printer disconnected, etc.), no error message is
generated.

Example

The following example selects all the records in the [People] table. It then uses the DISPLAY SELECTION
command to display the records and allows the user to highlight the records to print. Finally, it uses the selected
records with the USE SET command, and prints them with PRINT SELECTION:

 ALL RECORDS([People]) ` Select all records
 DISPLAY SELECTION([People];*) ` Display the records
 USE SET("UserSet") ` Use only records picked by user
 PRINT SELECTION([People]) ` Print the records that the user picked

 Print Variable Frame

Principles

The Print Variable Frame option is available for the following objects:

Picture type fields and variables,
Text type fields and variables,
4D Write Pro areas (option described in the Using a 4D Write Pro area section of the 4D Write Pro
Reference manual).

This option is found in the "Print" theme of the Property List:

It is also available using the OBJECT SET PRINT VARIABLE FRAME and OBJECT GET PRINT VARIABLE FRAME
commands.
Note: Subforms have a similar option. For more information about this, refer to "Subform Printing" in the List
subforms section.
This property handles the print mode for objects whose size can vary from one record to another depending on
their contents. These objects can be set to print with either a fixed or variable frame. Fixed frame objects print
within the confines of the object as it was created on the form. Variable frame objects expand during printing to
include the entire contents of the object.
Note that the width of objects printed as a variable size is not affected by this option (defined by the object
properties); only the height varies automatically based on the contents of the object.
You cannot place more than one variable frame object side-by-side on a form. You can place non-variable frame
objects on either side of an object that will be printed with a variable size provided that the variable frame object is
at least one line longer than the object beside it and that all objects are aligned on the top. If this condition is not
respected, the contents of the other fields will be repeated for every horizontal slice of the variable frame object.
In the context of output forms, you can only place variable size objects in Detail areas.
Note: The Print object and Print form commands do not support this option.

Pictures

Pictures can be printed with either fixed or variable frames if their display format allows it. Only the following
display formats allow printing with variable frames:

Truncated (Centered)
On Background
Truncated (Non-centered)

For more information about these picture formats, refer to Display formats.

If you check the Print Variable Frame option, the picture will be printed at a height that takes its size into
account. The picture frame will be extended during printing if necessary in order to display the entire picture.
If you do not check this option, the picture will be printed at a fixed height (set in the form).

Text

If you check the Print Variable Frame option, the text will be printed at a height that takes its size into
account. The text field will be extended automatically during printing so that all the text it contains will be
printed.
If you do not check this option, the text will be printed at a fixed height (set in the form).

 Print object

Print object ({* ;} object {; posX {; posY {; width {; height}}}}) -> Function result

Parameter Type Description
* Operator If specified, object is an object name (string) If omitted, object is a variable
object Form object Object name (if * is specified) or Variable (if * is omitted)
posX Longint Horizontal location of object
posY Longint Vertical location of object
width Longint Width of object (pixels)
height Longint Height of object (pixels)
Function result Boolean True = object entirely printed; otherwise False

Description

The Print object command lets you print the form object(s) designated by the object and * parameters, at the
location set by the posX and posY parameters.
Before calling the Print object command, you must designate the table or project form containing the objects to
be printed, using the FORM LOAD command.
If you pass the optional * parameter, you indicate that the object parameter is an object name (character string). If
you do not pass the * parameter, you indicate that object is a variable. In this case, you pass a variable reference
(object type only) instead of a string.
The posX and posY parameters specify the starting point for printing the object(s). These values must be expressed
in pixels. If these parameters are omitted, the object will be printed according to its location in the form.
The width and height parameters are used to specify the width and height of the form object. The Print object
command does not manage objects of variable size. You must use the OBJECT GET BEST SIZE command to
manage the size of objects. You can also use the OBJECT GET BEST SIZE command to find out the most
appropriate size for objects containing text. Similarly, Print object will not cause automatic page breaks. You must
manage them according to your needs.
You can use 4D commands to modify object properties (color, size, etc.) on the fly.
The command returns True if the object has been completely printed and False if this is not the case; in other
words, if it was not able to print all the data associated with the object within the set framework. Typically, the
command returns False when printing a list box if all the rows of the list box could not be printed. In this case, you
can simply call the Print object command repeatedly until it returns True: a specific mechanism automatically
causes the contents of the object to scroll after each call.
Notes:

In the current version of 4D, only list box type objects have this mechanism (the command always returns
True for any other type of object). In forthcoming versions of 4D, this functioning will be extended to other
objects with variable contents.
The LISTBOX GET PRINT INFORMATION command lets you check the status of the printing during the
operation.

The Print object command can only be used in the context of a print job opened beforehand with the OPEN
PRINTING JOB command. If it is not called in this context, the command does nothing. Several Print object
commands can be called in the same print job.
Note: Hierarchical lists, subforms and Web areas cannot be printed.

Example 1

Example for printing ten objects in a form:

 PRINT SETTINGS

 If(OK=1)
 OPEN PRINTING JOB
 If(OK=1)
 FORM LOAD("PrintForm")
 x:=100
 y:=50
 GET PRINTABLE AREA(hpaper;wpaper)
 For($i;1;10)
 OBJECT GET BEST SIZE(*;"Obj"+String($i);bestwidth;bestheight)
 $end:=Print object(*;"Obj"+String($i))
 y:=y+bestheight+15
 If(y>hpaper)
 PAGE BREAK(>)
 y:=50
 End if
 End for
 End if
 CLOSE PRINTING JOB
 End if

Example 2

Example of printing a complete list box:

 Repeat
 $end:=Print object(*;"mylistbox")
 Until($end)

 Filter expressions contained in a 4D Write Pro document

Overview

4D Write Pro documents can contain references to dynamic 4D expressions such as variables and fields, but also
formulas, project methods, or 4D commands. These references are evaluated when the documents are displayed
or printed. For security reasons, evaluation of dynamic expressions must be controlled by the developer to make
sure that no inappropriate expression is used and that it will not generate any unexpected changes or side effects in
the database. This prevents you from executing commands such as DELETE SELECTION or methods like
"DeleteOrders".
Note: Expressions can be inserted using the ST INSERT EXPRESSION command, or by editing 4D Write Pro
documents with an HTML editor.

Support of standard 4D filtering feature

Starting with 4D v16, evaluation of 4D commands and project methods inserted in 4D Write Pro documents is now
under the control of the regular 4D filtering option defined at the database level. This option is located on the
Security page of the "Database Settings" dialog box:

By default in 4D, this option is Enabled for all, which means that commands and methods must be explicitly
allowed; otherwise evaluation errors are returned. You can disable this filtering partially (for the Designer and the
Administrator), or for all users. This option is used in the entire 4D database and controls all user formula
evaluations. For more information about this option, please refer to the Design Reference manual.
When the option is enabled:

users can only call commands belonging to the "formula compliant" list. This list is displayed in the right-hand
part of the Formula editor:

users cannot execute any project method. Project methods that you want to allow in 4D Write documents
must be explicitly declared using the SET ALLOWED METHODS command.

Whenever a "forbidden" 4D method or command is found during the evaluation of an expression in a 4D Write Pro
document, the value is replaced by " #command_5#command_5 Error #command_5 48".

Example
You inserted the following expression in your 4D Write Pro document:

 ST INSERT EXPRESSION(*;"WriteProArea";"Gender")

By default if the security option is checked, the Gender method will not be evaluated:

If you execute the following code:

 ARRAY TEXT(aTallow;1)
 aTallow{1}:="Gender"
 SET ALLOWED METHODS(aTallow)

The Gender method will be evaluated and return a value:

Compatibility

This filtering was not enabled for 4D Write Pro documents in previous releases. If your 4D Write Pro documents
were referencing 4D methods, they will no longer be evaluated once the database has been converted to 4D v16 or
higher. "#command_5_command_5 Error #command_5 48" messages will be displayed instead.
In this case, you need to add the methods to the approved list using the SET ALLOWED METHODS command.

 Importing 4D Write documents

One of the main features of the new 4D Write Pro object is the ability to import and convert existing 4D Write
documents. This will allow you to migrate applications that currently rely on the 4D Write plug-in.
Compatibility notes:

Only 4D Write documents of the last generation ("4D Write v7") are supported.
Copying-pasting from a 4D Write document to a 4D Write Pro area is not supported for the moment. A 4D
Write document can only be imported using 4D Write Pro language commands.

How to import a 4D Write document

4D Write Pro objects offer two ways to import 4D Write documents:

For 4D Write files stored on disk, you use the WP Import document command,
For 4D Write areas stored in BLOB fields, you use the WP New command.

For more information, please refer to the description of these commands.

Which properties will be recovered from 4D Write?

To facilitate your migration from the 4D Write plug-in to 4D Write Pro, we want to support as many 4D Write
features as possible in 4D Write Pro objects.
This paragraph lists the 4D Write plug-in properties that are currently recovered in a 4D Write Pro area after an
import using the WP Import document or WP New commands.
Note however that a few differences can be seen, which are not considered as bugs. This is due, for example, to
the default font used in 4D Write Pro for bullets, or small conversions in the Underline type.

Document info
4D Write plug-in 4D Write Pro
Creation date & time Available
Modification date & time Available
Locked Not available (use read-only object property)
Title Available
Subject Available (only plain text)
Author Available
Company Available
Notes Available

Document view parameters

4D Write plug-in 4D Write Pro
View page mode Not imported (use Document/Page view mode in the context menu)
View rulers Not available
View frames Not available
View header Not available
View footer Not available
View first page header Not available
View first page footer Not available
View pictures Not available
View HScrollbar Not imported (use hor. scrollbar object property)
View VScrollbar Not imported (use vert. scrollbar object property)
View invisible characters Not available
View references Not imported (use ST SET OPTIONS)
View column separators Not available
View H Splitter Not available
View V Splitter Not available
View Wysiwyg Not available
View zoom Not imported (use Document/Zoom in the context menu)

Document parameters
4D Write plug-in 4D Write Pro
Unit Not available
Language Not available
Count of columns Not available
Column spacing Not available
Widows & orphans Not available
Default tab Available
Leading tab Not available
URL color Not available
URL visited color Not available

Document pagination parameters

4D Write plug-in 4D Write Pro
Page width Available
Page height Available
First page number Available (starting with v16)
First page header & footer are different Available (starting with v16)
Left & right page header & footer are different Available (starting with v16)
Page binding Available (starting with v16)
Opposite pages Available (starting with v16)
Page margins Available
Header top margin Available (starting with v16)
Header bottom margin Available (starting with v16)
Footer top margin Available (starting with v16)
Footer bottom margin Available (starting with v16)
First page top margin Available (starting with v16)
First page bottom margin Available (starting with v16)
Header first page top margin Available (starting with v16)
Header first page bottom margin Available (starting with v16)
Footer first page top margin Available (starting with v16)
Footer first page bottom margin Available (starting with v16)
First page is right Available (starting with v16)

Document printing parameters
4D Write plug-in 4D Write Pro
Kind of paper Not available
Landscape Not available
Width Not available
Height Not available
User margins Not available
Scale Not available
X resolution Not available
Y resolution Not available

Images
Compatibility notes:

4D Write Pro does not yet support absolute positioning for images in pages. Only inline images are supported
and imported.
In the 64-bit version of Windows, importing 4D Write documents that contain images having the Mac OS PICT
format is not supported. If you want to import documents containing images of this type, you will first need to
convert them to another format, or use a 32-bit version of 4D. Keep in mind that the PICT format is obsolete
and must no longer be used (see Pictures in PICT format).

4D Write plug-in 4D Write Pro
X (left) (& position :absolute) (for images in page only)
Y (top) (& position :absolute) (for images in page only)
Width Available
Height Available
Page number Not available
Behind Not available
Not in first page Not available
Viewport mode (scale to fit, etc.) Available
Is expression Not available
Keep size Not available

Character properties
4D Write plug-in 4D Write Pro (span properties)
Italic Available
Bold Available
Strikeout Available
Underline Available
Shadow Available
Exponent (superscript or subscript) Available
Capitals (uppercase or small uppercase) Available
Font Family Available
Font Size Available
Text Color Available
Text Back Color Available
Underline Color Available
Strikeout Color Available
Shadow color Available
User property Not available
Spell checking (syntax & grammar on or
off) Not available

Appearance Not available

Style sheet Not imported (styles are imported but style sheets are not
available)

Paragraph properties

4D Write plug-in 4D Write Pro
Justification Available
Interline Available
Bullet Available
Left margin Available
Right margin Available
Text indent Available
Border line style Available
Border line color Available
Border back color Available
Left border Available
Right border Available
Top border & top inside border Available
Bottom border & bottom inside border Available
Border spacing Available
Style Sheet Available
Tabulations Available

Hyperlinks
4D Write plug-in 4D Write Pro
URL link Available
4D method link Not available
Open document link Not available

4D expressions
4D Write plug-in 4D Write Pro
4D expression Available
Date & Time Available
HTML expression Not available
RTF expression Not available

Text data
4D Write plug-in 4D Write Pro
Main text data Available
Header text data Not available
Footer text data Not available

 WP Import document

WP Import document (filePath) -> Function result

Parameter Type Description
filePath String Path to a 4D Write document (.4w7 or .4wt)

or a 4D Write Pro document (.4wp)
Function result Object 4D Write Pro object

Description

The WP Import document command converts an existing 4D Write Pro or 4D Write document (.4wp, .4w7 or
.4wt) to a new 4D Write Pro object.
In the filePath parameter, pass the path of a document stored on disk. The following types of documents are
supported:

former 4D Write documents (.4w7 or .4wt). For a detailed list of 4D Write features that are currently
supported in 4D Write Pro objects, please refer to the Importing 4D Write documents section.
4D Write Pro (.4wp) format documents. For more information about the 4D Write Pro document format, refer
to .4wp document format.

You must pass a complete path, unless the document is located at the same level as the structure file, in which case
you can just pass its name.
After execution, the command returns the 4D Write Pro object resulting from this conversion.
Note: If you want to import a document stored in a 4D BLOB field, you can also consider using the WP New
command.
An error is returned if the filePath parameter is invalid, or if the file is missing or the file format is not supported.

Example

 C_OBJECT(WPDoc)
 WPDoc:=WP Import document("C:\\documents\\4DWriteDocs\\Letter.4w7")

 ST SET OPTIONS

ST SET OPTIONS ({* ;} object ; option ; value {; option2 ; value2 ; ... ; optionN ; valueN})

Parameter Type Description
* Operator If specified, object is an object name (string) If omitted, object is a field or variable
object Form object Object name (if * is specified) or Field or variable (if * is omitted)
option Longint Option to set
value Longint New value of option

Description

The ST SET OPTIONS command modifies one or more operating options for the styled text field or variable
designated by the object parameter.
Passing the optional * parameter indicates that the object parameter is an object name (string). If you do not pass
this parameter, it indicates that the object parameter is a field or variable. In this case, you pass a field or variable
reference instead of a string (field or variable object only).
Pass the code of the option to modify in option and its new value in value.
The option parameter supports the following constant found in the "Multistyle Text" theme:

Constant Type Value Comment
ST Expressions display mode Longint 1 The value parameter can contain ST Values or ST References

In the value parameter, you can pass one of the following constants:

Constant Type Value Comment
ST References Longint 1 Display source strings of expressions
ST Values Longint 0 Display computed values of expressions

Display of values:

Display of expressions:

Example

The following code lets you switch the display mode of the area:

 ST GET OPTIONS(*;"StyledText_t";ST Expressions display mode;$exprValue)
 If($exprValue=1)
 ST SET OPTIONS(*;"StyledText_t";ST Expressions display mode;ST Values)
 Else
 ST SET OPTIONS(*;"StyledText_t";ST Expressions display mode;ST References)
 End if

 4D Write Pro Language

 About 4D Write Pro objects
 Using commands from the Objects (Forms) theme
 Using commands from the Styled Text theme
 Accessing document contents by programming
 WP CREATE BOOKMARK New 16.0
 WP DELETE BOOKMARK New 16.0
 WP EXPORT DOCUMENT
 WP EXPORT VARIABLE
 WP GET ATTRIBUTES
 WP Get bookmark range New 16.0
 WP GET BOOKMARKS New 16.0
 WP Get page count New 16.0
 WP Get paragraphs
 WP Get pictures
 WP Get range
 WP Get selection
 WP Import document
 WP INSERT BREAK New 16.0
 WP INSERT DOCUMENT New 16.0
 WP INSERT PICTURE New 16.0
 WP Is font style supported
 WP New Updated 16.0
 WP PRINT Updated 16.0
 WP RESET ATTRIBUTES
 WP SELECT
 WP SET ATTRIBUTES
 WP USE PAGE SETUP
 4D Write Pro Constants
 4D Write Pro Attributes

 About 4D Write Pro objects

4D Write Pro objects

In 4D applications, 4D Write Pro documents are handled using Object type variables (for more information, refer to
the C_OBJECT command).
Once referenced in memory, a 4D Write Pro object can be:

displayed and modified through a 4D form using the form object named "Write Pro Area," provided that the
form area has the same name as the object variable (see Defining a 4D Write Pro area).
handled programmatically by commands from several themes (see below).
exported to an HTML document on disk using the WP EXPORT DOCUMENT command.

Commands that handle 4D Write Pro objects

You can handle 4D Write Pro objects using 4D commands from several themes:

Dedicated commands from the 4D Write Pro theme; these commands are described in this chapter.
Objects (Forms) commands, to address formatting and object property features; for more information,
please refer to the Using commands from the Objects (Forms) theme section.
Styled Text commands, to address content features; for more information, please refer to the Using
commands from the Styled Text theme section.

 Using commands from the Objects (Forms) theme

The following commands support 4D Write Pro form objects:

Command Comments
OBJECT DUPLICATE
OBJECT Get auto spellcheck/OBJECT SET
AUTO SPELLCHECK
OBJECT Get border style/OBJECT SET
BORDER STYLE
OBJECT Get context menu/OBJECT SET
CONTEXT MENU
OBJECT GET COORDINATES/OBJECT SET
COORDINATES
OBJECT Get data source/OBJECT SET DATA
SOURCE
OBJECT GET DRAG AND DROP
OPTIONS/OBJECT SET DRAG AND DROP
OPTIONS
OBJECT Get enabled/OBJECT SET ENABLED
OBJECT Get enterable/OBJECT SET
ENTERABLE
OBJECT GET EVENTS/OBJECT SET EVENTS
OBJECT Get focus rectangle
invisible/OBJECT SET FOCUS RECTANGLE
INVISIBLE
OBJECT Get font/OBJECT SET FONT Applied to current selection (if any)
OBJECT Get font size/OBJECT SET FONT
SIZE Applied to current selection (if any)

OBJECT Get font style/OBJECT SET FONT
STYLE Applied to current selection (if any)

OBJECT Get horizontal alignment/OBJECT
SET HORIZONTAL ALIGNMENT

Applied to current selection (if any). Support of the wk justify
constant for 4D Write Pro areas

OBJECT GET RESIZING OPTIONS/OBJECT
SET RESIZING OPTIONS
OBJECT SET COLOR Applied to current selection (if any)
OBJECT GET RGB COLORS/OBJECT SET RGB
COLORS Applied to current selection (if any)

OBJECT Get type
OBJECT Get vertical alignment/OBJECT SET
VERTICAL ALIGNMENT

Vertical alignment of paragraphs: only has an effect when
paragraph height is greater than paragraph text height

OBJECT Get visible/OBJECT SET VISIBLE
OBJECT Is styled text Returns true
OBJECT MOVE
OBJECT GET SCROLL POSITION/OBJECT
SET SCROLL POSITION
OBJECT GET SUBFORM CONTAINER SIZE
OBJECT Get name
OBJECT Get pointer

Any OBJECT commands not listed above are not applicable to 4D Write Pro areas.

Example

You want to set the horizontal alignment of a 4D Write Pro area to the center:

 Case of
 :(Form event=On Clicked)
 OBJECT SET HORIZONTAL ALIGNMENT(*;"myObject";Align center)
 hAlignLeft:=0 //store property for next display
 hAlignRight:=0
 End case

 Using commands from the Styled Text theme

The following commands support 4D Write Pro objects:
Command Comments
ST COMPUTE
EXPRESSIONS
ST FREEZE
EXPRESSIONS
ST GET
ATTRIBUTES/ST
SET ATTRIBUTES
ST Get content
type A new type (6) has been added for the image content type

ST Get
expression / ST
INSERT
EXPRESSION

Starting with 4D v16, expressions are filtered by default in 4D Write Pro documents and
must be explicitely allowed. For more information, refer to the Filter expressions
contained in a 4D Write Pro document section.

ST GET
OPTIONS/ST SET
OPTIONS
ST Get plain
text/ST SET
PLAIN TEXT
ST Get text / ST
SET TEXT
ST GET URL / ST
INSERT URL

Example

You want to replace the selection in a 4D Write Pro area with the contents of a variable:

 C_TEXT(fullName)

 Case of
 :(Form event=On Clicked)
 ST INSERT EXPRESSION(myArea;"fullName";ST Start highlight;ST End highlight)
 End case

Inserting document and page expressions

You can insert special expressions related to document attributes or page attributes using the ST INSERT
EXPRESSION command.

Expression
syntax

Availability Type Description

$wp_title
all parts in the
document

Text Title defined in wk title attribute

$wp_author
all parts in the
document

Text Author defined in wk author attribute

$wp_subject all parts in the
document Text Subject defined in wk subject attribute

$wp_company all parts in the
document Text Company defined in wk company attribute

$wp_notes all parts in the
document Text Notes defined in wk notes attribute

$wp_dateCreation all parts in the
document Date Date creation defined in wk date creation attribute

$wp_dateModified all parts in the
document Date Date modified defined in wk date modified attribute

$wp_pageNumber
Header & footer -
error everywhere
else

Longint
Page number as it is defined: from the document start
(default) or from the section page start if it is defined by
section page start

$wp_pageCount
Header & footer -
error everywhere
else

LongInt Page count : total count of pages

To insert an expression, make sure the cursor is located in the appropriate area (header, footer, or document
body) and call the ST INSERT EXPRESSION command. For example, to insert the page number in the selected
footer area:

 ST INSERT EXPRESSION(*;"4DWPArea";"$wp_pageNumber")

The following document design can be defined, for example:

 Accessing document contents by programming

4D Write Pro provides a full set of commands allowing you to modify text and image attributes in your documents.
Thanks to these features, 4D developers can design their own user interfaces (using buttons, menus, check boxes,
etc.) for 4D Write Pro documents. Commands can be applied to whole documents or to specific portions (ranges),
either based on user selections or custom values. Available properties include document units, margins, padding,
background, paragraph settings, colors, fonts, font styles, as well as image properties.
For example, the 4D Write Pro area library object makes extensive use of these features to provide a
sophisticated 4D Write Pro interface:

Selection range commands

Several commands are dedicated to handling selections in the documents. Since selected text can contain (invisible)
formatting tags, 4D Write Pro works with ranges. A range is an object that represents a portion of a 4D Write
document.

WP Get range(wpArea ; startRange ; endRange) -> rangeObj: returns a new range corresponding to
boundaries you passed as parameters.
WP Get selection({*;} wpArea) -> rangeObj: returns a new range corresponding to the current user
selection.
WP Get pictures(rangeObj) -> rangeObj: returns a new range containing only the pictures.
WP Get paragraphs(rangeObj) -> rangeObj: returns a new range containing only the paragraphs.
WP SELECT({*;} wpArea {; rangeObj}{; startRange ; endRange}): selects the text corresponding to the
range.

Bookmark commands

4D Write Pro allows you to create and work with dynamic references to parts of your documents, called
bookmarks. A bookmark is a named reference attached to a specific range in a 4D Write Pro document.
Bookmarks are dynamic, which means that if the user moves, adds or removes text belonging to the bookmark,
the associated range will be updated automatically and the bookmark will continue to reference the same content
within the document. For example:

You create a bookmark named "MyBM" that references the "Hello world" text on page 20 of your document.
Then you insert 50 pages at the beginning of the document.
You will still be able to access the same "Hello world" text automatically, now on page 70 of the document, by
means of the "MyBM" bookmark.

A document can contain an unlimited number of bookmarks. Several bookmarks can reference the same range,
and bookmark ranges can be interleaved. However, each bookmark name must be unique in the document.
Bookmarks are not imported when using the MissingRef or WP New command (bookmarks in the destination
document cannot be overwritten).
Once created, a bookmark is stored within the document. It is saved with the document, and can be handled by
several different commands. It can also be used to reference parts of a template document. These parts can then
be assembled automatically with data from the database to produce dynamic output documents such as invoices or
catalogs.
Several commands allow you to create, remove, and use bookmarks:

WP CREATE BOOKMARK to create a new bookmark from a range,
to get all bookmarks defined in a document,
WP Get bookmark range to retrieve a range from an existing bookmark,
WP DELETE BOOKMARK to delete a bookmark.

Attribute handling commands

The following commands can get or set any attributes of the document:

WP SET ATTRIBUTES(rangeObj | wpDoc ; attribName ; attribValue {; attribName2 ; attribValue2 ; ... ;
attribNameN ; attribValueN}): sets one or more attribute/value pairs in the document or range.
WP GET ATTRIBUTES(rangeObj | wpDoc ; attribName ; attribValue {; attribName2 ; attribValue2 ; ... ;
attribNameN ; attribValueN}): gets the current value of attributes in the document or range.
WP RESET ATTRIBUTES(rangeObj ; attribName {; attribName2 ; ... ; attribNameN }): resets attribute
values in the document or range.

Attributes are detailed in the 4D Write Pro Attributes section.

Font handling command

This command allows you to get information about style support for a range:

WP Is font style supported(rangeObj ; wpFontStyle) -> true or false: allows you to know if a range
supports a given style (useful to design an interface).

 WP CREATE BOOKMARK

WP CREATE BOOKMARK (rangeObj ; bkName)

Parameter Type Description
rangeObj Object 4D Write Pro range
bkName String Name of bookmark to create

Description

The WP CREATE BOOKMARK command creates a new bookmark named bkName based upon the 4D Write Pro
rangeObj in the range's parent document.
Bookmarks are named references to ranges, which allow you to access and reuse specific parts of the document,
for example for templating purposes. For more information, please refer to the section.
In bkName, pass the name for the new bookmark. A bookmark name must be compliant with HTML/CSS names,
i.e. it must only contain alphanumeric characters (invalid characters, such as space characters, are automatically
removed). Bookmark names must be unique within the document. If a bookmark with the same name already
exists in the document, it is overwritten.
You can create as many bookmarks as you want within the same document. Multiple bookmarks can be created
using the exact same range. Once created, a bookmark is automatically stored in the parent document and is saved
with the document itself.

Example 1

You want to create a new bookmark referencing the currently selected text in the document. You can write:

 C_OBJECT($range)
 $range:=WP Get selection(*;"WPDocument")
 WP CREATE BOOKMARK($range;"my_bookmark")

Example 2

You want to rename an existing bookmark. To do this, you need to create a new bookmark with the same range,
and then delete the old one:

 C_TEXT($bookmarkOldName)
 C_TEXT($bookmarkNewName)
 C_LONGINT($p)
 C_OBJECT($wpRange)

 $bookmarkOldName:="MyBookmark"
 $bookmarkNewName:="MyNewBookmark"

 ARRAY TEXT($_bookmarks;0)
 WP GET BOOKMARKS(WParea;$_bookmarks)

 $p:=Find in array($_bookmarks;$bookmarkOldName)
 If($p>0)
 $wpRange:=WP Get bookmark range(WParea;$bookmarkOldName)
 WP DELETE BOOKMARK(WParea;$bookmarkOldName)
 WP CREATE BOOKMARK($wpRange;$bookmarkNewName)
 End if

 WP DELETE BOOKMARK

WP DELETE BOOKMARK (wpDoc ; bkName)

Parameter Type Description
wpDoc Object 4D Write Pro document
bkName String Name of bookmark to delete

Description

The WP DELETE BOOKMARK command removes the bookmark named bkName from wpDoc.
If the bkName bookmark does not exist in wpDoc, the command does nothing.

Example

You want to rename an existing bookmark. To do this, you need to create a new bookmark with the same range,
and then delete the old one:

 C_TEXT($bookmarkOldName)
 C_TEXT($bookmarkNewName)
 C_LONGINT($p)
 C_OBJECT($wpRange)

 $bookmarkOldName:="MyBookmark"
 $bookmarkNewName:="MyNewBookmark"

 ARRAY TEXT($_bookmarks;0)
 WP GET BOOKMARKS(WParea;$_bookmarks)

 $p:=Find in array($_bookmarks;$bookmarkOldName)
 If($p>0)
 $wpRange:=WP Get bookmark range(WParea;$bookmarkOldName)
 WP DELETE BOOKMARK(WParea;$bookmarkOldName)
 WP CREATE BOOKMARK($wpRange;$bookmarkNewName)
 End if

 WP EXPORT VARIABLE

WP EXPORT VARIABLE (wpDoc ; destination ; format {; option})

Parameter Type Description
wpDoc Object 4D Write Pro variable
destination Text variable, BLOB variable Variable to receive exported contents
format Longint Variable output format
option Longint, String Export options

Description

The WP EXPORT VARIABLE command exports the wpDoc 4D Write Pro object to the 4D destination variable in
the specified format.
In wpDoc, pass the 4D Write Pro object that you want to export.
In destination, pass the variable that you want to fill with the exported 4D Write Pro object. The type of this
variable depends on the export format specified in the format parameter:

If you pass the native .4wp format, the variable will be of the Blob type,
If you pass an HTML format, the variable will be of the Text type.

In the format parameter, pass a constant from the 4D Write Pro Constants theme to set the export format you
want to use. Each format is related to a specific use. The following formats are supported:

Constant Type Value Comment

wk 4wp Longint 4

The 4D Write Pro document is saved in a native archive format (zipped HTML and
images saved in a separate folder). 4D specific tags are included and 4D
expressions are not computed. This format is particularly suitable for saving and
archiving 4D Write Pro documents on disk without any loss.

wk mime
html Longint 1

4D Write Pro document is saved as standard MIME HTML with HTML documents
and images embedded as MIME parts (encoded in base64). Expressions are
computed and 4D specific tags are removed. This format is particularly suitable
for sending HTML emails with the SMTP_QuickSend command.

wk web
page
html 4D

Longint 3
4D Write Pro document is saved as HTML and includes 4D specific tags; each
expression is inserted as a non-breaking space. Since this format is lossless, it is
appropriate for storing purposes in a text field.

Notes:

"4D specific tags" means 4D XHTML with a 4D namespace and 4D CSS styles.
Expressions can be frozen at any time before export using ST FREEZE EXPRESSIONS.
For more information about the 4D Write Pro document format, refer to .4wp document format.

In the options parameter, you pass options that will configure the export. You can pass either:

a longint value to define the style of the HTML code; the following constants are available:

Constant Type Value Comment
wk html debug Longint 1 Formatted HTML code ("pretty print"), easier to debug
wk normal Longint 0 Standard HTML code

HTML debug option off (default):

HTML debug option on:

or a string. The following property is supported (only when the wk mime html format is used):
CID host domain name: host domain that will added to generated CID URLs including an '@' as
separator. For instance, if you pass "gmail.com", '123@gmail.com' will be inserted if the CID unique ID is
123. By default if omitted, only the CID unique ID is used (accepted by most mail servers).

Example

You want to send an email containing styled text, 4D references and images. You can use a 4D Write Pro area
exported in MIME HTML format and sent using 4D Internet Commands:

 C_LONGINT($smtpid_l;$err_l;$smtpOption_l;$smtpPort_l)
 C_TEXT($str;$emailBody_t;$smtpHost_t;$emailTo_t;$emailFrom_t;$smtpPass_t)

 //export area in appropriate format
 WP EXPORT VARIABLE(myWPArea;$str;wk mime html)
 $emailTo_t:="johnsmith@4d.com"
 $emailFrom_t:="testWritePro@gmail.com"
 $emailBody_t:=$str
 $smtpHost_t:="smtp.gmail.com"
 $smtpOption_l:=9
 $smtpPort_l:=465
 $smtpPass_t:="QRN_on_bretzelburg"

 $err_l:=SMTP_QuickSend($smtpHost_t;$emailFrom_t;$emailTo_t;$emailTitle_t;\
 $emailBody_t;$smtpOption_l;$smtpPort_l;$smtpUser_t;$smtpPass_t)

 If(($err_l=0))
 ALERT("Email sent to "+emailTo_t)
 Else
 ALERT("Error in parameters, please try again.")
 End if

 WP GET ATTRIBUTES

WP GET ATTRIBUTES (rangeObj | wpDoc ; attribName ; attribValue {; attribName2 ; attribValue2 ; ... ;
attribNameN ; attribValueN})

Parameter Type Description
rangeObj | wpDoc Object 4D Write Pro range or document
attribName String Name of attribute to get
attribValue String, Real, Boolean, Array Current value of attribute for text range

Description

The WP GET ATTRIBUTES command returns the value of any attribute in a 4D Write Pro range or document. This
command gives you access to any kind of 4D Write Pro internal attributes: character, paragraph, document, or
image.
In the first parameter, you can pass either a 4D Write Pro range object (rangeObj) or a 4D Write document
reference (wpDoc). A rangeObj is a part of a 4D Write Pro document that can be created by different commands.
The following table provides the scope of the WP GET ATTRIBUTES command depending on the target object
parameter and the attributes:

Parameter
Common attributes
(except
"verticalAlign")

Document-
only
attributes

Paragraph-only
attributes

Character-only
attributes (and
"verticalAlign")

rangeObj from WP Get
paragraphs paragraphs document paragraphs paragraphs

rangeObj from WP Get
pictures images document - -

rangeObj from WP Get
range or WP Get
selection

paragraphs for the
range document

paragraphs for the
range (intersecting
paragraphs)

characters for the
range

wpDoc document document paragraphs for all the
document

characters for all the
document

Common attributes (such as "margin", "padding", etc.) mean common to the document, paragraphs, and/or
images.
For a comprehensive list of attributes to pass in attribName, as well as their respective values, please refer to the
4D Write Pro Attributes section.
If there are different values for the same attribute in the range or document passed as a parameter, the command
returns:

for numerical values, wk mixed
for an array, an empty array (tab stops, color if attribValue is defined as array), with an exception for wk text
shadow offset for which the array value will always contain 2 entries which may be set separately to wk mixed
if either horizontal offset or vertical offset (or both) are mixed.
for string values, an empty string
for picture values, an empty picture.

Example

You want to get the background color of the selected area:

 $range:=WP Get selection(*;"WParea")
 WP GET ATTRIBUTES($range;wk background color;$bcol)

 WP Get bookmark range

WP Get bookmark range (wpDoc ; bkName) -> Function result

Parameter Type Description
wpDoc Object 4D Write Pro document
bkName Text Name of bookmark whose range you want to get
Function result Object Range of bookmark

Description

The WP Get bookmark range command returns a text range object (rangeObj) containing the range for the
bookmark with the specified bkName in wpDoc.
If the bkName bookmark does not exist in wpDoc, an empty rangeObj object is returned.

Example

You want to show the range of the "MyBookmark" bookmark in your document:

 C_OBJECT($wpRange)
 $wpRange:=WP Get bookmark range(WParea;"MyBookmark")
 WP SELECT(WParea;$wpRange)

 WP GET BOOKMARKS

WP GET BOOKMARKS (wpDoc ; arrBKNames)

Parameter Type Description
wpDoc Object 4D Write Pro document
arrBKNames Text array Array of bookmark names

Description

The WP GET BOOKMARKS command returns an array containing the names of all bookmarks defined in wpDoc.
After the command is executed, the arrBKNames is filled with all the bookmark names in the document. In the
array, names are sorted by bookmark position inside the document. If several bookmarks begin at the same
position, they are sorted in alphabetical order.

Example

You want to know the number of bookmarks defined in your document:

 ARRAY TEXT($_bookmarks;0)
 WP GET BOOKMARKS(WParea;$_bookmarks)
 ALERT("The document contains "+Size of array($_bookmarks)+" bookmarks.")

 WP Get page count

WP Get page count (wpDoc) -> Function result

Parameter Type Description
wpDoc Object 4D Write Pro document
Function result Longint Number of pages in document

Description

The WP Get page count command returns the total number of pages defined in the wpDoc 4D Write Pro
document.

Example

You want to know the total number of 4D Write Pro document pages stored in the "Manual" field within the current
selection of items. You can write:

 C_LONGINT($pageCount)
 C_LONGINT($totalCount)
 FIRST RECORD([Items])
 While(Not(End selection([Items]))
 $pageCount:=WP Get page count([Items]Manual)
 $totalCount:=$totalCount+$pageCount
 NEXT RECORD([Items])
 End while
 ALERT("Total number of manual pages: "+String($totalCount))

 WP Get paragraphs

WP Get paragraphs (rangeObj) -> Function result

Parameter Type Description
rangeObj Object Range from which to get paragraphs
Function result Object Range addressing only paragraphs

Description

The WP Get paragraphs command returns a specific range object that addresses only the paragraphs contained
in the rangeObj you passed as parameter. The paragraph range object returned must be used by WP GET
ATTRIBUTES and WP SET ATTRIBUTES to handle paragraph attributes only.
In rangeObj, pass a valid 4D Write Pro standard range object. A rangeObj is a part of a 4D Write Pro document; it
can be created by the WP Get selection or WP Get range command.

Example

You want to define padding for the paragraphs only:

 $oParagraphs:=WP Get paragraphs($oSelection)
 WP SET ATTRIBUTES($oParagraphs;wk padding;20)

 WP Get pictures

WP Get pictures (rangeObj) -> Function result

Parameter Type Description
rangeObj Object Range from which to get pictures
Function result Object Range object containing pictures only

Description

The WP Get pictures command returns a specific range object that addresses only the pictures contained in the
rangeObj you passed as parameter. The image range object returned must be used by WP GET ATTRIBUTES and
WP SET ATTRIBUTES to handle picture attributes only.
In rangeObj, pass a valid 4D Write Pro standard range object. A rangeObj is a part of a 4D Write Pro document; it
can be created by the WP Get selection or WP Get range command.

Example

You want to change the border color of pictures only:

 $oPicts:=WP Get pictures($oSelection)
 WP SET ATTRIBUTES($oPicts;wk border color;"blue")

 WP Get range

WP Get range (wpArea ; startRange ; endRange) -> Function result

Parameter Type Description
wpArea Object 4D Write Pro object variable or field
startRange Longint Starting offset of range in the area
endRange Longint Ending offset of range in the area
Function result Object Range object

Description

The WP Get range command returns a new text range object (rangeObj) containing the selection between
startRange and endRange in the wpArea 4D Write Pro area.
Pass a 4D Write Pro object variable or field in wpArea. If no valid 4D Write Pro area is passed in the wpArea
parameter, an empty rangeObj is returned.
In startRange and endRange, pass values corresponding to the position of the first and last characters to select in
the document. You can pass wk start text in startRange to define the beginning of the document, and wk end text
in endRange to define the end of the document. Keep in mind that a 4D Write Pro document not only contains
visible text but also formatting tags that are included in the range.
The command returns a new rangeObj. A rangeObj is a 4D Write Pro text range object which can be used to handle
attributes on a text selection (with the new WP GET ATTRIBUTES and WP SET ATTRIBUTES commands). It
contains 3 private read-only attributes (wk range start, wk range end and wk range owner) that are used to
defined the range itself.

Example

You want to select a range of 12 characters starting from the beginning of the 4D Write Pro field. The field is
displayed in a form object:

If you execute:

 $range2:=WP Get range([SAMPLE]WP;wk start text;12)
 WP SELECT(*;"WParea";$range2)

...the result is:

 WP Get selection

WP Get selection ({* ;} wpArea) -> Function result

Parameter Type Description
* Operator If specified, wpArea is a form object name (string). If omitted, wpArea is an object field or

variable.
wpArea String,

Object
Form object name (if * is specified) or 4D Write Pro object variable or field (if * is omitted)

Function
result

Object Range object

Description

The WP Get selection command returns a new text range object (rangeObj) based upon the currently selected
text in the wpArea 4D Write Pro area.
If you pass the optional * parameter, you indicate that wpArea is a form object name (string). If you do not pass
this parameter, you indicate that wpArea is a 4D Write Pro object variable or field. If no valid 4D Write Pro area is
passed in the wpArea parameter, an empty rangeObj is returned.
This command returns a new rangeObj. A rangeObj is a 4D Write Pro text range object which can be used to
handle attributes on a text selection (with the new WP GET ATTRIBUTES and WP SET ATTRIBUTES commands).
It contains 3 private read-only attributes (wk range start, wk range end and wk range owner) that are used to
defined the range itself.

Example

You want to get the selected text from a 4D Write Pro area:

 $range:=WP Get selection(*;"WParea")

 WP INSERT BREAK

WP INSERT BREAK (rangeObj ; breakType ; mode {; rangeUpdate})

Parameter Type Description
rangeObj Object 4D Write Pro range object
breakType Longint Type of break to insert
mode Longint Insertion mode
rangeUpdate Longint Range update mode

Description

The WP INSERT BREAK command inserts a new break of the breakType type in the rangeObj range according to
the specified insertion mode and rangeUpdate parameter.
In rangeObj, pass a valid 4D Write Pro standard range object. A rangeObj is a part of a 4D Write Pro document; it
can be created using the WP Get selection, WP Get bookmark range or WP Get range commands.
In breakType, pass one of the following constants from the 4D Write Pro Constants theme to define the type of
break to insert:

Constant Type Value Comment
wk line break Longint 0 Line break (in the same paragraph)
wk page break Longint 2 Page break: defines a new page
wk section break Longint 1 Section break: defines a new section

In the mode parameter, pass a constant to indicate the insertion mode to be used for the break in the destination
rangeObj range:

Constant Type Value Comment

wk append Longint 2 Insert contents at end of range
wk prepend Longint 1 Insert contents at beginning of range
wk replace Longint 0 Replace range contents

In the optional rangeUpdate parameter, you can pass one of the following constants to specify whether or not the
inserted contents are included in the resulting range:

Constant Type Value Comment
wk exclude from range Longint 1 Inserted contents not included in updated range
wk include in range Longint 0 Inserted contents included in updated range (default)

If you do not pass the rangeUpdate parameter, by default the inserted contents are included in the resulting range.

Example

While building invoices, you want to insert page breaks except on the last page:

 $nbInvoices:=Records in selection([INVOICE])
 For($j;1;$nbInvoices)
 ... //processing invoices
 If($j#command_5$nbInvoices) //insert page break except for last page
 WP INSERT BREAK($buildRange;wk page break;wk append;wk exclude from range)
 End if
 End for

 WP INSERT DOCUMENT

WP INSERT DOCUMENT (rangeObj ; wpDoc ; mode {; rangeUpdate})

Parameter Type Description
rangeObj Object 4D Write Pro target range
wpDoc Object 4D Write Pro document to insert
mode Longint Insertion mode
rangeUpdate Longint Range update mode

Description

The WP INSERT DOCUMENT command inserts the wpDoc document in the rangeObj range according to the
specified insertion mode and rangeUpdate parameter.
In rangeObj, pass a valid 4D Write Pro standard range object. A rangeObj is a part of a 4D Write Pro document; it
can be created using the WP Get selection, WP Get bookmark range or WP Get range commands.
The inserted wpDoc document can be any 4D Write Pro document object created using the WP New or WP
Import document command. Only the body children elements are inserted (sections and bookmarks in the
destination range are preserved). In addition, the elements are copied, so wpDoc can be re-used several times.
In the mode parameter, pass one or a combination of the following constants from the 4D Write Pro Constants
theme to indicate the insertion mode to be used for the document in the destination rangeObj range:

Constant Type Value Comment
wk append Longint 2 Insert contents at end of range
wk prepend Longint 1 Insert contents at beginning of range
wk replace Longint 0 Replace range contents

You can combine one of the previous constants with the following insertion options:

Constant Type Value Comment

wk freeze expressions Longint 64 Freeze expressions at the moment of the insertion
wk inherit style from
paragraph Longint 32 Inserted contents inherits character style from the paragraph

default character style.
wk keep paragraph styles Longint 128 Keep destination paragraph styles

In the optional rangeUpdate parameter, you can pass one of the following constants to specify whether or not the
inserted contents are included in the resulting range:

Constant Type Value Comment
wk exclude from range Longint 1 Inserted contents not included in updated range
wk include in range Longint 0 Inserted contents included in updated range (default)

If you do not pass a rangeUpdate parameter, by default the inserted contents are included in the resulting range.

Example 1

You want to replace the contents of a document by the text selected in another one:

 $tempRange:=WP Get selection(WPTemplate) //we retrieve the user selection in the WPTemplate
document
 $doctoCopy:=WP New($tempRange) //create a new document based on WPTemplate
 WP INSERT DOCUMENT(WPDoc;$doctoCopy;wk replace) //replace contents of WPDoc by the contents of
the new document

Example 2

You have defined a template document with different preformatted parts, each of them being stored as a
bookmark. When producing a final document from the template, you can extract any bookmark as a new document
and insert it in the final document.

 ARRAY TEXT($_BookmarkNames;0)
 WP GET BOOKMARKS([TEMPLATES]WP;$_BookmarkNames) //get the bookmarks from the template
 $targetRange:=WP New //create an empty document (will be the final document)

 $p:=Find in array($_BookmarkNames;"Main_Header") //handle the main header part
 If($p>0)
 $Range:=WP Get bookmark range(WParea;$_BookmarkNames{$p}) //select the range
 $RangeDoc:=WP New($Range) //create a new document from the range
 WP INSERT DOCUMENT($targetRange;$RangeDoc;wk append+wk freeze expressions) //wk append=after
replacement, $targetRange is equal to end of replaced text
 End if

 WP INSERT PICTURE

WP INSERT PICTURE (rangeObj ; picture ; mode {; rangeUpdate})

Parameter Type Description
rangeObj Object Range object
picture Picture, String Picture field or variable, or path to picture file on disk
mode Longint Insertion mode
rangeUpdate Longint Range update mode

Description

The WP INSERT PICTURE command inserts the picture in the rangeObj according to the specified insertion mode
and rangeUpdate parameter. The picture will be inserted as a character in the rangeObj.
In rangeObj, pass a valid 4D Write Pro standard range object. A rangeObj is a part of a 4D Write Pro document; it
can be created using the WP Get selection, WP Get bookmark range or WP Get range commands.
In picture, you can pass:

either a 4D picture field or variable,
or a string containing a path to a picture file stored on disk, expressed using the system syntax.
If you use a string, you can pass either a full pathname, or a pathname relative to the database structure file.
You can also pass a file name, in which case the file must be located next to the database structure file. If you
pass a file name, you need to indicate the file extension.

Any picture format supported by 4D can be used (see the Pictures section). You can get the list of available picture
formats using the PICTURE CODEC LIST command. If the picture encapsulates several formats (codecs), 4D Write
Pro only keeps one format for display and one format for printing (if different) in the document; the "best" formats
are automatically selected.
In the mode parameter, pass one of the following constants to indicate the insertion mode to be used on the
picture in the document:

Constant Type Value Comment

wk append Longint 2 Insert contents at end of range
wk prepend Longint 1 Insert contents at beginning of range
wk replace Longint 0 Replace range contents

In the optional rangeUpdate parameter, you can pass one of the following constants to specify whether or not the
inserted picture is included in the range:

Constant Type Value Comment
wk exclude from range Longint 1 Inserted contents not included in updated range
wk include in range Longint 0 Inserted contents included in updated range (default)

If you do not pass a rangeUpdate parameter, by default the inserted picture is included in the range.

Example

In the following example, a user selects the picture they want to insert into the range object and will be warned if
this picture could not be inserted:

 C_OBJECT($wpRange)
 $wpRange:=WP Get selection([EXAMPLES]wpDoc)

 C_BOOLEAN($fail)
 $fail:=False

 //ask user to choose a picture on the disk that they want to insert
 $imgRef:=Open document("")
 //if user does not cancel
 If(OK=1)
 //if the file is a supported picture file
 If(Is picture file(document))
 // insert picture selected by user
 WP INSERT PICTURE($wpRange;document;wk replace)
 Else
 $fail:=True
 End if
 Else
 $fail:=True
 End if
 //if the insertion failed, alert the user
 If($fail)
 ALERT("Picture insertion failed")
 End if

 WP Is font style supported

WP Is font style supported (rangeObj ; wpFontStyle) -> Function result

Parameter Type Description
rangeObj Object Range object to parse
wpFontStyle Longint Font style constant: wk font bold, wk font italic, wk text underline style, wk text linethrough style
Function result Boolean True if any part of range supports wpFontStyle; False otherwise

Description

The WP Is font style supported command returns True if the wpFontStyle style is supported by any part of the
text in rangeObj.
In rangeObj, pass a valid 4D Write Pro range object. A rangeObj is a part of a 4D Write Pro document; it can be
created by the WP Get selection or WP Get range command, or WP Get paragraphs / WP Get pictures.
In wpFontStyle, pass one of the following style constants from the "4D Write Pro" constant theme:

Constant Type Value Comment

wk font
bold

String fontBold

Specifies thickness of text (depends on available font styles).
Possible values:

wk true to set selected characters to bold font style; with the
WP GET ATTRIBUTES command, wk true is returned if at
least one selected character supports a bold font style.
wk false (default) to remove the bold font style from selected
characters if any; with the WP GET ATTRIBUTES command,
wk false is returned if none of the selected characters
supports a bold font style.

wk font
italic String fontItalic

Specifies italic style of text (depends on available font styles).
Possible values:

wk true to set selected characters to italic or oblique font
style; with the WP GET ATTRIBUTES command, wk true is
returned if at least one selected character supports an italic or
oblique font style.
wk false (default) to remove the italic or oblique font style
from selected characters if any; with the WP GET
ATTRIBUTES command, wk false is returned if none of the
selected characters supports an italic or oblique font style.

wk text
linethrough
style

String textLinethroughStyle

Specifies style of text linethrough (if any). Possible values:

wk none (default): no linethrough effect
wk solid: draw a solid line on the selected text
wk dotted: draw a dotted line on the selected text
wk dashed: draw a dashed line on the selected text
wk double: draw a double line on the selected text
wk semi transparent: dimmed line on the selected text. Can
be combined with another line style.
wk word: draw a line on words only (exclude blank spaces).
Can be combined with another line style.

wk text
underline
style

String textUnderlineStyle

Specifies style of text underline (if any). Possible values:

wk none (default): no underline
wk solid: draw a solid underline
wk dotted: draw a dotted underline
wk dashed: draw a dashed underline
wk double: draw a double underline
wk semi transparent: dimmed underline. Can be combined
with another line style.
wk word: draw an underline for words only (exclude blank
spaces). Can be combined with another line style.

Typically, this command is provided to allow developers to implement custom interface objects, such as a pop-up
menu offering style options based on the selected text.

 WP New

WP New {(source)} -> Function result

Parameter Type Description
source String, BLOB, Object String: 4D HTML source,

BLOB: 4D Write Blob document (.4w7/.4wt) or 4D Write Pro document (.4wp)
Object: a 4D Write Pro object range

Function result Object 4D Write Pro object

Description

The WP New command creates and returns a 4D Write Pro object.
By default, if you omit the source parameter, the command returns an empty 4D Write Pro object.
You can also use the source parameter, in which case the new 4D Write Pro object will be filled with the contents of
the source. You can pass:

a string parameter: In this case, you pass a 4D HTML source, i.e. a text exported by WP EXPORT VARIABLE
with the wk web page html 4D option. This text can contain references (4D tags and expressions) and
embedded images.
a blob parameter: In this case, you pass either:

a 4D Write Pro (.4wp) format document stored in a BLOB. For more information about the 4D Write Pro
document format, please refer to .4wp document format.
a legacy 4D Write area loaded in a BLOB (BLOBs containing .4w7 or .4wt documents are supported). For
a detailed list of 4D Write features that are currently supported in 4D Write Pro objects, please refer to
the Importing 4D Write documents section.
If you want to import a 4D Write document (.4w7 or .4wt) stored on disk, you can also consider using
the WP Import document command.

an object parameter: In this case, you pass a 4D Write Pro range object. WP New will return a new document
created from the specified range. Note that, if the range is not equal to the full document range, only the first
section is exported and bookmarks are not exported, if any.

The returned object is a complete document that can be passed to the MissingRef command, for example.

Example 1

You want to create an empty 4D Write Pro object:

 myWPObject:=WP New

Example 2

You want to create a 4D Write Pro object containing a simple 4D expression reference:

 C_TEXT(myText)
 myText:="Today is "
 ST INSERT EXPRESSION(myText;"string(current date;System date long)";ST End text)
 myWPA:=WP New(myText)

Example 3

You want to initialize your Write Pro area with a previously-created template:

 //Export template from an existing area
 C_TEXT(wpTemplate)
 WP EXPORT VARIABLE(myWPArea;wpTemplate;wk web page html 4D)

 // use the template for a new area
 C_OBJECT(myNewWPA)
 myNewWPA:=WP New(wpTemplate)

Example 4

You want to import a 4D Write document stored in a 4D field of the current record into a new 4D Write Pro area:

 C_OBJECT(wpArea)
 wpArea=WP New([Templates]Reference_)

Example 5

You have defined a template document with different preformatted parts, each of them being stored as a
bookmark. When producing a final document from the template, you can extract any bookmark as a new document
and insert it in the final document.

 ARRAY TEXT($_BookmarkNames;0)
 WP GET BOOKMARKS([TEMPLATES]WP;$_BookmarkNames) //get the bookmarks from the template
 $targetRange:=WP New //create an empty document (will be the final document)

 $p:=Find in array($_BookmarkNames;"Main_Header") //handle the main header part
 If($p>0)
 $Range:=WP Get bookmark range(WParea;$_BookmarkNames{$p}) //select the range
 $RangeDoc:=WP New($Range) //create a new document from the range
 WP INSERT DOCUMENT($targetRange;$RangeDoc;wk append+wk freeze expressions) //wk append=after
replacement, $targetRange is equal to end of replaced text
 End if

 WP PRINT

WP PRINT (wpDoc {; printLayout})

Parameter Type Description
wpDoc Object Name of 4D Write Pro document
printLayout Longint Print layout for 4D Write Pro document: 0 (default)=4D Write Pro layout, 1=HTML WYSIWYG

Description

The WP PRINT command launches a print job for the 4D Write Pro document specified in wpDoc, or adds the
document to the current print job if it is called between OPEN PRINTING JOB and CLOSE PRINTING JOB (only
on 64-bit versions of 4D, see below). WP PRINT uses print settings defined by the 4D PRINT SETTINGS or SET
PRINT OPTION commands, except for page margins which are always based on the 4D Write Pro document page
settings. WP PRINT uses current page setup options (such as page size and orientation), or those of the
document if WP USE PAGE SETUP was called previously.
The optional printLayout parameter can be used to set the HTML WYSIWYG view for the print output. You can pass
one of the following constants from the "4D Write Pro" theme:

Constant Type Value Comment

wk 4D Write Pro
layout Longint 0 Standard 4D Write Pro layout, which can include some specific style

attributes
wk html
wysiwyg Longint 1 In this layout, any 4D Write Pro advanced attributes which are not

compliant with all browsers are removed

If printLayout is omitted, 4D Write Pro layout (0) is used by default.
Note: When printed with WP PRINT, 4D Write Pro documents are always printed as in Page view mode,
regardless of the View property setting for the area (see Configuring View properties).

Note for 32-bit versions

The WP PRINT command is supported in 4D 32-bit versions but with the following limitation: it cannot be called
within a 4D print job started with OPEN PRINTING JOB. If the command is called in a print job on a 32-bit version
of 4D, an error is returned.

Example

You want to print a 4D Write Pro document in standard or HTML wysiwyg layout depending on the value of a
variable:

 // print using a specific layout HTML wysiwyg or 4D Write Pro Layout
 If(rb_htmlwysiwyg=1)
 WP PRINT(writeProDoc;wk html wysiwyg)
 Else
 WP PRINT(writeProDoc;wk 4D Write Pro layout)
 End if

 WP RESET ATTRIBUTES

WP RESET ATTRIBUTES (rangeObj ; attribName {; attribName2 ; ... ; attribNameN})

Parameter Type Description
rangeObj Object 4D Write Pro range
attribName String Name of attribute(s) to remove

Description

The WP RESET ATTRIBUTES command allows you to reset the value of one or more attributes in the 4D Write
Pro rangeObj. This command can remove any kind of 4D Write Pro internal attribute: character, paragraph,
document, or image.
A rangeObj is a part of a 4D Write Pro document that can be created by different commands. The following table
provides the scope of the WP RESET ATTRIBUTES command depending on the target object and attributes:

Parameter
Common attributes
(except
"verticalAlign")

Document-
only
attributes

Paragraph-only
attributes

Character-only
attributes (and
"verticalAlign")

rangeObj from WP Get
paragraphs paragraphs document paragraphs paragraphs

rangeObj from WP Get
pictures images document - -

rangeObj from WP Get
range or WP Get
selection

paragraphs for the
range document

paragraphs for the
range (intersecting
paragraphs)

characters for the
range

wpDoc document document paragraphs for all the
document

characters for all the
document

When an attribute value is removed using the WP RESET ATTRIBUTES command, it is reset to the default value.
Default values are listed in the 4D Write Pro Attributes section.
If the attribute to be reset was not defined in the rangeObj, the command does nothing.

Example

You want to remove several attributes from the following selection:

You can execute:

 $range:=WP Get selection(*;"WParea")
 WP RESET ATTRIBUTES($range;wk padding)
 WP RESET ATTRIBUTES($range;wk background color)
 WP RESET ATTRIBUTES($range;wk text underline style)
 WP RESET ATTRIBUTES($range;wk margin)
 WP RESET ATTRIBUTES($range;wk border style)

The resulting document is:

 WP SELECT

WP SELECT ({* ;} wpArea {; rangeObj}{; startRange ; endRange})

Parameter Type Description
* Operator If specified, wpArea is a form object name (string). If omitted, wpArea is an object field or

variable.
wpArea String,

Object
Form object name (if * is specified) or 4D Write Pro object variable or field (if * is omitted)

rangeObj Object Range object to apply to create a selection
startRange Longint Starting offset of text range
endRange Longint Ending offset of text range

Description

The WP SELECT command creates a new text selection in the wpArea 4D Write Pro area, based upon the rangeObj
or a new range defined by startRange and endRange.
If you pass the optional * parameter, you indicate that wpArea is a form object name (string). If you do not pass
this parameter, you indicate that wpArea is a 4D Write Pro object variable or field. If no valid 4D Write Pro area is
passed in the wpArea parameter, the command does nothing.
To define the selection range, you can either pass an existing range object in rangeObj, or pass a pair of startRange
/ endRange boundaries:

First syntax: WP SELECT({* ;} wpArea ; rangeObj)
A rangeObj is a part of a 4D Write Pro document; it can be created by different commands such as WP Get
range, WP Get selection, WP Get paragraphs, or WP Get pictures.

Second syntax: WP SELECT({* ;} wpArea ; startRange ; endRange)
In this case, in startRange and endRange you pass values corresponding to the position of the first and last
characters to select in the document. You can pass wk start text in startRange to define the beginning of the
document, and wk end text in endRange to define the end of the document. Keep in mind that a 4D Write Pro
document not only contains visible text but also formatting tags that are included in the range.

Example

The following code:

 $range2:=WP Get range([SAMPLE]WP;wk start text;12)
 WP SELECT(*;"WParea";$range2)

... will have the same result as:

 WP SELECT(*;"WParea";wk start text;12)

 WP SET ATTRIBUTES

WP SET ATTRIBUTES (rangeObj | wpDoc ; attribName ; attribValue {; attribName2 ; attribValue2 ; ... ;
attribNameN ; attribValueN})

Parameter Type Description
rangeObj | wpDoc Object 4D Write Pro range or document
attribName String Name of attribute to set
attribValue String, Real, Boolean New attribute value

Description

The WP SET ATTRIBUTES command allows you to set the value of any attribute in a 4D Write Pro range or
document. This command gives you access to any kind of 4D Write Pro internal attribute: character, paragraph,
document, or image.
In the first parameter, you can pass either a 4D Write Pro range object (rangeObj) or a 4D Write document
reference (wpDoc). A rangeObj is a part of a 4D Write Pro document that can be created by different commands.
The following table provides the scope of the WP SET ATTRIBUTES command depending on the target object and
attributes:

Parameter
Common attributes
(except
"verticalAlign")

Document-
only
attributes

Paragraph-only
attributes

Character-only
attributes (and
"verticalAlign")

rangeObj from WP Get
paragraphs paragraphs document paragraphs paragraphs

rangeObj from WP Get
pictures images document - -

rangeObj from WP Get
range or WP Get
selection

paragraphs for the
range document

paragraphs for the
range (intersecting
paragraphs)

characters for the
range

wpDoc document document paragraphs for all the
document

characters for all the
document

Common attributes (such as "margin", "padding", etc.) mean common to the document, paragraphs, and/or
pictures.
For a comprehensive list of attributes to pass in attribName, as well as their respective values, please refer to the
4D Write Pro Attributes section.

Example 1

In this 4D Write Pro area, you selected a word:

If you execute the following code:

 $range:=WP Get selection(*;"WParea") //get the selected range

 // set the shadow offset in pt for the selected text
 WP SET ATTRIBUTES($range;wk text shadow offset;1)
 //set the paragraph padding
 WP SET ATTRIBUTES($range;wk padding;1)
 //define a border of 10 pt
 WP SET ATTRIBUTES($range;wk border style;wk solid)
 WP SET ATTRIBUTES($range;wk border width;10)
 //set the border colors
 WP SET ATTRIBUTES($range;wk border color;"blue")
 WP SET ATTRIBUTES($range;wk border color bottom;"#command_500FA9A") //medium green
 WP SET ATTRIBUTES($range;wk border color right;"#command_500FA9A")

You get the following result:

Example 2

This example illustrates the use of wk inside and wk outside constants:

 $wpRange:=WP Get selection(writeProdoc)
 WP SET ATTRIBUTES($wpRange;wk border style+wk inside;wk dotted)
 WP SET ATTRIBUTES($wpRange;wk border style+wk outside;wk solid)
 WP SET ATTRIBUTES($wpRange;wk border color+wk outside;"#command_500FA9A")

Assuming all of the contents were selected, the result is:

 WP USE PAGE SETUP

WP USE PAGE SETUP (wpDoc)

Parameter Type Description
wpDoc Object Name of 4D Write Pro document

Description

The WP USE PAGE SETUP command modifies the current printer page settings based on the 4D Write Pro
document attributes for page size and orientation. This command should be called just before WP PRINT in order
to synchronize the current printer page settings with the 4D Write Pro document page settings.
Other settings are defined by the 4D PRINT SETTINGS command. Current print settings are set for the whole 4D
session.

Example

Before printing a document, you want to reset its size and orientation to values stored in the document:

 WP USE PAGE SETUP(writeProDoc)

4D Write Pro Constants

Constant Type Value Comment

wk 4D Write
Pro layout

Longint 0
Standard 4D Write Pro layout, which can include some specific style
attributes

wk 4wp Longint 4

4D Write Pro document is saved in a native archive format (zipped
HTML and images saved in a separate folder). 4D specific tags are
included and 4D expressions are not computed. This format is
particularly suitable for saving and archiving 4D Write Pro
documents on disk without any loss.

wk append Longint 2 Insert contents at end of range
wk
armenian Longint 19 Traditional Armenian numbering style used (value for wk list style

type)
wk author String author Specifies name of author of the document (string)

wk auto Longint 0 Value of property (constant) to which it is applied is adjusted
automatically according to content or context of the element.

wk
background
clip

String backgroundClip

Specifies painting area of background. Possible values:

wk border box (default): background is painted to outside
edge of the border
wk content box: background is painted within the content box
wk padding box: background is painted to outside edge of the
padding (or to inside edge of the border, if any)

wk
background
color

String backgroundColor

Specifies background color of an element. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

Default for documents is "#command_5FFFFFF" and wk
transparent, or "transparent" for paragraphs and images.

wk
background
image

String backgroundImage

Specifies image to use as background. Possible values to set:

Image URL (string). Can be absolute or relative to the
structure file.
Picture variable or field.

Value returned (WP GET ATTRIBUTES): URI (network URL or data
URI). It may not be equal to the initial URL for an image not
referenced with the network URL (only network URLs are kept). For
local file URLs, the image stream itself is kept in the document and
thus the URL returned is a data URI with the image stream encoded
in base64.

wk
background
origin

String backgroundOrigin

Specifies where background image is positioned. Possible values:

wk padding box (default): background image starts at padding
(or inside border edge) rectangle
wk border box: background image starts at border (outside
edge) rectangle
wk content box: background image starts at content rectangle

wk

Specifies horizontal starting position of a background image.
Possible values:

wk left (default): background image starts horizontally on left

wk
background
position h

String backgroundPositionH
side of the element
wk center: background image starts horizontally at center of
the element
wk right: background image starts horizontally on right side of
the element

wk
background
position v

String backgroundPositionV

Specifies vertical starting position of a background image. Possible
values:

wk top (default): background image starts vertically at top of
the element
wk middle: background image starts vertically at middle of the
element
wk bottom: background image starts vertically at bottom of
the element

wk
background
repeat

String backgroundRepeat

Specifies if and how a background image is repeated. Possible
values:

wk repeat (default): background image is repeated both
vertically and horizontally
wk no repeat: background image is not repeated
wk repeat x: background image is repeated only horizontally
wk repeat y: background image is repeated only vertically

wk
background
size h

String backgroundSizeH

Specifies horizontal size of background image. Possible values:

wk auto (default): background image contains its width
wk contain: scales image to largest size so that it fits entirely in
the content area, while preserving its aspect ratio. This option
also modifies the value of the other size attribute.
wk cover: scales background image to be as large as possible
so that the background area is entirely covered by the
background image, while preserving its aspect ratio. Some
parts of the background image may be cropped. This option
also modifies the value of the other size attribute.
Defined size: background image horizontal size expressed
using a real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt. A relative
value (percentage %) is supported.

wk
background
size v

String backgroundSizeV

Specifies vertical size of background image. Possible values:

wk auto (default): background image contains its height
wk contain: scales image to largest size so that it fits entirely in
the content area, while preserving its aspect ratio. This option
also modifies the value of the other size attribute.
wk cover: scales background image to be as large as possible
so that the background area is entirely covered by the
background image, while preserving its aspect ratio. Some
parts of the background image may be cropped. This option
also modifies the value of the other size attribute.
Defined size: background image vertical size expressed using a
real or string value:

Real: Size in wk layout unit.

String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt. A relative
value (percentage %) is supported.

wk bar Longint 4 Inserts a vertical bar at tab position (value for wk tab stop types)

wk baseline Longint 4
Aligns baseline of element with baseline of parent element (value for
wk vertical align)

wk border
box Longint 0 Background is clipped to the border box (value for wk background

clip)

wk border
color String borderColor

Sets color of all four borders. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

Default is "#command_5000000" (if string value). If there are
multiple colors, WP GET ATTRIBUTES returns an empty string.

wk border
color
bottom

String borderColorBottom

Sets color of bottom border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red"). Default is "#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

wk border
color left String borderColorLeft

Sets color of left border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red"). Default is "#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

wk border
color right String borderColorRight

Sets color of right border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red"). Default is "#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

wk border
color top String borderColorTop

Sets color of top border. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red"). Default is "#command_5000000"
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

wk border
radius String borderRadius

Specifies a rounded border. Possible values:

wk none (default): the border does not have rounded angles
Radius value expressed using an integer or a string value:

Integer: Radius in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:

12pt for 12 points, or 1.5cm for 1.5 centimeters.

wk border
style String borderStyle

Specifies style of all four borders. Possible values:

wk none (default): no border
wk hidden: same as wk none, except in border conflict
resolution
wk solid: solid border
wk dotted: dotted border
wk dashed: dashed border
wk double: double border
wk groove: 3D groove border (the actual effect depends on
the border color)
wk ridge: 3D ridged border (the actual effect depends on the
border color)
wk inset: 3D inset border (the actual effect depends on the
border color)

wk border
style
bottom

String borderStyleBottom

Specifies style of bottom border. Possible values:

wk none (default): no bottom border
wk hidden: same as wk none, except in border conflict
resolution
wk solid: solid bottom border
wk dotted: dotted bottom border
wk dashed: dashed bottom border
wk double: double bottom border
wk groove: 3D groove bottom border (the actual effect
depends on the border color)
wk ridge: 3D ridged bottom border (the actual effect depends
on the border color)
wk inset: 3D inset bottom border (the actual effect depends on
the border color)

wk border
style left String borderStyleLeft

Specifies style of left border. Possible values:

wk none (default): no left border
wk hidden: same as wk none, except in border conflict
resolution
wk solid: solid left border
wk dotted: dotted left border
wk dashed: dashed left border
wk double: double left border
wk groove: 3D groove left border (the actual effect depends
on the border color)
wk ridge: 3D ridged left border (the actual effect depends on
the border color)
wk inset: 3D inset left border (the actual effect depends on the
border color)

wk border String borderStyleRight

Specifies style of right border. Possible values:

wk none (default): no right border
wk hidden: same as wk none, except in border conflict
resolution
wk solid: solid right border
wk dotted: dotted right border
wk dashed: dashed right border

style right
String borderStyleRight

wk double: double right border
wk groove: 3D groove right border (the actual effect depends
on the border color)
wk ridge: 3D ridged right border (the actual effect depends on
the border color)
wk inset: 3D inset right border (the actual effect depends on
the border color)

wk border
style top String borderStyleTop

Specifies style of top border. Possible values:

wk none (default): no top border
wk hidden: same as wk none, except in border conflict
resolution
wk solid: solid top border
wk dotted: dotted top border
wk dashed: dashed top border
wk double: double top border
wk groove: 3D groove top border (the actual effect depends
on the border color)
wk ridge: 3D ridged top border (the actual effect depends on
the border color)
wk inset: 3D inset top border (the actual effect depends on the
border color)

wk border
width String borderWidth

Specifies width of all four borders. You need to specify the border
style before setting the border width. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

Default value: 2pt

wk border
width
bottom

String borderWidthBottom

Specifies width of bottom border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

Default value: 2pt

wk border
width left String borderWidthLeft

Specifies width of left border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

Default value: 2pt

wk border
width right String borderWidthRight

Specifies width of right border. Possible values:

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

Default value: 2pt

Specifies width of top border. Possible values:

wk border
width top

String borderWidthTop

Width expressed using an integer or a string value:
Integer: Width in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

Default value: 2pt

wk bottom Longint 1
Sets position of background image (value for wk background
position v) or bottom of element aligned with lowest element on line
(value for wk vertical align)

wk
capitalize Longint 1 Transforms first character of every word to uppercase (value for wk

text transform)

wk center Longint 2 Centers text or image (value for wk background position h, wk text
align, and/or wk tab stop types)

wk circle Longint 11 Circle-shaped glyph used (value for wk list style type)
wk cjk
ideographic Longint 24 Plain ideographic numbers used (value for wk list style type)

wk club Longint 27 Club-shaped glyph used (value for wk list style type)
wk
company String company Specifies a company associated with the document (string)

wk contain Longint -1
Scales image to largest size such that its width and height fits inside
content area (value for wk background size h and/or wk
background size v)

wk content
box Longint 2

Background clipped to content box (value for wk background clip)
or background image starts from upper left corner of content (value
for wk background origin)

wk cover Longint -2
Scales background image to smallest size so that background area
is completely covered by it (value for wk background size h and/or
wk background size v)

wk custom Longint 29 Custom marker used (value for wk list style type)

wk dashed Longint 3 Dashed line used (value for wk text linethrough style and/or wk text
underline style)

wk date
creation String dateCreation Returns creation date of document (date). This value is read-only

and cannot be set.
wk date
modified String dateModified Returns last modification date of document (date). This value is

read-only and cannot be set.

wk decimal Longint 3 Decimal alignment (value for wk tab stop types) or numbers used
(value for wk list style type)

wk decimal
greek Longint 28 Greek numerals used (value for wk list style type)

wk decimal
leading
zero

Longint 13 Decimal numbers padded with initial zeros used (value for wk list
style type)

wk default Longint -1 Default value of property (constant) is used.
wk
diamond Longint 26 Diamond-shaped glyph used (value for wk list style type)

wk
direction String direction

Specifies text direction of paragraph. Possible values:

wk left to right (default)
wk right to left

wk disc Longint 10 Filled circle marker used (value for wk list style type)

wk dotted Longint 2 Dotted line or border used (value for wk border style, wk text
linethrough style and/or wk text underline style)
Double line or border used (value for wk border style, wk text

wk double Longint 4
Double line or border used (value for wk border style, wk text
linethrough style and/or wk text underline style)

wk dpi String dpi
DPI used for internal pixels <->points conversion (integer). Always
96 (read-only)

wk end text Longint 0 Sets end of document as end of text range
wk exclude
from range

Longint 1 Inserted contents not included in updated range

wk false Longint 0

wk font String font
Specifies complete font name with styles, as returned by the FONT
STYLE LIST command. If you set an invalid font name, the
command does nothing. Default value: "Times New Roman".

wk font
bold String fontBold

Specifies thickness of text (depends on available font styles).
Possible values:

wk true to set selected characters to bold font style; with the
WP GET ATTRIBUTES command, wk true is returned if at
least one selected character supports a bold font style.
wk false (default) to remove the bold font style from selected
characters if any; with the WP GET ATTRIBUTES command,
wk false is returned if none of the selected characters supports
a bold font style.

wk font
family String fontFamily

Specifies font family name as defined by wk font. Default value is
"Times New Roman".
An empty string is returned by the WP GET ATTRIBUTES
command if the selected characters contain different font family
properties.

wk font
italic String fontItalic

Specifies italic style of text (depends on available font styles).
Possible values:

wk true to set selected characters to italic or oblique font style;
with the WP GET ATTRIBUTES command, wk true is returned
if at least one selected character supports an italic or oblique
font style.
wk false (default) to remove the italic or oblique font style from
selected characters if any; with the WP GET ATTRIBUTES
command, wk false is returned if none of the selected
characters supports an italic or oblique font style.

wk font size String fontSize

Specifies font size for text. Possible values (in points only):

Real value (default = 12)
CSS string with value and unit concatenated. E.g.: 12pt for 12
points.

wk freeze
expressions Longint 64 Freeze expressions at the moment of the insertion

wk
georgian Longint 20 Traditional Georgian numbering used (value for wk list style type)

wk groove Longint 6 3D grooved border used (value for wk border style)
wk hebrew Longint 21 Traditional Hebrew numbering used (value for wk list style type)

Sets height of element. The height property does not include
padding, borders, or margins; it sets the height of the area inside
the padding, border, and margin of the element. Possible values:

wk auto (default): height is based upon the contents of the
element

wk height String height

Defined size: size expressed using real or string value:
Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt.

The wk height attribute is overridden by wk min height (if defined).

Note: In the current implementation, wk height can only be used
with pictures.

wk hidden Longint 5
No border used. Same as none (no border) except it takes
precedence over all other conflicting borders (value for wk border
style)

wk
hiragana Longint 22 Traditional Hiragana numbering used (value for wk list style type)

wk hollow
square Longint 25 Hollow square glyph used (value for wk list style type)

wk html
debug Longint 1 Formatted HTML code ("pretty print"), easier to debug

wk html
wysiwyg Longint 1 In this layout, any 4D Write Pro advanced attributes which are not

compliant with all browsers are removed

wk image String image

Specifies an image. Possible values to set:

Image URL (string). Can be absolute or relative to the
structure file.
Picture variable or field.

Value returned (WP GET ATTRIBUTES): URI (network URL or data
URI). It may not be equal to the initial URL for an image not
referenced with the network URL (only network URLs are kept). For
local file URLs, the image stream itself is kept in the document and
thus the URL returned is a data URI with the image stream encoded
in base64.

wk image
alternative
text

String imageAltText Specifies alternative text for image, if image cannot be displayed.

wk include
in range Longint 0 Inserted contents included in updated range (default)

wk inherit
style from
paragraph

Longint 32 Inserted contents inherits character style from the paragraph
default character style.

wk inset Longint 8 3D inset border used (value for wk border style)

wk inside String Inside

When the selected area contains several paragraphs, specifies that
the attribute should affect only the corresponding inter-paragraph
property (not outside). It applies only to border, padding and
margin attributes, and must be added to the specified attribute. See
example 2 of the WP SET ATTRIBUTES command.

wk justify Longint 5 Available for 4D Write Pro areas only
wk
katakana Longint 23 Traditional Katakana numbering used (value for wk list style type)

wk keep
paragraph
styles

Longint 128 Keep destination paragraph styles

Specifies unit of dimension of some attributes when value is set or

wk layout
unit

String userUnit

get as a integer or real. Possible values:

wk unit cm (default): centimeters
wk unit pt: points
wk unit px: pixels
wk unit percent (only for wk line height and wk background
size h / wk background size v)
wk unit mm: millimeters
wk unit inch: inches

wk left Longint 0
Aligns text or tab to the left (value for wk text align or wk tab stop
types) or sets starting position of background image (value for wk
background position h)

wk left to
right Longint 0 Left-to-right text/writing direction used (value for wk direction)

wk line
break Longint 0 Line break (in the same paragraph)

wk line
height String lineHeight

Specifies space between lines. Possible values:

wk normal (default): use value based upon text size
Height expressed using an integer or a string value:

Integer: height in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters. A
relative value (percentage %) is supported.

wk list auto Longint 2147483647 Restores/applies automatic list style values

wk list font String listFont

Specifies complete font name, as returned by the FONT STYLE
LIST command, to display the list item marker (but not the
paragraph text). If the system does not recognize the font name, it
handles the substitution. If you set an invalid font name, the
command does nothing. Default value: "Times".

wk list font
family String listFontFamily

Specifies font family name as defined by wk list font used to display
the list item marker (but not the paragraph text). Default value is
"Times New Roman".

wk list start
number String listStartNumber

Sets starting value of an ordered list. Possible values:

wk auto (default): starting value depends on previous list
items if any.
an integer value: starting value

wk list
string
format LTR

String listStringFormatLtr

List item marker string format for left-to-right paragraph direction.
If defined, it overrides default list item marker string format for the
list.

For unordered lists: string used as list item marker (usually a
single character string, e.g. "-")
For ordered lists: string containing the "#command_5"
character. "#command_5" is a placeholder for the computed
number or letter(s). Default is “#command_5.”, so for
instance if current list item number is 15 and list style type is
decimal, list item marker string will be "15."

wk list

List item marker string format for right-to-left paragraph direction.
If defined, it overrides default list item marker string format for the
list.

For unordered lists: string used as list item marker (usually a

wk list
string
format RTL

String listStringFormatRtl
single character string, e.g. "-")
For ordered lists: string containing the "#command_5"
character. "#command_5" is a placeholder for the computed
number or letter(s). Default is “#command_5.”, so for
instance if current list item number is 15 and list style type is
decimal, list item marker string will be "15."

wk list style
image String listStyleImage

Specifies an image as the list item marker in an unordered list.
Possible values:

wk none (default): list item marker is not defined by an image
Local file image URL (string). Can be absolute or relative to the
database resource directory

Value returned (WP GET ATTRIBUTES): URI (network URL or data
URI). It may not be equal to the initial URL for an image not
referenced with the network URL (only network URLs are kept). For
local file URLs, the image stream itself is kept in the document and
thus the URL returned is a data URI with the image stream encoded
in base64.

wk list style
image
height

String listStyleImageHeight

Sets height of image used as list item marker. Possible values:

wk auto (default): height is based upon image size
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt.

wk list style
type

String listStyleType

Specifies type of ordered or unordered list item marker. Possible
values are:

wk disc (default)
wk circle
wk square
wk decimal: 1 2 3
wk decimal leading zero: 01 02 03
wk lower latin: a b c
wk lower roman: i ii iii iv
wk upper latin: A B C
wk upper roman: I II III IV
wk lower greek: alpha, beta, gamma, etc.
wk armenian
wk georgian
wk hebrew
wk hiragana
wk katakana
wk cjk ideographic
wk hollow square
wk diamond
wk club
wk decimal greek
wk custom: unordered list with "-" as default list item marker;
this is a convenience style used in order to customize a list
item marker with wk list string format LTR or wk list string
format RTL without modifying standard list item markers
wk none

wk lower
greek Longint 18 Lowercase classical Greek used (value for wk list style type)

wk lower
latin Longint 14 Lowercase ASCII letters used (value for wk list style type)

wk lower
roman

Longint 15 Lowercase Roman numerals used (value for wk list style type)

wk
lowercase

Longint 2 Changes all characters to lowercase (value for wk text transform)

wk margin String margin

Specifies size for all margins of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific margin

wk margin
bottom String marginBottom

Specifies size for bottom margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific margin

wk margin
left

String marginLeft

Specifies size for left margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific margin

wk margin
right String marginRight

Specifies size for right margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific margin

wk margin
top

String marginTop

Specifies size for top margin of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific margin

wk middle Longint 2
Sets position of background image (value for wk background
position v) or places element in middle of parent element (value for
wk vertical align)

wk mime
html Longint 1

4D Write Pro document is saved as standard MIME HTML with HTML
documents and images embedded as MIME parts (encoded in
base64). Expressions are computed and 4D specific tags are
removed. This format is particularly suitable for sending HTML
emails with the SMTP_QuickSend command.
Sets minimum height of the element. It prevents the value of the wk
height property from becoming smaller than wk min height.

wk min
height

String minHeight

Possible values:

wk auto (default): minimum height is based upon the contents
of the element
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt.

The wk min height value overrides the wk height attribute.

Note: In the current implementation, can only be used with
pictures.

wk min
width

String minWidth

Sets minimum width of element. It prevents the value of the wk
width property from becoming smaller than wk min width. Possible
values:

wk auto (default): minimum width is based upon the contents
of the element
Defined size: size expressed using real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt.

The wk min width value overrides the wk width attribute.

Note: In the current implementation, can only be used with
pictures.

wk mixed Longint -2147483648 Returned when there are different values for an attribute in the
range or document

wk new line
style sheet String newLineStyleSheet

Specifies style sheet to use when adding a new line in the
paragraph. Possible values:

existing style sheet name
wk none (default)

wk no
repeat Longint 3

Background image will not be repeated (value for wk background
repeat)

wk none Longint 0
wk normal Longint 0 Standard HTML code
wk notes String notes Specifies comments about the document (string).
wk outset Longint 9 3D outset border used (value for wk border style)

wk outside String Outside

When the selected area contains several paragraphs, specifies that
the attribute should affect only the corresponding paragraph
external property (not inside). It applies only to border, padding
and margin attributes, and must be added to the specified attribute.
See example 2 of the WP SET ATTRIBUTES command.

wk padding String padding

Specifies size of padding for all sides of the element. Possible
values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific padding

wk padding
bottom String paddingBottom

Specifies size of padding for bottom of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific padding

wk padding
box

Longint 1
Background clipped to padding box (value for wk background clip)
or background image starts from upper left corner of padding edge
(value for wk background origin)

wk padding
left String paddingLeft

Specifies size of padding for left side of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific padding

wk padding
right String paddingRight

Specifies size of padding for right side of the element. Possible
values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific padding

wk padding
top String paddingTop

Specifies size of padding for top of the element. Possible values:

Size expressed using an integer or a string value:
Integer: size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters

wk none (default): no specific padding

wk page
break

Longint 2 Page break: defines a new page

wk prepend Longint 1 Insert contents at beginning of range
wk range
end String rangeEnd (Read-only range attribute)

wk range
owner

String rangeOwner (Read-only range attribute)

wk range
start

String rangeStart (Read-only range attribute)

wk range
type

String rangeType (Read-only range attribute) Type of 4D Write Pro range. Can be 0:
default range (Default), 1: paragraph range, 2: image range

wk repeat Longint 0
Background image repeated both vertically and horizontally (value
for wk background repeat)

wk repeat x Longint 1
Background image repeated only horizontally (value for wk
background repeat)

wk repeat y Longint 2
Background image repeated only vertically (value for wk
background repeat)

wk replace Longint 0 Replace range contents
wk ridge Longint 7 3D ridged border used (value for wk border style)

wk right Longint 1
Aligns text or tab to the right (value for wk text align or wk tab stop
types) or sets starting position of background image (value for wk
background position h)

wk right to
left Longint 1 Right-to-left direction used (value for wk direction)

wk section
break Longint 1 Section break: defines a new section

wk semi
transparent Longint 5

Semi-transparent line used (value for wk text linethrough style
and/or wk text underline style)

wk small
uppercase

Longint 4 Transforms all characters to small uppercase (value for wk text
transform)

wk solid Longint 1 Solid line or border used (value for wk border style, wk text
linethrough style and/or wk text underline style)

wk square Longint 12 Square marker used (value for wk list style type)
wk start
text Longint 1 Sets beginning of document as start of text range

wk style
sheet

String styleSheet

Specifies current style sheet for the selected element(s). Possible
values:

wk none (default)
existing style sheet name

wk subject String subject Specifies document subject (string)
wk
subscript

Longint 6 Aligns element as subscript (value for wk vertical align)

wk
superscript Longint 5 Aligns element as superscript (value for wk vertical align)

wk tab stop
offsets

String tabStopOffsets

Specifies tab stops for the paragraph. Possible values:

Scalar value (default is 35.45pt): default offset for the whole
paragraph. The WP GET ATTRIBUTES command returns the
last offset (which is the default relative offset for offsets beyond
the last absolute offset).
Array of tab values: an ordered list of absolute values, starting
from the left margin. The tab offset defined by the last value is
repeated for each additional tab character entered in the
paragraph. If the tab offset is greater than the paragraph
width, the text goes on the next line and starts from the first
tab value. If a value in the array is smaller than the previous
value, it is ignored.

Note: You cannot use arrays and scalars in the same call for
different attributes.

Values are expressed using CSS strings (default) or Real values in
wk layout unit. Maximum value is 10000pt.

wk tab stop
types

String tabStopTypes

Specifies tab stop type for the paragraph. Possible values:

wk left (default): text extends to the right from the tab stop
wk right: text extends to the left from the tab stop until the
tab's space is filled
wk center: text is centered at the tab stop
wk decimal: text before the decimal point extends to the left,
and text after the decimal point extends to the right
wk bar: a vertical line at the specified position

array of tab stop type values (if tab stops have been defined
through an array).

wk text
align String textAlign

Specifies horizontal alignment of text in the paragraph. Possible
values:

wk left (default)
wk right
wk justify
wk center

wk text
color

String color

Specifies color of text. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red"). Default is "#command_5000000" if string.
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

wk text
indent

String textIndent

Specifies indentation of first line in the paragraph. Possible values:

Real: Size in wk layout unit. Default is 0.
String: CSS string with value and unit concatenated. E.g.: 12pt
for 12 points, or 1.5cm for 1.5 centimeters. Minimum value:
0pt, maximum value: 10000pt.

wk text
linethrough
color

String textLinethroughColor

Specifies color of text linethrough. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

Default is "currentColor" if string, or wk default if longint.

wk text
linethrough
style

String textLinethroughStyle

Specifies style of text linethrough (if any). Possible values:

wk none (default): no linethrough effect
wk solid: draw a solid line on the selected text
wk dotted: draw a dotted line on the selected text
wk dashed: draw a dashed line on the selected text
wk double: draw a double line on the selected text
wk semi transparent: dimmed line on the selected text. Can be
combined with another line style.
wk word: draw a line on words only (exclude blank spaces).
Can be combined with another line style.

wk text
shadow
color

String textShadowColor

Specifies shadow color of the selected text. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)
wk transparent (default)

wk text
shadow
offset

String textShadowOffset
Specifies offset for shadow effect. Possible values:

Size expressed in points. Default value: 1pt

wk text
transform String textTransform

Specifies uppercase and lowercase letters in the text. Possible
values:

wk capitalize: first letters are set to uppercase
wk lowercase: letters are set to lowercase
wk uppercase: letters are set to uppercase
wk small uppercase: letters are set to small uppercase
wk none (default): no transformation

wk text
underline
color

String textUnderlineColor

Specifies color of text underline. Possible values:

a CSS color ("#command_5010101" or "#command_5FFFFFF"
or "red").
a 4D color longint value (see OBJECT SET COLOR command)
a longint array containing an element for each R, G, B
component (0-255)

Default is "currentColor" if string, or wk default if longint.

wk text
underline
style

String textUnderlineStyle

Specifies style of text underline (if any). Possible values:

wk none (default): no underline
wk solid: draw a solid underline
wk dotted: draw a dotted underline
wk dashed: draw a dashed underline
wk double: draw a double underline
wk semi transparent: dimmed underline. Can be combined
with another line style.
wk word: draw an underline for words only (exclude blank
spaces). Can be combined with another line style.

wk title String title
Specifies document title (string). Default is "New 4D Write Pro
Document"

wk top Longint 0
Sets position of background image (value for wk background
position v) or aligns element with top of tallest element on the line
(value for wk vertical align)

wk
transparent Longint -1

Specifies color is transparent (value for wk background color or wk
text shadow color)

wk true Longint 1
wk unit cm String cm Unit used is centimeters (value for wk layout unit)
wk unit
inch

String in Unit used is inches (value for wk layout unit)

wk unit mm String mm Unit used is millimeters (value for wk layout unit)
wk unit
percent String &#command_537; Unit used is a percentage (value for wk layout unit)

wk unit pt String pt Unit used is points (value for wk layout unit)
wk unit px String px Unit used is pixels (value for wk layout unit)
wk upper
latin

Longint 16 Uppercase ASCII letters used (value for wk list style type)

wk upper
roman

Longint 17 Uppercase Roman numerals used (value for wk list style type)

wk
uppercase Longint 3 Changes all characters to uppercase (value for wk text transform)

wk value
unit not
percentage

Longint -100000
Returned to the WP GET ATTRIBUTES command when the current
value unit is not percentage and you passed a string variable (result
is invalid).

wk value
unit
percentage

Longint -100001
Returned to the WP GET ATTRIBUTES command when the current
value unit is percentage and you passed a numeric variable (result is
invalid).

wk version String version Returns internal 4DWP version of the document (real). This number
is only read using WP GET ATTRIBUTES; it cannot be set.

wk vertical
align String verticalAlign

Sets vertical alignment of an element. Can be used with characters,
paragraphs, and pictures. Possible values:

wk baseline (default): aligns baseline of element with baseline
of parent element
wk top: aligns top of element with top of tallest element on the
line
wk bottom: aligns bottom of element with lowest element on
the line
wk middle: element is placed in middle of parent element
wk superscript: aligns element as if it were superscript
wk subscript: aligns element as if it were subscript

For characters, wk top and wk bottom have the same effect as wk
baseline.
For paragraphs, wk baseline, wk superscript and wk subscript have
the same effect as wk top.

wk web
page
complete

Longint 2

.htm or .html extension. Document is saved as standard HTML and
its resources are saved separately. 4D tags are removed and
expressions are computed. This format is particularly suitable when
you want to display a 4D Write Pro document in a web browser.

wk web
page html
4D

Longint 3

4D Write Pro document is saved as HTML and includes 4D specific
tags; each expression is inserted as a non-breaking space. Since
this format is lossless, it is appropriate for storing purposes in a text
field.

wk width String width

Sets width of element. Possible values:

wk auto (default): width is based upon the contents of the
element
Defined size: size expressed using a real or string value:

Real: Size in wk layout unit.
String: CSS string with value and unit concatenated. E.g.:
12pt for 12 points, or 1.5cm for 1.5 centimeters.
Minimum value: 0pt, maximum value: 10000pt.

The wk width attribute is overridden by wk min width if defined.

Note: In the current implementation, wk width can only be used
with pictures.

wk word Longint 6 Underline words only (exclude blank spaces) (value for wk text
linethrough style and/or wk text underline style)

	4D Write Pro Reference
	Presentation
	Overview
	Installation and activation
	About this manual

	4D Write Pro
	Defining a 4D Write Pro area
	Creating the area
	Using the 4D Write Pro Widget of the Object library

	Configuring Drag and Drop
	Configuring View properties

	Storing 4D Write Pro documents in 4D Object fields
	Assigning a 4D Object field to a 4D Write Pro area
	Creating the Object field in the Structure
	Assigning the Object field to the 4D Write Pro area

	Using custom attributes
	QUERY BY ATTRIBUTE
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	System variables and sets

	WP EXPORT DOCUMENT
	Description

	OB Get
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Using a 4D Write Pro area
	Managing documents in 4D Write Pro areas
	.4wp document format
	User interface
	Selecting the view mode
	Page view features

	Handling headers, footers, and sections
	Defining a section
	Section attributes
	Inserting headers and footers
	Compatibility

	WP EXPORT DOCUMENT
	Description
	Example 1
	Example 2

	ST INSERT EXPRESSION
	Description
	Example

	4D Write Pro Attributes
	Background
	Borders
	Document
	Fonts and text
	Height/Width
	Image
	Lists
	Margins
	Padding
	Paragraphs
	Style sheets

	Printing 4D Write Pro documents
	Printing documents in 4D forms
	View mode for printing
	Example

	Printing independent documents
	4D Write Pro commands
	Regular 4D commands

	PRINT SELECTION
	Description
	Example

	Print Variable Frame
	Principles
	Pictures
	Text

	Print object
	Description
	Example 1
	Example 2

	Filter expressions contained in a 4D Write Pro document
	Overview
	Support of standard 4D filtering feature
	Compatibility

	Importing 4D Write documents
	How to import a 4D Write document
	Which properties will be recovered from 4D Write?
	Document info
	Document view parameters
	Document parameters
	Document pagination parameters
	Document printing parameters
	Images
	Character properties
	Paragraph properties
	Hyperlinks
	4D expressions
	Text data

	WP Import document
	Description
	Example

	ST SET OPTIONS
	Description
	Example

	4D Write Pro Language
	About 4D Write Pro objects
	4D Write Pro objects
	Commands that handle 4D Write Pro objects

	Using commands from the Objects (Forms) theme
	Example

	Using commands from the Styled Text theme
	Example
	Inserting document and page expressions

	Accessing document contents by programming
	Selection range commands
	Bookmark commands
	Attribute handling commands
	Font handling command

	WP CREATE BOOKMARK
	Description
	Example 1
	Example 2

	WP DELETE BOOKMARK
	Description
	Example

	WP EXPORT VARIABLE
	Description
	Example

	WP GET ATTRIBUTES
	Description
	Example

	WP Get bookmark range
	Description
	Example

	WP GET BOOKMARKS
	Description
	Example

	WP Get page count
	Description
	Example

	WP Get paragraphs
	Description
	Example

	WP Get pictures
	Description
	Example

	WP Get range
	Description
	Example

	WP Get selection
	Description
	Example

	WP INSERT BREAK
	Description
	Example

	WP INSERT DOCUMENT
	Description
	Example 1
	Example 2

	WP INSERT PICTURE
	Description
	Example

	WP Is font style supported
	Description

	WP New
	Description
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	WP PRINT
	Description
	Note for 32-bit versions
	Example

	WP RESET ATTRIBUTES
	Description
	Example

	WP SELECT
	Description
	Example

	WP SET ATTRIBUTES
	Description
	Example 1
	Example 2

	WP USE PAGE SETUP
	Description
	Example

	4D Write Pro Constants

