
4D for Flex v1.1 Manual 11

4D FOR FLEX V1.1 MANUAL

INSTALLATION

The whole library has been split into three folders, each containing a package (.swc file):

 Flex4D_SQL is the main folder: it contains the Flex4D_SQL.swc package. This package contains everything

needed to connect to a 4D SQL Server, especially the SQLService Class (see below).

 Flex4D_Controls contains the Flex4D_Controls.swc packages. It brings the UI Controls (Custom DataGrid ,

Navigation Button, etc.) to the library.

 Flex4D_Components contains the Flex4D_Components.swc package. It provides an interface for using the

trace facility and building an utility similar to AIR TraceConsole (see the corresponding section).

INTRODUCTION

USING FLEX AS A CLIENT FOR 4D SERVER

Despite the quality of the Flex framework, accessing data from a server remains a challenge.

Since the 2003 version, 4D can behave as an application Server through its built-in HTTP Server. It can serve HTML

pages, Flex applications (SWF). With just a single click, a developer can publish a method through HTTP or SOAP. The

use of Flex components like mx:HTTPService or mx:WebService therefore makes data exchange easy between Flex

and 4D. Things are getting even easier with Flex Builder 3 and its WSDL wizard (Import Web Service (WSDL), etc.).

DIRECT ACCESS THROUGH SQL

So far, programming a Flex Client for a 4D database has been possible with recent versions of 4D, however the HTTP

approach presents several drawbacks:

 You need to program an API (HTTP or SOAP) on the server side and to serialize the data exchanged, often in

XML.

 As a consequence, performance suffers from large amounts of data being exchanged.

 It is not easy to send updates to the database; you have to write many functions in order to do so.

 Since server-side coding is required, you have to coordinate the work on client and server.

4D for Flex 1.1

 22 4D for Flex v1.1 Manual

With the 4D v11 version, it is now possible to access the SQL Server externally and to execute SQL queries directly on

the engine, without requiring an ODBC driver. This requires using a proprietary SQL protocol.

Therefore, we implemented this SQL protocol in ActionScript for Flex. It offers an efficient new way of communication

between Flex and 4D: no server-side code required, fast communication, no XML, plain SQL queries, etc.

The SQL approach is very powerful but presents some limitations as well:

 A Flex developer must know the relational model of the database in order to write SQL queries.

 Contrary to the disconnected mode used by XML over HTTP or SOAP, a Flex client works in a connected

mode. This can make the communication more fragile on WAN or Wi-Fi networks. An automatic reconnection

mechanism has been built into the library to minimize this issue (*).

 The SQL Server listens to a specific TCP port, different from the HTTP port 80. You may need to provide

access to this port on a firewall. Due to security restriction of the Flash Player, you also need to explicitly

allow socket connection to this port.

(*) This mechanism is not activated in version 1.0.

4D FOR FLEX ARCHITECTURE

The 4D for Flex component is composed of several layers. As you move up in the hierarchy, the complexity is hidden.

Introduction

4D for Flex v1.1 Manual 33

 4D for Flex architecture

 Protocol Layer is private. It allows a Flex client to communicate with the SQL Server using a proprietary SQL

protocol.

4D for Flex 1.1

 44 4D for Flex v1.1 Manual

 AS3 Layer is intended to be public and used with ActionScript 3 with no dependency on the Flex framework

(mx package). Flash CS3 developers can then use 4D for Flex to execute SQL queries on 4D SQL Server.

However, it does require some coding effort. In the current version (1.0) of the library, we discourage using

this API since it will change in upcoming versions. This package is very similar to the flash.data package

provided by Adobe in AIR to access the local SQLite databases.

 Flex Layer contains a MXML component for Flex developers called SQLService. It provides a very simple way

to execute SQL queries in the 4D SQL Server and is recommended for first-time developers. The SQLService

API is very similar to other data services used in Flex: HTTPService or WebService for instance.

These three layers are grouped in a single Flex4D_SQL package which also contains a trace utility to log

communication traffic between a client and a 4D SQL server. This package is the basic building block of 4D for Flex.

You can also use optional packages:

 The Flex4D_Controls package provides several cool features to the Flex developer: a custom DataGrid and a

set of navigation buttons which make it simpler to interact with the 4D selection of records, etc.

 The Flex4D_Components package provides ready-to-use components: ImageRenderer and BooleanRenderer

for a dataGrid item, ConnectionDialog, Language selector, etc.

SQLSERVICE CLASS

For a Flex developer, this class is the core of 4D for Flex and the easiest one to use for first-time developers.

CLASS DIAGRAM

The SQLService can be used with the MXML language. Here is the diagram for this class:

SQLService Class

4D for Flex v1.1 Manual 55

Let's describe this class.

PROPERTIES

 id: String. You specify the name that will be used in AS3 code to refer to the component. It corresponds to an

ActionScript variable name.

 host: String. The IP address or the name of the host where the SQL Server can be reached.

 For execution in a browser:

This is not mandatory. If no host is specified, the component will try to connect to the host which

served the containing SWF. If the SQL Server address is different from the address of the Web Server

which serves the SWF, you must specify the SQL Server address explicitly.

 For execution as an AIR application:

You must provide a host.

 port: Number. By default, 4D SQL Server listens to the port 1919. This can be modified in the database

preferences. If no port is specified, the component will try to connect on the default port.

 userName: String. Normally, you must authenticate to the SQL Server in order to execute queries. If the

database doesn't use any authentication (which is unwise), you can skip this attribute as well as the following

(userPassword).

 userPassword: String. Here you specify the password matching the userName.

See the Security section for more information on how to authenticate from Flex.

 autoConnect: Boolean. This attribute is not mandatory and by default is set to False. If explicitly set to True,

the component will automatically try to connect to the SQL Server when instantiated.

 connected: Boolean. Read-only. Indicates whether or not the component is currently connected to the SQL

Server.

 executing: Boolean. True if an operation is being executed on the SQL Server. False otherwise.

 lastResult: SQLResultSet. Read-only. Contains the last ResultSet received from the SQL Server.

 showBusyCursor: Boolean. This attribute is not mandatory and by default is set to True. If set to True, a busy

cursor is displayed while a service is executing.

 preferredImageTypes: Array. Declare the list of image types accepted by the Flex client. The SQL Server tries

to send the image using the first matching type.

E.g.: preferredImageTypes="['.png', '.jpeg', '.gif']"

4D for Flex 1.1

 66 4D for Flex v1.1 Manual

In the 4D database, if an image is stored in one of the specified formats, it will be returned to the client as is.

If an image is stored in another format, it will automatically be converted to the first format of the list, i.e.

PNG in the example. By default, if preferredImageTypes is not specified, images are returned in a default

format.

In this example, if 4D Server has a PNG version of the image, it will send it. If not, it will try to return a JPEG

version and so on...

If no format is specified and the image is available in several formats on the Server, the first image stored will

be returned. So, you'd better always specified a preferred type.

 prefetch: int. The SQL Server returns the selected rows in paginated mode. This attribute declares the

number of rows in a page. The default value is 100.

PROPERTIES GRID

EXAMPLE:

You can declare an SQLService with the following code:

<fourD:SQLService

Property name AS3 Type Accessibility Mandatory Default value Description
host String read / write yes hosting server /

127.0.0.1

The 4D SQL Server address.

port Number read / write yes 19812 The 4D SQL Server port.

userName String read / write no The 4D user name. If the 4D database

designer has no password, this property is

ignored.

userPassword String read / write no The 4D user password. If the 4D database

designer has no password, this property is

ignored.

autoConnect Boolean read / write no false Set to true if you want to connect

automatically. Set to false , if you want to

connect manually.

connected Boolean read no false true if the connection is opened on a 4D SQL

Server, false otherwise.

executing Boolean read no false true if an operation is being executed on a 4D

SQL Server, false otherwise.

lastResult SQLResultSet read no null The last result set returned by a SQL

SELECT query.

showBusyCursor Boolean read / write no true Set to true if you want to show a busy cursor

when an operation is being executed on a 4D

SQL Server. Set to false otherwise

SQLService Class

4D for Flex v1.1 Manual 77

 id = "fourDSQLService"

 host = ""

 userName = "sqlUser"

 userPassword = "..."

 autoConnect="true"

/>

And you can refer to this SQLService later:

 <mx:Button label="Connect" click="fourdSQLService.connect()"/>

or:

 <mx:Button label="Connect" click="sqlConnect()"/>

with the function sqlConnect():

private function sqlConnect():void{

 fourDSQLService.connect()

}

METHODS

 SQLService()

 This is the constructor method.

 connect():void

Tries to connect to the specified host and to authenticate using the provided user and password values. If the

connection succeeds, a connect event is triggered.

 disconnect():void

Disconnects from the SQL Server. No more queries can be sent after calling this method. A disconnect event

is triggered.

 execute (sql:String, parameters:Array = null, itemClass:Class = null, prefetch:Number = -1,

preferredImageTypes:Array = null):AsyncToken

4D for Flex 1.1

 88 4D for Flex v1.1 Manual

Asks the SQL Server to execute the SQL query 'sql'. The other parameters are not mandatory. See examples

below.

 iterate(resultSet:SQLResultSet, iteratedFunction:Function):void

Since the result of a query is paginated, if the number of selected records exceeds the prefetch value, it is not

possible to iterate through the SQLResultSet as usual in an ArrayCollection. That's why the SQLService

provides a specific iterate function. In the first parameter, you pass the SQLResultSet returned by the SQL

Server and in the second parameter, you pass the name of a function that will be called for each record of the

complete selection. In other words, the iterate() function will navigate through the whole selection and

automatically fetch new pages when needed.

 See example below. Not available in version 1.0

EXECUTE() METHOD

PARAMETERS

See the "Using dynamic statements paragraph" for using parameters in queries.

ITEMCLASS

itemClass:Class = null

itemClass is part of the roadmap for future version

The following is copied from the Adobe doc:

Indicates a class (data type) that is used for each row returned as a result of the statement's execution.

By default, each row returned by a SELECT statement is created as an Object instance, with the result set's

column names as the names of the properties of the object, and the value of each column as the value of its

associated property.

By specifying a class for the itemClass property, each row returned by a SELECT statement executed by this

SQLStatement instance is created as an instance of the designated class. Each property of the itemClass

instance is assigned the value from the column with the same name as the property.

Any class assigned to this property must have a constructor that does not require any parameters. In

addition, the class must have a single property for each column returned by the SELECT statement. It is

SQLService Class

4D for Flex v1.1 Manual 99

considered an error if a column in the SELECT list does not have a matching property name in the itemClass

class.

See the Adobe doc for an example:

http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_08.html

Instead of writing:

var item:Object = resultSet.getItemAt(i);

 var dept:String = item["[dept]"];

 var id:String = item["[id]"];

where the item is not typed, you can use itemClass.

First, define a class with a public property for each column of the SELECT query. If the query is:

SELECT lastName, firstName, address, zipCode, City FROM contacts

You must write:

public class Contact

{

 public var lastName:String;

 public var firstName:String;

 public var address:String;

 public var zipCode:String;

 public var city:String;

 }

Warning : in a true example, you should use accessor methods and not public variables.

We use this for keeping the code as concise as possible.

Then perform the SELECT attaching itemClass

http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_08.html

4D for Flex 1.1

 1100 4D for Flex v1.1 Manual

var sql:String = "SELECT lastName, firstName, address, zipCode, city FROM contacts";

 fourDSQLService.execute(sql, Contact);

Finally, in the eventHandler result, read the first item:

var contact:Contact;

contact = event.result.getItemAt(0);

and access each property, for instance to display the values in text fields:

this.lastNameField.text= contact.lastName;

this.firstNameField.text=contact.firstName;

this.addressField.text= contact.address;

this.zipCodeField.text= contact.zipCode;

this.cityField.text= contact.city;

PREFETCH

prefetch:Number = -1

When the statement's text property is a SELECT statement, this value indicates how many rows are returned at one

time by the execution of the statement.

If specified and different from -1, this value is used for the execution of the statement independently of the

SQLService.prefetch property value.

PREFERREDIMAGETYPES

preferredImageTypes:Array. Declares the list of image types accepted by the Flex client. The SQL Server tries to send

the image in the first matching type.

Default value is null so that SQLService.preferredImageTypes is used.

If a value other than null is passed, this value is used for the execution of the statement independently of the

SQLService.preferredImageTypes property value.

ASYNCTOKEN

See the Advanced topics/Using AsyncToken paragraph.

SQLService Class

4D for Flex v1.1 Manual 1111

EVENTS

 connect

 Triggered when the component is connected to an SQL Server.

 disconnect

 Triggered when the component is disconnected from an SQL Server.

 fault

 Triggered when something wrong happens while communicating with the SQL Server.

 result

Triggered when a response is returned by the SQLServer.

See examples below.

EXAMPLES:

DECLARATION OF A SQLSERVICE

 <fourD:SQLService

 id = "fourDSQLService"

 host = ""

 userName = "Administrator"

 autoConnect="true"

 result = "resultHandler(event)"

 fault = "faultHandler(event)"

showBusyCursor="false"

preferredImageTypes=['.png', '.jpeg', '.gif'];

 />

SQLService automatically tries to connect to the host that served the SWF, on the SQL Server default port, and to login

as 'Administrator' with no password.

4D for Flex 1.1

 1122 4D for Flex v1.1 Manual

In case of problems, the faultHandler() method is called.

After receiving the result of a query, resultHandler() is called.

A busy cursor is not displayed when a network operation is being executed.

If the result of the query contains images, the SQL Server returns images which are encoded in PNG, JPEG or GIF.

Note

a SQLService is declared in a namespace identified by http://www.4d.com/2007/mxml that has to be

declared as a property of your component. In an mx:Application component, it would be declared as:

<mx:Application> tag:

E.g.:

 <mx:Application

 xmlns:fourD="http://www.4d.com/2007/mxml"

 ...

>

EXECUTION OF QUERIES

Once connected, you can send queries to the database:

var sql:String = "SELECT id, firstName, surname, address, zipCode,
city FROM Contact";

 fourDSQLService.execute(sql);

This code will ask the SQL Server to execute an SQL query. See the next paragraph to find out how to get the resulting

rows.

RETRIEVING RESULTS

Suppose we have declared an eventListener resultHandler() for the result:

result = "resultHandler(event)"

We can write the resultHandler method as follows:

private function resultHandler(event:ResultEvent):void

http://www.4d.com/2007/mxml

SQLService Class

4D for Flex v1.1 Manual 1133

{

 var resultSet:SQLResultSet;

 resultSet = event.result as SQLResultSet;

 recordCountLabel.text=String(_resultSet.nbRecords)+" record(s)
found";

 }

First, we cast event.result as an SQLResultSet Object which implements the ICollectionView interface and thus can be

used directly as a dataProvider for a DataGrid for example.

Then we can use SQLResultSet properties (see the HTML doc) among them:

 nbLoadedRecords : int

[read-only] The current number of records loaded locally from the current selection.

 nbRecords : int

[read-only] The number of records in this result set.

 prefetch : int

[read-only] The number of records retrieved in a page.

So, in the code above, we assign the number of records in this result set to the text property of a label. The nbRecords

property can be very different from nbLoadedRecords which represents (only) the records currently loaded from the

Server.

Suppose your query selects 500 records and the prefetch property is set to 100. After the query:

 nbRecords is 500

 nbLoadedRecords is 100

4D for Flex 1.1

 1144 4D for Flex v1.1 Manual

Suppose you now fetch 100 new records:

 nbRecords will still be 500

 nbLoadedRecords will now be 200

USING DYNAMIC STATEMENTS

In this example, we use dynamic SQL. In the statement the requested zipCode value is replaced by a question mark.

var sql:String = "SELECT firstName, surname, zipCode, city FROM

Contact WHERE zipCode=?";

Parameters are indexed by their position in the statement.

Then, we declare a new array with a string value:

 var parameters:Array = new Array();

 parameters.push("50530");

This array contains the values that will replace the question marks at execution. Value indices must match the

parameter positions.

We can now execute our query passing the array of parameters as the second argument of the execute() method.

 fourDSQLService.execute(sql, parameters);

ITERATING THOUGH A SQLRESULTSET

iterate() is part of the roadmap for future version

FAULT EVENTS

What happens if something goes wrong? If the SQL Server throws an error?

A Fault event will be raised; you must declare an eventListener for catching this important event.

When the listener is called, you get all the information needed in the event parameter:

SQLService Class

4D for Flex v1.1 Manual 1155

private function faultHandler(event:FaultEvent):void

{

var errorCode:String = event.fault.faultCode;

var errorString:String = event.fault.faultString);

Alert.show(errorString,errorCode);

}

USING SQLRESULTSET

SQLRESULTSET CLASS

 complete: Boolean. Read-only. Indicates whether the last query has been completely executed.

We have received all the rows of the last query.

 refreshQuery(): calling this method you can execute again the last query performed to SQL Server and so , for

instance, automatically refresh a bound DataGrid

DISPLAYING RESULTS IN A DATAGRID
First declare the DataGrid as follows:

<fourD:DataGrid

 width="95%"

 height="180"

 id="contacts_dg"

 editable="false"

 textAlign="center"

/>

Then bind the dataProvider property to the SQLResultSet sent by the SQLServer:

dataProvider="{_resultSet}"

Declare _resultSet as a bindable variable:

4D for Flex 1.1

 1166 4D for Flex v1.1 Manual

[Bindable]

private var _resultSet:SQLResultSet;

And fill _resultSet when the result is received from the Server:

private function resultHandler(event:ResultEvent):void

{

_resultSet = event.result as SQLResultSet;

}

FIELDS PROPERTY

We can get information on the fields composing a row by using the fields property. For instance, if we want to get the

name of the first column of the row, we can write:

_resultSet.fields[0].name

OTHERS

You can obtain several items of information about the rows and columns by using the SQLResultSetMetaData object.

See a complete description in the HTML documentation. For instance, if we want to know whether the second field of

the row is updatable, we write:

var contact_metadata:SQLResultSetMetaData=_resultSet.metaData;

 if (contact_metadata.isFieldFromIndexUpdateable(1))

 {

 // do something

 }

SQLSec

SQLSECUREDSERVICE CLASS

This feature is only available in v1.1

SQLSecuredService Class

4D for Flex v1.1 Manual 1177

Security of transactions on a public network is a major concern. 4D for Flex allows creating a secured session by

avoiding the sending of clear user-passwords on the network. In addition, this information can be virtual and the 4D

Developer can match it to existing users on the server side. Finally, the data can be digitally signed to exclude the

possibility of an external attack. All of this can only be done due to the exceptional integration of 4D Server

functionalities.

SECURED AUTHENTICATION

The connect() method in the SQLService class attempts to connect directly to a 4D SQL Server. This connection scheme

can raise some security problems as binary sockets in ActionScript 3.0 are not encrypted and therefore transfer login

information in clear text.

To prevent connections from being hacked, a specific 4D connection scheme has been created. Here are the basic
steps:

 A client makes an SSL-secured authentication through the 4D built-in HTTP Server;

 If authentication succeeds, an identified token is given back to the client;

 The client logs onto a 4D SQL Server with this token.

Two authentication schemes

4D for Flex 1.1

 1188 4D for Flex v1.1 Manual

This mechanism allows the user names and passwords to be SSL-encrypted and prevents client and server

communications from being hijacked during authentication. Of course, this secured authentication process requires

the 4D built-in HTTP Server to be running.

USING SQLSECUREDSERVICE CLASS

This mechanism is employed when using the SQLSecuredService class which basically inherits the SQLService class but

provides a secured authentication transaction.

Example of minimal declaration of an SQLSecuredService:

<fourD:SQLSecuredService
 id = "fourDSQLService"

httpUseSSL="true"
 userName = "Administrator"
 autoConnect="true"

 result = "resultHandler(event)"
 fault = "faultHandler(event)"

showBusyCursor="false"
fourDSQLService.preferredImageTypes=['.png', '.jpeg', '.gif'];

/>

In this example, we assume:

 that both the SQL Server and the HTTP Server are running in the same domain: the one which initially served
the SWF;

 that sqlPort gets its default value (19812) and httpPort its default value (443) for SSL communication.

We specify that we want the component to attempt an SSL secured authentication at startup using the

"Administrator" username and no password.

Here is another example explicitly specifying all parameters needed for the secured authentication:

<fourD:SQLSecuredService
id = "fourDSQLService"
host = "sql.myDomain.com"
port = "19812"
httpHost ="www.myDomain.com"
httpPort="8443"
httpUseSSL="true"
userName = "Administrator"
autoConnect="true"

Advanced topics

4D for Flex v1.1 Manual 1199

result = "resultHandler(event)"
fault = "faultHandler(event)"

showBusyCursor="false"
fourDSQLService.preferredImageTypes=['.png', '.jpeg', '.gif'];
/>

All the developer needs is to:

 provide the correct parameters to the component declaration;

 (optionally) write some code server-side in the On SQL Authentication database method in order to verify
login information and to accept (or refuse) the incoming query.

Once the connection has been established in a secured mode, the data sent by the binary protocol are not sent in an
SSL tunnel.

EXAMPLES OF HTTP EXCHANGES

REQUEST

POST /4DSQLAUTH/ HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; fr; rv:1.9.0.5) Gecko/2008120121 Firefox/3.0.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Referer: http://localhost:8080/flex/testSQL.swf
Content-type: application/x-www-form-urlencoded
SQL4D-UserPassword: sql
SQL4D-UserName: sqlUSer
Content-length: 1

RESPONSE

HTTP/1.1 200 OK
Server: 4D_v11_SQL/11.3.0
Date: Tue, 06 Jan 2009 11:10:19 GMT
Content-Length: 152
Content-Type: text/html;charset=UTF-8
Expires: Tue, 06 Jan 2009 11:10:19 GMT
Pragma: no-cache
OK - Authentication successful.
SQL4D-Salt:17617913816032971281457181292152178823162
SQL4D-SessionTicket:8283246232282339510720416014817339120179154

4D for Flex 1.1

 2200 4D for Flex v1.1 Manual

ADVANCED TOPICS

Although with the features we already saw, you are able to:

 send queries to the SQL Server

 retrieve results and

 display them in a dataGrid for instance,

there are still several advanced topics that we'll cover now.

USING TRANSACTIONS

Transactions can be managed automatically by the Server or manually through SQL commands.

AUTOCOMMIT

"Auto-commit mode means that when a statement is completed, the commit method is automatically called on that

statement. Auto-commit in effect makes every SQL statement a transaction. The commit occurs when the statement

completes or the next statement is executed, whichever comes first. In the case of a statement returning a ResultSet,

the statement completes when the last row of the ResultSet has been retrieved or the ResultSet has been explicitly

closed."

A preference in the SQL group of 4D Server tells the SQL Server to automatically wrap each query in a transaction. If

the query succeeds, the transaction is committed; otherwise, a rollback is done. This mechanism is also known as

"Implicit Transaction" in other environments.

If this option is selected (recommended), you don't have to manage transactions yourself. Otherwise, you must open

and close transactions using SQL commands: START TRANSACTION, SQL COMMIT, SQL ROLLBACK.

See the 4D_v11_SQL_Reference.pdf manual.

LOCAL CHANGES

You can use the methods of SQLResultSet to change data in the ResultSet:

 deleteRecordAt(index:int):void

 insertRecord(record:Object):void

Advanced topics

4D for Flex v1.1 Manual 2211

 updateRecordAt(index:int, fieldIndex:int, value:*):void

When changes are sent to the Server, they are automatically executed in a transaction, no matter what value has

been set for the Auto-commit Transactions preference.

If the SQLResultSet.autoSubmitChanges property is True, each change is automatically and immediately sent to the

Server. You cannot cancel a change.

If the value of SQLResultSet.autoSubmitChanges is False, you must explicitly call:

SQLResultSet.submitChanges()

to send the modifications of the ResultSet to the 4D SQL database.

If you want to cancel all local pending modifications manually, you can call SQLResultSet.cancelChanges().

As said before, 4D for Flex automatically submits changes in a transaction. So, if an error occurs Server-side, all the

changes submitted in the transaction are canceled on the Server. This prevents you from being in an unknown state

where partial changes are done while others have failed. In this case, you still have the changes in SQLResultSet, so

you can call SQLResultSet.cancelChanges() if you don't want to try to submit them to the Server again.

CRUD

When talking about data services, an acronym that is frequently encountered in different technologies is CRUD. It

means:

 C: Create a record on the Server

 R: Read (or Retrieve) a record from the Server

 U: Update a record on the Server

 D: Delete a record from the Server

So, what about 4D for Flex and CRUD?

The first benefit from using SQLService is that you can accomplish all operations directly through SQL queries. No need

to use a special API for that.

However, 4D for Flex provides more benefits to you using SQLResultSet. Simply Create, Update and Delete records

associated with an SQLResultSet, then call SQLResultSet.submitChanges(), if needed, to send the

changes to the Server. The Server will apply the changes correctly. Only the modified data are sent over the network.

4D for Flex 1.1

 2222 4D for Flex v1.1 Manual

Warning

In the current version (11.2) of 4D SQL Server, if the ResultSet is built from a SELECT joining at least two tables, it will

always be non updatable. In this case, you can’t use the CRUD functionalities. This limitation will be removed in future

versions of 4D SQL Server.

CREATING A RECORD

Let's look at an example in which we can edit a contact in a form:

If we want to add a new row from this form to the current SQLResultSet, we first need to create a Contact object and

fill it with the value from the text fields:

 var contactObject:Object=new Object();;

 contactObject[_resultSet.fields[1].name]=this.firstNameField.text;

 contactObject[_resultSet.fields[0].name]=this.surnameField.text;

 contactObject[_resultSet.fields[2].name]=this.addressField.text;

 contactObject[_resultSet.fields[3].name]=this.zipCodeField.text;

 contactObject[_resultSet.fields[4].name]=this.cityField.text;

Here we use the fields object property already seen in the "Using SQLResultSet" paragraph.

Then, we will simply call SQLResultSet.insertRecord() to add a new record to the SQLResultSet:

Advanced topics

4D for Flex v1.1 Manual 2233

 _resultSet.insertRecord(contactObject);

Suppose the CONTACTS table in the 4D database has a primary key named ID. Maybe, you don't use the new

autoincrement property for a 4D field.

Then, the best way of correctly assigning the ID field is to use a trigger in 4D with the following code:

Case of

 : (Database event=On Saving New Record Event)

 [Contact]id:=Sequence number([Contact])

End case

But keep in mind that you won't get this ID on the Flex side unless you send a new query to the database.

UPDATING A RECORD

On the same basis, we can update some fields of the record currently selected in the dataGrid contact_dg listing the

contacts:

_resultSet.updateRecordAt(contacts_dg.selectedIndex, 2, Number(total));

DELETING A RECORD

Also very easy to do. Suppose we want to delete the current row of the dataGrid. We simply write the following:

_resultSet.deleteRecordAt(contacts_dg.selectedIndex);

4D for Flex 1.1

 2244 4D for Flex v1.1 Manual

CONCURRENT ACCESS

When submitting changes or accessing records in write mode by SQL queries, conflicts may occur. If any record that

4D for Flex tries to modify is locked, the whole transaction is cancelled.

USING ASYNCTOKEN

MULTIPLE COMPONENTS

You may use several SQLService components in the same application although it is recommended to only use one

component per SQL Server. In other words, you will use a different SQLService if you need to connect to different SQL

Servers. If you need to send multiple queries to the same SQL Server, it would be better to use the AsyncToken

mechanism.

IT'S ABOUT DIFFERENTIATING THE ORIGIN OF A RESULT

Suppose you need to send several queries to the same database: let's say first for querying a list of companies and

filling a combo-box; then when a company is selected in the combo-box to query for the contacts of the selected

company. How do you proceed since you only have one event listener for getting the result?

You will use the AsyncToken mechanism in order to be able to differentiate the incoming result.

ASYNCTOKEN CLASS

This solution is not specific to 4D for Flex, it works just the same for other Flex services.

See the Adobe documentation:

http://www.adobe.com/livedocs/flex/201/langref/mx/rpc/AsyncToken.html

Package mx.rpc

Class public dynamic class AsyncToken

Inheritance AsyncToken Inheritance EventDispatcher Inheritance Object

This class provides a place to set additional or token-level data for asynchronous RPC operations. The

AsyncToken can be referenced in ResultEvent and FaultEvent from the token property.

EXAMPLE

Let's see how we will accomplish that.

First, let's import the corresponding Class.

import mx.rpc.AsyncToken;

http://www.adobe.com/livedocs/flex/201/langref/mx/rpc/AsyncToken.html

Advanced topics

4D for Flex v1.1 Manual 2255

Then, let's declare the AsyncToken:

var token:AsyncToken ;

And assign it as a result of the SQLService.execute() function:

token=fourDSQLService.execute(sql);

token.type='societyCall';

Once the token has been instantiated, you can add whatever property you want to it. This property will be kept as

part of the token during all of the exchange with the Server.

Don't be afraid of setting the property after calling SQLService.execute(). Asynchronicity is such that it will work

perfectly.

When the result event is triggered, the eventListener can get the token and determine the origin of the query:

private function resultHandler(event:ResultEvent):void

 {

if(event.token.type=='societyCall')

{

 // do whatever you want here

}

}

USING SELECT FOR UPDATE

We will use the AsyncToken technique to perform a Select for Update on several records.

First, let's start a transaction:

var token:AsyncToken = fourDSQLService.execute("start
transaction");

token.type = "startTransaction";

In the result handler, we test the token to perform the following code:

4D for Flex 1.1

 2266 4D for Flex v1.1 Manual

if(event.token.type == "startTransaction")

{

token = fourDSQLService.execute("SELECT id, firstName,
surname, address, zipCode, city FROM Contact FOR UPDATE");

 token.type = "selectForUpdate";

}

Note that:

 We specify FOR UPDATE at the end of the SELECT statement. Doing so, all the records selected will also be
locked for other users until we commit or rollback the transaction;

 We change the type of the token to "selectForUpdate."

Now, if the result handler is called with a token whose type is selectForUpdate, we perform the Update statement:

if(event.token.type == "selectForUpdate")

 {

 token = fourDSQLService.execute("UPDATE Contact set
surname='for update' where id=1");

 token.type = "update";

}

Next, we handle the execution of the Update statement and finally can commit the transaction:

if(event.token.type == "update")

 {

 token = fourDSQLService.execute("commit transaction");

 token.type = "commit";

 }

DEBUGGING

DEBUGGING USING SQL LOG

To see what is exchanged between Flex and 4D, it is possible to activate the recording of a log of all SQL requests

received by 4D SQL Server.

Debugging

4D for Flex v1.1 Manual 2277

CLIENT LOG RECORDING CONSTANT

You must use the SET DATABASE PARAMETER command with the Client Log Recording constant:

- SET DATABASE PARAMETER(Client Log Recording ;1) `Starts recording SQL logs on disk
- SET DATABASE PARAMETER(Client Log Recording ;0) ` Stops recording SQL logs on disk

The log file is stored in the "Logs" folder near the database structure:

See the 4D manual for more information.

4D CODE EXAMPLE

C_BOOLEAN(◊IS_CLIENT_LOG_RECORDING)

If (◊IS_CLIENT_LOG_RECORDING=False)

 SET DATABASE PARAMETER(Client Log Recording ;1) `starts recording SQL logs on disk

 ◊IS_CLIENT_LOG_RECORDING:=True

Else

 SET DATABASE PARAMETER(Client Log Recording ;0) `stops recording SQL logs on disk

 ◊IS_CLIENT_LOG_RECORDING:=False

End if

LOG EXAMPLE

NORMAL SESSION

Log Session Identifier B78EDA8185A44DCE9899F5FDDA9F2003

4D for Flex 1.1

 2288 4D for Flex v1.1 Manual

1 Xth log opened on Friday, March 28, 2008 07:23:18 AM

time task id component process

info

index

request bytes in bytes out duration

03/28/08,

07:23:36

6 'SQLS' -1 0

03/28/08,

07:23:36

6 'SQLS' -1 SQL protocol:LOGIN - OK 0

03/28/08,

07:23:38

6 'SQLS' -1 SQL Server execute:SELECT id,

firstName, surname, address,

zipCode, city FROM Contact

63

03/28/08,

07:23:38

6 'SQLS' -1 SQL

protocol:EXECUTE_STATEMENT

- OK

0

03/28/08,

07:23:43

6 'SQLS' -1 SQL protocol:LOGOUT - OK 0

03/28/08,

07:23:43

6 'SQLS' -1 SQL protocol:QUIT - OK 0

INCORRECT SESSION

Log Session Identifier 61D6842F70E142C1BAA09C5E7AA679F2

1 Xth log opened on Wednesday, March 26, 2008 10:09:29 AM

Debugging

4D for Flex v1.1 Manual 2299

time task id component process

info

index

request bytes in bytes out duration

03/26/08,

10:09:46

7 'SQLS' -1 0

03/26/08,

10:09:46

7 'SQLS' -1 SQL protocol:LOGIN - OK 0

03/26/08,

10:09:46

7 'SQLS' -1 SQL

protocol:EXECUTE_STATEMENT

- Error:3003

Component:1397836883

0

03/26/08,

10:09:49

7 'SQLS' -1 0

03/26/08,

10:09:49

7 'SQLS' -1 SQL protocol:LOGIN - OK 0

03/26/08,

10:09:50

7 'SQLS' -1 SQL

protocol:EXECUTE_STATEMENT

- Error:3003

Component:1397836883

0

SQL PROTOCOL ERRORS

In the 4D manual, you will find an explanation of the error code that may be returned by the Server. For instance in

the log above, you see Error: 3003. You can find the meaning of this code in the table below: "Not logged in".

3000 HEADER NOT FOUND

4D for Flex 1.1

 3300 4D for Flex v1.1 Manual

3001 UNKNOWN COMMAND

3002 ALREADY LOGGED IN

3003 NOT LOGGED IN

3004 UNKNOWN OUTPUT MODE

3005 INVALID STATEMENT ID

3006 UNKNOWN DATA TYPE

3007 STILL LOGGED IN

3008 SOCKET READ ERROR

3009 SOCKET WRITE ERROR

CLASS TRACER AND TRACECONSOLE AIR APP

WHEN A TRACE IS NEEDED

Even if you can debug an application directly from FlexBuilder or using a FlashPlayer debug version, you sometimes

lack a way of sending messages to a console in a deployment context.

And these times are usually bad times where something goes wrong and you need to understand how your code is

working. That's why 4D for Flex helps you by providing:

 A TraceConsole executing as an AIR application;

 An interface to implement if you want to write your own target console;

 Tracer, a static class to send your messages from your Flex code to a console.

TRACER CLASS

Debugging

4D for Flex v1.1 Manual 3311

Tracer is a static Class. You use it to send messages to a console.

You can trace messages using different methods depending on the nature and severity of the information or error

sent to the console:

 Tracer.traceInformation(message:String):void

 Traces information to a console.

 Tracer.traceError(message:String):void

Traces an error to a console

 Tracer.traceWarning(message:String):void

Traces a warning to a console

Example:

var error:String= "Error #" + event.fault.faultCode;

 // Use the Tracer

Tracer.traceError("faultHandler : "+error+" "+
event.fault.faultString);

DEFAULT VERBOSE MODE

The default mode of SQLService Class is verbose: it calls the Tracer Class to log events. If no TraceConsole is listening,

the messages are lost. So if you want to trace the behavior of your code, there is no code to write, simply open the

TraceConsole and click on ‘Connect.’

To stop the automatic tracing, just call Tracer.stop(). Then, Tracer.start() will switch to verbose mode again.

SETTING THE SCOPE OF THE TRACE

When calling the setScope function, you can specify two parameters to describe the kind of information you want to

get:

 Tracer.setScope (level:Number= Tracer.FLEX_LAYER, type:Number= Tracer.ERROR_TYPE)

Default mode will trace the error messages of the Flex layer.

4D for Flex 1.1

 3322 4D for Flex v1.1 Manual

If you want to trace all that happens on the AS3 layer, you can call:

Tracer.setScope (Tracer.AS3_LAYER, Tracer.ALL);

To only trace the warnings on the Flex layer:

Tracer.setScope (Tracer.FLEX_LAYER, Tracer.WARNING_TYPE);

Values for level:

Tracer.FLEX_LAYER

Tracer.AS3_LAYER

Tracer.PROTOCOL_LAYER

Values for type:

Tracer.INFO_TYPE: only traces information messages

Tracer.WARNING_TYPE: traces the warning messages

Tracer.ERROR_TYPE: traces the error messages

Tracer.NONE: traces no messages at all

Tracer.ALL: traces all messages

Caution:

 Beware of the default mode which is set to FLEX_LAYER:

Tracer.traceInformation("my important info");

Tracer.traceError("my fatal error", AS3_LAYER);

Only the messages of the Flex layer are sent, so you won’t see the “my fatal error” error.

 This filter is also applied to the message you explicitly send.

Suppose you write:

Tracer.setScope(Tracer.FLEX_LAYER, Tracer.ERROR_TYPE);

Debugging

4D for Flex v1.1 Manual 3333

Tracer.traceInformation("my important info");

Tracer.traceError("my fatal error");

Only the error trace will be sent to the console.

When you call Tracer.traceInformation(), Tracer.traceWarning() or

Tracer.traceError, you can pass a second parameter specifying the scope:

Tracer.traceInformation("my important info")

will be considered as a FLEX_LAYER message, while:

Tracer.traceInformation("my info message", Tracer.AS3_LAYER)

will be part of the AS3_LAYER.

If you want to trace several layers, you can write:

Tracer.setScope(Tracer.FLEX_LAYER | Tracer.AS3_LAYER)

Then:

Tracer.traceInformation("my info");

Tracer.traceError("my error", AS3_LAYER);

Both messages will be sent.

If you want to trace several types of messages, you can write:

4D for Flex 1.1

 3344 4D for Flex v1.1 Manual

Tracer.setScope Tracer.FLEX_LAYER | Tracer.AS3_LAYER,

Tracer.INFO_TYPE

| Tracer.ERROR_TYPE)

Information and error messages will be sent.

SETTING THE TARGET OF THE TRACE

You can specify whether the trace should go to the Flex debugger console while still going to the external console.

 Call Tracer.traceInDebugConsole=true to display the messages in the Flex debugger console. The

default value is False; messages are only sent to the external traceConsole.

USING THE AIR TRACECONSOLE

In order to get the trace messages, a console must be running.

You must install TraceConsole.air.

Click on install, then:

Debugging

4D for Flex v1.1 Manual 3355

Click on Continue.

 This will launch the TraceConsole. Then, click on the ‘Listen’ button to start listening to incoming messages.

Tracing execution in the Trace Console

Click on Stop when you don’t want to listen to incoming trace messages any longer.

4D for Flex 1.1

 3366 4D for Flex v1.1 Manual

You can't execute several TraceConsoles simultaneously: all messages will be captured by one console.

If you run several Flex/Air apps, all messages are logged in the same and unique TraceConsole.

One line of trace is composed of fields separated by tabs, so you can copy traces and paste them into Excel.

USING TRACER CLASS

Tracer class is part of the Flex4D_SQL package. Simply use the methods of the Tracer Class to send messages to the

TraceConsole:

Tracer.traceInformation("some text");

This will display "some text" in the TraceConsole.

The Tracer.started property indicates whether the tracer is activated. If not, simply call

Tracer.start().

You can add an EventListener to find out whether the message was sent to the console correctly:

addEventListener(type:String, listener:Function, useCapture:Boolean =

false, priority:int = 0.0, useWeakReference:Boolean = false):void

If the message is correctly sent, the level property of the status event object is “status”; otherwise, it is “error.”

INTERFACE

If you're not pleased with the TraceConsole AIR app provided, you can write one of your own. You only need to

implement the sItraceReceiver interface.

SECURITY

Security of transactions on a public network is a major concern.

4D for Flex allows authentication by sending user-password to the Server. This information can be virtual as, on Server

side, the 4D Developer can check the data transmitted in the call-back method On SQL Authentication. There, he can

deny authorization or change the user used to access to the SQL Server.

Security

4D for Flex v1.1 Manual 3377

SECURITY CONCERNS IN THE FLASH PLAYER

“The Flash Player provides a security sandbox to isolate applications and the host operating system. The Flash Player

sandbox security has a significant advantage over traditional web-enabled application components, such as ActiveX,

that require users to trust code that often has complete access to the operating system environment. The default

configuration of the Flash Player’s sandbox provides security by segmenting execution privileges between the Flex

application and the operating system. Similar to Java’s sandbox technology, the Flash Player’s sandbox prevents

unauthorized access to the operating system environment as well as other local instances of the Flash player” (see the

Adobe Doc).

The Flash Player security policy prevents a Flex application from sending a request to a domain other than the one

which previously served the SWF file.

If your SWF was served by mydomain.com you cannot send queries to mydomainSQL.com, for example.

So, if you serve the SWF from an Apache HTTP server on mydomain.com for instance, by default you won't be able to

send queries on the 4D SQL Server running on mydomainSQL.com. This issue can be addressed in several ways:

 The containing HTML page may be served by the Apache Server and request an SWF in the

mydomainSQL.com domain, using the 4D built-in HTTP Server.

 You can use a cross-domain policy file to specify the origins of the query you want to admit. See the Adobe

doc on Security Topic Center : http://www.adobe.com/devnet/security/

SECURITY UPDATE STARTING FROM FLASH PLAYER V 9.0.124

PRIOR VERSIONS

This policy-file allowed any website to access the database from a Flex app.

<?xml version='1.0'?>

<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

 <allow-access-from domain='*' to-ports='1919' />

</cross-domain-policy>

NEWS SECURITY SCHEMA

The Flash Player now distinguishes connections using binary sockets from “url connections”. See:

http://www.adobe.com/support/security/bulletins/apsb08-11.html

http://www.adobe.com/devnet/security/
http://www.adobe.com/support/security/bulletins/apsb08-11.html

4D for Flex 1.1

 3388 4D for Flex v1.1 Manual

 In order to allow a Flash Player to connect to a 4D SQL Server, you must place a specific policy file called

‘socketpolicy.xml’ at a given place, in a folder inside the DB package: ‘Preferences/SQL/Flash’. The content of this file

must be similar to this to allow all incoming connections to port 19812:

<cross-domain-policy>

 <allow-access-from domain="*" to-ports="19812"/>

</cross-domain-policy>

SETTING SQL PREFERENCES ON THE 4D SIDE

Several settings are available for SQL in the 4D preferences.

Addendum

4D for Flex v1.1 Manual 3399

The ‘Enable SSL’ check box has no effect on 4D for Flex communications since SSL is not available at socket level in

ActionScript.

SQL SERVER ACCESS

It is possible to restrict access rights for SQL queries to certain groups of users. For instance, members of the

‘sqlGroup’ may be allowed to Read/Write Data, but only the members of the ‘Administration’ group will be allowed to

use data manipulation language (DML).

See the 4D documentation for more details.

ON SQL AUTHENTICATION

When a 4D for Flex client tries to log in to 4D, the On SQL Authentication database method is triggered. In this

method, the 4D developer can:

 Set the 4D user that will be used to determine access rights using CHANGE CURRENT USER;

 Accept or reject the login.

See the 4D documentation for more details.

ADDENDUM

BEST PRACTICES FOR WORKING WITH SQL DATABASES

Adobe lists in its doc some best practices for working with SQL Databases in AIR: "Developing AIR applications with

Flex / Files and data / Working with local SQL databases / Strategies for working with SQL databases".

http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_20.html

Most of them equally apply to communications between Flex and 4D.

DATATYPES

This table compares 4D and AS3 native types.

http://livedocs.adobe.com/flex/3/html/help.html?content=SQL_20.html

4D for Flex 1.1

 4400 4D for Flex v1.1 Manual

4D types AS3 types Additional information

Alpha String identical match

Text String identical match

Date Date

Time fourD.values.VDuration

Boolean Boolean identical match

Integer int 32-bit integer

Long Integer int 32-bit integer

Integer 64 bits Number

Real Real IEEE-754 double-precision floating-point number

Float unsupported unsupported

Blob fourD.values.VBlob identical match

Picture fourD.values.VImage identical match

If a Date field is created/updated with the 4D language, the time part is

always set to 0 for a SQL query.

If a Date field is created/updated through a SQL query, the time part can

be set but will be unavailable with the 4D language.

If a Time field is created/updated with the 4D language, the millisecond

part is always set to 0 for a SQL query.

If a Time field is created/updated through a SQL query, the millisecond

part can be set but will be unavailable with the 4D language.

64-bit integer in 4D

53-bit integer in AS3 (due to the limited integer range of the Number

class)

	Installation
	Introduction
	Using Flex as a client for 4D Server
	Direct access through SQL
	4D for Flex architecture

	SQLService Class
	Class diagram
	Properties
	Properties grid
	Example:

	Methods
	Execute() method
	parameters
	itemClass
	prefetch
	preferredImageTypes
	AsyncToken

	Events
	Examples:
	Declaration of a SQLService
	Execution of queries
	Retrieving results
	Using dynamic statements
	Iterating though a SQLResultSet
	Fault Events

	Using SQLResultSet
	SQLResultSet Class
	Displaying results in a dataGrid
	Fields property
	Others

	SQLSecuredService Class
	Secured authentication
	Using SQLSecuredService Class
	Examples of HTTP exchanges
	Request
	Response

	Advanced topics
	Using transactions
	AutoCommit
	Local Changes

	CRUD
	Creating a record
	Updating a record
	Deleting a record
	Concurrent access

	Using AsyncToken
	Multiple components
	It's about differentiating the origin of a result
	AsyncToken Class
	Example

	Using Select for Update

	Debugging
	Debugging using SQL log
	Client Log Recording constant
	4D Code EXample
	Log EXample
	Normal session
	Incorrect session

	SQL protocol Errors

	Class Tracer and TraceConsole AIR app
	When a trace is needed
	Tracer Class
	Default verbose mode
	Setting the scope of the trace
	Setting the target of the trace
	Using the AIR traceConsole
	Using Tracer class
	Interface

	Security
	Security concerns in the Flash Player
	Security Update starting from Flash Player v 9.0.124
	Prior versions
	News security schema

	Setting SQL preferences on the 4D Side
	SQL Server Access
	On SQL Authentication

	Addendum
	Best practices for working with SQL databases
	Datatypes

