4D

SQL Reference
Windowse / Mac OSe

4)

4De
© 4D SAS / 4D Inc. 1995-2007. All rights reserved.

4D SQL Reference

Version 11 for Windowse and Mac OSe

Copyright © 4D SAS/4D, Inc. 1985-2007
All rights reserved.

The Software described in this manual is governed by the grant of license in the 4D Product
Line License Agreement provided with the Software in this package. The Software, this
manual, and all documentation included with the Software are copyrighted and may not be
reproduced in whole or in part except for in accordance with the 4D Product Line License
Agreement.

4th Dimension, 4D, the 4D logo, 4D Developer, 4D Server are registered trademarks of 4D,
Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac OS and QuickTime are trademarks or registered trademarks of Apple
Computer, Inc.

Mac2Win Software Copyright © 1990-2007, is a product of Altura Software, Inc.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

ICU © Copyright 1995-2007 International Business Machines Corporation and others. All
rights reserved.

4D includes cryptographic software written by Eric Young (eay@cryptsoft.com)
4D includes software written by Tim Hudson (tjh@cryptsoft.com).

Spellchecker © Copyright SYNAPSE Développement, Toulouse, France, 1994-2007.

All other referenced trade names are trademarks or registered trademarks of their respective
holders.

Contents

T. Tutorial......coeeveeiniieiiiiiiiiiieneneenss 9

INtrOdUCEION.....coooiiiiiiiiiiiiii 11
Receiving an SQL query result in a variable...........c.cccccoiiiiiiinnnnnnneen. 13
Using the WHERE cClause...........ccccooviiiiiiiiiiiniiiiieceeeneeeeee e 16
Receiving an SQL query result into arrays..........ccccccceeeeiniecniieeeeeeennnnnne 18
USING CAST it 21
Using the ORDER BY Clause..........ccccoivimiiiiieeeiiniieiieeeeereeeeeeeennn 24
Using the GROUP BY Clause.......cccoovvrmiiiiiiiiimiiiiieeeeiiiieeeeee e 27
Using Statistical funCtions........cccouviiiiiiiiiiiii e 31
Using the HAVING clause............cceeiiimiiiiieeeiinieiieeeeeeeeeeeeeennn 34
Calling 4D methods inside the SQL code........cccccovvrmiiiiiiiiinnnnniinneeeen. 38
111 2 T U U U PP SRR 42
USING ANASES......eviiiiiiiiiiiiiiiiee ettt e e e e 45
SUDQUETIES. ..ceeiiiiiiiiiie e 48
SQL code error tracking and debugging........cccceeeeeiiiniiiiiiieiiiinniinns 51
Data Definition Language........cccoovvmmiiiiieiiiimniiiiiieeeeeeeieeeeee e 54
External connections...........ccooviiiiiiiiiiiiniiii 55
Connection to the 4D SQL engine via the ODBC Driver...........cc......... 57
2. USIng SQL In 4D000..0..............000. 61
USING SQL N 4D .cciiiiiiiiiiieiie ettt e e e 63
Accessing the 4D SQL ENGiNe.....ccoovmiiiiiiiiiiiniiiieeeeieeeece e 64
Configuration of 4D SQL Server..........cccccceviimiiiiieeieeeiiniiieeeeeee e 68
Principles for integrating 4D and the 4D SQL engine.........cccccccueevnnnen. 73
3. SQL COmmandS.........‘............... 81
SQL COMMANAS...uiiiiiiiiieiiieiieee e e e e e e raeenaneas 83
SELECT ottt st 84
INSERT ..ottt 88
UPDATE. ...ttt 89
DELETE. ... eieiitteetet ettt 90
CREATE TABLE.....c.etiiiiiiiitieniie ettt 91

4D SQL Reference 3

4

DROP TABLE.......oeiiiiiiiiiiiiiiiicec e 92

ALTER TABLE......oiiiiiiiiiiiii e 93
CREATE INDEX....oiiiiiiiiiiiiiii i 95
DROP INDEX. ...t 96
LOCK TABLE......coiiiiiiiiiiic i 97
UNLOCK TABLE......oooiiiiii i, 98
EXECUTE IMMEDIATE......cciiiiiiiiiiiiiiiiiiiiiiiiiiii 99

4. Syntax rules............cccceeeeuveeee.. 101

SYNEAX TUIES. ..ttt e 103
4d_function_call..........cccoeoiiiiiiiii 104
4d_language_reference........cccvveeeiiiiiiiiiiiiieiiiec e 105
all_or_any_predicate........coovviiiiiiiiiiiii e 106
arithmetic_exXpression.........ccccevvviiiiiiiiiiiieeee e 107
between_predicate.........cccoviiiiiiiiiiiiiie 108
CASE_EXPIESSION . cueeeiiiiiteeeeeriiiirteteeeeesinrrreeeeeeessnnrrneeeeeseessnmnrnneeees 109
column_definition........oovviiiiiiiiiii e 110
column_reference.......ccuvveiiiiiiiii e 111
COMMANA_PAraMETET......eeeiiiiiiiiiiiiiiiiieeeee e e errrrreeee e e 112
COMPAriSON_PrediCate.......ouvuriiiiiiiiiiiiiieeeeeeeeeeee e 113
EXiStS_PrediCate........ccceviiiiiiiiiiiieieeeee e 114
foreign_key_definition........cc..oeeiiiiiiiiiiee 115
function_call.........ocoooiiiiiiiii 117
IN_PrediCate. .. ccciiiiiiiiiiiiee ettt e 118
iS_NUIL_predicate.. ..o 119
like_prediCate..........uveiiiiiiiiiiiiice e 120
BEEral......ooiiiiiiiiii 121
PrediCate......euiiiiiiiiiiiiieee et 122
primary_key_definition........cccouiiiiiiiiiiee 123
s€arch_condition...........ccooviiiiiiiiiiiiiiii 124
SElECT_ITEM...euiiiiiiiii i 125
SOTE_LIST e 126
SQl_data_type_Name......cccoovriiiiiiiiiiiiietee e 127
SOL_NMAMIE..ciiiiiiiie et 128
SOL_STIING.ceeteeiieieite e 129
SUDQUETY ..ttt e e et e e e e s e sannneees 130

4D SQL Reference

{721 o] (S olo) a1 { =11 | SR RN 131
172 o] LS (<1 (<] £ <] o Vel ST OO 132

5. Transactions.......cccceevveevvneeenee. 133

TrANSACHIONS. . ceivtieeeieieee et e et eeeee e e et e e e ereeeeeebaeeeeeaseeeesenaeeeseees 135
START ..ttt e e e e e e e e e e e et —aeeeeaereraaaaa, 138
COMMIT ettt e e e e e e e e e e e e ear s 139
ROLLBAGCK .. . iieiitieetieeeee e et eeeeetieee e ee et e e e e e e e e e eeeeeeeeeraaanees 140

FUNCHIONS. ettt e e et e e e e e e s e s e e e eaaeeeeees 143
A B S e e e e e e rra——— 144
ACOS ettt e e e e e eeraaaa, 145
ASCIL e e e e e e e e ——— 146
ASIN . et e e e e e ——— 147
ATAN . e e e e e e e e e e e et ee e e e e e e 148
ATANZ. .ot e e e ree e e e e e e e e e e e e e e e e e r s 149
AVGi. it e e e e aeeeraaaa 150
BIT_LENGTH. ..ottt e e e e e e e e e e aaeeeeeeaees 151
A S T ettt ettt e e e e e e e e e e e e e e e e e r e e eeeeeraaaas 152
CEILING. ...t e e e e e et eeeeaaeens 153
CHAR ..t e e e e e e e e et e e e e e e e e eeataeeeeeaaeenes 154
CHAR_LENGTH. ...ttt e 155
COALESCE. ...ttt ettt e e e e e e e e e eeeeaaaen 156
CONG AT ...t e e e ee e e e e e e e reeeeeeeeeeeeaaann 157
CONGCATENATE. ...ttt e e et e e e e e e e eeaaaeeeeaaeees 158
GOttt e e e e e e e aa————- 159
GO e ettt e ——— 160
COUNT ettt ee e e e e e e e e aeeeeeeeeeeeesataeeeeeaaeees 161
CURDATE. .. ettt e e e e e e e e e e e e et eeeeeeeesaraannes 162
CURRENT_DATE.ottteeeeeeeeeeeetieeeee et e e e e e eeeaeee e e e e eeeevaan e 163
CURRENT_TIME. . ..uiiiiiiiiiiiieeeeeeeeeeeeieee e e eeeeee e e e e e e e e e e e eeeeanes 164
CURRENT_TIMESTAMP. ...cottteeeeeiiieeeieeee et e e eeeeveeeeeeeeeeanes 165
CURTIME. ... ittt e e e e e e e e e aaeneeeeeaeees 166

4D SQL Reference

5

6

DAY . 169
DAYNAME. ..ottt 170
DAYOFMONTH....coiiiiiiiiiiiiiiiiiiiccii e 171
DAYOFWEEK......ccoiiiiiiiiiiiiie 172
DAYOFYEAR......coiiiiiiiiic 173
DEGREES.....oiiiiiiiii 174
EXP e 175
EXTRACT ..ot 176
FLOOR. ..o 177
HOUR. ..ottt 178
INSERT ..o 179
LERT 180
LENGTH. ..o 181
LOCATE....oiiiiiiii 182
LOGi .. 183
LOGTO. it 184
LOWER....ciiiiiiiiiiccec e 185
LTRIM .. 186
MAX 187
MILLISECOND......ccoiiiiiiiiiiiiiiiiicc e 188
MIN oo 189
MINUTE. ..ot 190
MOD ...t 191
MONTH. ... 192
MONTHNAME.......ooiiiiiiii 193
NULLIF. e 194
OCTET_LENGTH. ..ot 195
Pl 196
POSITION....ciiiiiiiiiii 197
POWER.....ooiii e 198
QUARTER. ..ottt 199
RADIANS 200
RANDt 201
REPEAT ..o 202
REPLACE.oeiiiiiiiiiiiiiicc e 203
RIGHT ..o 204
ROUND. ..ottt 205

4D SQL Reference

SECOND....oiiiiiiiii 207
SIGN oo 208
SIN 209
SPACE. ... e 210
SQRT e 211
SUBSTRING. ...ttt 212
SUMu i 213
TAN Lo 214
TRANSLATE....ooiiiiii e 215
TRIM. 216
TRUNC ... 217
TRUNCGATE. ...t 218
UPPER.....oiiiiiiic 219
WEEK ... 220
YEAR ... 221

7. AppendiX......cccceveniiiniiinniienne.. 223

Appendix A: Error Codes..........ooiiviiiiiiiiiiiiiiiiiiieee s 225

Command IndeX.....ccceeevvenveeenenee. 231

4D SQL Reference

7

8 4D SQL Reference

Tutorial

4D SQL Reference 9

10 4D SQL Reference

Introduction Tutorial

version 11

SQL (Structured Query Language) is a tool for creating, organizing, managing and retrieving
data stored by a computer database. SQL is not a database management system itself nor a
stand-alone product; however, SQL is an integral part of a database management system, both
a language and a tool used to communicate with this system.

The goal of this tutorial is not to teach you how to work with SQL (for this you can find
documentation and links on the Internet), nor to teach you how to use and/or program in 4D.
Instead, its purpose is to show you how to manage SQL inside 4D code, how to retrieve data
using SQL commands, how to pass parameters and how to get the results after a SQL query.

Description of the database that accompanies this tutorial

All the examples that will be detailed in this document were fully tested and verified in one of
the example databases named "4D SQL Code Samples".

The structure is as follows:

MOVIES
D 2 ||| ACTORS
Title ﬁ MOVIE_ACTOR Mb P |
Director A (f|[Movie > [| LastName A
Category A GEIOED Fil [Firstame F:3
Year_of_Movie 2“‘-. | comments ﬁ
Subiities a8 _ |/Bith ciy b &
Summary [] :
Poster E
Media A CITES
BlackAndWhite 8 City_ID
Blog_on_movie Q City_Name ﬁ
Sold_Tickets [£% :

The MOVIES table contains information about 50 movies, such as the title, the director, the
category (Action, Animation, Comedy, Crime, Drama, etc.), the year it was released, whether
or not it has subtitles, a brief summary, a picture of its poster, the type of media (DVD, VHS,
DivX), whether it is in black and white, a blog saved in a BLOB, and the number of tickets sold.
The ACTORS table contains information regarding the actors of the movies such as an ID,

their last and first names, any comments and the ID of the city where the actor was born.

4D SQL Reference 11

The CITIES table contains information regarding the name and ID of the cities where the
actors were born.

The MOVIE_ACTOR table is used to simulate a Many-to-Many relation between the MOVIES
and ACTORS tables.

All the information you need to launch every example described in the tutorial is situated in
the following main window which you can access by selecting the "Demo SQL>Show Samples"
menu command:

D i3
Quarny Mode Quenes Ermor tracking
G using 40 code:
" Lising S ende | SO query results in varisbles] Using Stasstical functions) [Debuggng S0L code |
O sing CoBC [WHERE dasse 10 HAVING dause] [Using ON B CALL]
(CUsing "Query by SQL”
) Using Dymamic SQL [SQL ety rendts n &TaYE] ([Calrg 0 methods |
[l race the code [Ling CAST] 0 o] Extemal connactions
Data Dafinition Language [ORDER. BY doause I Usng Alases) I Connect to ORACLE |
[ROLP B e] (Subgueres] [comawo |
Lizthaon
Years Tithes Dwectons Media Tickets Sokd Musrber of actors
Group of arays
Years Tites DCireciors Media Tickets Sokd Murber of actors
(aorieTear) (aTites) {aDwectors) (aedia) (aSoldTickets) (abrActors)

12 4D SQL Reference

Receiving an SQL query result in a variable Tutorial

version 11

To start with a very simple query: we would like to know how many movies are in the Video
Library. In the 4D language, the code would be:

" Using standard 4D Code
C_LONGINT{3AlIMovies)
BallMovies:=0
ALL RECORDS({[MOVIES])
FallMovies:=Records in selection([MOVIES])
ALERT{"The Video Library contains "+ String(SAlIMovies+™ movies™)

The first way to interact in a similar manner with the SQL engine is by placing the query
between the "Begin SQL" and "End SQL" tags. Thus, the simple query above becomes:

" Using 4D S0QL and the "==>==" notation for the receiving parameter
C_LONGINT(RAIIMOvies)
FAllMovies =0
E Begin SQL
SELECT COUNT{®)
FROM MOVIES
INTO =<$AllMovies>>
- End SQL
ALERT("The Video Library contains "+ String($AllMovies)+™ movies™)

As you can see, you can receive the result of the query in a variable (in our case $AllMovies)
that is enclosed between "<<" and ">>".

Another way to reference any type of valid 4D expression (variable, field, array,
“expression...”) is to place a colon ":" in front of it:

" Using 4D SQL and the " notaiion for the receiving parameter
C_LONGINT(EAlIMavies)
FAallMovies =0
E Begin SGL
SELECT COUNT(®)
FROM MOVIES
INTO :$AllMovies
- End SQL
ALERT{"The Video Library contains "+String($AllMovies)+" movies™)

4D SQL Reference 13

Special attention should be paid to inter-process variables, where the notation is a little bit
different: you must place an inter-process variable between "[" and "]":

" Using 4D S0QL and the "==>=" notafion for receiving an interprocess parameter
C_LONGINT(==AllMovies)
==AllMovies =0
E Begin SQL
SELECT COUNT{*)
FROM MOVIES
INTO =<[<=AllMovies]>>
- End SGQL
ALERT("The Video Library contains "+ 5tring(==AllMovies+" movies™)

The second way to interact with the SQL engine is using ODBC commands. Thus the simple
query above becomes:

" Using ODBC commands
C_LONGINT{BAlIMovies)
BallMovies:=0
* Initialize a connection with the internal SAL engine
ODBC LOGIN{(SQL INTERNAL ;=,7)
" Execute the query and return the result in the $AllMovies variahle
ODBC EXECUTE("SELECT COUNT(*) FROM MOVIES™, §AllMavies)
" Retrieve all the records found
ODBC LOAD RECORD(ODBC All Records)
" Close the connection
ODBC LOGOUT
ALERT{"The Video Library contains "+String{$AllMovies)+™ movies™)

For more information concerning ODBC commands, please refer to the 4D Language Reference
manual.

The third way to interact with the new SQL engine is using the 4D QUERY BY SQL command.
In this situation, the simple query above becomes:

" Using QUERY BY S0L
C_LONGINT{BAlIMavies)
BAllMovies:=0
QUERY BY SQL(MOVIES];"ID <= 07)
FAllMovies:=Records in selection{[MOVIES])
ALERT{"The Video Library contains "+String(3AllMovies)}+" movies™)

14 4D SQL Reference

In fact, the QUERY BY SQL command can be used to execute a simple SELECT query that can be
written as follows:
SELECT *
FROM myTable
WHERE <SQL_Formula>
myTable is the name of the table passed in the first parameter and SQL_Formula is the query
string passed as the second parameter:
QUERY BY SQL(myTable;SQL_Formula)
In our case there is no WHERE clause, so we forced one: "ID <> 0". The equivalent in SQL for
the whole query would be:
SELECT *
FROM MOVIES
WHERE ID <> 0

The fourth way to interact with the new SQL Engine is using the dynamic SQL EXECUTE
IMMEDIATE command. The query above becomes:

* Using dynamic SGL by EXECUTE IMMEDIATE

C_LONGINT(RAlIMovies)

BallMovies:=0

C_TEXT($tQueryTxt)

$tQueryTxt:="SELECT COUNT(*) FROM MOVIES INTO -$AllMovies™
E Begin SQL
| EXECUTE IMMEDIATE :$tQueryTxE

End SQL

ALERT{"The Video Library contains "+String{$AllMovies)+™ movies™)

To test all the above examples, launch the Video Library database and go to the main dialog
box. On the left side of the dialog, you can choose the query mode: using standard 4D code,
SQL code, ODBC commands, the QUERY BY SQL command or dynamic SQL:

Queries
Query mode

() Using SQL code

() Using ODBC

() Using QUERY BY SQL
(O Using Dynamic SQL

Then press the "SQL query results in variables" button.

4D SQL Reference 15

Using the WHERE clause Tutorial

version 11

If we now want to know how many movies more recent or equal to 1960 are in the Video
Library.
The code 4D would be:

" Using standard 4D Code
C_LONGINT(SMNoMovies)

SMoMovies:=0

REDUCE SELECTION{[MOVIES];0)

QUERY({[MOVIESTLIMOVIES]Year_of_Movie==1960)

$MoMovies:=Records in selection{[MOVIES])

ALERT("The Video Library contains "+5tring(FMoMovies)+ movies more recent or equal to 19607)

Using SQL code, the above query becomes:

“Using 4D 5QL
C_LONGINT(SMoMovies)

SMoMovies =0
REDUCE SELECTION{MOVIES];0)
= Begin SQL
SELECT COUNT()
FROM MOVIES
WHERE Year_of_Movie >= 1960
INTO :$NoMovies;
End S5QL
ALERT({"The Video Library contains "+5tring($MoMovies)+" movies more recent or equal to 19607)

Using the ODBC commands, the above query becomes:

* Using ODBC commands
C_LONGINT(EMoMovies)
FMoMovies:=0
REDUCE SELECTION(MOVIES];0)

ODBC LOGIN(SQL _INTERMAL ;™™)

ODBC EXECUTE("SELECT COUNT(*) FROM MOVIES WHERE Year_of_Movie == 19607 5MoMaovies)
ODBC LOAD RECORD(ODBC All Records)

ODBC LOGOUT

ALERT("The Video Library contains "+ String(3MoMovies)+” movies more recent or equal to 19607)

16 4D SQL Reference

Using the QUERY BY SQL command, the above query becomes:

" Using QUERY BY 5QL
C_LONGINT(BMNoMovies)

SMoMovies:=0

REDUCE SELECTION(MOVIES],Q)

QUERY BY SQL(MOVIES];Year_of_Movie == 19607)

$MoMovies:=Records in selection{[MOVIES])

ALERT("The Video Library contains "+ String(3MoMovies)+” movies more recent or equal to 19607)

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

" Using dynamic SQL by EXECUTE IMMEDIATE
C_LONGINT($MoMaovies)
C_TEXT(StCueryTxt)

FMoMovies:=0
REDUCE SELECTION(MOVIES],0)
FtQuenyTxt="SELECT COUNT({*) FROM MOVIES WHERE Year_of_Movie == 1960 INTO :$MoMaovies;”
E Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
ALERT(The Video Library contains "+ 5tring(SMoMovies)+” movies more recent or equal to 19607)

As in the previous section, in order to test all the above examples, simply launch the Video
Library database and go to the main window. You can then choose the query mode and press
the "WHERE clause" button.

4D SQL Reference 17

Receiving an SQL query result into arrays Tutorial

version 11

Now we want to pass a variable to the SQL query containing the year (and not the year itself,
hard-coded) and get all the movies released in 1960 or more recently. In addition, for each

movie found, we also want information such as the year, title, director, media used and tickets
sold.

The solution is to receive this information in arrays or in a list box.
The initial query in 4D code would be:

" Using standard 4D code
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets; 0}
ARRAY INTEGER{aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION(MOVIES]0)

SMovieYear=1960

QUERY(MOVIES][MOVIES]Year_of_Movie==$MovieYear)

SELECTION TO ARRAY(MOVIES]Year_of_Movie:aMovieYear [MOVIESITitle;aTitles [MOVIES]Director aDirectors [MOVIESMedia:aMedias;[MOVIES]Sold_Tickets:aSoldTickets)

Using SQL code, the above query becomes:

“Using 4D SQL
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT({aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION{MOVIES];0)
SMovieYear=1960
= Begin SGL
SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets
FROM MOVIES
WHERE Year_of Movie == :$MovieYear
INTO :aMovieYear, :aTitles, :aDirectors, :alMedias, :a SoldTickets;
End SQL

As you can see:

- We can pass a variable ($MovieYear) to the SQL query using the same notation as for
receiving parameters.

18 4D SQL Reference

- The SQL query result is saved in the aMovieYear, aTitles, aDirectories, aMedias and
aSoldTickets arrays. They are displayed in the main window in two ways:
- Using a group of arrays:

Group of arrays
Movie Year Movie Titles Movie Directors Movie Medias Tickets Sold Humber of Actors
(aMavieVear) (aTitles) (aDirector) (aMedia) (aSoldTickets) (aNrActors)

- Using a list box having columns with the same names:

List box

Movie Year | Movie Titles Movie Directors Movie Medias Tickets Sold Number of Actors

Using ODBC commands, the above query becomes:

“ Using ODBC commands
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT($MovieYear)
C_TEXT(3tQueryTd)

REDUCE SELECTION({MOVIES]O)

SMovieYear=1960

ODBC LOGIN(SAL INTERMAL :™™)

StQuenyTuxt=""

StQuenTutb=5t0uenTd+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets™
StQuenyTrt=5tQuenTd+" FROM MOVIES™

SQuenTat=5tQuernyTx+" WHERE Year_of_Movie == :MovieYear”

ODBC EXECUTE(StCueryTxt;aMovieYear,aTitles;alirectors;aMedias;aSoldTickets)
ODBC LOAD RECORD(ODBC All Records)

ODBC LOGOUT

4D SQL Reference 19

Using the QUERY BY SQL command, the above query becomes:

*Using QUERY BY SQL
ARRAY LONGINT(aNrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER{aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION(MOVIES];0)

SMovieYear=1960

QUERY BY SQL{MOVIES],"Year_of_Movie == :FMovieYear™)

SELECTION TO ARRAY([MOVIESTYear_of Movie;aMovieYear,[MOVIES]Title;aTitles;[MOVIES]Director;aDirectors;[MOVIESIMedia aMedias;[MOVIES]Sold_Tickets;aSoldTickets)

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

“ Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)
C_TEXT({3tQueryTx)
REDUCE SELECTION({MOVIES],0)
SMovieYear=1960
BtQueryTxt=""
BtQuenTd=5CueryTx+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets™
BtauenTet=5tQueryTxt+" FROM MOVIES™
BtQuenTd=5CueryTx+" WHERE Year_of_Movie == SMovieYear”
BtQuenTut=5tCueryTxt+" INTO :aMovieYear, :aTitles, -aDirectors, :aMedias, :aSoldTickets;”
= Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "SQL query results in arrays" button.

20 4D SQL Reference

Using CAST Tutorial
version 11

The SQL standard has fairly restrictive rules about combining data of different types in
expressions. Usually the DBMS is in charge of automatic conversion. However, the SQL
standard requires that the DBMS must generate an error if you try to compare numbers and
character data. In this context the CAST expression is very important, especially when we use
SQL within a programming language whose data types d not match the types supported by
the SQL standard.

You will find below the above query slightly modified in order to use the CAST expression.
The initial query in 4D code would be:

* Using standard 4D code
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER{aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)

REDUCE SELECTION({IMOVIEST,0)

BMovieYear=Num("19607)

QUERY(MOVIESEIMOVIES]Year_of_Mavie>=SMovieYear)

SELECTION TO ARRAY(IMOVIES]Year_of_Movie:aMovieYear[MOVIES]Titlie:aTitles [MOVIES]Director aDirectors[MOVIES]Media: aMedias: [MOVIES]Sold_Tickets:aSoldTickets)
Intialize the rest of the list box columns in order to display the information

ARRAY LONGINT(aMrActors; Size of array{aMovieYear))

Using SQL code, the above query becomes:

" Using 4D SQL
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY TEXT(aTitles;0]
ARRAY TEXT({aDirectors;0)
ARRAY TEXT(aMedias;0)

= Begin SQL
SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets

FROM MOVIES

WHERE Year_of_Movie >= CAST("1960" AS INT)

INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :a SoldTickets;
End SQL

* Intialize the rest of the list box columns in order to display the information

ARRAY LONGINT(aMrActars; Size of array(aMovieYear))

4D SQL Reference 21

Using ODBC commands, the above query becomes:

" Using ODBC commands
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER{aMovieYear,0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_TEXT(StQueryTxt)

REDUCE SELECTION{IMOVIES],0)
ODBC LOGIN(SQL INTERMAL ;™™
BQueryTut=""
FtQuernyTut=5tCueryTxd+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets™
FQueryTet=5tQueryTx+" FROM MOVIES™
FtQuenyTuet=5tQueryTxi+" WHERE Year_of_Movie == CAST(1960° AS INT)"
ODBC EXECUTE(RQuueryTxt;aMovieYear;aTitles;aDirectors;aMedias;aSoldTickets)
ODBC LOAD RECORD(ODBC All Recards)
ODBC LOGOUT
" Intialize the rest of the list box columns in order to display the information
ARRAY LONGINT({aMrActors; Size of array(aMovieYear))

Using the QUERY BY SQL command, the above query becomes:

" Using QUERY BY SQL
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)

REDUCE SELECTION({MOVIES];0)
QUERY BY SQL(MOVIES] Year_of_Maovie >= CAST(1960" AS INT)")

SELECTION TO ARRAY(MOVIES]Year_of_Movie:aMovieYear[MOVIES]Titlie:aTitles [MOVIES]Director:aDirectors;[MOVIES]Media: aMedias;[MOVIES]Sold_Tickets:aSoldTickets)
" Intialize the rest of the list box columns in order to display the information
ARRAY LONGINT(aNrActors; Size of array(aMovieYear))

22 4D SQL Reference

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

" Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER({aMovieYear;0)
ARRAY TEXT(aTitles:0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT{aMedias;0)
C_TEXT{StCQueryTxt)

REDUCE SELECTION({MOVIES],0)
BtQueryTut=""
FtQuenTe=5tQueryTx+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets”
FQuenTe=5tQueryTxt+" FROM MOVIES™
FtQuen Tt =5tQueryTut+" WHERE Year_of_Movie == CAST(1960" AS INT)"
FtQuenTe=5tQueryTut+" INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :aSoldTickets;”
= Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
" Intialize the rest ofthe list box columns in order to display the information
ARRAY LONGINT(aMrActors; Size of array(aMovieYear))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Using CAST" button.

4D SQL Reference 23

Using the ORDER BY clause Tutorial

version 11

This time we would like to get all the movies that are released in 1960 or more recently, and
for each movie we also want additional information such as the year, title, director, media
used and tickets sold. The result must be sorted by the year.

The initial query in 4D code would be:

* Using standard 4D Code
ARRAY LONGINT(aNrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION(MOVIES];0)

$MovieYear=1960

QUERY(MOVIES]MOVIES]Year_of_Movie==SMavieYear)

SELECTION TO ARRAY([MOVIESTYear_of_Movie,aMovieYear,[MOVIES]Title;aTitles;[MOVIES]Director;aDirectors; [MOVIES]Media;aMedias;[MOVIES]Sold_Tickets;aSoldTickets)
SORT ARRAY(aMovieYear;aTitles;aDirectors;aMedias;=)

Using SQL code, the above query becomes:

“Using 4D SQL
ARRAY LONGINT(aNrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT({aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(EMovieYear)

REDUCE SELECTION{MOVIES],0)
SMovieYear=1960
= Begin SQL
SELECT Year_of_Maovie, Title, Director, Media, Sold_Tickets
FROM MOVIES
WHERE Year_of Movie >=:$MovieYear
ORDER BY 1
INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :aSoldTickets;
End 5QL

24 4D SQL Reference

Using ODBC commands, the above query becomes:

" Using ODBC commands
C_TEXT(BtQueryTxt)
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER({aMovieYear;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION{[MOVIES],0)

FMovieYear=1860

ODBC LOGIN(SQL INTERMAL ;™™

BtQueryTut=""

FtQuenTd=5tQueryTxt+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets”
FtQuenTt=5tQueryTx+" FROM MOVIES™

BtQuenTut=5tCQueryTxd+" WHERE Year_of_Maovie == §MovieYear”
BtQuenTd=§tQueryTx+" ORDER BY 17

ODBC EXECUTE(RiCQueryTxtaMovieYear;aTitles;aDirectors;aMedias;aSoldTickets)
ODBC LOAD RECORD(ODBC All Records)

ODBC LOGOUT

Using the QUERY BY SQL command, the above query becomes:

* Using QUERY BY SQL
ARRAY LONGINT(aNrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias,0)
C_LONGINT(SMovieYear)

REDUCE SELECTION([MOVIES],0)

SMovieYear=1960

QUERY BY SQL(MOVIES], Year_of_Movie == :5MovieYear”)

SELECTION TO ARRAY([MOVIESTYear_of_Movie,aMovieYear,[MOVIES]TitleaTitles;[MOVIES]Director,aDirectors; [MOVIESIMedia;aMedias;[MOVIES]Sold_Tickets,aSoldTickets)
SORT ARRAY(aMovieYear,aTilles;aDirectors;aMedias;=)

4D SQL Reference 25

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

* Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY LONGINT(aMrActors;0)
C_TEXT({3tQueryTx)

ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMovieYear)

REDUCE SELECTION({MOVIES],0)

SMovieYear=1960

StQuenTet=""

BtQuenyTut=5tCuernyTx+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets™

StQuenTd=HAueryTx+" FROM MOVIES™

BtQuenTd=5HAueryTx+" WHERE Year_of_Movie == :SMovieYear”

StQuenTxt=§CQuenTxt+" ORDER BY 17

BtQuenTe=8AueryTxt+" INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :aSoldTickets;”
=l Begin SQL

EXECUTE IMMEDIATE :$tQueryTxt;
End SQL

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "ORDER BY clause" button.

26 4D SQL Reference

Using the GROUP BY clause Tutorial

version 11

We would like to get some information about the number of tickets sold each year starting
with 1960. The result will be sorted by year.

To do this, we must total all the tickets sold for every movie in each year more recent than
1960, and then sort the result by year.

The initial query in 4D code would be:

“Using standard 4D code
ARRAY INTEGER(aMovieYear,0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT(EMovieYear;BvCriMaovieYear; 5i)

REDUCE SELECTION({MOVIES],0)
SMovieYear=1979
QUERY(IMOVIESLIMOVIES]Year_of_Movie==5MovieYear)
ORDER BY{[MOVIES],[MOVIESTYear_of_Movie;>)
BvCrtMaovieYear.=0
Bvind:=Size of array(aMovieYear)
B For (%i;1;Records in selection([MOVIES]))
= If ((MOVIESTYear_of_Movie#SvCriMovieYear)
BvCrMovieYear=[MOVIES]Year_of_Mavie
Bvind:=Fvind+1
INSERT ELEMENT(aMovieYear;5vind;1)
aMovieYear{Svind}:=fvCrtMovieYear
INSERT ELEMENT(aSoldTickets;vind;1)
Endif
aSoldTickets{Bvind}:=aSoldTickets{Bvind}+[MOVIES]Sold_Tickets
NEXT RECORD{[MOVIES])
End for
" Intialize the rest of the list box columns in order to visualise the infarmation
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors;Size of array(aMovieYear))
ARRAY TEXT({aMedias;Size of array(aMovieYear))
ARRAY LONGINT(aMrActars; Size of array(aMovieYear))

4D SQL Reference 27

Using the SQL code, the above query becomes:

“Using 4D SQL
ARRAY INTEGER(aMaovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT(EMovieYear)

REDUCE SELECTION{MOVIES],0)
SMovieYear=1979
= Begin SQL
SELECT Year_of_Movie, SUM{Sold_Tickets)
FROM MOVIES
WHERE Year_of _Movie == :$MovieYear
GROUP BY Year_of_Movie
ORDER BY 1
INTO :aMovieYear, :aSoldTickets;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias;Size of array(aMovieYear))
ARRAY LONGINT(aMrActors; Size of array(aMovieYear))

Using ODBC commands, the above query becomes:

" Using ODBC commands
C_TEXT(StQueryTxt)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
C_LONGINT({EMovieYear)

REDUCE SELECTION{MOVIES],0)
SMovieYear=1979
ODBC LOGIN(SQL INTERMAL ;™™
BtQueryTut=""
BtQuenTd=8CAueryTx+"SELECT Year_of_Movie, SUM{Sold_Tickets)”
StQuenTd=8AueryTx+" FROM MOVIES™
StQuenTut=5tCuenyTd+" WHERE Year_of_Maovie == :5MovieYear®
BtQuenTd=8HAueryTx+" GROUP BY Year_of_Movie™
StQuenTxt=5CQuenTxt+" ORDER BY 17
ODBC EXECUTE($tQueryTxt,aMovieYear,aSoldTickets)
ODBC LOAD RECORD(CDBC All Records)
ODBC LOGOUT
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias; Size of array(aMovieYear))
ARRAY LONGINT(aMrActars; Size of array(aMovieYear))

28 4D SQL Reference

Using the QUERY BY SQL command, the above query becomes:

* Using QUERY BY SGL
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
C_LONGINT(SMovieYear)

REDUCE SELECTION(MOVIES],0)
SMovieYear=1879
QUERY BY SQL{MOVIES],™Year_of_Movie == :3MovieYear™)
ORDER BY{[MOVIESEIMOVIES]Year_of_Movie;=)
SvCriMovieYear=0
Bvind:=Size of array(aMovieYear)
= For (%i;1;Records in selection{[MOVIES]))
= If ((MOVIESTYear_of_Movie#gvCriMovieYear)
BvCriMovieYear=[MOVIES]Year_of_Movie
vind:=%vind+1
INSERT ELEMENT(aMovieYear; fvind; 1)
aMovieYear{Svind}:=SvCrtMovieYear
INSERT ELEMENT(aSoldTickets;5vind; 1)
End if
aSoldTickets{Evind}=aSoldTickets{vind}+[MOVIES]Sold_Tickets
NEXT RECORD([MOVIES])
- End for
" Intialize the rest of the list box columns in arder to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array{aMovieYear))
ARRAY TEXT(aMedias; Size of array(aMovieYear))
ARRAY LONGINT{aMNrActors; Size of array{aMovieYear))

4D SQL Reference

29

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

* Using dynamic SQL by EXECUTE IMMEDIATE
C_TEXT(StQueryTxt)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER({aMovieYear,0)
C_LONGINT(SMovieYear)

FMovieYear=1879
StQuenTet=""
FtOuenyTut=5tCQueryTx+"SELECT Year_of_Movie, SUM(Sold_Tickets)”
FOuenTd=5tQueryTx+" FROM MOVIES™
FOuenTd=5tQueryTx+" WHERE Year_of_Movie == $MovieYear”
FtOuenTut=5tCQueryTxd+" GROUFP BY Year_of_Movie”
FtQuenT=§tQueryTx+" ORDER BY 17
FtOuenTut=5tCQueryTxd+" INTO :aMovieYear, ;aSoldTickets;”
E Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias;Size of array(aMovieYear))
ARRAY LONGINT(aMrActors; Size of array(aMovieYear))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "GROUP BY clause" button.

30 4D SQL Reference

Using Statistical functions Tutorial
version 11

Sometimes it can be useful to get statistical information about certain values. SQL includes
many aggregate functions like MIN, MAX, AVERAGE, SUM and so on. Using aggregate
functions, we would like to get information about the number of tickets sold each year
starting with 1960. The result will be sorted by year.

To do this, we must total all the tickets sold for each movie in each year more recent than
1960, and then sort the result by year.

The initial query in 4D code would be:

" Using standard 40 code
C_LONGINT{BvMin; SviMax fvSum)
C_REAL(BvAverage)
C_TEXT(SAlertTx)

REDUCE SELECTION{IMOVIES],0)

FuMin=0

SuMax=0

Fudverage:=0

FvsSum:=0

ALL RECORDS([MOVIES])

FuvMin:=Min([MOVIES]Sold_Tickets)
FuMax=Max([MOVIES]Sold_Tickets)
Pviverage:=Average([MOVIES]Sold_Tickets)
FSum=Sum{[MOVIES]Sold_Tickets)

FAlerdTxt=""

BAleTt=5AlenTd+"Minimum tickets sold: "+5tring({&vMin)}+Char(13)
FalerdTut=FAlerTxt+"Maximum tickets sold: ™+ String{SvMax)+Char(13)
BAleTxt=%AlenTxd+"Average tickets sold: "+String(fvAverage}+Char(13)
FAlerdTut=FAlerTxt+ Total tickets sold: "+String{SvSum)+Char(13)
ALERT(SAlerTx:t)

4D SQL Reference

31

Using SQL code, the above query becomes:

" Using 4D SQL
C_LONGINT{SvMin;BvMax; BvSum)
C_REAL(%vAverage)
C_TEXT(3AlerT:)

FuMin:=0
FvMax=0
Fudverage:=0
FvsSum:=0
E Begin SQL
SELECT MIN{Sold_Tickets),
MAX(Sold_Tickets),
AVG(Sold_Tickets),
SUM({Sold_Tickets)
FROM MOVIES
INTO :$vMin, :$vMax, :$vAverage, :$vSum;
End SQL
PAlerdTxt=""
FalefTut=FAlefTut+"Minimum tickets sold: "+String(fvMin}+Char(13)
BAlerdTut=FAlenTx+"Maximum tickets sold: "+String(FvMax)+Char(13)
BalenTut=FAlerTxt+"Average tickets sold: ™+5String(fvAverage)+Char(13)
BAlerdTut=5AlenTx+Total tickets sold: "+String(3vSum+Char(13)
ALERT(FAlertTx)

Using ODBC commands, the above query becomes:

" Using ODBC commands
C_LONGINT(EvMin; BvMax SvSum)
C_REAL(fvAverage)
C_TEXT(BtQueryTxt)
C_TEXT(SAlertTxt)

FuMin=0

FuMax=0

Bvhverage:=0

FSum=0

ODBC LOGIN(SQL INTERMAL ;™™

BtQueryTxt=""

FtQuenTe=5QueryTxd+"SELECT MIN(Sold_Tickets), MAX(Sold_Tickets), AVG{Sold_Tickets), SUM{Sold_Tickets)"
FQuenyT=5tQueryTx+" FROM MOVIES™

ODBC EXECUTE(HQueryTuxt; BviMin; SviMax; fvaverage; svSum)

ODBC LOAD RECORD(ODBC All Records)

ODBC LOGOUT

BAlerdTxt=""

SAlenTx=5AlerTxd+"Minimum tickets sold: "+5String($vMin)}+Char(13)
FaledTy=5Aler T+ "Maximum tickets sold: "+String($vMax)+Char(13)
BAlerTxh=FAlerTxt+"Average tickets sold: "+ String(BvAverage+Char(13)
FalenTx=%AlerTx+"Total tickets sold: "+String(fvSum)+Char(13)
ALERT(SAlerT:t)

32 4D SQL Reference

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

" Using dynamic SQL by EXECUTE IMMEDIATE
C_LONGINT{SvMin;BvMax; Bvaum)
C_REAL(%vAverage)

C_TEXT(BtQueryTxd)
C_TEXT(3AlerdTxt)

SvMin:=0
Swlax=0
Svtwerage:=0
FwSum=0
BtQueryTxt=""
StQueryTxt=5tCuenTH+"SELECT MIN(Sold_Tickets), MAX(Sold_Tickets), AVG{Sold_Tickets), SUM(Sold_Tickets)"
BtQueryTxt=5tCuernyTx+" FROM MOVIES™
StQueryTxt=5tCuery T+ INTO $vMin, :SvMax, :SvAverage, “vSum;”
=l Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
BAlerdTut=""
BAleTxt:=FAledTx+"Minimum tickets sold: "+String(FvMin)+Char{13)
FAlenTxt=FAledTxt+"Maximum tickets sold: ™+ String($vMax)+Char(13)
BAlerTut:=FAledTxt+"Average tickets sold: "+String(fviverage)+Char(13)
BAlerTxt=FAlerTxi+Total tickets sold: “+String(5vSum}+Char(13)
ALERT(SAlerTx)

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Using Aggregate functions" button.

4D SQL Reference 33

Using the HAVING clause Tutorial

version 11

We would now like to get the total amount of tickets sold per year starting with 1960, but not
including those with over 10,000,000 tickets sold. The result will be sorted by year.

To do this, we must total all the tickets sold for every movie in each year more recent than
1960, remove those where the total amount of tickets sold is greater than 10,000,000, and
then sort the result by year.

The initial query in 4D code would be:

ARRAY INTEGER(aMovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT(EMovieYear,SvCrtMovieYear; $i;5MinSoldTickets; vind)

REDUCE SELECTION(MOVIES];0)
SMovieYear=1979
SMinSoldTickets:=10000000
QUERY(MOVIES],IMOVIES]Year_of_Mavie==8MovieYear)
ORDER BY([MOVIES],[MOVIES]Year_of_Movie;=)
WCriMovieYear=0
Bvind:=Size of array(aMovieYear)
= For (%i;1;Records in selection{[MOVIES]))
B W (MOVIESTYear_of_Movie#ivCriMovieYear)
PvCriMovieYear=[MOVIES]Year_of_Movie
= i (aSoldTickets{Svind}=FMinSoldTickets)
Fuind:=Fvind+1
INSERT ELEMENT(aMovieYear;dvind;1)
aMovieYear{fvind}=tvCriMovieYear
INSERT ELEMENT(aSoldTickets;5vind;1)
E Else
aSoldTickets{&vind}.=0
End if
- End if
aSoldTickets{$vind}.=aSoldTickets{vind}+[MOVIES]Sold_Tickets
NEXT RECORD({[MOVIES])
End for
= If (aSoldTickets{&vind}==8MinSoldTickets)
DELETE ELEMENT(aSoldTickets;5vind;1)
DELETE ELEMENT(aMovieYear;svind; 1)
End if
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT({aMedias; Size of array(aMovieYear))
ARRAY LONGINT(aMrActors; Size of array(aMovieYear))

34 4D SQL Reference

Using SQL code, the above query becomes:

*Using 4D SQL
ARRAY INTEGER({aMovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT($MovieYear;5MinSoldTickets)

FMovieYear=1879
SMinZoldTickets:=10000000
E Begin SQL
SELECT Year_of_Movie, SUM({Sold_Tickets)
FROM MOVIES
WHERE Year_of_Movie >=:$MovieYear
GROUP BY Year_of_Movie
HAVING SUM(Sold_Tickets) < :$MinSoldTickets
ORDER BY 1
INTO :aMovieYear, :aSoldTickets;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias;Size of array(aMovieYear))
ARRAY LONGINT({aMrActors; Size of array(aMovieYear))

Using ODBC commands, the above query becomes:

*Using ODBC commands
C_TEXT(StQueryTxt)
ARRAY INTEGER({aMovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT($MovieYear;5MinSoldTickets)

SMovieYear=1979
$MinSoldTickets:=10000000
ODBC LOGIN(SQL INTERMAL ;™™)
StQuenyTet=""
FtQuenyTut=5tCQueryTxd+"SELECT Year_of_Movie, SUM(Sold_Tickets)”
FQuenT=5tQueryTx+" FROM MOVIES™
StQuenTat=§tQueryTx+" WHERE Year_of_Movie == :SMovieYear®
FtQuenTxt=5tCQueryTxd+" GROUFP BY Year_of_Movie”
FauenTet=5QuenTd+" HAVING SUM{Sold_Tickets) = :EMinSoldTickets”
BtQuenTxt=§tQueryTxi+" ORDER BY 1"
ODBC EXECUTE(RQueryTxaMovieYear,aSoldTickets)
ODBC LOAD RECORD(ODBC All Records)
ODBC LOGOUT

" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT{aMedias; Size of array(aMovieYear))
ARRAY LONGINT({aMrActors; Size of array(aMovieYear))

4D SQL Reference

Using the QUERY BY SQL command, the above query becomes:

*Using QUERY BY SQL
C_TEXT(StQueryTxt)
ARRAY INTEGER(aMovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT{3MovieYear; sMinSoldTickets; fvCriMovieYear; vind; 5i)

REDUCE SELECTION(MOVIES];0)
SMovieYear=1979
SMinSoldTickets:=10000000
QUERY BY SQL(MOVIES],Year_of_Maovie == $MovieYear™)
ORDER BY([MOVIEST,[MOVIESTYear_of_Movie;=)
SCrtMovieYear=0
Bvind:=Size of array(aMovieYear)
E For (5i;1;Records in selection([MOVIES]))
B K ((MOVIES]TYear_of_Movie#SvCriMovieYear)
FvCriMovieYear=[MOVIES]Year_of_Movie
Bl i (aSoldTickets{Svind}=5MinSoldTickets)
fvind:=%vind+1
INSERT ELEMENT(aMovieYear;5vind; 1)
alMovieYear{svind}=FvCriMovieYear
INSERT ELEMENT(aSoldTickets;Bvind;1)
H Else
|_ aSoldTickets{Svind}=0
End if
- End if
aSoldTickets{$vind}=aSoldTickets{Svind}+[MOVIES]Sold_Tickets
NEXT RECORD([MOVIES])
- End for
B If (aSoldTickets{Svind}==5MinSoldTickets)
DELETE ELEMENT(aSoldTickets;Bvind;1)
DELETE ELEMENT(aMovieYear;5vind; 1)
- End if
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array(aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias; Size of array(aMovieYear))
ARRAY LONGINT{aMrActors; Size of array(aMovieYear))

36 4D SQL Reference

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

* Using dynamic SGL by EXECUTE IMMEDIATE
C_TEXT(5tQueryTxt)
ARRAY INTEGER{aMovieYear;0)
ARRAY LONGINT(aSoldTickets;0)
C_LONGINT(EMovieYear, $MinSoldTickets)

SMovieYear=1979
FMinSoldTickets:=10000000
StQuernyTd=""
BtQuenyTxt=5tCQueryTxd+"SELECT Year_of_Movie, SUM({Sold_Tickets)"
FtQueryTxt=§tQueryTx+" FROM MOVIES"
FQueryTut=5tQueryTx+" WHERE Year_of_Movie == $MovieYear”
BtQuenyTxt=5tCQueryTxd+" GROUP BY Year_of_Movie™
FaueryTut=5CQuernTd+" HAVING SUM{Sold_Tickets) = :3MinSoldTickets™
FtQuenyTut=FtQueryTxi+" ORDER BY 17
FtQueryTuet=5tQueryTxt+" INTO :aMovieYear, :aSaldTickets;”
EBegin 5QL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY TEXT(aTitles; Size of array{aMovieYear))
ARRAY TEXT(aDirectors; Size of array(aMovieYear))
ARRAY TEXT(aMedias; Size of array(aMovieYear))
ARRAY LONGINT({aMrActors; Size of array(aMovieYear))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "HAVING clause" button.

4D SQL Reference 37

Calling 4D methods inside the SQL code Tutorial

version 11

We would now like to know something about the actors for each movie: more specifically, we
are interested in finding all the movies with at least 7 actors. The result will be sorted by year.
To do this, we will use a 4D function (Find_Nr_Of_Actors) that receives the movie ID as
unique parameter and returns the number of actors that played in that movie:

“(F) Find_Mr_Of_Actors
C_LONGINT($0;$7,$vhovie_ID)
SvMovie_ID:=87

QUERY([MOVIE_ACTOR][MOVIE_ACTOR]Movie_ID=%vMovie_ID)
$0:=Records in selection{[MOVIE_ACTOR])

The initial query in 4D code would be:

ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
ARRAY LONGINT(aMrActors;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(SMrOfActors; §i; $vind)

Swind:=0
SMrofActors: =7
ALL RECORDS([MOVIES])
= For (%i;1;Records in selection{[MOVIES]))
SviCractors:=Find_Nr_Of_Actors ([MOVIES]ID)
B If (BvCriActors==8MNrofActors)

Sind:=%vind+1
INSERT ELEMENT(aMovieYear,$vind; 1)
aMovieYear{svind}=[MOVIES]Year_of_Maovie
INSERT ELEMENT(aTitles; $vind;1)
aTitles{Fvind}.=[MOVIES]Title
INSERT ELEMENT(aDirectors;$vind; 1)
aDirectors{&vind}=[MOVIES]Director
INSERT ELEMENT(aMedias;$vind;1)
aMedias{fvind}=[MOVIESIMedia
INSERT ELEMENT(aSoldTickets;vind;1)
aSoldTickets{Evind}=[MOVIES]Sold_Tickets
INSERT ELEMENT(aMrActors; Bvind; 1)
aMrActors{Svind}:=fvCrtActors

- End if

NEXT RECORD({[MOVIES])
End for
SORT ARRAY({aMovieYear;aTitles;aDirectors;aMedias;aSoldTickets;aMrActors =)

38 4D SQL Reference

Using SQL code, the above query becomes:

ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY LONGINT(aMrActors;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT({aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(BMNrOfActors; i, svind)

vind:=0
FMrOfactors =7
E Begin SGQL
SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets, {fn Find_Nr_Of_Actors(ID) AS NUMERIC}

FROM MOVIES
WHERE {fn Find_Nr_Of_Actors(ID} AS NUMERIC} >= :$NrOfActors
ORDER BY 1
INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :a SoldTickets, ;:aNrActors;

End SQL

You can see that we are able to call a 4D function inside SQL code using the syntax:
{fn <4D function name> AS <4D function result type>}.

Using ODBC commands, the above query becomes:

“Using ODBC commands
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY LONGINT(aMrActors;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors:0)
ARRAY TEXT(aMedias;0)
C_LONGINT(BMrOfActors; &i;$vind)
C_TEXT(StQueryTxt)

Svind:=0

SMrofActors =7

ODBC LOGIN(SQL INTERMAL ;™™

BtQueryTxt=""

BtQuenTe=5tQueryTxt+"SELECT Year_of_Mavie, Title, Director, Media, Sold_Tickets, {fn Find_Nr_Of_Actors(ID}) AS NUMERIC}”
StQuen Tt =5tQueryTxt+" FROM MOVIES™

BtQuenTe=5tQueryTx+" WHERE {fn Find_Nr_Of_Actors(ID) AS NUMERIC} == $MNrOfActars™
StQuenTxt=FtQueryTxi+" ORDER BY 1"

ODBC EXECUTE(BtQueryTxt;aMovieYear,aTitles;aDirectors;aMedias;aSoldTickets;aMrActors)
ODBC LOAD RECORD(ODBC All Recards)

ODBC LOGOUT

4D SQL Reference 39

Using the QUERY BY SQL command, the above query becomes:

" Using QUERY BY SQL
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER({aMovieYear,0)
ARRAY LONGINT(aNrActors:0)
ARRAY TEXT(aTitles:0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT{aMedias:0)
C_LONGINT(EMrOfActors; i, svind)

vind:=0
SMrOfActors:=7
QUERY BY SQL(MOVIES]™fn Find_MNr_0Of_Actors{ID}) AS NUMERIC} == :SNrOfActors™)
E For (&i;1;Records in selection{[MOVIES]))
Fuind:=Fvind+1
INSERT ELEMENT(aMovieYear,$vind; 1)
aMovieYear{svind}=[MOVIES]Year_of_Maovie
INSERT ELEMENT(aTitles;$vind; 1)
aTitles{Bvind}:=[MOVIES]Title
INSERT ELEMENT(aDirectors; fvind; 1)
aDirectors{&vind}.=[MOVIES]Director
INSERT ELEMENT({aMedias;$vind; 1)
aMedias{$vind}.=[MOVIESIMedia
INSERT ELEMENT(aSoldTickets;vind;1)
aSoldTickets{Evind}=[MOVIES]Sold_Tickets
INSERT ELEMENT(aMrActors; Bvind; 1)
aMrActors{Svind}.=Find_Nr_Of_Actors ([MOVIES]ID)
NEXT RECORD([MOVIES])
- End for
SORT ARRAY(aMovieYear,aTitles;aDirectors;aMedias;aSoldTickets;aMrActars;=)

40 4D SQL Reference

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

“Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY LONGINT(aMrActors;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)
C_LONGINT(BMNrOfActors; §i;Svind)
C_TEXT({3tQueryTx)

Swind:=0
SMrofActors:=7
BtQueryTut=""
BtQuenTd=8AueryTx+"SELECT Year_of_Movie, Title, Director, Media, Sold_Tickets, {fn Find_MNr_0Of_Actors{ID) AS NUMERICY"
StluenTxt=5CueryTx+" FROM MOVIES™
StQuen Tt =5CQuenyTxt+" WHERE {fn Find_MNr_0Of_Actors{ID} AS NUMERIC} == :$MNrOfActors”
BtQuenTt=8CueryTx+" ORDER BY 17
BtQuenTut=5iCueryTx+" INTO :aMovieYear, :aTitles, -aDirectors, -aMedias, -aSoldTickets,™+" :aNrActors;”
= Begin 5aQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Calling 4D methods" button.

4D SQL Reference 41

Joins Tutorial

version 11

We would now like to find out the city of birth for each actor. The list of actors is in the
ACTORS table and the list of cities is in the CITIES table. To execute this query we need to join
the two tables: ACTORS and CITIES.

The initial query in 4D code would be:

“Using standard 4D code
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT({aDirectors;0)
C_LONGINT(Si;$vind)

Svind:=0
ALL RECORDS(JACTORS])
E For (5i;1;Records in selection([ACTORS]))

Bvind:=5vind+1
INSERT ELEMENT(aTitles;$vind; 1)
aTitles{vind}:=[ACTORS]FirstMame+""+[ACTORS]LastMName
RELATE ONE({[ACTORS]Birth_City_ID)
INSERT ELEMENT(aDirectors; fvind; 1)
aDirectors{svind}.=[CITIES]City_Mame
NEXT RECORD{[ACTORS])

End for

" Intialize the rest of the list box columns in order to visualise the information

ARRAY INTEGER(aMovieYear; Size of array(aTitles))

ARRAY TEXT({aMedias; Size of array(aTitles))

ARRAY LONGINT(aSoldTickets; Size of array(aTitles))

ARRAY LONGINT(aMrActors; Size of array(aTitles))

MULTI SORT ARRAY({aDirectors;=;aTitles:=aMovieYear.aMedias;aSaoldTickets aMNrActors)

42 4D SQL Reference

Using SQL code, the above query becomes:

“Using 40 SOL code
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)

E Begin SQL
SELECT CONCAT(COMNCAT(ACTORS.FirstHame," "),ACTORS.LastName), CITIES.City_Name
FROM ACTORS, CITIES
WHERE ACTORS.Birth_City_ID=CITIES.City_ID
ORDER BY 2,1
INTO :aTitles, :aDirectors;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT(aSoldTickets; Size of array(aTitles))
ARRAY LONGINT(aMrActars; Size of array(aTitles))

Using ODBC commands, the above query becomes:

" Using ODBC commands
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors:0)
C_TEXT({HtCQueryTxt)

ODBC LOGIN(SQL INTERMAL ;™™)
StQuenTet=""
StQueny Tt =5tQueryTx+"SELECT CONCAT(COMNCAT(ACTORS FirstName,” "), ACTORS.LastName), CITIES.City_Name”
BtQuenTd=FtQueryTxd+" FROM ACTORS, CITIES™
StQueny Tt =5tQueryTx+" WHERE ACTORS Birth_City_ID=CITIES.City_ID"
BtQuenTt=5tQueryTxi+" ORDER BY 2,17
ODBC EXECUTE(SQueryTuxt;aTitles;aDirectars)
ODBC LOAD RECORD(ODBC All Recards)
ODBC LOGOUT
" Intialize the rest of the list box columns in arder to visualise the information
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT(aSoldTickets; Size of array(aTitles))
ARRAY LONGINT{aMNrActors; Size of array(aTitles))

Using the QUERY BY SQL command, we are unable to carry out the query above because it is
not possible to pass more than one table as the first parameter.

4D SQL Reference 43

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

* Using dynamic SCGL by EXECUTE IMMEDIATE
ARRAY TEXT(aTitles;0)
ARRAY TEXT({aDirectors;0)
C_TEXT(tQueryTxt)

BtQueryTut=""
StQueryTxt=5t0uenT+"SELECT CONCAT{CJONCAT(ACTORS FirstMame,’ ") ACTORS LastName), CITIES.City_Mame”
BtQueryTut=5tQueryTxd+" FROM ACTORS, CITIES™
FtQuenyTx=5t0ueryTx+" WHERE ACTORS Birth_City_ID=CITIES. City_ID"
FtQueryTxt=5tQueryTxi+" ORDER BY 2,17
FlueryTeb=8CueryTxd+" INTO :aTitles, :aDirectors”™
=l Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear, Size of array(aTitles))
ARRAY TEXT({aMedias; Size of array(aTitles))
ARRAY LONGINT(aSoldTickets; Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Joins" button.

44 4D SQL Reference

Using Aliases

Tutorial

version 11

If an SQL query is too complex and contains long names that make it difficult to read, it is

possible to use aliases in order to improve its readability.

Here is the previous example using two aliases: Act for the ACTORS table and Cit for the

CITIES table.
The initial query in 4D code would be:

" Using standard 4D code
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT({aDirectors;0)
C_LOMNGINT(Si;Svind}

Swind:=0
ALL RECORDS([ACTORS])
= For (5i;1;Records in selection([ACTORSE]))
Svind:=%vind+1
INSERT ELEMENT(aTitles;vind; 1)
aTitles{fvind}.=[ACTORS]IFirstName+" "+HACTORS]LastName
RELATE ONE([ACTORS]Birth_City_ID)
INSERT ELEMENT(aDirectors;dvind;1)
aDirectors{Svind}=[CITIES]City_MName
NEXT RECORD({JACTORS])
End for
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT({aMedias;Size of array(aTitles))
ARRAY LONGINT(aSoldTickets: Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))
MULTI SORT ARRAY(aDirectors;=aTitles,=aMovieYear,aMedias;aSoldTickets;aMrActors)

4D SQL Reference

45

Using SQL code, the above query becomes:

" Using 4D SQL code
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)

E Begin SGQL
SELECT CONCAT({CONCAT(ACTORS.FirstName,' "),ACTORS.LastName), CITIES.City_Name
FROM ACTORS AS "Act’, CITIES AS 'Cit’
WHERE Act.Birth_City_ID=Cit.City_ID
ORDER BY 2,1
INTO :aTitles, :aDirectors;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT{aSoldTickets; Size of array(aTitles))
ARRAY LONGINT(aMrActars; Size of array(aTitles))

Using ODBC commands, the above query becomes:

“Using ODBC commands
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
C_TEXT(BtQueryTxt)

ODBC LOGIN(SQL INTERMAL ;™™)
StQuenyTet=""
StQuen Tt =5CQuenyTx+"SELECT COMCAT(COMNCAT(ACTORS FirstName,'), ACTORS Lasthame), CITIES.City_MName”
BtQuenTd=8CAueryTxt+" FROM ACTORS AS "Act, CITIES AS "Cit™
StQueny Tt =5CQuenyTxt+" WHERE Act Birth_City_ID=Cit. City_ID"
BtQuenTt=8CAueryTxt+" ORDER BY 2,17
ODBC EXECUTE(StQueryTxtaTitles;aDirectors)
ODBC LOAD RECORD(ODBC All Records)
ODBC LOGOUT

" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear, Size of array(aTitles))
ARRAY TEXT({aMedias;Size of array(aTitles))
ARRAY LONGINT(aSoldTickets: Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))

Using the QUERY BY SQL command, we are unable to carry out the query above because it is
not possible to pass more than one table as the first parameter.

46 4D SQL Reference

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

* Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY TEXT(aTitles;0)
ARRAY TEXT({aDirectors;0)
C_TEXT(5tQueryTxd)

BtQueryTut=""
FtQueryTu=5tQueryTx+"SELECT CONCAT{COMNCAT(ACTORS Firsthame, ") ACTORS. Lasthame), CITIES.City_MName”
FtQuenyTx=5t0ueryTxi+" FROM ACTORS AS "Act, CITIES AS 'Cit™
FQueryTxt=5tQueryTxt+" WHERE Act.Birth_City_ID=Cit.City_ID"
FtQueryTxt=5tQuenTxt+" ORDER BY 2,17
FQueryTxt=FtQueryTxt+" INTO :aTitles, :aDirectors™
=l Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT{aSoldTickets; Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Using Aliases" button.

4D SQL Reference 47

Subqueries Tutorial

version 11

We would now like to get some statistical information regarding the tickets sold: what are the
movies where the tickets sold are greater than the average tickets sold for all the movies. To
execute this query in SQL, we will use a query within a query, in other words, a subquery.
The initial query in 4D code would be:

" Using standard 4D code
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)
C_LONGINT({%i; $vind; svAvagSoldTickets)

Bvind:=0
ALL RECORDS([MOVIES])
SvAvgSoldTickets:=Average([MOVIES]Sold_Tickets)
B For (5i;1;Records in selection{[MOVIES]))
= I ((MOVIES]Sold_Tickets=%vAvgSoldTickets)
Fvind:=%vind+1
INSERT ELEMENT(aTitles; $vind; 1)
aTitles{Svind}=[MOVIES]Titlg
INSERT ELEMENT(aSoldTickets;5vind;1)
aSoldTickets{vind}=[MOVIES]Sold_Tickets
End if
NEXT RECORD({[MOVIES])
End for
" Intialize the rest of the list box columns in order to visualise the infarmation
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aDirectors; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))
SORT ARRAY(aTitles;aDirectors;aMovieYear,aMedias;aSoldTickets;aMrActors; =)

48 4D SQL Reference

Using SQL code, the above query becomes:

“Using 40 SAQL code
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)
E Begin SQL
SELECT Title, Sold_Tickets
FROM MOVIES
WHERE Sold_Tickets > (SELECT AVG(Sold_Tickets) FROM MOVIES)
ORDER BY 1
INTO :aTitles, :aSoldTickets;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear, Size of array(aTitles))
ARRAY TEXT(aDirectors;Size of array(aTitles))
ARRAY TEXT(aMedias;Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))
SORT ARRAY(aTitlesaDirectors;aMovieYear,aMedias;aSoldTickets;aNrActors,=)

Using ODBC commands, the above query becomes:

“Using ODBC commands
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)
C_TEXT(StQueryTxt)

ODBC LOGIN(SQL INTERMAL ;™™)
StQuenTxt=""
BtQuenyTx=8CAueryTx+"SELECT Title, Sold_Tickets”
StQuenyTxt=5tQuenyTxt+" FROM MOVIES™
BtQuenTd=8CAueryTx+" WHERE Sold_Tickets = (SELECT AVG(Sold_Tickets) FROM MOVIES)”
BtQuenTx =8CueryTx+" ORDER BY 17
ODBC EXECUTE(StQueryTxtaTitles; aSoldTickets)
ODBC LOAD RECORD(CDBC All Records)
ODBC LOGOUT
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear, Size of array(aTitles))
ARRAY TEXT(aDirectors;Size of array(aTitles))
ARRAY TEXT({aMedias;Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))
SORT ARRAY(aTitles,aDirectors,aMovieYear,aMedias;aSoldTickets,aMractors,=)

4D SQL Reference

49

Using the QUERY BY SQL command, the above query becomes:

“Using QUERY BY 5QL
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)

QUERY BY SQL{MOVIES];"Sold_Tickets = (SELECT AVG(Sold_Tickets) FROM MOVIES)™)
ORDER BY{[MOVIESLIMOVIES]Title;=)
SELECTION TO ARRAY({[MOVIES]Title;aTitles;[MOVIES]Sold_Tickets;aSoldTickets)
" Intialize the rest of the list box columns in arder to visualise the information
ARRAY INTEGER(aMovieYear; Size of array(aTitles))
ARRAY TEXT(aDirectors; Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))
SORT ARRAY(aTitles;aDirectors;aMovieYear,aMedias;aSoldTickets;aMrActors:=)

Using the SQL EXECUTE IMMEDIATE command, the query above becomes:

" Using dynamic SQL by EXECUTE IMMEDIATE
ARRAY LONGINT(aSoldTickets;0)
ARRAY TEXT(aTitles;0)
C_TEXT({BtQueryTxt)

BtQueryTxt=""
BtQuenTd=FtCueryTx+"SELECT Title, Sold_Tickets”
StQuenTxt=$tQueryTxt+" FROM MOVIES™
BtQuenTd=5CAueryTx+" WHERE Sold_Tickets = (SELECT AVG(Sold_Tickets) FROM MOVIES)”
StQuenT=tCueryTx+" ORDER BY 17
BtQuenTut=%tCueryTx+" INTO :aTitles, :aSoldTickets”
E Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL
" Intialize the rest of the list box columns in order to visualise the information
ARRAY INTEGER(aMovieYear, Size of array(aTitles))
ARRAY TEXT(aDirectors;Size of array(aTitles))
ARRAY TEXT(aMedias; Size of array(aTitles))
ARRAY LONGINT(aMrActors; Size of array(aTitles))

To test all the above examples, launch the Video Library database and go to the main window.
You can then choose the query mode and press the "Subqueries" button.

50 4D SQL Reference

SQL code error tracking and debugging Tutorial
version 11

In 4D, there are two main possibilities for tracing and correcting your code: either using the
Debugger to trace and correct any errors, or calling the ON ERR CALL command to catch the
error and initiate the appropriate action. We can use both of these techniques to solve
problems encountered with the SQL code.

Here is an example where a right parenthesis is missing intentionally: instead of
SUM(Sold_Tickets), we have SUM(Sold_Tickets.

" Debugging SCL code
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
C_LONGINT{SMovieYear,5MinSoldTickets)
FMovieYear=1979
BMinSoldTickets:=10000000

=l Begin SQL
SELECT Year_of_Movie, SUM({Sold_Tickets)
FROM MOVIES
WHERE Year_of_Movie >= :$MovieYear
GROUP BY Year_of_Movie
HAVING SUM(Sold_Tickets < :$MinSoldTickets
ORDER BY 1
INTO :aMovieYear, :aSoldTickets;
End SQL

As you can see in the window below, the application detects the error, opens the debugger
window and gives some more detailed information about the error and the place where it
occurred. It is very easy to fix it by simply pressing the Edit button.

4D SQL Reference 51

D

X

Error 1301 in component SQLS

Generic parsing error. Parsing failed in or around the following sul)string
interval - (148, 161) - _UM(Sold_Tickets < $__

|

SELECT Year_of_Movie, SUM(Sold_Tickets)
FROM MOVIES
WHERE Year_of Movie == :$MovieYear o
GROUP BY Year_of_Movie
HAVING SUM(Sold_Tickets < :$MinSoldTickets

@ Details [Abort | [Trace] [Continue] [Edit]

4D Error Code

Information

Component

Error Code Process: Ijl
Action:

Action:

Location: Process: Ijl

Error Dump :

If the error is more complex, the application gives much more information including the stack
content, which can be displayed by pressing the "Details" button.

To test the above example, in the main window of the Video Library database, press the
"Debugging SQL code" button.

The second main possibility for tracking SQL errors is using the ON ERR CALL command.

52 4D SQL Reference

Here is an example that sets the SQL_Error_Handler method to catch errors encountered in the
SQL code.

" Using OM ERR. CALL command
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear;0)
C_LONGINT(EMovieYear;5MinSoldTickets; SQL_Error)
SMovieYear=1979
FMinSoldTickets:=10000000
SQAL_Error=0

" Trigger the SCGL_Error_Handler method to catch (trap) errors
OMN ERR CALL("SQL_Error_Handler”)
E Begin SQL
SELECT Year_of_Movie, SUM{Sold_Tickets)
FROM MOVIES
WHERE Year_of Movie == :$MovieYear
GROUP BY Year_of_Movie
HAVING SUM({Sold_Tickets < :$MinSoldTickets
ORDER BY 1
INTO :aMovieYear, :aSoldTickets;
End SQL
" Disable the SQL_Error_Handler method
OMN ERR CALL(™)

BIF(SQL_Error#0)

ALERT{™SQL Error number: "+ 5tring(3QL_Error))
End if

The SQL_Error_Handler method is as follows:

“(P) SQL_Error_Handler
SQL_Error=Error

To test the above example, in the main window of the Video Library database, press the
"Using ON ERR CALL" button.

4D SQL Reference 53

Data Definition Language Tutorial
version 11

Using the SQL Data Definition Language (DDL), you can define and manage the database
structure.

With DDL commands, you can create or alter tables and fields, as well as add and/or remove
data.

Here is a simple example that creates a table, adds a few fields, then fills those fields with some
data.

"DDL

=l Begin SQL
CREATE TABLE ACTOR_FANS
(ID INT32,
Name VARCHAR);

INSERT INTO ACTOR_FANS
(1D, Name})
VALUES(1, 'Francis");

ALTER TABLE ACTOR_FANS
ADD Phone_Number VARCHAR;

INSERT INTO ACTOR_FANS
(ID, Name, Phone_Number)
VALUES (2, 'Florence’, "01446677888");

End SQL

To test the above example, in the main window of the Video Library database, press the "DDL"
button.

Note: This example will only work once because if you press the "DDL" button a second time,
you will get an error message telling you that the table already exists.

54 4D SQL Reference

External connections Tutorial
version 11

4D v11 allows you to connect to any external ODBC data source directly from the language
and execute SQL queries on that external connected database.

Here are the 4D commands that allow you to manage a connection with an external data
source:

GET DATA SOURCE LIST can be used to get the list of the data sources installed on the machine.
USE EXTERNAL DATABASE allows you to connect to an external database via a data source
installed on the machine.

USE INTERNAL DATABASE can be used to close any external connection and to reconnect to the
local 4D database.

Get current data source tells you the current data source of the application.

The example below shows how to connect to an external data source (ORACLE), how to get
data from the ORACLE database, and then how to disconnect from the ORACLE database and
return to the local database.

Suppose that there is a valid data source named "Test ORACLE_10g" installed in the system.

" 50L Pass Thru
ARRAY TEXT(aD3N;0)
ARRAY TEXT(aDS_Driver0)
C_TEXT(HCr_DSM;EMy_ORACLE_DSN)
ARRAY TEXT(aTitles;0)
ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER({aMovieYear,0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT{aDirectors:;0)
ARRAY TEXT(aMedias;0)
C_LONGINT{$MovieYear)
C_TEXT(StQueryTxt)
REDUCE SELECTION{IMOVIES],0)
SMovieYear=1960

* By default the current DSHM is the local one, " DB4D_SQL_LOCAL", which is the value of the SQL_INTERMNAL constant
FCr_DSMN:=Get current data source

* By default the current DSHM is the local one
ALERT({"The current DSM is "+3Cri_DSN]

* Do someting on the local database
=l Begin SQL
SELECT Year_of_Maovie, Title, Director, Media, Sold_Tickets
FROM MOVIES
WHERE Year_of_Movie >=:$MovieYear
INTO :aMovieYear, :aTitles, :aDirectors, :aMedias, :aSoldTickets;
End SQL

4D SQL Reference 55

" Getthe data sources ofthe User type defined in the ODBC manager
GET DATA SOURCE LIST(User Data Source ;aDSMN;aDS_Driver)
SMy_ORACLE_DSM:="Test_Oracle_10g”
B If (Find in array(aD3N; 5My_ORACLE_DSMN)=0)
" Establish a connection between 40 and the data source $My_ORACLE_DSMN="Test_Oracle_10g"
USE EXTERNAL DATABASE(SMy_ORACLE_DSN;"scolt™tiger”)

" The current DSM is the ORACLE one
$Crt_DSM:=Get current data source
ALERT(The current DSN is "+&Cri_DSM)
ARRAY TEXT(aTitles;0)

ARRAY LONGINT(aMrActors;0)
ARRAY LONGINT(aSoldTickets;0)
ARRAY INTEGER(aMovieYear,0)
ARRAY TEXT(aTitles;0)

ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)

" Do something on the external (ORACLE) database
= Begin SQL
{ SELECT ENAME FROM EMP INTO :aTitles

End SQL

" Close the external connexion opened with the USE EXTERMNAL DATABASE command
USE LOCAL DATABASE

" The current DSM becomes the local one
BCrt_DSN:=Get current data source
ALERT(The current DSN is "+&Cr_DSHM)
El Else

_ ALERT("ORACLE DSN not installed™)

End if

To test the above example, in the main window of the Video Library database, press the
"Connect to ORACLE" button.

56 4D SQL Reference

Connection to the 4D SQL engine via the ODBC Driver Tutorial

version 11

You can connect to the 4D SQL Engine from any external database via the ODBC Driver for
4D v11.

Here is a small example demonstrating how to connect a 4D database to another 4D database
via the ODBC driver:

1. Duplicate the example database that comes with this tutorial

2. Rename the two folders containing the databases to "Client" and "Server"

3. Launch the example database inside the Server folder and enable the launching of the SQL
Server at startup by checking the "Launch SQL Server at Startup" check-box in the application
Preferences, on the SQL/Configuration page:

Preferences

5QL Server Publishing

Launch 5QL Server at Startup

TCP Port:

IP Address: | Al “

SQL Server Access

Read Only (Data) | <Everybody > v|
Read/Write (Data) | <Everybody > v|
Full (Data and Design) | <Mobody = v|

[Cancel] [OK. l

Quit and restart the example database from the Server folder to activate the SQL Server.

4D SQL Reference 57

4. Install the 4D ODBC Driver for 4D v11, then check whether it appears in the ODBC Data
Source Administrator:

istrateur de sources de données ODBC

Sources de données utilisateur I Sources de données systéme] Sources de données fichier]
Pilotes ODBC] Tracage | Groupementdeconnexions | Apopos |

Pilotes ODBC installés sur votre systéme :

Nom | Version | Société »
40 v11 ODEC Driver 11.00.00.00 40 SAS

Driver da Microsoft para arquivos testo ("bd; “csv) 4 006304 00 Microsoft Compe.
Driver do Microsoft Access (*.mdb) 4.00.6304.00 Microsoft Corpc
Driver do Microsoft dBase (*dbf) 4.00.6304.00 Microsoft Corpe—
Driver do Microsoft Excel(*xls) 4.00.6304.00 Microsoft Corpe
Driver do Microsoft Paradox (*.db) 4.00.6304.00 Microsoft Corpe
Driver para o Microsoft Visual FoxPro 1.00.02.00 Microsoft Corpc
Microsoft Access Driver (*mdb) 4.00.6304.00 Microsoft Corpe
Microsoft Access-Treiber {*.mdb) 4.00.6304.00 Microsoft Corpe
400630400 Microsoft Corpc s
4 | ¥

Un pilote ODBC pemet awx progammes compatibles ODEC d'obtenir des
informations sur d'autres sources de données QODBC. Pour installer de nouvealn
pilotes, utilisez le programme dinstallation du pilote.

oK | sonuer | | e |

5. Create a new data source named "Test ODBC_Driver_v11"

rateur de sources de données ODBC

Pilotes ODBC] Tragage] Groupement de connexions] A propos]
Sources de données utilisateur] Sources de données systeme | Sources de données fichier |

Sources de données utilisateur :

‘ Pilote | Ajouter...

Microsoft dBase Driver {*.dbf)

Excel Files Microsoft Excel Driver {*xds) Supprimer
Fichiers Excel Microsoft Excel Driver {*xds)

MS Access Database Microsoft Access Driver (" mdb) Corfigurer...
SGL Server SQL Server

Test_ODBC_Driver_v11 4D w11 ODEC Driver

Test_Oracle_10g Oracle dans OraDb10g_home1

Une source de données utilisateur ODBC stocke des informations relatives a
la connexion du foumisseur de données spécifié. Elle est visible uniqguement
pour vous et sur cette machine.

oK | Annuler Pide

58 4D SQL Reference

and test it by pressing the "Connection test" button:

4D v11 SQL - Configure data source

Data Source Mame : 14DTI'est

Desiription ¢ | 4D v1150L datasource.

~Server
Server :] localhost
[s

(~Default user

[a User : | Administrateur

Password :]

I Timeouts

Connection : l 3

Login :] 3
Query : [30
Connection test Cancel] Ok]
Diata source name [DsN]
A unique name for this Data Source
Default: ™
Optional: Mo

6. Launch the example database inside the Client folder, go to the main window and press the
"Connect to 4D" button. The code behind this button is the following:

" ODBC Driver
C_TEXT($Cri_DSMN;EMy_4D_DSN)
ARRAY TEXT(aDSN;0)

ARRAY TEXT(aD5_Driver;0)
ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectars;0)
ARRAY TEXT(aMedias;0)

REDUCE SELECTION(MOVIES];0)

" By defaultthe current DSN is the local one
SCrt_DSN:=Get current data source
ALERT("The current DS is +Cr_DEMN)

Do someting on the local database
B Begin SQL
SELECT Title, Director, Media
FROM MOVIES
ORDER BY 1
INTO :aTitles, :aDirectors, :aMedias;
End SQL

4D SQL Reference 59

" Getthe data sources of of type User defined in the ODBC manager
GET DATA SOURCE LIST(User Data Source ;aD3N;aDS_Driver)
BMy_4D_DEM:="Test_ODBC_Driver_v11”

B I (Find in array(aDSM;5My_4D_DSK)=0)

* Establish a connection between 4D and another 4D database via the ODBC Driver v11
USE EXTERNAL DATABASE(SMy_4D_DSN;"Administrator™™)
B If (Ok=1)

* The current DSM is the 4D one
BCr_D3SN:=Get current data source
ALERT("The current DS is "+§Cr_DSHM)

ARRAY TEXT(aTitles;0)
ARRAY TEXT(aDirectors;0)
ARRAY TEXT(aMedias;0)

" Do something on the external (4D) database
& Beqgin SQL
SELECT Title, Director, Media
FROM MOVIES
ORDER BY 1
INTO :aTitles, :aDirectors, :aMedias;

End SQL

" Close the external connexion opened with the USE EXTERNAL DATABASE command
USE LOCAL DATABASE

" The current DSM becomes the local one
$Crt_DSNEGet current data source
ALERT(The current DSM is “+§Cr_DSM)

El Else
|_ ALERT("Unable to connect to the external data source™)

End if
= Else
ALERT("ODBC Driver data source not found™)

End if
As you can see, in the first part of the method we make a query on the local database. Then, in
the second part, we connect to the other 4D database via the ODBC driver and make the same

query. The result should be the same of course.

60 4D SQL Reference

2

Using SQL in 4D

62 4D SQL Reference

Using SQL in 4D Using SQL in 4D
version 11

This section provides a general overview of the use of SQL in 4D. It describes how to access the
integrated SQL engine, as well as the different ways of sending queries and retrieving data. It
also details the configuration of the 4D SQL server and outlines the principles for integrating
4D and its SQL engine.

4D SQL Reference 63

Accessing the 4D SQL Engine Using SQL in 4D
version 11

Sending Queries to the 4D SQL Engine
The 4D built-in SQL engine can be called in three different ways:

e Using the QUERY BY SQL command. Simply pass the WHERE clause of an SQL SELECT
statement as a query parameter.
Example:

QUERY BY SQL([OFFICES];"SALES > 100")

¢ Using the integrated ODBC commands of 4D, found in the “External Data Source” theme
(ODBC SET PARAMETER, ODBC EXECUTE, etc.). These commands have been modified to work
with the 4D SQL engine of the current database.

e Using the standard Method editor of 4D. SQL statements can be written directly in the
standard 4D Method editor. You simply need to insert the SQL query between the tags: Begin
SQL and End SQL. The code placed between these tags will not be parsed by the 4D interpreter
and will be executed by the SQL engine.

Passing Data Between 4D and the SQL Engine

Referencing 4D Expressions

It is possible to reference any type of valid 4D expression (variable, field, array, expression...)
within SQL expressions. To indicate a 4D reference, you can use either of the following
notations:

e Place the reference between double less-than and greater-than symbols as shown here “<<”
and “>>"

e Place a colon “:” in front of the reference.

Examples:

C_ALPHA(80;vName)
vName:=Request("Name:")
ODBC EXECUTE("SELECT age FROM PEOPLE WHERE name=<<vName>>")

64 4D SQL Reference

or:
C_ALPHA(80;vName)
vName:=Request("Name:")
Begin SQL
SELECT age FROM PEOPLE WHERE name= :vName
End SQL

Note: The use of brackets [] is required when you work with interprocess variables (for
example, <<[<>myvar]>> or :[<>myvar]).

Retrieving Data from SQL Requests into 4D

The data retrieval in a SELECT statement will be managed either inside Begin SQL/End SQL tags
using the INTO clause of the SELECT command or by the External Data Source (ODBC) language
commands.

¢ In the case of Begin SQL/End SQL tags, you can use the INTO clause in the SQL query and
refer to any valid 4D expression (field, variable, array) to get the value:

Begin SQL
SELECT ename FROM emp INTO :[Employees]Name
End SQL

e With the ODBC EXECUTE command, you can also use the additional parameters:
ODBC EXECUTE("SELECT ename FROM emp";[Employees]Name)

The main difference between these two ways of getting data from SQL (Begin SQL/End SQL tags
and ODBC commands) is that in the first case all the information is sent back to 4D in one
step, while in the second case the records must be loaded explicitly using ODBC LOAD
RECORD.

For example, supposing that in the PEOPLE table there are 100 records:

¢ Using ODBC commands:

ARRAY INTEGER(aBirthYear;0)
C_STRING(40;vName)
vName:="Smith"
$SQLStm:="SELECT Birth_Year FROM PEOPLE WHERE ename= <<vName>>"
ODBC EXECUTE($SQLStm;aBirthYear)
While (Not (ODBC End Selection))
ODBC LOAD RECORD(10)
End while

4D SQL Reference 65

Here we have to loop 10 times to retrieve all 100 records. If we want to load all the records in
one step we should use:

ODBC LOAD RECORD(ODBC All Records)
¢ Using Begin SQL/End SQL tags:

ARRAY INTEGER(aBirthYear;0)
C_STRING(40;vName)
vName:="Smith"
Begin SQL
SELECT Birth_Year FROM PEOPLE WHERE ename= <<vName>> INTO <<aBirthYear>>
End SQL

In this situation, after the execution of the SELECT statement, the aBirthYear array size
becomes 100 and its elements are filled with all the birth years from all 100 records.

If, instead of an array, we want to store the retrieved data in a column (i.e., a 4D field), then
4D will automatically create as many records as necessary to save all the data. In our preceding
example, supposing that in the PEOPLE table there are 100 records:

e Using ODBC commands:

C_STRING(40;vName)
vName:="Smith"
$SQLStm:="SELECT Birth_Year FROM PEOPLE WHERE ename= <<vName>>"
ODBC EXECUTE($SQLStm;[MYTABLE]Birth_Year)
While (Not (ODBC End Selection))
ODBC LOAD RECORD(10)
End while

Here we have to loop 10 times to retrieve all the 100 records. Every step will create 10 records
in the MYTABLE table and store each retrieved Birth year from the PEOPLE table in the
[MYTABLE]Birth_Year field.

¢ Using Begin SQL/End SQL tags:

C_STRING(40;vName)
vName:="Smith"
Begin SQL
SELECT Birth_Year FROM PEOPLE WHERE ename= <<vName>> INTO

<<[MYTABLE]Birth_Year>>
End SQL

66 4D SQL Reference

In this situation, during the execution of the SELECT statement, there will be 100 records
created in the MYTABLE table and each Birth_Year field will contain the corresponding data
from the PEOPLE table, Birth_Year column.

Using a Listbox
4D includes a specific automatic functioning (LISTBOX keyword) that can be used for placing
data from SELECT queries into a listbox.

Optimization of Queries

For optimization purposes, it is preferable to use 4D expressions rather than SQL functions in
queries. 4D expressions will be calculated once before the execution of the query whereas SQL
functions are evaluated for each record found.

For example, with the following statement:

ODBC EXECUTE("SELECT FullName FROM PEOPLE WHERE FullName=
<<vLastName+vFirstName>>")

... the vLastName+vFirstName expression is calculated once, before query execution. With the
following statement:

ODBC EXECUTE("SELECT FullName FROM PEOPLE WHERE FullName=
CONCAT(<<vLastName>>,<<vFirstName>>)")

... the CONCAT(<<vLastName>>,<<vFirstName>>) function is called for each record of the
table; in other words, the expression is evaluated for each record.

4D SQL Reference 67

Configuration of 4D SQL Server Using SQL in 4D

version 11

4D v11 includes a powerful SQL server that allows external access to data stored in the 4D
database. This access is carried out using a 4D ODBC driver.

The SQL server of a 4D application can be stopped or started at any time. Moreover, for
performance and security reasons, you can specify the TCP port as well as the listening IP
address, and restrict access possibilities to the 4D database.

External Access to SQL Server

External access to the 4D SQL server takes place via ODBC. 4D provides an ODBC driver that
allows any third-party application (Excel® type spreadsheet, other DBMS, and so on), or
another 4D application to connect to the SQL server of 4D. This is summarized in the
following diagram:

4D appll'(;atl'on

The 4D ODBC driver must be installed on the machine of the SQL Client part. The installation
and configuration of the 4D ODBC driver is detailed in a separate manual.

Starting and Stopping the 4D SQL Server
In 4D v11, the SQL server can be started and stopped in three ways:

68 4D SQL Reference

e Manually, using the Start SQL Server/Stop SQL Server commands in the Run menu of the
4D application:

Test Application Chrl+I

Method. .. Chrl4R
Runkime Explorer. ..

Skart \Web Server

Skart SOL Server

Restart Interpreted Chrl+alk+I
Restart Compiled Ctrl+Shift+I

When the server is launched, this menu item changes to Stop SQL Server.

e Automatically on startup of the application, via the Preferences. To do this, display the
SQL/Configuration page and check the Launch SQL Server at Startup option:

Preferences

5 Application S0L Server Publishing

-:éf Design Mode

@ Databasze [[Launch SQL Server at Startup

m Backup TCP Pork; 1319

?_.-, Client-Server

‘ Web 1P Address: Al v

$ Wieh Services

[[]Enable 5L

¢ By programming, using the START SQL SERVER and STOP SQL SERVER commands (“SQL”

theme).
When the SQL server is stopped (or when it has not been started), 4D will not respond to any

external SQL queries.

Note: Stopping the SQL server does not affect the internal functioning of the 4D SQL engine.
The SQL engine is always available for internal queries.

4D SQL Reference 69

SQL Server Publishing Preferences
It is possible to configure the publishing parameters for the SQL server integrated into 4D.
These parameters are found on the SQL/Configuration page of the database Preferences:

Preferences

ﬂ Application
-.;; Design Mode
@ Database

[T Backup

?_.-, Client-Server

S0L Server Publishing

|:| Launch SGL Server at Skartup

TCP Pork: 1919

‘ Weh 1P Address: Al
‘Z:f Weh Services

[[]Enable 551

e The Launch SQL Server at Startup option can be used to start the SQL server on application
startup.

e TCP Port: By default, the 4D SQL server responds on the TCP port 1919. If this port is already
being used by another service, or if your connection parameters require another configuration,
you can change the TCP port used by the 4D SQL server.

Note: If you pass 0, 4D will use the default TCP port number, i.e. 1919.

¢ IP Address: You can set the IP address of the machine on which the SQL server must process
SQL queries. By default, the server will respond to all the IP addresses (All option).

The “IP Address” drop-down list automatically contains all the IP addresses present on the
machine. When you select a particular address, the server will only respond to queries sent to

this address.
This is intended for 4D applications hosted on machines having several TCP/IP addresses.

Note: On the client side, the IP address and the TCP port of the SQL server to which the
application connects must be correctly configured in the ODBC data source definition.

* Enable SSL: This option indicates whether the SQL server must enable the SSL protocol for
processing SQL connections.

4D Database Access Control

For security reasons, it is possible to limit actions that external queries sent to the SQL server
can perform in the 4D database.

70 4D SQL Reference

This can be done at two levels:
¢ At the level of the type of action allowed,

e At the level of the user carrying out the query.

These settings are made on the SQL/Configuration page of the database Preferences:

Preferences

Configuration

SOL Server ACcess

g Application SGL Server Publishing
@4- Design Mode
@ Database [[]Launch SQL Server at Startup
m Backup
TCP Port; 1919
By Client-Server
‘ Wb IR Address: ‘,QII v
ﬁ Weh Services
ol soL
ek 39 [JEnable s51

Read Only {Data) ‘ <Everybody =

Read'Write (Data) ‘ <Ewerybody=

Full {Data and Design)

MNOTE

Designer has been assigned a password)

S0l Server Transactions

[] Auto-commit

These settings are only taken into account when the 4D password access system is activated (The

Cancel] [OF,

You can configure three separate types of access to the 4D database via the SQL server:

e “Read Only (Data)”: Unlimited access to read all the data of the database tables but no
adding, modifying or removing of records, nor any modification to the structure of the

database is allowed.

e “Read/Write (Data)”: Read and write (add, modify and delete) access to all the data of the
database tables, but no modification of the database structure is allowed.

4D SQL Reference

71

e “Full (Data and Design)”: Read and write (add, modify and delete) access to all the data of
the database tables, as well as modification of the database structure (tables, fields, relations,
etc.) is allowed.

You can designate a set of users for each type of access. There are three options available for
this purpose:

e <Nobody>: If you select this option, the type of access concerned will be refused for any
queries, regardless of their origin. This parameter can be used even when the 4D password
access management system is not activated.

* <Everybody>: If you select this option, the type of access concerned will be allowed for all
queries (no limit is applied).

e Group of users: This option lets you designate a group of users as exclusively authorized to
carry out the type of access concerned. This option requires that 4D passwords be activated.
The user at the origin of the queries provides their name and password when connecting to
the SQL server via ODBC.

WARNING: This mechanism is based on 4D passwords. In order for the SQL server access
control to come into effect, the 4D password system must be activated (a password must be
assigned to the Designer).

Note: An additional security option can be set at the level of each 4D project method. For

more information, please refer to the "Available through SQL option" paragraph in the
"Principles for integrating 4D and the 4D SQL engine" section.

72 4D SQL Reference

Principles for integrating 4D and the 4D SQL engine Using SQL in 4D
version 11

Basically, the 4D SQL engine is SQL-92 compliant. This means that for a detailed description
of commands, functions, operators or the syntax to be used, you may refer to any SQL-92
reference. These can be found, for instance, on the Internet.

However, the 4D SQL engine does not support 100% of the SQL-92 features and also provides
some specific additional features.

This section covers the main implementations and limitations of the 4D SQL engine.

General Limitations

Since the SQL engine of 4D has been integrated into the heart of the 4D database, all the
limitations concerning the maximum number of tables, columns (fields) and records per
database, as well as the rules for naming tables and columns, are the same as for the standard
internal 4D engine (DB4D). They are listed below.

e Maximum number of tables: Theoretically two billion but for compatibility reasons with 4D
v11: 32767.

e Maximum number of columns (fields) in a table: Theoretically two billion columns (fields),
but for compatibility reasons with 4D v11: 32767.
In 4D v11 “Standard edition,” the maximum number of columns is limited to 511.

e Maximum number of rows (records) in a table: one billion. For a subrecord field, the limit is
one billion subrecords for each record.

e Maximum number of index keys: one billion x 64.

e A primary key cannot be a NULL value and must be unique. It is not necessary to index the
primary key columns (fields).

e Maximum number of characters allowed for the table and field names: 31 characters (4D
limitation).

Tables with the same name created by different users are not allowed. The standard 4D control
mechanism will be applied.

4D SQL Reference 73

Data Types

The following table indicates the data types supported in 4D SQL and their corresponding type

in 4D:

4D SQL
Varchar
Real
Numeric
Float
Smallint
Int

Bit
Boolean
Blob

Bit varying
Clob
Text

Timestamp

Duration
Interval
Picture

Automatic data type conversion is implemented between numeric types.

Description

Alphanumeric text

Floating point number in the range of +/-3,4E38
Number between +/- 2E64

Floating point number (virtually infinite)

Number between -32 768 and 32 767

Number between -2 147 483 648 and 2 147 483 647
A field that can only take the values TRUE or FALSE
A field that can only take the values TRUE or FALSE
Up to 2 GB; any binary object such as a graphic,
another application, or any document

Up to 2 GB; any binary object such as a graphic,
another application, or any document

Text up to 2 GB characters. This column (field) cannot be

indexed. It is not saved in the record itself.

Text up to 2 GB characters. This column (field) cannot be

indexed. It is not saved in the record itself.

Date&Time in Day Month Year Hours:Minutes:Seconds:

Milliseconds format

Time in Day:Hours:Minutes:Seconds:Milliseconds format
Time in Day:Hours:Minutes:Seconds:Milliseconds format

PICT picture up to 2 GB

4D v11

Text

Real

Integer 64 bits
Real

Integer
Longint
Boolean
Boolean

Blob
Blob
Text
Text

Date and Time parts
handled separately
(automatic
conversion)

Time

Time

Picture

A string that represents a number is not converted to a corresponding number. There are
special CAST functions that will convert values from one type to another.
The following SQL data types are not implemented:

e NCHAR

e NCHAR VARYING.

NULL Values in 4D
The NULL values are implemented in the 4D SQL language as well as in the 4D database
engine. However, they are not supported in the 4D language.

Note: It is nevertheless possible to read and write NULL values in a 4D field using the Is field
value Null and SET FIELD VALUE NULL commands.

74 4D SQL Reference

Compeatibility of Processing and Map NULL Values to Blank Values Option

For compatibility reasons in 4D v11, NULL values stored in 4D database tables are
automatically converted into default values when being manipulated via the 4D language. For
example, in the case of the following statement:

myAlphavar:=[mytable]MyAlphafield

... if the MyAlphafield field contains a NULL value, the myAlphavar variable will contain
(empty string).

The default values depend on the data type:

e For Alpha and Text data types: “”

e For Real, Integer and Long Integer data types: O
e For the Date data type: “00/00/00”

¢ For the Time data type: “00:00:00"

¢ For the Boolean data type: False

e For the Picture data type: Empty picture

e For the Blob data type: Empty blob

On the other hand, this mechanism in principle does not apply to processing carried out at
the level of the 4D database engine, such as queries. In fact, searching for an “blank” value (for
example myvalue=0) will not find records storing the NULL value, and vice versa. When both
types of values (default values and NULL) are present in the records for the same field, some
processing may be altered or require additional code.

To avoid these inconveniences, an option can be used to standardize all the processing in the
4D v11 language: Map NULL values to blank values. This option, which is found in the field
Inspector window of the Structure editor, is used to extend the principle of using default
values to all processing. Fields containing NULL values will be systematically considered as
containing default values. This option is checked by default.

The Map NULL values to blank values property is taken into account at a very low level of the
database engine. It acts more particularly on the Is field value Null command.

4D SQL Reference 75

Reject NULL Value Input Attribute
The Reject NULL value input field property is used to prevent the storage of NULL values:

mspectr
E-LH Field Table 1 - Field 4

w Definition

Mame Music Categary

Type W Afpha Length |15
Color Automatic

[JInwisible [JUnique

Reject MULL walue input

Map MULL walues to blank walues

» Indexing

» Data Entry Controls
» Help Tip

» Comments

b S0L /1

When this attribute is checked for a field, it will not be possible to store the NULL value in
this field. This low-level property corresponds exactly to the NOT NULL attribute of SQL.
Generally, if you want to be able to use NULL values in your 4D database, it is recommended
to exclusively use the SQL language of 4D.

Note: In 4D, fields can also have the “Mandatory” attribute. The two concepts are similar but
their scope is different: the “Mandatory” attribute is a data entry control, whereas the “Reject
NULL value input” attribute works at the level of the database engine.

If a field having this attribute receives a NULL value, an error will be generated.

76 4D SQL Reference

“Available through SQL” Option
A security property has been added for 4D project methods: Available through SQL:

4D Method Properiiss

—- Method Properties

;J i It bt dialog box
s Arcrms mrd Crrer
Bpesc: | =Evervbudy s v
L e =it | “Evervbody> b
Artrbut=s
e

[T A-alable through 4DACTION, ADMETHID and 405AIPT

[cifersd ac a'ieb Service

[15hared by camponenis and bost database

(el traugh S New property for
project methods

[Cancel Jid i3 |

When it is checked, this option allows the execution of the project method by the 4D SQL
engine. It is not selected by default, which means that 4D project methods are protected and
cannot be called by the 4D SQL engine unless they have been explicitly authorized by
checking this option.

This property applies to all SQL queries, both internal and external — whether executed via
the ODBC driver, or via SQL code inserted between the Begin SQL/End SQL tags, or via the
QUERY BY SQL command.

Notes:

e Even when a method is given the “Available through SQL” attribute, the access rights set at
the Preferences level and at the level of the method properties are nevertheless taken into
account when it is executed.

e The ODBC SQLProcedure function only returns project methods having the “Available
through SQL” attribute.

4D SQL Reference 77

Auto-commit
An option found on the SQL/Configuration page of the 4D Preferences can be used to activate
the auto-commit mechanism in the 4D SQL engine:

S0L Server Transackions

[Auta-conmmit

The purpose of the auto-commit mode is to preserve the referential integrity of the data.
When this option is checked, any SELECT, INSERT, UPDATE and DELETE (SIUD) queries not
already carried out within a transaction are automatically included in an ad hoc transaction.
This guarantees that the queries will be executed in their entirety or, in the case of an error,
completely cancelled.

Queries already included in a transaction (custom management of referential integrity) are not
affected by this option.

When this option is not checked, no automatic transaction is generated (except for the
SELECT... FOR UPDATE queries, please refer to the SELECT command). By default, this option is
not checked.

You can also manage this option by programming using the SET DATABASE PARAMETER
command (see the SET DATABASE PARAMETER command in the 4D Language Reference manual).

Note: Only local databases queried by the 4D SQL engine are affected by this parameter. In the
case of external databases, the auto-commit mechanism is handled by the remote SQL
engines.

System Tables

The SQL catalogue of 4D includes six system tables, which can be accessed by any SQL user
having read access rights: _USER_TABLES, _USER_COLUMNS, _USER_INDEXES,
_USER_CONSTRAINTS, _USER_IND_COLUMNS and _USER _CONS_ COLUMNS.

78 4D SQL Reference

In accordance with the customs of SQL, system tables describe the database structure. Here is a

description of these tables and their fields:

_USER_TABLES
TABLE_NAME
TEMPORARY
TABLE_ID

_USER_COLUMNS

TABLE_NAME
COLUMN_NAME
DATA_TYPE
DATA_LENGTH
NULLABLE
TABLE_ID
COLUMNL_ID

_USER_INDEXES
INDEX_ID
INDEX_NAME
INDEX_TYPE
TABLE_NAME
UNIQUENESS

TABLE_ID
_USER_IND_COLUMNS

INDEX_ID
INDEX_NAME
TABLE_NAME
COLUMN_NAME
POSITION
TABLE_ID
COLUMNL_ID

VARCHAR
BOOLEAN
INT64

VARCHAR
VARCHAR
INT32
INT32
BOOLEAN
INT64
INT64

VARCHAR
VARCHAR
INT32

VARCHAR
BOOLEAN

INT64

VARCHAR
VARCHAR
VARCHAR
VARCHAR
INT32
INT64
INT64

Describes the user tables of the database
Table name

True if the table is temporary; otherwise, false
Table number

Describes the columns of the user tables of the
database

Table name

Column name

Column type

Column length

True if column accepts NULL values;otherwise, false
Table number

Column number

Describes the user indexes of the database
Index number

Index name

Index type

Name of table with index

True if index imposes a uniqueness constraint;
otherwise, false

Number of table with index

Describes the columns of user indexes of the
database

Index number

Index name

Name of table with index

Name of column with index

Position of column in index

Number of table with index

Column number

4D SQL Reference 79

_USER_CONSTRAINTS
CONSTRAINT_ID
CONSTRAINT_NAME
CONSTRAINT_TYPE
TABLE_NAME
TABLE_ID

DELETE_RULE
RELATED_TABLE_NAME
RELATED_TABLE_ID

_USER_CONS_COLUMNS

CONSTRAINT_ID
CONSTRAINT_NAME
TABLE_NAME

TABLE_ID
COLUMN_NAME
COLUMNL_ID

POSITION
RELATED_COLUMN_NAME
RELATED_COLUMNL_ID

Connections to SQL sources

VARCHAR
VARCHAR
VARCHAR
VARCHAR
INT64

VARCHAR
VARCHAR
INT64

VARCHAR
VARCHAR
VARCHAR
INT64
VARCHAR
INT64
INT32
VARCHAR
INT32

Describes the user constraints of the database
Constraint number

Constraint name

Constraint type

Name of table with constraint

Number of table with constraint

Delete rule — CASCADE or RESTRICT

Name of related table

Number of related table

Describes the columns of user constraints of the
database

Constraint number

Constraint name

Name of table with constraint

Number of table withconstraint

Name of column with constraint

Number of column with constraint
Position of column with constraint

Name of related column in a constraint
Number of related column in a constraint

Multi-database architecture is implemented at the level of the 4D SQL server. From within 4D

it is possible:

¢ To connect to an existing database using the ODBC LOGIN command.
e To switch from one database to another using the USE EXTERNAL DATABASE and USE
INTERNAL DATABASE commands.

80 4D SQL Reference

3

SQL Commands

4D SQL Reference 81

82 4D SQL Reference

SQL Commands SQL Commands

version 11

SQL commands (or statements) are generally grouped into two categories:

e Data Manipulation Commands, which are used to obtain, add, remove and/or modify
database information. More specifically, this refers to the SELECT, INSERT, UPDATE and DELETE
commands.

e Data Definition Commands, which are used to create or remove database objects. More
specifically, this refers to the CREATE TABLE, ALTER TABLE, DROP INDEX and DROP TABLE type
commands.

In the syntax, command names and keywords appear in bold and are passed "as is." Other
elements appear in italics and are detailed separately in the "Syntax rules" theme.

4D SQL Reference 83

SELECT SQL Commands
version 11

SELECT [ALL | DISTINCT]

{* | select_item, ..., select_item)

FROM table_reference, ..., table_reference
[WHERE search_condition)

[ORDER BY sort_list]

[GROUP BY sort_list]

[HAVING search_condition|

[LIMIT {int_number | ALL}]

[OFFSET int_number]

[INTO {4d_language_reference, ..., 4d_language_reference | LISTBOX 4d_language_reference})
[FOR UPDATE]

Description

The SELECT command is used to retrieve data from one or more tables.

If you pass *, all the columns will be retrieved; otherwise you can pass select_item to specify
each column to be retrieved individually (separated by commas). If you add the optional
keyword DISTINCT to the SELECT statement, no duplicate data will be returned.

Queries with mixed "*" and explicit fields are not allowed. For example, the following
statement:

SELECT *, SALES, TARGET FROM OFFICES
... is not allowed whereas:

SELECT * FROM OFFICES
...is allowed.

The FROM clause is used to specify the table_reference(s) for the table(s) from which the data is
to be retrieved. You can either pass a standard SQL name or a string. It is not possible to pass a
query expression in the place of a table name. You may also pass the optional keyword AS to
assign an alias to the column. If this keyword is passed, it must be followed by the alias name
which can also be either an SQL name or string.

The optional WHERE clause sets conditions that the data must satisfy in order to be selected.

This is done by passing a search_condition which is applied to the data retrieved by the FROM
clause. The search_condition always returns a Boolean type value.

84 4D SQL Reference

The optional ORDER BY clause can be used to apply a sort_list criteria to the data selected. You
can also add the ASC or DESC keyword to specify whether to sort in ascending or descending
order. By default, ascending order is applied.

The optional GROUP BY clause can be used to group identical data according to the sort_list
criteria passed. Multiple group columns may be passed. This clause can be used to avoid
redundancy or to compute an aggregate function (SUM, COUNT, MIN or MAX) that will be
applied to these groups. You can also add the ASC or DESC keyword as with the ORDER BY
clause.

The optional HAVING clause can then be used to apply a search_condition to one of these
groups. The HAVING clause may be passed without a GROUP BY clause.

The optional LIMIT clause can be used to restrict the number of data returned by passing an
int_number.

The optional OFFSET clause can be used to set a number (int_number) of data to be skipped
before beginning to count for the LIMIT clause.

The optional INTO clause can be used to indicate 4d_language_reference variables to which the
data will be assigned. You may also pass the LISTBOX keyword to place the data into a
4d_language_reference listbox.

A SELECT command that specifies a FOR UPDATE clause attempts to obtain exclusive writing
locks on all the selected records. If at least one record cannot be locked, then the whole
command fails and an error is returned. If, however, all the selected records were locked, then
they will remain locked until the current transaction is committed or rolled back.

Examples

1. Suppose that you have a movie database with one table containing the movie titles, the year
it was released and the tickets sold for that movie.

We would like to get the years starting with 1979 and the amount of tickets sold where the
total sold was less than 10 million. We want to skip the first 5 years and to display only 10
years, ordered by the year.

C_LONGINT($MovieYear; $MinTicketsSold; $Offset; $Limit)
ARRAY INTEGER(aMovieYear;0)

ARRAY LONGINT(aTicketsSold;0)

$MovieYear:=1979

$MinTicketsSold:=10000000

$Offset:=5

$Limit:=10

4D SQL Reference 85

Begin SQL
SELECT Year_of_Movie, SUM(Tickets_Sold)
FROM MOVIES
WHERE Year_of_Movie >= :$MovieYear
GROUP BY Year_of_Movie
HAVING SUM(Tickets_Sold) < :$MinTicketsSold
OFFSET :$Offset
LIMIT :$Limit
ORDER BY 1
INTO :aMovieYear, :aTicketsSold;

End SQL

2. Here is an example where a combination of search conditions are used:
SELECT supplier_id
FROM suppliers
WHERE (name = 'CANON")
or (name = 'Hewlett Packard' and city = 'New York')
or (name = 'Firewall' and status = 'Closed' and city = 'Chicago');

3. Given the table SALES_PERSONS where QUOTA is the amount of sales expected to be
earned by a given salesperson and SALES is the actual amount of sales made by a given
salesperson.

ARRAY REAL(Min_Values;0)
ARRAY REAL(Max_Values;0)
ARRAY REAL(Sum_Values;0)
Begin SQL
SELECT MIN ((SALES * 100) / QUOTA),
MAX ((SALES * 100) / QUOTA),
SUM (QUOTA) - SUM (SALES)
FROM SALES_PERSONS
INTO :Min_Values, :Max_Values, :Sum_Values;
End SQL

86 4D SQL Reference

4. Here is an example which finds all the actors born in a certain city:

ARRAY TEXT(aActorName;0)

ARRAY TEXT(aCityName;0)

Begin SQL
SELECT ACTORS.FirstName, CITIES.City_Name
FROM ACTORS AS 'Act’, CITIES AS 'Cit'
WHERE Act.Birth_City_ID=Cit.City_ID
ORDER BY 2 ASC
INTO : aActorName, : aCityName;

End SQL

See Also

4d_language_reference, search_condition, select_item, sort_list, subquery, table_reference.

4D SQL Reference

87

INSERT SQL Commands
version 11

INSERT INTO {sql_name | sql_string}
[(column_reference, ..., column_reference)]
{VALUES ({arithmetic_expression |[NULLY}, ..., {arithmetic_expression [INULL}) |subquery}

Description

The INSERT command is used to add data to an existing table. The table where the data is to be
added is passed either using an sql_name or sql_string. The optional column_reference(s) passed
indicate the name(s) of the column(s) where the values are to be inserted. If the
column_reference(s) are not passed, the value(s) inserted will be stored in the same order as in
the database (1st value passed goes into 1st column, 2nd value into 2nd column, and so on).

The VALUES keyword is used to pass the value(s) to be placed in the column(s) specified. You
can either pass arithmetic_expression(s) or NULL. Alternatively, a subquery can be passed in the
VALUES keyword in order to insert a selection of data to be passed as the values.

The number of values passed in the VALUES keyword must match the number of
column_reference(s) passed and each of them must also match the data type of the
corresponding column or at least be convertible to that data type.

The INSERT command is supported in both single- and multi-row queries. However, a multi-
row INSERT statement does not allow UNION and JOIN operations.

Examples
1. Here is a simple example inserting a selection from table2 into tablel:

INSERT INTO table1 (SELECT * FROM table2)
2. This example creates a table and then inserts values into it:

CREATE TABLE ACTOR_FANS
(ID INT32, Name VARCHAR);
INSERT INTO ACTOR_FANS
(ID, Name)
VALUES (1, 'Francis’);

See Also
arithmetic_expression, column_reference, DELETE, subquery.

88 4D SQL Reference

UPDATE SQL Commands
version 11

UPDATE {sql_name | sql_string)}
SET sql_name = {arithmetic_expression |[NULL}, ..., sql_name = {arithmetic_expression [NULL}
[WHERE search_condition)

Description

The UPDATE command can be used to modify data contained within a table indicated by
passing an sql_name or sql_string.

The SET clause is used to assign new values (either an arithmetic_expression or NULL) to the
sql_name(s) passed.

The optional WHERE clause is used to specify which data (those meeting the search_condition)
are to be updated. If it is not passed, all the data of the table will be assigned the new value(s)
passed in the SET clause.

The UPDATE command is supported for both queries and subqueries; however, a positioned
UPDATE statement is not supported.

CASCADE update is implemented in 4D, but the SET NULL and SET DEFAULT delete rules are not
supported.

Example

Here is an example which updates the MOVIES table so that the tickets sold for the movie "Air
Force One" is set to 3,500,000:

UPDATE MOVIES
SET Tickets_Sold = 3500000
WHERE TITLE = 'Air Force One';

See Also
arithmetic_expression, DELETE, search_condition.

4D SQL Reference 89

DELETE SQL Commands
version 11

DELETE FROM ({sql_name | sql_string}
[WHERE search_condition)

Description

The DELETE command can be used to remove all or part of the data from a table indicated by
passing an sql_name or sql_string after the FROM keyword.

The optional WHERE clause is used to indicate which part of the data (those meeting the
search_condition) are to be deleted. If it is not passed, all the data of the table will be removed.

A positioned DELETE statement is not supported. CASCADE delete is implemented in 4D, but
the SET DEFAULT and SET NULL delete rules are not supported.

Example

Here is an example that removes all the movies released in the year 2000 or previously from
the MOVIES table:

DELETE FROM MOVIES
WHERE Year_of_Movie <= 2000;

See Also
INSERT, search_condition, UPDATE.

90 4D SQL Reference

CREATE TABLE SQL Commands
version 11

CREATE TABLE [IF NOT EXISTS] sql_name({column_definition |table_constraint}, ...,
{column_definition |table_constraint})

Description

The CREATE TABLE command is used to create a table named sql_name having the fields
specified by passing one or more column_definition(s) and/or table_constraint(s). If the IF NOT
EXISTS constraint is passed, the table is only created when there is no table with the same
name already in the database. Otherwise, it is not created and no error is generated.

A column_definition contains the name (sql_name) and data type (sql_data_type_name) of a
column and a table_constraint restricts the values that a table can store.

Examples
1. Here is a simple example for creating a table with two columns:

~

CREATE TABLE ACTOR_FANS
(ID INT32, Name VARCHAR);

2. This example creates the same table but only if there is no existing table with the same
name:

CREATE TABLE IF NOT EXISTS ACTOR_FANS

(ID INT32, Name VARCHAR);

See Also
ALTER TABLE, column_definition, DROP TABLE, table_constraint.

4D SQL Reference 91

DROP TABLE SQL Commands
version 11

DROP TABLE [IF EXISTS] sql_name

Description

The DROP TABLE command is used to remove the table named sql_name from a database.
When the IF EXISTS constraint is passed, if the table to be removed does not exist in the
database, the command does nothing and no error is generated.

This command not only removes the table structure, but also its data and any indexes, triggers
and constraints that are associated with it. It cannot be used on a table that is referenced by a
FOREIGN KEY constraint.

Examples
1. Here is a simple example which removes the ACTOR_FANS table:
DROP TABLE ACTOR_FANS

2. This example does the same as the one above except that in this case, if the ACTOR_FANS
table does not exist, no error is generated:

DROP TABLE IF EXISTS ACTOR_FANS

See Also
ALTER TABLE, CREATE TABLE.

92 4D SQL Reference

ALTER TABLE SQL Commands
version 11

ALTER TABLE sgl_name

{ADD column_definition |
DROP sql_name |

ADD primary_key_definition |
DROP PRIMARY KEY |

ADD foreign_key_definition |
DROP CONSTRAINT sql_name}

Description

The ALTER TABLE command is used to modify an existing table (sql_name). You can carry out
one of the following actions:

Passing ADD column_definition adds a column to the table.

Passing DROP sgl_name removes the column named sql_name from the table.

Passing ADD primary_key_definition adds a PRIMARY KEY to the table.

Passing DROP PRIMARY KEY removes the PRIMARY KEY of the table.

Passing ADD foreign_key_definition adds a FOREIGN KEY to the table.

Passing DROP CONSTRAINT sqgl_name removes the specified constraint from the table.

Example

This example creates a table, inserts a set of values into it, then adds a Phone_Number
column, adds another set of values and then removes the ID column:

CREATE TABLE ACTOR_FANS
(ID INT32, Name VARCHAR);

INSERT INTO ACTOR_FANS
(ID, Name)
VALUES(1, 'Francis');

ALTER TABLE ACTOR_FANS
ADD Phone_Number VARCHAR;

INSERT INTO ACTOR_FANS

(ID, Name, Phone_Number)
VALUES (2, 'Florence', '01446677888');

4D SQL Reference 93

ALTER TABLE ACTOR_FANS
DROP ID;

See Also
column_definition, CREATE TABLE, DROP TABLE, foreign_key_definition, primary_key_definition.

94 4D SQL Reference

CREATE INDEX SQL Commands
version 11

CREATE [UNIQUE] INDEX sql_name ON sql_name (column_reference, ... , column_reference)

Description

The CREATE INDEX command is used to create an index (sql_name) on one or more
column_reference(s) of an existing table (sql_name). Indexes are transparent to users and serve
to speed up queries.

You can also pass the optional UNIQUE keyword to create an index that does not allow
duplicate values.

Example
Here is a simple example for creating an index:
CREATE INDEX ID_INDEX ON ACTOR_FANS (ID)

See Also
column_reference, DROP INDEX.

4D SQL Reference 95

DROP INDEX SQL Commands

version 11

DROP INDEX sql_name

Description

The DROP INDEX command is used to remove an existing index named sql_name from a
database. It cannot be used on indexes created for PRIMARY KEY or UNIQUE constraints.

Example
Here is a simple example for removing an index:
DROP INDEX ID_INDEX

See Also
CREATE INDEX.

96 4D SQL Reference

LOCK TABLE SQL Commands

version 11

LOCK TABLE sql_name IN {EXCLUSIVE | SHARE} MODE

Description

The LOCK TABLE command is used to lock the table named sql_name in either EXCLUSIVE or
SHARE mode.

In EXCLUSIVE mode, the data of the table cannot be read or modified by another transaction.

In SHARE mode, the data of the table can be read by concurrent transactions but
modifications are still prohibited.

Example

This example locks the MOVIES table so that it can be read but not modified by other
transactions:

LOCK TABLE MOVIES IN SHARE MODE

See Also
ALTER TABLE, UNLOCK TABLE.

4D SQL Reference 97

UNLOCK TABLE SQL Commands

version 11

UNLOCK TABLE sql_name

Description

The UNLOCK TABLE command is used to unlock a table that has previously been locked via the
LOCK TABLE command. It will not work if it is passed within a transaction or if it is used on a
table that is locked by another process.

Example
This command removes the lock on the MOVIES table:

UNLOCK TABLE MOVIES

See Also
ALTER TABLE, LOCK TABLE.

98 4D SQL Reference

EXECUTE IMMEDIATE SQL Commands
version 11

EXECUTE IMMEDIATE <<sql_name>> | <<$sql_name>> | :sql_name | :$sql_name

Description

The EXECUTE IMMEDIATE command is used to execute a dynamic SQL statement. The sql_name
passed is used to prepare an executable form which is subsequently destroyed after execution
of the command.

Example
This example illustrates how this works:

C_LONGINT($NoMovies)
C_TEXT($tQueryTxt)
$NoMovies:=0

$tQueryTxt:="SELECT COUNT(*) FROM MOVIES WHERE Year_of_Movie >= 1960 INTO
:$NoMovies;"
Begin SQL
EXECUTE IMMEDIATE :$tQueryTxt;
End SQL

ALERT("The Video Library contains "+String($NoMovies)+" movies more recent or equal to
1960")

4D SQL Reference 99

100 4D SQL Reference

4

Syntax rules

4D SQL Reference 101

102 4D SQL Reference

Syntax rules Syntax rules
version 11

The syntax rules describe the various elements of the predicates used in SQL statements. These
have been separated into individual items whenever possible and described as simply as
possible to give a general indication of their use within 4D. Keywords (in bold) are always
passed "as is" when used.

4D SQL Reference 103

4d_function_call Syntax rules
version 11

{FN sql_name ([arithmetic_expression, ..., arithmetic_expression]) AS sql_data_type_name)}

Description
A 4d_function_call must be entered as follows:

{FN sql_name ([arithmetic_expression, ... , arithmetic_expression]) AS sql_data_type_name)}

The sql_name of the function is preceded by the FN keyword and followed by the
arithmetic_expression(s) passed. These arithmetic_expression(s) will be returned in the form of
the sql_data_type_name passed.

Example

Here is an example using functions to extract the number of actors for each movie from the
MOVIES table:

C_LONGINT($NrOfActors)
ARRAY TEXT(aMovieTitles;0)
ARRAY LONGINT(aNrActors;0)

$NrOfActors:=7

Begin SQL
SELECT Movie_Title, {FN Find_Nr_Of_Actors(ID) AS NUMERIC}
FROM MOVIES
WHERE {FN Find_Nr_Of_Actors(ID) AS NUMERIC} >= :$NrOfActors
ORDER BY 1
INTO :aMovieTitles; :aNrActors

End SQL

See Also
arithmetic_expression, sql_data_type_name, sgl_name.

104 4D SQL Reference

4d_language_reference Syntax rules
version 11

<<sql_name>> |<<$sql_name>> | <<[sql_name]sql_name>>
:sql_name|:$sql_name|:sql_name.sql_name

Description

A 4d_language_reference specifies the SQL name of the variable(s) to which data will be
assigned. This name can be passed in one of the following manners:

<<sql_name>>
<<$sql_name>>
<<[sql_namesql_name>>
:sql_name

:$sql_name
:sql_name.sql_name

See Also
SELECT, sql_name.

4D SQL Reference

105

all_or_any_predicate Syntax rules
version 11

arithmetic_expression {< | <= | =| >=| > | <>} {ANY | ALL | SOME} (subquery)

Description

An all_or_any_predicate is used to compare an arithmetic_expression with a subquery. You can
pass comparison operators like <, <=, =, >=, > or <> as well as the ANY, ALL and SOME
keywords along with the subquery to be used for comparison.

Example
Here is a simple example:

SELECT Total_value, CUSTOMERS.Customer
FROM SALES, CUSTOMERS
WHERE SALES.Customer_ID = CUSTOMERS.Customer_ID
AND Total_value > ALL (SELECT MAX (Total_value)
FROM SALES
WHERE Product_type = 'Software');

See Also
arithmetic_expression, predicate, subquery.

106 4D SQL Reference

arithmetic_expression Syntax rules
version 11

literal |

column_reference |

function_call |

command_parameter |

case_expression |

(arithmetic_expression) |

+ arithmetic_expression |

- arithmetic_expression |

arithmetic_expression + arithmetic_expression |
arithmetic_expression - arithmetic_expression |
arithmetic_expression * arithmetic_expression |
arithmetic_expression | arithmetic_expression |

Description

An arithmetic_expression may contain a literal value, a column_reference, a function_call, a
command_parameter or a case_expression. You can also pass combinations of
arithmetic_expression(s) using the +, -, * or / operators.

See Also
case_expression, column_reference, command_parameter, function_call, INSERT.

4D SQL Reference 107

between_predicate Syntax rules
version 11

arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression

Description

A between_predicate is used to find data with values that fall within two other
arithmetic_expression values (passed in ascending order). You can also pass the optional NOT
keyword to excludes values falling within these limits.

Example

Here is a simple example which returns the names of all the clients whose first name starts
with a letter between A and E:

SELECT CLIENT_FIRSTNAME, CLIENT_SECONDNAME
FROM T_CLIENT
WHERE CLIENT_FIRSTNAME BETWEEN 'A' AND 'E'

See Also
arithmetic_expression, predicate.

108 4D SQL Reference

case_expression Syntax rules
version 11

case_expression

Description
A case_expression is used to apply one or more conditions when selecting an expression.

They can be used as follows, for example:

CASE
WHEN search_condition THEN arithmetic_expression

WHEN search_condition THEN arithmetic_expression
[ELSE arithmetic_expression|
END

OR

CASE arithmetic_expression
WHEN arithmetic_expression THEN arithmetic_expression

WHEN arithmetic_expression THEN arithmetic_expression
[ELSE arithmetic_expression]
END

Example
Here is a simple example:

SELECT ROOM_NUMBER
CASE ROOM_FLOOR
WHEN 'Ground floor' THEN 0
WHEN 'First floor' THEN 1
WHEN 'Second floor' THEN 2
END AS FLOORS, SLEEPING_ROOM
FROM T_ROOMS
ORDER BY FLOORS, SLEEPING_ROOM

See Also

arithmetic_expression, search_condition.

4D SQL Reference 109

column_definition Syntax rules
version 11

sql_name sql_data_type_name [(int_number)][NOT NULL [UNIQUE]]

Description

A column_definition contains the name (sql_name) and data type (sql_data_type_name) of a
column. You can also pass an optional int_number as well as the NOT NULL and/or UNIQUE
keywords. Passing NOT NULL in the column_definition means that the column will not accept
null values. Passing UNIQUE means that the same value may not be inserted into this column
twice (except for NULL values, which are not considered to be identical).

Each column must have a data type. The column should either be defined as "null" or "not
null" and if this value is left blank, the database assumes "null" as the default. The data type
for the column does not restrict what data may be put in that column.

Example
Here is a simple example which creates a table with two columns (ID and Name):

CREATE TABLE ACTOR_FANS
(ID INT32, Name VARCHAR NOT NULL UNIQUE);

See Also
ALTER TABLE, CREATE TABLE, sql_data_type_name.

110 4D SQL Reference

column_reference Syntax rules
version 11

sql_name | sql_name.sql_name | sql_string.sql_string

Description
A column_reference consists of an sql_name or sql_string passed in one of the following
manners:

sql_name
sql_name.sql_name
sql_string.sql_string

See Also
CREATE INDEX, INSERT.

4D SQL Reference 111

command_parameter Syntax rules
version 11

? | <<sql_name>> | <<$sql_name>> | <<[sql_name]sql_name>> | :sql_name | :$sql_name |
:sql_name.sql_name

Description
A command_parameter consists of an sql_name passed in one of the following forms:

’
<<sql_name>>
<<$sql_name>>
<<[sql_namesql_name>>
:sql_name

:$sql_name
:sql_name.sql_name

See Also
arithmetic_expression.

112 4D SQL Reference

comparison_predicate Syntax rules

version 11
arithmetic_expression {< |<=|=| >=| > | <>}
arithmetic_expression |
arithmetic_expression {< |<= |=| >=| > | <>} (subquery) |
(subquery) {< |<= |= | >=| > | <>} arithmetic_expression
Description
A comparison_predicate uses operators like <, <=, =, >=, > or <> to compare two

arithmetic_expression(s) or to compare an arithmetic_expression with a subquery as part of a
search_condition applied to the data.

See Also
arithmetic_expression, predicate, subquery.

4D SQL Reference 113

exists_predicate Syntax rules
version 11

EXISTS (subquery)

Description

An exists_predicate is used to indicate a subquery and then check whether it returns anything.
This is done by passing the EXISTS keyword followed by the subquery.

Example
Here is a simple example:

SELECT SUM (Sales)
FROM Store_Information
WHERE EXISTS
(SELECT * FROM Geography
WHERE region_name = 'West')

See Also
predicate, subquery.

114 4D SQL Reference

foreign_key_definition Syntax rules
version 11

[CONSTRAINT sgl_name)]

FOREIGN KEY (column_reference, ... , column_reference)
REFERENCES sql_name [(column_reference, ... , column_reference))
[ON DELETE {RESTRICT |CASCADE}]

[ON UPDATE {RESTRICT |CASCADE}]

Description

A foreign_key_definition is used to match the primary key fields (column_reference(s)) set in
another table in order to ensure data integrity. The FOREIGN KEY constraint is used to pass the
column_reference(s) to be defined as the foreign keys (which match the primary keys of
another table).

An optional CONSTRAINT (sql_name) can also precede the FOREIGN KEY constraint passed in
order to limit the values that can be inserted into the column_reference(s).

The REFERENCES clause that follows is used to specify the matching primary key field sources
in another table (sql_name). You can omit the list of column_reference(s) if the table (sql_name)
specified in the REFERENCES clause has a primary key that is to be used as the matching key
for the foreign key constraint.

The optional ON DELETE CASCADE clause specifies that when a row is deleted from the parent
table (containing the primary key fields), it is also removed from any rows associated with that
row in the child table (containing the foreign key fields). Passing the optional ON DELETE
RESTRICT clause prevents any data from being deleted from a table if any other tables
reference it.

The optional ON UPDATE CASCADE clause specifies that whenever a row is updated in the
parent table (containing the primary key fields), it is also updated in any rows associated with
that row in the child table (containing the foreign key fields). Passing the optional ON
UPDATE RESTRICT clause prevents any data from being updated in a table if any other tables
reference it.

Note that if both the ON DELETE and ON UPDATE clauses are passed, they must both be of the
same type (e.g. ON DELETE CASCADE with ON UPDATE CASCADE, or ON DELETE RESTRICT
with ON UPDATE RESTRICT).

4D SQL Reference 115

Example
Here is a simple example:
CREATE TABLE ORDERS
(Order_ID INT32,
Customer_SID INT32,
Amount NUMERIC,
PRIMARY KEY (Order_ID),
FOREIGN KEY (Customer_SID) REFERENCES CUSTOMER(SID));

See Also
ALTER TABLE, column_reference, primary_key_definition.

116 4D SQL Reference

function_call Syntax rules

version 11

sql_function_call |
4d_function_call

Description

A function_call can consist of either an sql_function_call or a 4d_function_call. Both types of
functions manipulate data and return results and can operate on one or more arguments.

Example
Here is a simple example:
C_LONGINT (vPersonNumber)
Begin SQL
SELECT COUNT (*)
FROM SALES_PERSONS
INTO :vPersonNumber;
End SQL

See Also
4d_function_call.

4D SQL Reference 117

in_predicate Syntax rules
version 11

arithmetic_expression [NOT] IN (subquery) |
arithmetic_expression [NOT] IN (arithmetic_expression, ..., arithmetic_expression)

Description

An in_predicate is used to compare an arithmetic_expression to check whether it is included (or
NOT included if this keyword is also passed) in a list of values. The list of values used for the
comparison can either be a sequence of arithmetic_expression(s) that are passed or the result of
a subquery.

Example
Here is a simple example:

SELECT *
FROM ORDERS
WHERE order_id IN (10000, 10001, 10003, 10005);

See Also
arithmetic_expression, predicate.

118 4D SQL Reference

is_null_predicate Syntax rules
version 11

arithmetic_expression 1S [NOT] NULL

Description

An is_null_predicate is used to find arithmetic_expression(s) with NULL values. You can also pass
the NOT keyword to find those without NULL values.

Example
Here is a simple example:

SELECT Name, Weight, Color
FROM PRODUCTS
WHERE Weight < 15.00 OR Color IS NULL

See Also
arithmetic_expression, predicate.

4D SQL Reference 119

like_predicate Syntax rules
version 11

arithmetic_expression [NOT] LIKE arithmetic_expression [ESCAPE sql_string]

Description

A like_predicate is used to retrieve data matching the arithmetic_expression passed after the LIKE
keyword. You can also pass the NOT keyword to search for data differing from this expression.
The ESCAPE keyword can be used to prevent the character passed in sql_string from being
interpreted as a wildcard. It is usually used when you want to search for the '%' or '_' characters.

Example
Here are some simple examples:

SELECT * FROM suppliers
WHERE supplier_name LIKE '%bob%';

or

SELECT * FROM suppliers

WHERE supplier_name NOT LIKE 'T%}
or

SELECT * FROM suppliers

WHERE supplier_name LIKE 'Sm_th'
See Also

arithmetic_expression, predicate.

120 4D SQL Reference

literal Syntax rules
version 11

int_number | fractional_number | sql_string

Description

A literal is a data type consisting of either an int_number (integer), a fractional_number
(fraction) or an sql_string.

See Also
arithmetic_expression.

4D SQL Reference 121

predicate Syntax rules
version 11

predicate

Description

A predicate follows the WHERE clause and is used to apply conditions for searching the data. It
can be one of the following types:

comparison_predicate

between_predicate

like_predicate

is_null_predicate

in_predicate

all_or_any_predicate

exists_predicate

See Also

all_or_any_predicate, between_predicate, comparison_predicate, exists_predicate, in_predicate,
is_null_predicate, like_predicate, search_condition.

122 4D SQL Reference

primary_key_definition Syntax rules

version 11

[CONSTRAINT sgl_name] PRIMARY KEY (sql_name, ..., sql_name)

Description

A primary_key_definition is used to pass the sql_name(s) of a column or combination of
columns that will serve as the PRIMARY KEY (unique ID) for the table. The column(s) passed
must not contain duplicate or NULL values.

An optional CONSTRAINT can also precede the PRIMARY KEY passed in order to limit the
values that can be inserted into the column.

Example
Here is a simple example:

CREATE TABLE Customer
(Last_Name varchar(30),
First_Name varchar(30),
PRIMARY KEY (SID));

See Also
ALTER TABLE, foreign_key_definition.

4D SQL Reference 123

search_condition Syntax rules

version 11

predicate |

NOT search_condition |
(search_condition) |

search_condition OR search_condition |
search_condition AND search_condition |

Description

A search_condition specifies a condition to be applied to the data retrieved. A combination of
search_condition(s) using AND or OR keywords can also be applied. You can also precede a
search_condition with the NOT keyword in order to retrieve data that does not meet the
specified condition.

It is also possible to pass a predicate as a search_condition.

Example
Here is an example using a combination of search conditions in the WHERE clause:

SELECT supplier_id
FROM suppliers
WHERE (name = 'CANON")
OR (name = 'Hewlett Packard' AND city = 'New York')
OR (name = 'Firewall' AND status = 'Closed' and city = 'Chicago');

See Also
DELETE, predicate, SELECT, UPDATE.

124 4D SQL Reference

select_item Syntax rules
version 11

arithmetic_expression [[AS] {sql_string |sql_name}]

Description

A select_item specifies one or more items to be included in the results. A column is generated
for every select_item passed. Each select_item consists of an arithmetic_expression. You can also
pass the optional AS keyword to specify the optional sql_string or sql_name to be given to the
column. (Passing the optional sql_string or sql_name without the AS keyword has the same
effect).

Example

Here is an example which creates a column named Movie_Year containing movies released in
the year 2000 or more recently:

ARRAY INTEGER(aMovieYear;0)
Begin SQL
SELECT Year_of_Movie AS Movie_Year
FROM MOVIES
WHERE Movie_Year >= 2000
ORDER BY 1
INTO :aMovieYear;
End SQL

See Also
arithmetic_expression, SELECT, sql_name, sql_string.

4D SQL Reference 125

sort_list Syntax rules
version 11

{column_reference | int_number} [ASC | DESC], ..., {column_reference | int_number} [ASC |DESC]

Description

A sort_list contains either a column_reference or an int_number indicating the column where
the sort will be applied. You can also pass the ASC or DESC keyword to specify whether the
sort will be in ascending or descending order. By default, the sort will be in ascending order.

See Also
column_reference, SELECT.

126 4D SQL Reference

sql_data_type_name Syntax rules
version 11

ALPHA_NUMERIC [VARCHAR | TEXT | TIMESTAMP |INTERVAL |DURATION |BOOLEAN |BIT |
BYTE |INT16 |[SMALLINT | INT32 | INT |INT64 [NUMERIC | REAL | FLOAT | DOUBLE PRECISION |
BLOB | BIT VARYING | CLOB | PICTURE

Description

An sqgl_data_type_name follows the AS keyword in a 4d_function_call and can have one of the
following values:

ALPHA_NUMERIC
VARCHAR
TEXT
TIMESTAMP
INTERVAL
DURATION
BOOLEAN
BIT

BYTE

INT16
SMALLINT
INT32

INT

INT64
NUMERIC
REAL

FLOAT
DOUBLE PRECISION
BLOB

BIT VARYING
CLOB
PICTURE

See Also
4d_function_call.

4D SQL Reference 127

sql_name Syntax rules
version 11

sql_name

Description

An sgl_name is either a standard SQL name starting with a Latin alphabet character and that
contains only Latin characters, numbers and/or underscores, or a square-bracketed string. The
right square bracket is escaped by doubling.

Examples:

MySQLName_2 MySQLName_2

My non-standard & #%!&#% name [My non-standard [&*#%!&#% name]
[already-bracketed name] [[already-bracketed name]]]

name with brackets|[] inside [name with brackets []] inside]

See Also

ALTER TABLE, CREATE INDEX, CREATE TABLE, DELETE, DROP INDEX, DROP TABLE, EXECUTE
IMMEDIATE, INSERT, LOCK TABLE, UNLOCK TABLE, UPDATE.

128 4D SQL Reference

sql_string Syntax rules
version 11

sql_string

Description

An sqgl_string contains a single-quoted string. Single quote characters that are located inside a
string are doubled and strings that are already single-quoted are double-quoted before being
placed within another pair of single quotes.

For example:

my string 'my string'

string with ' inside it 'string with ' ' inside it'
'string already in quotes' '"'string already in quotes' "'
See Also

DELETE, INSERT, UPDATE.

4D SQL Reference 129

subquery Syntax rules

version 11

SELECT [ALL | DISTINCT]

{* | select_item, ..., select_item)

FROM table_reference, ..., table_reference
[WHERE search_condition)

GROUP BY sort_list]

HAVING search_condition]

LIMIT {int_number | ALL}]

OFFSET int_number]

—r———_

Description

A subquery is like a separate SELECT statement enclosed in parentheses and passed in the
predicate of another SQL statement (SELECT, INSERT, UPDATE or DELETE). It acts as a query
within a query and is often passed as part of a WHERE or HAVING clause.

See Also
search_condition, SELECT, select_item, sort_list, table_reference.

130 4D SQL Reference

table_constraint Syntax rules
version 11

{primary_key_definition | foreign_key_definition}

Description

A table_constraint restricts the values that a table can store.You can either pass a
primary_key_definition or a foreign_key_definition. The primary_key_definition sets the primary
key for the table and the foreign_key_definition is used to set the foreign key (which matches
the primary key of another table).

Example
Here is a simple example:

CREATE TABLE ACTOR_FANS
(ID INT32, Name VARCHAR NOT NULL UNIQUE);

See Also
CREATE TABLE, foreign_key_definition, primary_key_definition.

4D SQL Reference 131

table_reference Syntax rules
version 11

{sql_name | sql_string} [[AS] {sql_name|sql_string}]

Description

A table_reference can be either a standard SQL name or a string. You may also pass the
optional AS keyword to assign an alias (in the form of an sql_name or sql_string) to the

column. (Passing the optional sql_string or sql_name without the AS keyword has the same
effect).

See Also
SELECT, sql_name, sql_string.

132 4D SQL Reference

5

Transactions

4D SQL Reference 133

134 4D SQL Reference

Transactions Transactions
version 11

Transactions are a set of SQL statements that are executed together. Either all of them are
successful or they have no effect. Transactions use locks to preserve data integrity during their
execution. If the transaction finishes successfully, you can use the COMMIT statement to
permanently store its modifications. Otherwise, using the ROLLBACK statement will cancel any
modifications and restore the database to its previous state.

There is no difference between a 4D transaction and an SQL transaction. Both types share the
same data and process. SQL statements passed between Begin SQL/End SQL tags, the QUERY
BY SQL and the ODBC commands applied to the local database are always executed in the
same context as standard 4D commands.

The following examples illustrate the different combinations of transactions.

Neither “John” nor “Smith” will be added to the emp table:

ODBC LOGIN(SQL_INTERNAL ;"";"") “lInitializes the 4D SQL engine
START TRANSACTION “Starts a transaction in the current process
Begin SQL

INSERT INTO emp

(NAME)

VALUES ('John');
End SQL
ODBC EXECUTE("START") “Another transaction in the current process
ODBC CANCEL LOAD

“This statement is executed in the same process
ODBC EXECUTE("INSERT INTO emp (NAME) VALUES ('Smith")")
ODBC CANCEL LOAD
ODBC EXECUTE("ROLLBACK") “Cancels internal transaction of the process
CANCEL TRANSACTION “Cancels external transaction of the process
ODBC LOGOUT

4D SQL Reference 135

Only “John” will be added to the emp table:

ODBC LOGIN(SQL_INTERNAL ;"";"")
START TRANSACTION
Begin SQL
INSERT INTO emp
(NAME)
VALUES ('John");
End SQL
ODBC EXECUTE("START")
ODBC CANCEL LOAD
ODBC EXECUTE("INSERT INTO emp (NAME) VALUES ('Smith")")
ODBC CANCEL LOAD
ODBC EXECUTE("ROLLBACK") “Cancels internal transaction of the process
VALIDATE TRANSACTION “Validates external transaction of the process
ODBC LOGOUT

Neither “John” nor “Smith” will be added to the emp table. The external transaction cancels
the internal transaction:

136

ODBC LOGIN(SQL_INTERNAL ;"";"")
START TRANSACTION
Begin SQL
INSERT INTO emp
(NAME)
VALUES ('John");
End SQL
ODBC EXECUTE("START")
ODBC CANCEL LOAD
ODBC EXECUTE("INSERT INTO emp (NAME) VALUES ('Smith")")
ODBC CANCEL LOAD
ODBC EXECUTE("COMMIT") “Validates internal transaction of the process
CANCEL TRANSACTION “Cancels external transaction of the process
ODBC LOGOUT

4D SQL Reference

“John” and “Smith” will be added to the emp table:

ODBC LOGIN(SQL_INTERNAL ;"";"")
START TRANSACTION
Begin SQL
INSERT INTO emp
(NAME)
VALUES ('John");
End SQL
ODBC EXECUTE("START")
ODBC CANCEL LOAD
ODBC EXECUTE("INSERT INTO emp (NAME) VALUES ('Smith")")
ODBC CANCEL LOAD
ODBC EXECUTE("COMMIT") “Validates internal transaction of the process
VALIDATE TRANSACTION “Validates external transaction of the process
ODBC LOGOUT

4D SQL Reference 137

START Transactions
version 11

START [TRANSACTION]

Description

The START command is used to set the beginning of a transaction. If this command is passed
when a transaction is already underway, it has no effect. The keyword TRANSACTION is
optional.

Example
Here is a simple example of how to use and validate a transaction:

START TRANSACTION

SELECT * FROM suppliers

WHERE supplier_name like '%bob%';
COMMIT TRANSACTION;

See Also
COMMIT, ROLLBACK.

138 4D SQL Reference

COMMIT Transactions
version 11

COMMIT [TRANSACTION]

Description

The COMMIT command sets the end of a successful transaction. It ensures that all the
modifications made by the transaction become a permanent part of the database. It also frees
any resources used by the transaction. Keep in mind that you cannot use a ROLLBACK
statement after a COMMIT command since the changes have been made permanent. Passing
the keyword TRANSACTION is optional.

Example
See the example for the START TRANSACTION command.

See Also
ROLLBACK.

4D SQL Reference 139

ROLLBACK Transactions

version 11

ROLLBACK [TRANSACTION]

Description

The ROLLBACK command cancels the transaction underway and restores the data to its
previous state at the beginning of the transaction. It also frees up any resources held by the
transaction. The TRANSACTION keyword is optional.

Example
This example illustrates the use of the rollback function:

START TRANSACTION

SELECT * FROM suppliers

WHERE supplier_name like '%bob%;
ROLLBACK TRANSACTION;

See Also
COMMIT.

140 4D SQL Reference

6

Functions

4D SQL Reference 141

142 4D SQL Reference

Functions Functions

version 11

Functions work with column data in order to produce a specific result in 4D. Function names
appear in bold and are passed as is, generally followed by one or more arithmetic_expression(s)
containing the necessary arguments.

4D SQL Reference 143

ABS Functions

version 11

ABS (arithmetic_expression)

Description

The ABS function returns the absolute value of the arithmetic_expression.

Example

This example returns the absolute value of the prices and multiplies them by a given quantity:
ABS(Price) * quantity

144 4D SQL Reference

ACOS Functions
version 11

ACOS (arithmetic_expression)

Description

The ACOS function returns the arc cosine of the arithmetic_expression. It is the inverse of the
COS function. The arithmetic_expression represents the angle expressed in radians.

Example
This example will return the arc cosine of the angle expressed in radians (-0.73):

SELECT ACOS(-0.73)
FROM TABLES_OF_ANGLES;

See Also
COsS.

4D SQL Reference 145

ASCII Functions

version 11

ASCII (arithmetic_expression)

Description

The ASCII function returns the leftmost character of the arithmetic_expression as an integer. If
the arithmetic_expression is null, the function will return a NULL value.

Example

This example returns the first letter of each last name as an integer:

SELECT ASCII(SUBSTRING(LastName, 1,1))
FROM PEOPLE;

146 4D SQL Reference

ASIN Functions

version 11

ASIN (arithmetic_expression)

Description

The ASIN function returns the arc sine of the arithmetic_expression. It is the inverse of the SIN
function. The arithmetic_expression represents the angle expressed in radians.

Example
This example will return the arc sine of the angle expressed in radians (-0.73):

SELECT ASIN(-0.73)
FROM TABLES_OF_ANGLES;

See Also
SIN.

4D SQL Reference 147

ATAN Functions

version 11

ATAN (arithmetic_expression)

Description

The ATAN function returns the arc tangent of the arithmetic_expression. It is the inverse of the
TAN function. The arithmetic_expression represents the angle expressed in radians.

Example
This example will return the arc tangent of the angle expressed in radians (-0.73):

SELECT ATAN(-0.73)
FROM TABLES_OF_ANGLES;

See Also
TAN.

148 4D SQL Reference

ATAN2 Functions

version 11

ATANZ2 (arithmetic_expression, arithmetic_expression)

Description
The ATAN2 function returns the arc tangent of the "x" and "y" coordinates, where "x" is the
first arithmetic_expression passed and "y" is the second one.
Example
This example returns the arc tangent of the x and y coordinates passed:
SELECT ATANZ2(0.52, 0.60);

See Also
ATAN, TAN.

4D SQL Reference 149

AVG Functions
version 11

AVG ([ALL | DISTINCT] arithmetic_expression)

Description

The AVG function returns the average of the arithmetic_expression. The optional ALL and
DISTINCT keywords are used to respectively retain or eliminate any duplicate values.

Example

This example returns the minimum value of tickets sold, the maximum value of tickets sold,
the average of the tickets sold and the total amount of tickets sold for the MOVIES table:
SELECT MIN(Tickets_Sold),
MAX(Tickets_Sold),
AVG(Tickets_Sold),
SUM(Tickets_Sold)
FROM MOVIES

See Also
COUNT, SUM.

150 4D SQL Reference

BIT LENGTH Functions

version 11

BIT_LENGTH (arithmetic_expression)

Description
The BIT_LENGTH function returns the length of the arithmetic_expression in bits.

Example
Here is a simple example:

SELECT BIT_LENGTH('01101011");
" returns 8

See Also
OCTET_LENGTH.

4D SQL Reference 151

CAST Functions

version 11

CAST (arithmetic_expression AS sql_data_type_name)

Description
The CAST function converts the arithmetic_expression to the sql_data_type_name passed.

Example
This example converts the year of the movie into an integer type:
SELECT Year_of _Movie, Title, Director, Media, Sold_Tickets

FROM MOVIES
WHERE Year_of_Movie >= CAST('1960' AS INT)

152 4D SQL Reference

CEILING Functions
version 11

CEILING (arithmetic_expression)

Description

The CEILING function returns the smallest integer that is greater than or equal to the
arithmetic_expression.

Example
This example returns the smallest integer greater than or equal to -20.9:

CEILING (-20.9)
“returns -20

See Also
FLOOR.

4D SQL Reference 153

CHAR Functions
version 11

CHAR (arithmetic_expression)

Description

The CHAR function returns a fixed-length character string based on the type of the
arithmetic_expression passed.

Example
This example returns a character string based on the integer of the first letter of each last name:

SELECT CHAR(ASCII(SUBSTRING (LastName,1,1)))
FROM PEOPLE;

154 4D SQL Reference

CHAR LENGTH Functions
version 11

CHAR_LENGTH (arithmetic_expression)

Description
The CHAR_LENGTH function returns the number of characters in the arithmetic_expression.

Example

This example returns the number of characters in the name of products where the weight is
less than 15 Ibs.

SELECT CHAR_LENGTH (Name)
FROM PRODUCTS
WHERE Weight < 15.00

See Also
LENGTH.

4D SQL Reference 155

COALESCE Functions
version 11

COALESCE (arithmetic_expression_commalist)

Description

The COALESCE function returns the first non-null expression from the list of
arithmetic_expression(s) passed. It will return NULL if all the expressions passed are null.

Example

This example returns all the invoice numbers from 2007 where the VAT is greater than O:
SELECT INVOICE_NO
FROM INVOICES
WHERE EXTRACT(YEAR(INVOICE_DATE)) = 2007
HAVING (COALESCE(INVOICE_VAT;0) > 0)

156 4D SQL Reference

CONCAT Functions
version 11

CONCAT (arithmetic_expression, arithmetic_expression)

Description
The CONCAT function returns the two arithmetic_expression(s) passed as a single concatenated
string.
Example
This example will return the first name and last name as a single string:
SELECT CONCAT(CONCAT(PEOPLE.FirstName," "), PEOPLE.LastName) FROM PERSONS;

See Also
CONCATENATE.

4D SQL Reference 157

CONCATENATE Functions
version 11

CONCATENATE (arithmetic_expression, arithmetic_expression)

Description

The CONCATENATE function returns the two arithmetic_expression(s) passed as a single
concatenated string.

Example
See the example for the CONCAT function.

See Also
CONCAT.

158 4D SQL Reference

CosS Functions
version 11

COS (arithmetic_expression)

Description

The COS function returns the cosine of the arithmetic_expression. The arithmetic_expression
represents the angle expressed in radians.

Example
This example will return the cosine of the angle expressed in radians (degrees * 180 / 3,1416):

SELECT COS(degrees * 180 / 3,1416)
FROM TABLES_OF_ANGLES;

See Also
SIN.

4D SQL Reference 159

CcoT Functions
version 11

COT (arithmetic_expression)

Description

The COT function returns the cotangent of the arithmetic_expression. The arithmetic_expression
represents the angle expressed in radians.

Example
This example will return the cotangent of the angle expressed in radians (3,1416):

SELECT COT(3,1416)
FROM TABLES_OF_ANGLES;

See Also
TAN.

160 4D SQL Reference

COUNT Functions

version 11

COUNT ({ [[ALL |DISTINCT] arithmetic_expression] |*})

Description

The COUNT function returns the number of non-null values in the arithmetic_expression. The
optional ALL and DISTINCT keywords are used to respectively retain or eliminate any duplicate
values.

If you pass the * instead, the function returns the total number of rows in a table, including
duplicate and null values.

Example
This example returns the number of movies from the MOVIES table:

SELECT COUNT(¥)
FROM MOVIES

See Also
AVG, SUM.

4D SQL Reference 161

CURDATE Functions

version 11

CURDATE ()

Description
The CURDATE function returns the current date.

Example

This example creates a table of invoices and inserts the current date into the INV_DATE
column:

ARRAY STRING(30;aDate;0)
Begin SQL
CREATE TABLE INVOICES
(INV_DATE VARCHAR(40));

INSERT INTO INVOICES
(INV_DATE)
VALUES (CURDATE());

SELECT *
FROM INVOICES
INTO :aDate;
End SQL
“the aDate array will return the INSERT command execution date and time.

See Also
CURRENT_DATE, CURTIME.

162 4D SQL Reference

CURRENT _DATE Functions

version 11

CURRENT_DATE ()

Description
The CURRENT_DATE function returns the current date in local time.

Example

This example creates a table of invoices and inserts the current date into the INV_DATE
column:

ARRAY STRING(30;aDate;0)
Begin SQL
CREATE TABLE INVOICES
(INV_DATE VARCHAR(40));

INSERT INTO INVOICES
(INV_DATE)
VALUES (CURRENT_DATE());

SELECT *
FROM INVOICES
INTO :aDate;
End SQL
“the aDate array will return the INSERT command execution date and time.

See Also
CURRENT_TIME, CURRENT_TIMESTAMP.

4D SQL Reference 163

CURRENT _TIME Functions

version 11

CURRENT_TIME ()

Description
The CURRENT_TIME function returns the current local time.

Example

This example creates a table of invoices and inserts the current time into the INV_DATE
column:

ARRAY STRING(30;aDate;0)
Begin SQL
CREATE TABLE INVOICES
(INV_DATE VARCHAR(40));

INSERT INTO INVOICES
(INV_DATE)
VALUES (CURRENT_TIME());

SELECT *
FROM INVOICES
INTO :aDate;
End SQL
“the aDate array will return the INSERT command execution date and time.

See Also
CURRENT_DATE, CURRENT_TIMESTAMP.

164 4D SQL Reference

CURRENT_TIMESTAMP Functions

version 11

CURRENT_TIMESTAMP ()

Description
The CURRENT_TIMESTAMP function returns the current date and local time.

Example

This example creates a table of invoices and inserts the current date and time into the
INV_DATE column:

ARRAY STRING(30;aDate;0)
Begin SQL
CREATE TABLE INVOICES
(INV_DATE VARCHAR(40));

INSERT INTO INVOICES
(INV_DATE)
VALUES (CURRENT_TIMESTAMP());

SELECT *
FROM INVOICES
INTO :aDate;
End SQL
“the aDate array will return the INSERT command execution date and time.

See Also
CURRENT_DATE, CURRENT_TIME.

4D SQL Reference 165

CURTIME Functions

version 11

CURTIME ()

Description
The CURTIME function returns the current time to a precision of one second.

Example

This example creates a table of invoices and inserts the current time into the INV_DATE
column:

ARRAY STRING(30;aDate;0)
Begin SQL
CREATE TABLE INVOICES
(INV_DATE VARCHAR(40));

INSERT INTO INVOICES
(INV_DATE)
VALUES (CURTIME(Q);

SELECT *
FROM INVOICES
INTO :aDate;
End SQL
“the aDate array will return the INSERT command execution date and time.

See Also
CURDATE, CURRENT_TIME.

166 4D SQL Reference

DATE_TO_CHAR Functions
version 11

DATE_TO_CHAR (arithmetic_expression, arithmetic_expression)

Description

The DATE_TO_CHAR function returns a text representation of the date passed in the first
arithmetic_expression according to the format specified in the second arithmetic_expression.
The first arithmetic_expression should be of the Timestamp or Duration type and the second
should be of the Text type.

The formatting flags which can be used are given below. In general, if a formatting flag starts
with an upper-case character and produces a zero, then the number will start with one or more
zeros when appropriate; otherwise, there will be no leading zeros. For example, if dd returns 7,
then Dd will return 07.

The use of upper- and lower-case characters in the formatting flags for day and month names
will be reproduced in the results returned. For example, passing "day" will return "monday",
passing "Day" will return "Monday" and passing "DAY" will return "MONDAY".

am - am or pm according to the value of the hour
pm - am or pm according to the value of the hour
a.m. - a.m. or p.m. according to the value of the hour
p-m. - a.m. or p.m. according to the value of the hour

d - numeric day of week (1-7)

dd - numeric day of month (1-31)

ddd - numeric day of year

day - name of day of week

dy - abbreviated 3-letter name of day of week

hh - numeric hour, 12-based (0-11)
hh12 - numeric hour, 12-based (0-11)
hh24 - numeric hour, 24-based (0-23)
J - Julian day

mi - minutes (0-59)
mm - numeric month (0-12)

4D SQL Reference 167

q - year's quarter

ss - seconds (0-59)
sss - milliseconds (0-999)

w - week of month (1-5)
ww - week of year (1-53)

yy - year
yyyy - year
[any text] - text inside brackets ([]) is not interpreted and inserted as is

-.,%; 'space character' 'tab character' - are left as is, without changes.

Example
This example returns the birth date as a numeric day of the week (1-7):

SELECT DATE_TO_CHAR (Birth_Date;’d")
FROM EMPLOYERS;

168 4D SQL Reference

DAY Functions
version 11

DAY (arithmetic_expression)

Description
The DAY function returns the day of the month for the date passed in the arithmetic_expression.

Example
This example returns the day of the month for the date "05-07-2007":

SELECT DAY('05-07-2007");
“returns 7

See Also
DAYNAME, DAYOFMONTH, DAYOFWEEK, DAYOFYEAR.

4D SQL Reference 169

DAYNAME Functions

version 11

DAYNAME (arithmetic_expression)

Description

The DAYNAME function returns the name of the day of the week for the date passed in the
arithmetic_expression.

Example
This example returns the name of the day of the week for each date of birth passed:

SELECT DAYNAME(Date_of_birth);

See Also
DAY, DAYOFMONTH, DAYOFWEEK, DAYOFYEAR.

170 4D SQL Reference

DAYOFMONTH Functions
version 11

DAYOFMONTH (arithmetic_expression)

Description

The DAYOFMONTH function returns a number representing the day of the month (ranging
from 1 to 31) of the date passed in the arithmetic_expression.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the day
number of the date of birth for every person in PEOPLE:

SELECT DAYOFMONTH(Date_of_Birth)
FROM PEOPLE;

See Also
DAY, DAYNAME, DAYOFWEEK, DAYOFYEAR.

4D SQL Reference 171

DAYOFWEEK Functions
version 11

DAYOFWEEK (arithmetic_expression)

Description

The DAYOFWEEK function returns a number representing the day of the week (ranging from 1
to 7, where 1 is Sunday and 7 is Saturday) of the date passed in the arithmetic_expression.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the day of
the week of the date of birth for every person in PEOPLE :

SELECT DAYOFWEEK(Date_of_Birth)
FROM PEOPLE;

See Also
DAY, DAYNAME, DAYOFMONTH, DAYOFYEAR.

172 4D SQL Reference

DAYOFYEAR Functions
version 11

DAYOFYEAR (arithmetic_expression)

Description

The DAYOFYEAR function returns a number representing the day of the year (ranging from 1 to
366, where 1 is January 1st) of the date passed in the arithmetic_expression.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the day of
the year of the date of birth for every person in PEOPLE:

SELECT DAYOFYEAR(Date_of_Birth)
FROM PEOPLE;

See Also
DAY, DAYNAME, DAYOFMONTH, DAYOFWEEK.

4D SQL Reference 173

DEGREES Functions
version 11

DEGREES (arithmetic_expression)

Description

The DEGREES function returns the number of degrees of the arithmetic_expression. The
arithmetic_expression represents the angle expressed in radians.

Example
This example will create a table and insert values based on the numbers of degrees of the value
Pi:
CREATE TABLE Degrees_table (PI_value float);
INSERT INTO Degrees_table VALUES
(DEGREES(PI());
SELECT * FROM Degrees_table

See Also
RADIANS.

174 4D SQL Reference

EXP Functions
version 11

EXP (arithmetic_expression)

Description

The EXP function returns the exponential value of the arithmetic_expression, e.g. e raised to the
xth value where "x" is the value passed in the arithmetic_expression.

Example
This example returns e raised to the 15th value:

SELECT EXP(15);
“returns 3269017,3724721107

See Also
SQRT.

4D SQL Reference 175

EXTRACT Functions

version 11

EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND | MILLISECOND} FROM
arithmetic_expression)

Description

The EXTRACT function returns the specified part which it extracts from the
arithmetic_expression. The arithmetic_expression passed should be of the Timestamp type.

Example
This example returns all the invoice numbers from the month of January:
SELECT INVOICE_NO

FROM INVOICES
WHERE EXTRACT(MONTH(INVOICE_DATE)) = 1;

176 4D SQL Reference

FLOOR Functions

version 11

FLOOR (arithmetic_expression)

Description

The FLOOR function returns the largest integer that is less than or equal to the
arithmetic_expression.

Example
This example returns the largest integer less than or equal to -20.9:

FLOOR (-20.9);
“returns -21

See Also
CEILING.

4D SQL Reference 177

HOUR Functions
version 11

HOUR (arithmetic_expression)

Description

The HOUR function returns the hour part of the time passed in the arithmetic_expression. The
value returned ranges from O to 23.

Example

Supposing that we have the INVOICES table with a Delivery_Time field. To display the hour of
the delivery time:

SELECT HOUR(Delivery_Time)
FROM INVOICES;

See Also
MINUTE, SECOND.

178 4D SQL Reference

INSERT Functions

version 11

INSERT (arithmetic_expression, arithmetic_expression, arithmetic_expression, arithmetic_expression)

Description

The INSERT function inserts one string into another at a given position. The first
arithmetic_expression passed is the destination string. The second arithmetic_expression is the
index where the string passed in the fourth arithmetic_expression will be inserted and the third
arithmetic_expression gives the number of characters to be removed at the given insertion
point.

Example
This example will insert "Dear " in front of the first names in the PEOPLE table:

SELECT INSERT(PEOPLE.FirstName,0,0,'Dear) FROM PEOPLE;

4D SQL Reference 179

LEFT Functions
version 11

LEFT (arithmetic_expression, arithmetic_expression)

Description

The LEFT function returns the leftmost part of the arithmetic_expression passed. The second
arithmetic_expression indicates the number of leftmost characters to return as extracted from
the first arithmetic_expression indicated.

Example

This example returns the first names and first two letters of the last names from the PEOPLE
table:

SELECT FirstName, LEFT(LastName, 2)
FROM PEOPLE;

See Also
RIGHT.

180 4D SQL Reference

LENGTH Functions

version 11

LENGTH (arithmetic_expression)

Description
The LENGTH function returns the number of characters in the arithmetic_expression.

Example

This example returns the number of characters in the name of products that weigh less than
15 1bs.

SELECT LENGTH (Name)
FROM PRODUCTS
WHERE Weight < 15.00

See Also
CHAR_LENGTH.

4D SQL Reference 181

LOCATE Functions
version 11

LOCATE (arithmetic_expression, arithmetic_expression, arithmetic_expression)
LOCATE (arithmetic_expression, arithmetic_expression)

Description

The LOCATE function returns the starting position of the 1st occurrence of an
arithmetic_expression found within a second arithmetic_expression. You can also pass a third
arithmetic_expression to specify the character position where the search must begin.

Example

This example will return the position of the first letter X found in the last names of the
PEOPLE table:

SELECT FirstName, LOCATE('X',LastName)
FROM PEOPLE;

See Also
POSITION, SUBSTRING.

182 4D SQL Reference

LOG Functions
version 11

LOG (arithmetic_expression)

Description
The LOG function returns the natural logarithm of the arithmetic_expression.

Example
This example returns the natural logarithm of 50:
SELECT LOG(50);

See Also
LOG10.

4D SQL Reference 183

LOG10 Functions
version 11

LOG10 (arithmetic_expression)

Description
The LOG10 function returns the base 10 logarithm of the arithmetic_expression.

Example
This example returns the logarithm in base 10 of 50:
SELECT LOG10(50);

See Also
LOG.

184 4D SQL Reference

LOWER Functions
version 11

LOWER (arithmetic_expression)

Description

The LOWER function returns the arithmetic_expression passed as a string where all the
characters are in lowercase.

Example
This example will return the names of products in lowercase:

SELECT LOWER (Name)
FROM PRODUCTS;

See Also
UPPER.

4D SQL Reference 185

LTRIM Functions
version 11

LTRIM (arithmetic_expression|, arithmetic_expression])

Description

The LTRIM function removes any empty spaces from the beginning of the
arithmetic_expression. The optional second arithmetic_expression can be used to indicate
specific characters to be removed from the beginningof the first arithmetic_expression.

Example
This example simply removes any empty spaces from the beginning of product names:

SELECT LTRIM(Name)
FROM PRODUCTS;

See Also
RTRIM, TRIM.

186 4D SQL Reference

MAX Functions
version 11

MAX (arithmetic_expression)

Description
The MAX function returns the maximum value of the arithmetic_expression.

Example
See the examples from SUM and AVG.

See Also
MIN.

4D SQL Reference 187

MILLISECOND Functions
version 11

MILLISECOND (arithmetic_expression)

Description

The MILLISECOND function returns the millisecond part of the time passed in
arithmetic_expression.

Example

Supposing that we have the INVOICES table with a Delivery_Time field. To display the
milliseconds of the delivery time:

SELECT MILLISECOND(Delivery_Time)
FROM INVOICES;

See Also
MINUTE, SECOND.

188 4D SQL Reference

MIN Functions
version 11

MIN (arithmetic_expression)

Description
The MIN function returns the minimum value of the arithmetic_expression.

Example
See the examples from SUM and AVG.

See Also
MAX.

4D SQL Reference 189

MINUTE Functions
version 11

MINUTE (arithmetic_expression)

Description

The MINUTE function returns the minute part of the time passed in the arithmetic_expression.
The value returned ranges from O to 59.

Example

Supposing that we have the INVOICES table with a Delivery_Time field. To display the minute
of the delivery time:

SELECT MINUTE(Delivery_Time)
FROM INVOICES;

See Also
HOUR, SECOND.

190 4D SQL Reference

MOD Functions

version 11

MOD (arithmetic_expression, arithmetic_expression)

Description
The MOD function returns the remainder of the first arithmetic_expression divided by the
second arithmetic_expression.

Example
This example returns the remainder of 10 divided by 3:

MOD(10,3)
“returns 1

4D SQL Reference 191

MONTH Functions
version 11

MONTH (arithmetic_expression)

Description

The MONTH function returns the number of the month (ranging from 1 to 12) of the date
passed in the arithmetic_expression.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the month of
the date of birth for every person in PEOPLE :

SELECT MONTH(Date_of_Birth)
FROM PEOPLE;

See Also
DAYOFMONTH, MONTHNAME.

192 4D SQL Reference

MONTHNAME Functions

version 11

MONTHNAME (arithmetic_expression)

Description

The MONTHNAME function returns the name of the month for the date passed in the
arithmetic_expression.

Example
This example returns the name of the month for each date of birth passed:
SELECT MONTHNAME(Date_of_birth);

See Also
DAYOFMONTH, MONTH.

4D SQL Reference 193

NULLIF Functions

version 11

NULLIF (arithmetic_expression, arithmetic_expression)

Description

The NULLIF function returns NULL if the first arithmetic_expression is equal to the second
arithmetic_expression. Otherwise, it will return the value of the first arithmetic_expression. The
two arithmetic_expression(s) must be comparable.

Example
This example returns Null if the total of the invoice is O:
NULLIF(INVOICE_TOTAL,0);

194 4D SQL Reference

OCTET _LENGTH Functions
version 11

OCTET_LENGTH (arithmetic_expression)

Description

The OCTET_LENGTH function returns the number of bytes of the arithmetic_expression,
including any trailing whitespace.

Example
Here is a simple example:

SELECT OCTET_LENGTH (MyBinary_col)
FROM MyTable
WHERE MyBinary_col = '93FB/;

" returns 2

See Also
BIT_LENGTH.

4D SQL Reference 195

Pl Functions
version 11

Pl ()

Description
The PI function returns the value of the constant Pi (n).

Example
See example from DEGREES.

196 4D SQL Reference

POSITION Functions

version 11

POSITION (arithmetic_expression IN arithmetic_expression)

Description

The POSITION function returns a value indicating the starting position of the first
arithmetic_expression within the second arithmetic_expression. If the string is not found, the
function returns zero.

Example

This example will return the starting position of the word "York" in any last names of the
PEOPLE table:

SELECT FirstName, POSITION('York’ IN LastName)
FROM PEOPLE;

See Also
LOCATE, SUBSTRING.

4D SQL Reference 197

POWER Functions

version 11

POWER (arithmetic_expression, arithmetic_expression)

Description

The POWER function raises the first arithmetic_expression passed to the power of "x", where "x"
is the second arithmetic_expression passed.

Example
This example raises each value to the power of 3:

SELECT SourceValues, POWER(SourceValues, 3)
FROM Values
ORDER BY SourceValues

“returns 8 for SourceValues = 2

See Also
EXP, SQRT.

198 4D SQL Reference

QUARTER Functions
version 11

QUARTER (arithmetic_expression)

Description

The QUARTER function returns the quarter of the year (ranging from 1 to 4) in which the date
passed in the arithmetic_expression occurs.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the quarter
of the date of birth for every person in PEOPLE:

SELECT QUARTER(Date_of_Birth)
FROM PEOPLE;

See Also
MONTH, YEAR.

4D SQL Reference 199

RADIANS Functions
version 11

RADIANS (arithmetic_expression)

Description

The RADIANS function returns the number of radians of the arithmetic_expression. The
arithmetic_expression represents the angle expressed in degrees.

Example
This example returns the number of radians of a 30 degree angle:

RADIANS (30);
“returns the value 0,5236

See Also
DEGREES.

200 4D SQL Reference

RAND Functions

version 11

RAND ([arithmetic_expression))

Description

The RAND function returns a random float value between O and 1. The optional
arithmetic_expression can be used to pass a seed value.

Example
This example inserts ID values generated by the RAND function:
CREATE TABLE PEOPLE

(IDINT32,
Name VARCHAR);

INSERT INTO PEOPLE

(ID, Name)
VALUES(RAND, 'Francis');

4D SQL Reference 201

REPEAT Functions

version 11

REPEAT (arithmetic_expression, arithmetic_expression)

Description

The REPEAT function returns the first arithmetic_expression repeated the requested number of
times (passed in second arithmetic_expression).

Example
Here is a simple example of how it works:

SELECT REPEAT('repeat, 3)
* returns 'repeatrepeatrepeat’

202 4D SQL Reference

REPLACE Functions

version 11

REPLACE (arithmetic_expression, arithmetic_expression, arithmetic_expression)

Description

The REPLACE function looks in the first arithmetic_expression passed for all the occurrences of
the second arithmetic_expression passed and replaces each one found with the third
arithmetic_expression passed. If no such occurrences are found, the first arithmetic_expression
remains unchanged.

Example
This example will replace the word "Francs" by "Euro":

SELECT Name, REPLACE(Currency, ‘Francs’, ‘Euro’)
FROM PRODUCTS;

See Also
TRANSLATE.

4D SQL Reference 203

RIGHT Functions
version 11

RIGHT (arithmetic_expression, arithmetic_expression)

Description

The RIGHT returns the rightmost part of the arithmetic_expression passed. The second
arithmetic_expression indicates the number of rightmost characters to return as extracted from
the first arithmetic_expression indicated.

Example

This example returns the first names and the last two letters of the last names from the
PEOPLE table:

SELECT FirstName, RIGHT(LastName, 2)
FROM PEOPLE;

See Also
LEFT.

204 4D SQL Reference

ROUND Functions

version 11

ROUND (arithmetic_expression|, arithmetic_expression])

Description

The ROUND function rounds the first arithmetic_expression passed to "x" decimal places (where
"x" is the second optional arithmetic_expression passed). If the second arithmetic_expression is
not passed, the arithmetic_expression is rounded off to the nearest whole number.

Example
This example rounds the given number off to two decimal places:

ROUND (1234.1966, 2)
“returns 1234.2000

See Also
TRUNC, TRUNCATE.

4D SQL Reference 205

RTRIM Functions
version 11

RTRIM (arithmetic_expression|, arithmetic_expression))

Description

The RTRIM function removes any empty spaces from the end of the arithmetic_expression. The
optional second arithmetic_expression can be used to indicate specific characters to be removed
from the end of the first arithmetic_expression.

Example
This example removes any empty spaces from the ends of the product names:

SELECT RTRIM(Name)
FROM PRODUCTS;

See Also
LTRIM, TRIM.

206 4D SQL Reference

SECOND Functions
version 11

SECOND (arithmetic_expression)

Description

The SECOND function returns the seconds part (ranging from O to 59) of the time passed in
the arithmetic_expression.

Example

Supposing that we have the INVOICES table with a Delivery_Time field. To display the
seconds of the delivery time:

SELECT SECOND(Delivery_Time)
FROM INVOICES;

See Also
HOUR, MINUTE.

4D SQL Reference 207

SIGN Functions

version 11

SIGN (arithmetic_expression)

Description
The SIGN function returns the sign of the arithmetic_expression (e.g., 1 for a positive number, -
1 for a negative number or 0).

Example
This example will returns all the negative amounts found in the INVOICES table:

SELECT AMOUNT
FROM INVOICES
WHERE SIGN(AMOUNT) = -1;

208 4D SQL Reference

SIN Functions
version 11

SIN (arithmetic_expression)

Description

The SIN function returns the sine of the arithmetic_expression. The arithmetic_expression
represents the angle expressed in radians.

Example
This example will return the sine of the angle expressed in radians:

SELECT SIN(radians)
FROM TABLES_OF_ANGLES;

See Also
COS.

4D SQL Reference 209

SPACE Functions

version 11

SPACE (arithmetic_expression)

Description

The SPACE function returns a character string made up of the given number of spaces
indicated in arithmetic_expression. If the value of the arithmetic_expression is less than zero, a

NULL value will be returned.

Example
This example adds three spaces in front of the last names of the PEOPLE table:

SELECT CONCAT(SPACE(3),PERSONS.LastName) FROM PEOPLE;

210 4D SQL Reference

SQRT Functions
version 11

SQRT (arithmetic_expression)

Description
The SQRT function returns the square root of the arithmetic_expression.

Example
This example returns the square root of the freight:

SELECT Freight, SQRT(Freight) AS "Square root of Freight"
FROM Orders

See Also
EXP.

4D SQL Reference

211

SUBSTRING Functions
version 11

SUBSTRING (arithmetic_expression, arithmetic_expression, [arithmetic_expression])

Description

The SUBSTRING function returns a substring of the first arithmetic_expression passed. The
second arithmetic_expression indicates the starting position of the substring and the optional
third arithmetic_expression indicates the number of characters to return counting from the
starting position indicated. If the third arithmetic_expression is not passed, the function will
return all the characters starting from the position indicated.

Example
This example will return 4 characters of the store name starting with the 2nd character:

SELECT SUBSTRING(Store_name,2,4)
FROM Geography
WHERE Store_name = 'Paris';

See Also
LOCATE, POSITION.

212 4D SQL Reference

SUM Functions
version 11

SUM (JALL |DISTINCT] arithmetic_expression)

Description

The SUM function returns the sum of the arithmetic_expression. The optional ALL and
DISTINCT keywords are used to respectively retain or eliminate any duplicate values.

Example

This example returns the sum of the expected sales less the sum of the actual sales, as well as
the minimum and maximum value of the actual sales multiplied by 100 and divided by the
expected sales for the SALES_PERSONS table:

SELECT MIN ((SALES * 100) / QUOTA),
MAX ((SALES * 100) / QUOTA),
SUM (QUOTA) - SUM (SALES)

FROM SALES_PERSONS

See Also
AVG, COUNT.

4D SQL Reference 213

TAN Functions
version 11

TAN (arithmetic_expression)

Description

The TAN function returns the tangent of the arithmetic_expression. The arithmetic_expression
represents the angle expressed in radians.

Example

This example will return the arc cosine of the angle expressed in radians:

SELECT TAN(radians)
FROM TABLES_OF_ANGLES;
See Also
COT.

214 4D SQL Reference

TRANSLATE Functions
version 11

TRANSLATE (arithmetic_expression, arithmetic_expression, arithmetic_expression)

Description
The TRANSLATE function returns the first arithmetic_expression with all occurrences of each of

the characters passed in the second arithmetic_expression replaced by their corresponding
characters passed in the third arithmetic_expression.

This replacement is carried out on a character by character basis (e.g. 1st character of the
second arithmetic_expression is replaced each time it occurs in the first arithmetic_expression by
the 1st character of the third arithmetic_expression, and so on).

If there are fewer characters in the third arithmetic_expression than in the second one, any
occurrences of characters found in the second arithmetic_expression that do not have a
corresponding character in the third arithmetic_expression will be removed from the first
arithmetic_expression (e.g. if the second arithmetic_expression has five characters to be searched
for and the third arithmetic_expression only contains four replacement characters, each time
the fifth character of the second arithmetic_expression is found in the first
arithmetic_expression, it will be removed from the value returned).

Example
This example replaces all occurrences of "a" with "1" and all occurrences of "b" with "2":

TRANSLATE (‘abcd', 'ab', '12")
“ returns '12cd’

See Also
REPLACE.

4D SQL Reference 215

TRIM Functions
version 11

TRIM ({LEADING |TRAILING |BOTH} [arithmetic_expression] FROM arithmetic_expression)
TRIM (arithmetic_expression[FROM arithmetic_expression))

Description
The TRIM function removes empty spaces or specified characters from an arithmetic_expression.

In the first syntax, you can pass LEADING to indicate that the spaces/characters should be
removed from the beginning of the arithmetic_expression, TRAILING to indicate that they
should be removed from the end of it, or BOTH. The optional first arithmetic_expression passed
indicates the specific characters to be removed from the second arithmetic_expression. If it is
omitted, only the empty spaces will be removed.

In the second syntax, the first arithmetic_expression indicates the characters to be removed
from the second optional arithmetic_expression. If this second optional arithmetic_expression is
omitted, only the empty spaces will be removed from the arithmetic_expression passed.

Example
This example removes any empty spaces from the product names:

SELECT TRIM(Name)
FROM PRODUCTS;

See Also
LTRIM, RTRIM.

216 4D SQL Reference

TRUNC Functions
version 11

TRUNC (arithmetic_expression|, arithmetic_expression))

Description

The TRUNC function returns the first arithmetic_expression truncated to "x" places to the right
of the decimal point, where "x" is the second optional arithmetic_expression. If this second

arithmetic_expression is not passed, the arithmetic_expression is simply truncated by removing
any decimal places.

Example
This function truncates the number passed to 1 place after the decimal point:

TRUNC(2.42, 1)
“returns 2.40

See Also
ROUND, TRUNCATE.

4D SQL Reference 217

TRUNCATE Functions

version 11

TRUNCATE (arithmetic_expression|, arithmetic_expression])

Description

The TRUNCATE function returns the first arithmetic_expression truncated to "x" places to the
right of the decimal point, where "x" is the second optional arithmetic_expression. If this

second arithmetic_expression is not passed, the arithmetic_expression is simply truncated by
removing any decimal places.

Example
See the example for the TRUNC function.

See Also
ROUND, TRUNC.

218 4D SQL Reference

UPPER Functions
version 11

UPPER (arithmetic_expression)

Description

The UPPER function returns the arithmetic_expression passed as a string where all the characters
are in uppercase.

Example
This example will return the names of products in uppercase:

SELECT UPPER (Name)
FROM PRODUCTS;

See Also
LOWER.

4D SQL Reference 219

WEEK Functions
version 11

WEEK (arithmetic_expression)

Description

The WEEK function returns the week of the year (ranging from 1 to 54) of the date passed in

the arithmetic_expression. The week begins on Sunday and January 1st is always in the first
week.

Example
This example returns a number representing the week of the year for each date of birth passed:
SELECT WEEK(Date_of_birth);

See Also
DAYOFWEEK.

220 4D SQL Reference

YEAR Functions
version 11

YEAR (arithmetic_expression)

Description
The YEAR function returns the year part of the date passed in the arithmetic_expression.

Example

Supposing that we have the PEOPLE table with a Date_of_Birth field. To find out the year of
the date of birth for every person in PEOPLE :

SELECT YEAR(Date_of_Birth)
FROM PEOPLE;

See Also
DAYOFYEAR.

4D SQL Reference 221

222 4D SQL Reference

7/

Appendix

4D SQL Reference 223

224 4D SQL Reference

Appendix A: Error Codes Appendix
version 11

SQL Error Codes
The SQL engine returns specific errors which are listed below. These errors can be intercepted
using an error-handling method installed by the ON ERR CALL command.

Generic errors

1001 INVALID ARGUMENT

1002 INVALID INTERNAL STATE

1003 NOT RUNNING

1004 ACCESS DENIED

1005 FAILED TO LOCK SYNCHRONIZATION PRIMITIVE
1006 FAILED TO UNLOCK SYNCHRONIZATION PRIMITIVE
1007 SQL SERVER IS NOT AVAILABLE

Semantic errors

1101 TABLE DOES NOT EXIST

1102 COLUMN DOES NOT EXIST

1103 TABLE NOT DECLARED IN FROM CLAUSE
1104 AMBIGUOUS COLUMN NAME

1105 TABLE ALIAS SAME AS TABLE NAME

1106 DUPLICATE TABLE ALIAS

1107 DUPLICATE TABLE IN FROM CLAUSE

1108 INCOMPATIBLE TYPES

1109 INVALID ORDER BY INDEX

1110 WRONG AMOUNT OF PARAMETERS

1111 INCOMPATIBLE PARAMETER TYPE

1112 UNKNOWN FUNCTION

1113 DIVISION BY ZERO

1114 ORDER BY INDEX NOT ALLOWED

1115 DISTINCT NOT ALLOWED

1116 NESTED COLUMN FUNCTIONS NOT ALLOWED
1117 COLUMN FUNCTIONS NOT ALLOWED

1118 CAN NOT MIX COLUMN AND SCALAR OPERATIONS
1119 INVALID GROUP BY INDEX

1120 GROUP BY INDEX NOT ALLOWED

1121 GROUP BY NOT ALLOWED WITH SELECT ALL
1122 NOT A COLUMN EXPRESSION

4D SQL Reference 225

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1153
1154

NOT A GROUPING COLUMN IN AGGREGATE ORDER BY
MIXED LITERAL TYPES IN PREDICATE

LIKE ESCAPE IS NOT ONE CHAR

BAD LIKE ESCAPE CHAR

UNKNOWN ESCAPE SEQUENCE IN LIKE

COLUMNS FROM MORE THAN ONE QUERY IN COLUMN FUNCTION
SCALAR EXPRESSION WITH GROUP BY

SUBQUERY HAS MORE THAN ONE COLUMN
SUBQUERY MUST HAVE ONE ROW

INSERT VALUE COUNT DOES NOT MATCH COLUMN COUNT
DUPLICATE COLUMN IN INSERT

COLUMN DOES NOT ALLOW NULLS

DUPLICATE COLUMN IN UPDATE

TABLE ALREADY EXISTS

DUPLICATE COLUMN IN CREATE TABLE

DUPLICATE COLUMN IN COLUMN LIST

MORE THAN ONE PRIMARY KEY NOT ALLOWED
AMBIGUOUS FOREIGN KEY NAME

COLUMN COUNT MISMATCH IN FOREIGN KEY
COLUMN TYPE MISMATCH IN FOREIGN KEY

FAILED TO FIND MATCHING PRIMARY COLUMN
UPDATE AND DELETE CONSTRAINTS MUST BE THE SAME
FOREIGN KEY DOES NOT EXIST

INVALID LIMIT VALUE IN SELECT

INVALID OFFSET VALUE IN SELECT

PRIMARY KEY DOES NOT EXIST

FAILED TO CREATE FOREIGN KEY

FIELD IS NOT IN PRIMARY KEY

FIELD IS NOT UPDATEABLE

BAD DATA TYPE LENGTH

EXPECTED EXECUTE IMMEDIATE COMMAND

Implementation

1203
1204
1205
1206
1207
1208
1209
1210

226

FUNCTIONALITY IS NOT IMPLEMENTED
FAILED TO CREATE NEW RECORD
FAILED TO UPDATE FIELD

FAILED TO DELETE RECORD

NO MORE JOIN SEEDS POSSIBLE

FAILED TO CREATE TABLE

FAILED TO DROP TABLE

CANT BUILD BTREE FOR ZERO RECORDS

4D SQL Reference

1211 COMMAND COUNT GREATER THAN ALLOWED

1212 FAILED TO CREATE DATABASE

1213 FAILED TO DROP COLUMN

1214 VALUE IS OUT OF BOUNDS

1215 FAILED TO STOP SQL_SERVER

1216 FAILED TO LOCALIZE

1217 FAILED TO LOCK TABLE FOR READING
1218 FAILED TO LOCK TABLE FOR WRITING
1219 TABLE STRUCTURE STAMP CHANGED
1220 FAILED TO LOAD RECORD

1221 FAILED TO LOCK RECORD FOR WRITING
1222 FAILED TO PUT SQL LOCK ON A TABLE
Parsing

1301 PARSING FAILED

Runtime language access

1401 COMMAND NOT SPECIFIED

1402 ALREADY LOGGED IN

1403 SESSION DOES NOT EXIST

1404 UNKNOWN BIND ENTITY

1405 INCOMPATIBLE BIND ENTITIES

1406 REQUEST RESULT NOT AVAILABLE
1407 BINDING LOAD FAILED

1408 COULD NOT RECOVER FROM PREVIOUS ERRORS
1409 NO OPEN STATEMENT

1410 RESULT EOF

1411 BOUND VALUE IS NULL

1412 STATEMENT ALREADY OPENED

1413 FAILED TO GET PARAMETER VALUE
1414 INCOMPATIBLE PARAMETER ENTITIES
1415 PARAMETER VALUE NOT SPECIFIED
1416 COLUMN REFERENCE PARAMETERS FROM DIFFERENT TABLES
1417 EMPTY STATEMENT

1418 FAILED TO UPDATE VARIABLE

1419 FAILED TO GET TABLE REFERENCE
1420 FAILED TO GET TABLE CONTEXT

1421 COLUMNS NOT ALLOWED

1422 INVALID COMMAND COUNT

1423 INTO CLAUSE NOT ALLOWED

4D SQL Reference

227

1424
1425
1426
1427
1428
1429
1430

Date parsing
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513

EXECUTE IMMEDIATE NOT ALLOWED

ARRAY NOT ALLOWED IN EXECUTE IMMEDIATE
COLUMN NOT ALLOWED IN EXECUTE IMMEDIATE
NESTED BEGIN END SQL NOT ALLOWED

RESULT IS NOT A SELECTION

INTO ITEM IS NOT A VARIABLE (LANGUAGE RUNTIME)
VARIABLE WAS NOT FOUND (LANGUAGE RUNTIME)

SEPARATOR_EXPECTED

FAILED TO PARSE DAY OF MONTH
FAILED TO PARSE MONTH
FAILED TO PARSE YEAR

FAILED TO PARSE HOUR

FAILED TO PARSE MINUTE
FAILED TO PARSE SECOND
FAILED TO PARSE MILLISECOND
INVALID AM PM USAGE

FAILED TO PARSE TIME ZONE
UNEXPECTED CHARACTER
FAILED TO PARSE TIMESTAMP
FAILED TO PARSE DURATION

Date formatting

1551

Lexer errors
1601
1602
1603
1604
1605
1606
1607

FAILED

NULL INPUT STRING

NON TERMINATED STRING
NON TERMINATED COMMENT
INVALID NUMBER

UNKNOWN START OF TOKEN
NON TERMINATED NAME

NO VALID TOKENS

4D engine errors

1837

DB4D QUERY FAILED

228 4D SQL Reference

Cacheable

2000 CACHEABLE NOT INITIALIZED
2001 VALUE ALREADY CACHED
2002 CACHED VALUE NOT FOUND

Protocol errors

3000 HEADER NOT FOUND

3001 UNKNOWN COMMAND

3002 ALREADY LOGGED IN

3003 NOT LOGGED IN

3004 UNKNOWN OUTPUT MODE
3005 INVALID STATEMENT ID

3006 UNKNOWN DATA TYPE

3007 STILL LOGGED IN

3008 SOCKET READ ERROR

3009 SOCKET WRITE ERROR

3010 BASE64 DECODING ERROR
3011 SESSION TIMEOUT

3012 FETCH TIMESTAMP ALREADY EXISTS
3013 BASE64 ENCODING ERROR
3014 INVALID HEADER TERMINATOR

4D SQL Reference

229

230 4D SQL Reference

Command Index

4

Ad_funcCtion_call.........oviiiiiiiii e 104
4d_language_reference........cccuvveiiiiiiiiiiiiiiiiiee e 105
A

ABS. e 144
ACOS ... 145
all_or_any_predicate........oooomiiiiiiiiiii e 106
ALTER TABLE. ..ottt e 93
arithmetic_eXPression.........ccieiiiiiiiiiiiiiiie e 107
ASCUL i 146
ASIN e 147
ATAN e 148
ATANZ .ottt 149
AVG. .o 150
B

between_predicate........cccuvviiiiiiiii e 108
BIT_LENGTH. ...ttt 151
C

CASE_EXPIESSION . .o iieeiiiiteteeeeiiiiirttteeeeeesitrrreeeeeeeessnnrrreeeeesesssnmrraneeeesesssnnnnnne 109
CAST e 152
CEILING. ...ttt 153
CHAR ..o 154
CHAR_LENGTH ...ttt 155
COALESCE....ciiiiiiiiiiii it 156
Ccolumn_definition......cooviiiiiiii e 110
COlUMN_Ief@renCe....coeiiiiic e 111
COMMANA_PATAMETETeeeiiiiiiiiieiiiiiiteeee et ee e e ee e e e e e eeirreneeeeeees 112

4D SQL Reference

231

COMPAriSON_PrediCate......coovviiiiiiiiiiiiiiieeee e e e e e 113
CONCAT .ttt et sbe e s e s 157
CONCATENATE.....cititit ettt ettt st e 158
COS et 159
COT ettt st st 160
COUNT ettt et st st b e sn e snne s 161
CREATE INDEX....ceiiiiiiiiiiiie ittt 95
CREATE TABLE. ...ttt st 91
CURDATE. ...ttt ettt sna e e s esanee s 162
CURRENT_DATE....ccoitiiiiiiiitieiiit ettt ettt et 163
CURRENT_TIME.eiiiiiiiiiiiiiiieiieenicc ettt 164
CURRENT_TIMESTAMP. ..ottt 165
CURTIME. ...ttt ettt st 166
D

DATE_TO_CHAR. ..ottt 167
DAY ..ttt e st s s 169
DAYNAME. ...ttt sttt 170
DAYOFMONTH. ...ttt e 171
DAYOFWEEKciiiiiiiiieiieeieetee ettt 172
DAYOFYEAR.cooiiiiiiiiiteeteeee ettt st et 173
DEGREES.....coiiiiiitieeiie ettt ettt s 174
DELETE. ... ittt ettt et et 90
DROP INDEX....coitiiiiiiiiieiiitintie ettt sttt s 96
DROP TABLE.......otiiiiiiiiiiiiiteteeete ettt et 92
E

EXECUTE IMMEDIATE.coctiiiiitiiieiiiteitc ettt 99
EXIStS_PrediCate.......cveiiiiiiiiiiiiiiiie et 114
EXP e e s e e 175
EXTRACT ...ttt 176

232 4D SQL Reference

FLOOR. ...ttt sttt s 177
foreign_key_definition........ccuviiiiiiiiii e 115
function_call.........cocooiiiiiiiiiii 117
H

HOUR. ..ttt st et s e 178
I

INSERT ...ttt ettt st et st st e s ean e 88
INSERT ..ottt ettt st 179
IN_PrEAICATE. ...eiiiiiiiiiiiteeee ettt e e e e e e e e 118
IS_NUIL_PrediCate. .. .coooviiiiiiiiieecee e 119
L

LEFT et 180
LENGTH. ottt e 181
like_prediCate.......eeiiiiiiiiiiic e 120
BEEral.....ooiiiiiii i 121
LOCATE. ...ttt sttt et s e s sae e 182
LOCK TABLE. ..ottt 97
LOG ettt 183
LOGT0u ittt 184
LOWER. ...ttt ettt ettt 185
LTRIM ittt st s 186

4D SQL Reference

233

IMAX ettt st 187
MILLISECOND......ctiiiiiiiiiiiiite ittt 188
IMIN ettt st st s e s 189
MINUTE. ...coiiiiiiiiieitit ettt ane e snaeeees 190
IMOD ...ttt st st et 191
MONTH. ..ottt 192
MONTHNAME.ccoiiiiiiiiiit ittt 193
NULLIF. ..ttt s 194
OCTET_LENGTH. ..ottt sttt 195
Pl et 196
POSITION . ..ottt st 197
POWER. ...ttt s 198
PrEAiCAtE. ...ttt e e 122
primary_key_definition.......ooooiiiiiiiiii e 123
QUARTER ..ottt 199

234 4D SQL Reference

R

RADIANS . ..ttt et e e e e e re e e e e e e e e e e et aeeeeeeeeeerasraeeeeeeeeeenaes 200
RANID . ..ottt ettt e et e e e e e e e e et e e e e e e e e e e et eeeeeerrrr it ns 201
REPEAT ..ottt e e e e e e e e e e et e e e e e e e e e et e eeeeeerrr s 202
REPLAGCE.coeeeetee ettt e e et e e e e e e e e eeeeeeeeeeesaranaeeeaees 203
RIGHT . et e e e e e e e e e e e e aeeeeeeseeeaaaaeeeeeaaees 204
ROLLBAGCK ciiiieeetteeee et ettt e e et e e e e e e e e et e e e eeeeeeseaaaeeeeeaeeessarannnnes 140
(@ 10 \N| B 2SR 205
RTRIM. ..ottt et et e e e e e e e et e e e e e e e e e s st eeeeeeeeesaraannees 206
S

SEANCH_CONAITION....ciiteieeiiee e e e er e e e eaae e 124
SECOND... ..ottt et e e e e e e ere e e e e e e e e raeeeeesseeeaarneeeeaaees 207
SELE C T ettt e et e e e e e e e e e e e aaaerrrr——————— 84
L1 =Tl A (=] o [U USROS 125
SEGIN ettt et et e e e e et e e e e e e e eeaeerara———————aaan 208
SIN ettt et e e e e e e e e e e ————eeeaeteaar—————————aarrranas 209
(Yo o Al 1) TSP P U 126
SPACE. .. et e et e e e e e aaaaearra———— 210
SQl_data_type_Name.....cccciiiiiiiiiiiiieicceee e 127
SOl MM ccciiiiiiee et e e e e e e 128
SOL_STIING e eeteeeeiiee et 129
SR T ettt e e e e e e et ————eee e et e r i ———————aaarranas 211
ST ART .ttt e e e e et e e e e e ———aeeaaeeea i ————————aaan 138
SUDQUETY .ttt ettt e e ettt e e e e s sinrraeeeeeeseannnn 130
SUBSTRING . ..ceeieeeeeiieeettieee ettt e e e ee e e e e e e e e easaeeeeeeeeeessssaaaeeeeeeseees 212
SUM . ettt et e e e e e e e e e e e e e e e e e ———aaaaarran 213
T

17| o] [o) a1 1 -1 o | U USSP 131
17| o] [T Y =) T [l TP UURPPUON 132
TAN ettt e et e e e e e e e e eea e e e r i eeaaeraarr——————_. 214

4D SQL Reference

235

TRIMu 216
TRUNC ... 217
TRUNGATE. ... 218
UNLOCK TABLE......ooiiiiiiiiie e 98
UPDATE. ...ttt 89
UPPER.....oiiiiiic 219
WEEK ... 220
YEAR ... 221

236 4D SQL Reference

	Cover Page
	Contents
	Tutorial
	Introduction
	Receiving an SQL query result in a variable
	Using the WHERE clause
	Receiving an SQL query result into arrays
	Using CAST
	Using the ORDER BY clause
	Using the GROUP BY clause
	Using Statistical functions
	Using the HAVING clause
	Calling 4D methods inside the SQL code
	Joins
	Using Aliases
	Subqueries
	SQL code error tracking and debugging
	Data Definition Language
	External connections
	Connection to the 4D SQL engine via the ODBC Driver

	Using SQL in 4D
	Using SQL in 4D
	Accessing the 4D SQL Engine
	Configuration of 4D SQL Server
	Principles for integrating 4D and the 4D SQL engine

	SQL Commands
	SQL Commands
	SELECT
	INSERT
	UPDATE
	DELETE
	CREATE TABLE
	DROP TABLE
	ALTER TABLE
	CREATE INDEX
	DROP INDEX
	LOCK TABLE
	UNLOCK TABLE
	EXECUTE IMMEDIATE

	Syntax rules
	Syntax rules
	4d_ function_ call
	4d_ language_ reference
	all_ or_ any_ predicate
	arithmetic_ expression
	between_ predicate
	case_ expression
	column_ definition
	column_ reference
	command_ parameter
	comparison_ predicate
	exists_ predicate
	foreign_ key_ definition
	function_ call
	in_ predicate
	is_ null_ predicate
	like_ predicate
	literal
	predicate
	primary_ key_ definition
	search_ condition
	select_ item
	sort_ list
	sql_ data_ type_ name
	sql_ name
	sql_ string
	subquery
	table_ constraint
	table_ reference

	Transactions
	Transactions
	START
	COMMIT
	ROLLBACK

	Functions
	Functions
	ABS
	ACOS
	ASCII
	ASIN
	ATAN
	ATAN2
	AVG
	BIT_ LENGTH
	CAST
	CEILING
	CHAR
	CHAR_ LENGTH
	COALESCE
	CONCAT
	CONCATENATE
	COS
	COT
	COUNT
	CURDATE
	CURRENT_ DATE
	CURRENT_ TIME
	CURRENT_ TIMESTAMP
	CURTIME
	DATE_ TO_ CHAR
	DAY
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	DEGREES
	EXP
	EXTRACT
	FLOOR
	HOUR
	INSERT
	LEFT
	LENGTH
	LOCATE
	LOG
	LOG10
	LOWER
	LTRIM
	MAX
	MILLISECOND
	MIN
	MINUTE
	MOD
	MONTH
	MONTHNAME
	NULLIF
	OCTET_ LENGTH
	PI
	POSITION
	POWER
	QUARTER
	RADIANS
	RAND
	REPEAT
	REPLACE
	RIGHT
	ROUND
	RTRIM
	SECOND
	SIGN
	SIN
	SPACE
	SQRT
	SUBSTRING
	SUM
	TAN
	TRANSLATE
	TRIM
	TRUNC
	TRUNCATE
	UPPER
	WEEK
	YEAR

	Appendix
	Appendix A: Error Codes

	Command Index

