
Dashboard handbook

Introduction

Welcome to the Dashboard Handbook, your one-stop source for learning about and creating 4D
Dashboards for the desktop. Dashboards are a way of providing visual depictions of real time
information and performance indicators on your web page. All the information is pulled from your
4D database and updated in real time, and now you have the power to create them thanks to the
4D Ajax Framework.

Here are some sample Dashboards.

We have provided a convenient Dashboard Editor as part of the 4D Ajax Framework for easily
creating Dashboards on the fly. The graphical user interface supports intuitive drag-and-drop
capabilities so that you can quickly begin creating Dashboards of your own.

Here is a look at the Dashboard Editor. This is your blank canvas when creating Dashboards.

Requirements

 4D v11 SQL 4D Ajax Framework v11 MoneyExchange.4dbase

The Money Exchange Demo is attached with this document and it comes in one flavor:

• Interpreted Source Database

This interpreted database already has the 4D Ajax Framework v11 installed and the Dashboards
created for you. This will allow you access to Developer Hooks and to perform further
customization in the back end.

This document provides instructions on how to build each dashboard from scratch as if the HTML page had
no JavaScript code and as if there were no dashboards to begin with.

To get started, skip to any chapter that you wish.

• Chapter 1: Features: Get an overview of the Dashboard’s killer features.
• Chapter 2: Editor: Get a quick introduction to the Dashboard Editor’s user interface.
• Chapter 3: Demos: Follow step-by-step instructions to create Dashboard applications.

o Example 1: Simple Dashboards
 Example 1a: Endiago & Track Inc
 Example 1b: Gondor King United
 Example 1c: Liao Factories
 Example 1d: Bingo Inc.

o Example 2: Flashing Indicators
o Example 3: Bonus Indicators
o Example 3: Preset Queries (optional)
o Example 4: Charts

 Example 4a: TAC Chart
 Example 4a: Image URL Chart (optional)
 Example 4b: BGO Chart
 Example 4b: SVG Chart (optional)

o Example 5: Complementary Dashboard
 Example 5a: ESTN Dashboard
 Example 5b: ESTN Chart

• Appendix: Reference section.

Optional examples modify existing examples to showcase alternate features.

Chapter 1: Features

Let’s take a look at some of the Dashboard’s most notable features.

Indicators

Desktop Dashboards have the Indicators that are available to the iPhone, plus some Bonus
Indicators as well.

The iPhone available Indicators are:

• Green
• Yellow
• Red
• Green button
• Yellow button
• Red button

The Bonus Indicators are not currently part of the Dashboard Editor. They are, however, available
via Developer Hook Dax_DevHook_SetIndicators. This is a list of them:

• Arrowup
• Arrowdown
• Noarrowyellow
•

These Indicators work well if you want to
display information with large font sizes. You
can increase row height via CSS styling.

• Greenstrong
• Redstrong
• Green Triangle
• Red Triangle
• Yellow Square

These Indicators act as an alternative to the
iPhone Dashboard Indicators.

• Blue
• Orange
• Purple

This set of Indicators can work well for
Boolean type fields.

Note: Indicators “Green button,” “Red button,” and “Yellow button” are fixed images. Thus they have fixed
widths. If you extend your column width beyond the default width of 90 pixels, the text in your field may
exceed the size of the image and so the information my look distorted.

Charts

Desktop Dashboard Charts use Developer Hook Dax_DevHook_DefineChart to define the values
represented in the Chart.

4 potential types of Charts are supported for Desktop Dashboards:

• Canvas
• PNG
• Image URL
• SVG

Here is a matrix of supported chart types based on web browser:

 Firefox 3 Safari 4 IE7/8

Canvas
Charts

Yes Yes Yes

PNG Charts Yes Yes Yes

Image URL
Charts

Yes Yes Yes

SVG Charts Yes Yes No

Interactive
Charts

Yes Yes Yes

Charts on the Desktop automatically resize to the spaces allotted to them on the HTML page.

Canvas Chart

Canvas is an HTML element introduced by Apple. It allows the rendering of bitmap images and it
is most notably known for powering applications like Apple Dashboard widgets and iPhone
applications such as the Stock app. 4D Developers can use this same element to build charts in
their 4D Dashboards.

PNG Chart

PNG support allows 4D Developers to append a picture to the dashboard. The pictures will be
created into a temporary folder and the accessible URL will be added to the element as a
separate link sub-element.

Please note that the original picture format will be converted to PNG and each temporary picture will be
removed from the disk once the user session is expired.

There is a bug with 4D v11 SQL and charting for Unicode databases which does not allow charts to be
created in 4D. As a result, PNG Charts for iPhone Dashboards cannot be created in this setup. Developers
are encouraged to see the Daxipedia for examples on how to create PNG Charts for dashboards:

http://daxipedia.4d.com/index.php/Chart#PNG

Image URL Chart

The Image URL is best used with external images where its URL is composed dynamically, like in
the case of Google Charts.

SVG Chart

SVG support allows 4D Developers to an SVG chart to the dashboard. The SVG charts will be
created into a temporary folder and the accessible url will be added to the element as separate
link sub-element.

Please note that each temporary svg file will be removed from the disk once the user session is expired.

Interactive Charts

4D Ajax Framework v11 Release (11.5) introduced much more interactive and customizable
charts. You can hover over the them to interactively see their values, and an expanded set of
commands allow for color customization. With more options the new Interactive Charts of the 4D
Ajax Framework v11 Release 5 (11.5) give you more power to effectively convey visual
information.

Here is a look at them:

Bar Charts:

Dot Charts:

Line Charts:

Pie Charts:

Themes

Desktop Dashboards have their own set of themes to choose from (as opposed to the Blue and
Black themes for iPhone Dashboards).

Customization of headers and Detail Rows

We understand the importance of precision down to the very pixel when it comes to creating web
pages. Thus, we have provided advanced customization features such as column width (in
pixels), header alignment, header text, and detail alignment for Dashboards.

Cross-Browser Compatibility

Desktop Dashboards have been built to look and function in the same manner across all major
browsers – Safari 3+, Internet Explorer 7+, and Firefox 2+.

These features, along with a graphical user interface Dashboard Editor, add up to a powerful and
convenient toolkit for creating Dashboards on your web pages.

Preset Queries support

Preset Queries are queries defined by the administrator ahead of time to make things easier for
end user once they log in. Preset queries are now supported in 4D Ajax Framework v11 Release
1 (11.1).

Chapter 2: Editor

This chapter will get you familiar with the Dashboard Editor. Use the Editor to create Dashboards.

Here is the Dashboard Manager tab as part of the Control Panel in the 4D Ajax Framework.

• Choose the Selection (ie. Table, View, DCS) that the Dashboard will be based on.
• Give the Dashboard a name.
• Provide a description.

Click the Start Dashboard Editor button to begin. You will then be presented with the following.

This is the Dashboard Editor. Here you define what the Dashboard application will report on, and
how it will be displayed. Let’s take a look at the pieces that make up the Dashboard Editor.

Editor

This provides a quick preview of what you are building. Drag fields to this area. Organize
information by grouping it. Drag formulas to the Footer areas to perform calculations on specific
columns. All these features and more can be done, and this editor outlines how the Dashboard
will look.

Database Objects

These are the fields in your Selection. Drag
and drop fields to the Editor area in the way
you want them to appear in the Dashboard.

Add a group

Group data in the Dashboard by clicking a
field from this box.

Formulas

Drag Formulas to the Editor to perform
calculations on fields.

Charts

Toggle the ability to use Charts. With this
option selected,

Property Inspector

Click this link to load the Property Inspector. If you then select a header or detail cell you can
customize look and functionality. The Property Inspector loads with the following tabs:

• Style:
For a Desktop Dashboard it should display Desktop Style. Here you can alter text
alignment for a particular detail cell. You can also customize column width, header
alignment, and header text when you select a header cell.

• Indicators:
 Set conditions for your Indicators here. Priority is given to the conditions listed at the top
 of the list.

Currently there is no limit to the number of Indicator conditions that you can set. However, please note that
the more conditions you set the more processing time it takes.

The order at which these conditions are listed is very important. The conditions can be thought of as Case
statements. Thus, the first condition in the list that is evaluated as True exits the entire list and no longer
evaluates the remaining conditions.

• Formatting:
 Select a style from the pull-down menu to format the field.

• Link Apps:
You can link applications to fields once they are clicked. You can link fields to the
following:

a. Browser: Click a field that has a URL in it and it can load a webpage.
b. Mail: Click a field that has an email address in it and it can compose an email to

that address using your default email client.
c. Maps: Ciick a field with an address in it and it can go to a Google Maps webpage

displaying that address.

Note: Clicking on a Maps link will load the Google Maps page on the same window that contains the
Dashboard. Thus, the page that contains the Dashboard will be exited.

Preset Queries support

Preset Queries are queries defined by the administrator ahead of time to make things easier for
end user once they log in.

Only Custom Queries and queries created using templates are supported. Dynamic Queries
(Data Driven) are not supported.

Chapter 3: Demos

This chapter provides instructions on how to build each dashboard from scratch as if the HTML page had no
JavaScript code and as if there were no dashboards to begin with.

Launch the attached Money Exchange Demo database.

Connect to http://localhost:8080/dash.html

This is the end product when going over the steps in this chapter to build dashboards. View the
examples to see how each dashboard was made.

• Connect to http://localhost:8080/index.html.
• Log in to the framework as Administrator (no password).
• Hit the Control Panel button. Go to the Dashboard Manager tab.

Now go through the examples and build the Dashboards.

DASH.HTML

Make sure that you have an HTML editor to edit “dash.html” (found in Webfolder). We will add
JavaScript code to embed Dashboards into the page.

Example 1: Simple Dashboards

Here we are going to build simple Dashboards and apply some minor customization to them. The
goal here is to get familiar with building Dashboards and then embedding them into an HTML
page.

Example 1a: Endiago & Track Inc

Here we are creating a Dashboard for an imaginary company named “Endiago & Track Inc”. Its
data will be periodically updated in real-time.

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_EUT” as the selection.
• Name the Dashboard “EUT”.
• Set the Description as “Endiago & Track Inc”.
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

In the Editor:

• Drag Time, and Value to the Editor.

Now select the Timestamp detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the Timestamp header cell.

• Set Column Width: 115px

Select the Value header cell.
• Set Column Width: 115px

Select the Value detail cell.

• Align: Center

Set the CSS Style to Peach. Save the Dashboard.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

EUT = new dashboardViewer("EUT", $("dashboardEUT"));
EUT.setRefreshInterval(12000);
EUT.viewport.showVerScrollbar(false);

This code will embed the Dashboard “EUT” within the HTML page in the <div> “dashboardEUT”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 1b: Gondor King United

Here we are creating a Dashboard for an imaginary company named “Gondor King United”. Its
data will be periodically updated in real-time.

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_GKU” as the selection.
• Name the Dashboard “GKU”.
• Set the Description as “Gondor King United”.
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

In the Editor:

• Drag Time, and Value to the Editor.

Now select the Timestamp detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the Timestamp header cell.

• Set Column Width: 115px

Select the Value header cell.
• Set Column Width: 115px

Select the Value detail cell.

• Align: Center

Set the CSS Style to Clay. Save the Dashboard.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

GKU = new dashboardViewer("GKU", $("dashboardGKU"));
GKU.setRefreshInterval(16000);
GKU.viewport.showVerScrollbar(false);

This code will embed the Dashboard “GKU” within the HTML page in the <div> “dashboardGKU”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 1c: Liao Factories

Here we are creating a Dashboard for an imaginary company named “Liao Factories”. Its data will
be periodically updated in real-time.

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_LII” as the selection.
• Name the Dashboard “LII”.
• Set the Description as “Liao Factories”.
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

In the Editor:

• Drag Time, and Value to the Editor.

Now select the Timestamp detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the Timestamp header cell.

• Set Column Width: 115px

Select the Value header cell.
• Set Column Width: 115px

Select the Value detail cell.

• Align: Center

Set the CSS Style to Mint. Save the Dashboard.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

LII = new dashboardViewer("LII", $("dashboardLII"));
LII.setRefreshInterval(15000);
LII.viewport.showVerScrollbar(false);

This code will embed the Dashboard “LII” within the HTML page in the <div> “dashboardLII”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 1d: Bingo Inc.

Here we are creating a Dashboard for an imaginary company named “Bingo Inc”. Its data will be
periodically updated in real-time.

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_BGO” as the selection.
• Name the Dashboard “BGO”.
• Set the Description as “BGO Inc.”.
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

In the Editor:

• Drag Time, and Value to the Editor.

Now select the Timestamp detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the Timestamp header cell.

• Set Column Width: 115px

Select the Value header cell.
• Set Column Width: 115px

Select the Value detail cell.

• Align: Center

Set the CSS Style to Fog. Save the Dashboard.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

BGO = new dashboardViewer("BGO", $("dashboardBGO"));
BGO.setRefreshInterval(14000);
BGO.viewport.showVerScrollbar(false);

This code will embed the Dashboard “BGO” within the HTML page in the <div>
“dashboardLBGO”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 2: Flashing Indicators

Here we are going to build a Dashboard using the orange, purple, blue indicators. They can work
well with Boolean type fields. In this example, we’ll actually randomize values to demonstrate the
visual effect of flashing these indicators in a blinking manner.

To begin, click the Create link to create a new Dashboard.

• Choose “My Portfolio” as the selection.
• Name the Dashboard “My Portfolio”.
• Set the Description as “Flashing Indicators”.
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

In the Editor:

• Drag Stock, Buy, Hold and Sell to the Editor.

Now select the Stock detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Customizing the Headers: Style

Select the Stock header cell.

• Set Column Width: 50px
• Set Header Text: “ “

Select the Buy header cell.

• Set Column Width: 60px

Select the Hold header cell.
• Set Column Width: 60px

Select the Sell detail cell.

• Set Column Width: 60px

Customizing the Detail: Indicators

Here we want to add Indicators. We can do so by clicking a detail cell, which will then load the
Property Inspector.

This is the Property Inspector. Go to the Indicators tab to add Indicators.

Select the Buy detail cell.
• Under Indicators, add a filter where “equal” to “0” is “green”.
• Hit the Add button so that it gets populated in the list.
• Do the same for the Hold and Sell detail cell.

When we say Dummy Indicators we mean that these conditions will be overruled by the conditions you set in
Developer Hook Dax_DevHook_SetIndicators. The Dummy Indicators can be thought of placeholders that
trigger the Developer Hook. As long as your data values are evaluated by the dummy conditions,
Dax_DevHook_SetIndicators will then get triggered.

Set the CSS Style to Ocean. Save the report.

Add the following Case Statement to Dax_DevHook_SetIndicators:

: ($ReportName_t="My Portfolio")
C_REAL($randomValue)
$randomValue:=Random%(2)
If ($randomValue=1)

Case of
 : ($fieldnames_atp->{$fieldnum_l}="Buy")
 $0:="blue"
 : ($fieldnames_atp->{$fieldnum_l}="Hold")
 $0:="orange"
 Else
 $0:="purple"
 End case
Else

$0:=""
End if

With the Dummy Indicators in place, Dax_DevHook_SetIndicators will get triggered.

The code in Dax_DevHook_SetIndicators is displayed and is further explained in the Appendix section.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

MyPortfolio = new dashboardViewer("My Portfolio", $("dashboardMyPortfolio"));

MyPortfolio.setRefreshInterval(13000);
MyPortfolio.viewport.showVerScrollbar(false);

This code will embed the Dashboard “My Portfolio” within the HTML page in the <div>
“dashboardMyPortfolio”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 3: Bonus Indicators

Here we are going to build a Dashboard that lists some stocks along with their Current value and
Trend (% of increase or decrease from previous value). One feature we would like to highlight in
this example is a few of the Bonus Indicators via Developer Hook Dax_DevHook_Setindicators.

To begin, click the Create link to create a new Dashboard.

• Choose “Stocks” as the selection.
• Name the Dashboard “My International Stocks”
• Set the description as “Bonus Indicators”
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

• Drag StockName, Stock Fullname, Current Value, and Trend to the Editor.

Customizing the Headers: Style

Here we will select a header cell. Then it will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the StockName header cell.

• Set Column Width: 120px
• Set Header Text: “Symbol”

Select the Stock Fullname header cell.

• Set Column Width: 145px
• Set Header Text: “Stock”

Select the Current Value header cell.

• Set Column Width: 145px
• Set Header Text: “Current”

Select the Trend header cell.

• Set Column Width: 120px

Customizing the Detail: Style

Select a Detail cell. Then it will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Detail can be modified.

Select the Symbol detail cell.

• Set Detail Alignment: Center

Select the Stock Fullname detail cell.

• Set Detail Alignment: Center

Select the Current Value detail cell.
• Set Detail Alignment: Center

Select the Trend detail cell.

• Set Detail Alignment: Right

Customizing the Detail: Indicators and Formatting

Here we continue to further customize the Trend cell using the Property Inspector. Hit the
Indicators and the Formatting tabs to make the necessary changes.

• Under Formatting, set the format for

%, as seen to the left.

• Under Indicators, add a filter where

“equal” to “0” is “green”.
• Hit the Add button so that it gets

populated in the list.

This Indicator “equal 0 green” really has no meaning to us. Thus, it is a Dummy Indicator. We created this
Indicator to flag the 4D database that the Indicators in this Dashboard can be overridden by the conditions
we set in Dax_DevHook_SetIndicators.

Set the CSS Style to Cocoa. Save the Dashboard.

Add the following Case to the Case Statement in Dax_DevHook_SetIndicators:

: ($ReportName_t="My International Stocks")

C_LONGINT($foundat_l)
C_REAL($budget_r;$spent_r;$trend_r)
$foundat_l:=Find in array($fieldnames_atp->;"Trend")
 If ($foundat_l#-1)
 $trend_r:=Num($fieldvalue_atp->{$foundat_l})
 Case of
 : ($trend_r<-0.05)
 $0:="redstrong"
 : ($trend_r>0.05)
 $0:="greenstrong"
 : ($trend_r<0)
 $0:="redtriangle"
 : ($trend_r>0)
 $0:="greentriangle"
 Else
 $0:="yellowsquare"
 End case
 End if

With the Dummy Indicators in place, Dax_DevHook_SetIndicators will get triggered.

The code in Dax_DevHook_SetIndicators is displayed and is further explained in the Appendix section.

Dash.html

Add the following code to dash.html within function onAfterInit() in the <script> element:

InternationalStocks = new dashboardViewer("My International Stocks",
$("dashboardInternational"));
InternationalStocks.setRefreshInterval(10000);
InternationalStocks.viewport.showVerScrollbar(false);

This code will embed the Dashboard “My International Stocks” within the HTML page in the <div>
“dashboardInternational”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 3: Preset Queries (optional)

Here we will see how Preset Queries can be applied to dashboards. First, let’s create a Preset
Query using the Query Manager.

Create the Preset Query

In the Control Panel, go to the Query Manager tab. Hit the Create link.

Choose the “Stocks” table as the selection.

Choose the “A-Z” query template. Apply it to the “StockName” field. Hit the Next button to save
the Preset Query. A Preset Query has now been created for the “StockName” field in the “Stocks”
table. The “A-Z” template performs a query for each letter of the alphabet on the “StockName”
field.

Apply the Query to the Dashboard

Open up the Dashboard created in Example 3.

Go to the Preset Query area and select “G”. This query will look up all stocks that begin with the
letter ‘G’. Hit the Save button.

Reload the custom HTML page (dash.html) and the Dashboard for International Stocks should
now only display the stock “Gondor King United”.

The blank area is intentionally displayed to show the missing area that is usually occupied by the other
stocks.

Example 4: Charts

Here we will build charts. For Desktop Dashboards we must create a Dummy Dashboard that will
trigger Developer Hook Dax_DevHook_DefineChart. It is called a Dummy Dashboard because
the contents of the Dashboard have no effect on the Chart at all, but it must be created so that
the 4D database can send Chart values and labels to the browser.

Example 4a: TAC Chart

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_TAC” as the selection.
• Name the Dashboard “TAC Chart”
• Set the description as “TAC Chart”
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

• Drag Value to the Editor.

Make sure the checkbox for “Use Chart” is selected. Save the Dashboard.

Add the following Case to the Case Statement in Dax_DevHook_DefineChart:

:($SelectionName_t="DCS_TAC") & ($ReportName_t="TAC Chart")
$StockName_t:=Substring($SelectionName_t;5;3200)
$i:=Find in array(◊at_Stock;$StockName_t)

` Declare the arrays
ARRAY REAL(totals_ar;0)

QUERY([Stocks_History];[Stocks_History]StockName="TAC")
ORDER BY([Stocks_History];[Stocks_History]KeyTime;<)
If (Records in selection([Stocks_History])>500)
 REDUCE SELECTION([Stocks_History];10)
End if

SELECTION TO ARRAY([Stocks_History]CurrentValue;totals_ar)

vMax:=GetMaxValue (->totals_ar)

C_REAL($minYvalue_r;$maxYvalue_r)
ARRAY TEXT(xlabel_at;15) `*** Label on X-Axis (Must use process_array_variable
- TEXT)
ARRAY TEXT(ylabel_at;5) `*** Label on Y-Axis (Must use process_array_variable
- TEXT)

xlabel_at{1}:=String(Current time-†09:00:00†;HH MM)
xlabel_at{2}:=String(Current time-†06:00:00†;HH MM)
xlabel_at{3}:=String(Current time-†03:00:00†;HH MM)
xlabel_at{4}:=String(Current time;HH MM)

ylabel_at{1}:="0"
ylabel_at{2}:=String(Int(vMax*0.25))
ylabel_at{3}:=String(Int(vMax*0.5))
ylabel_at{4}:=String(Int(vMax*0.75))
ylabel_at{5}:=String(vMax)
$minYvalue_r:=0 `*** It should correspond to the minimum value in ylabel_at
$maxYvalue_r:=vMax `*** It should correspond to the maximum value in ylabel_at

To reiterate, the selection and the contents of the Dashboard have no effect on the Chart that we are going
to build. The most important thing to keep in mind is to validate the name of the Dashboard (in this case
“TAC Chart”) in order to trigger Dax_DevHook_DefineChart, which will populate and define the Chart.

Even though the Dummy Dashboard has no effect on the Chart, it is best to keep the Dashboard simple.
The Dashboard is still sent with the Chart to the browser, thus it is best to keep the traffic light by making
sure the selection is as small as possible.

Dash.html

Add the following code to dash.html within function dax_loginSuccess() in the <script> element:

var Chart_TAC = new dax_chartViewer('TAC Chart', $('dashboardTACChart'), {
type : dax_chartViewer.TYPE_LINE,

/* optional */
color : '#414E4F',
hoverBackgroundColor : '#ccffcc',
hoverTextColor : '#cdef01',
labelColor : '#414E4F'
});
Chart_TAC.setRefreshInterval(13);

This code will embed the Dashboard “TAC Chart” within the HTML page in the <div>
“dashboardTACChart”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 4a: Image URL Chart (Optional)

Alternatively, you can modify the case statement in Dax_DevHook_DefineChart to show an
Image URL chart instead of the Interactive chart created in “Example 4a: TAC Chart.” Replace
the case statement with the following:

: ($SelectionName_t="DCS_TAC") & ($ReportName_t="TAC Chart")

C_TEXT($url)
ARRAY TEXT($urlArray;2)

$urlArray{1}:="http://chart.apis.google.com/chart?cht=p3&chd=t:90,49&chs=300x15
0&chl=Foo|Bar"
DAX_Dev_SetDashboardImageURL (->$urlArray)

Then replace the JavaScript code used in “Example 4a: TAC Chart” with:

Chart_TAC = new chartViewer("TAC Chart", $('dashboardTACChart'));
Chart_TAC.setRefreshInterval(5200);

This is a proof of concept way of seeing how an image URL can be displayed in a dashboard.

Example 4b: BGO Chart

To begin, click the Create link to create a new Dashboard.

• Choose “DCS_BGO” as the selection.
• Name the Dashboard “BGO Chart”
• Set the description as “BGO Chart”
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

• Drag Value to the Editor.

Make sure the checkbox for “Use Chart” is selected. Save the Dashboard.

Add the following Case to the Case Statement in Dax_DevHook_DefineChart:

: ($SelectionName_t="DCS_BGO") & ($ReportName_t="BGO Chart")
$StockName_t:=Substring($SelectionName_t;5;3200)
$i:=Find in array(◊at_Stock;$StockName_t)

` Declare the arrays
ARRAY REAL(totals_ar;0)

QUERY([Stocks_History];[Stocks_History]StockName="BGO")
ORDER BY([Stocks_History];[Stocks_History]KeyTime;<)
If (Records in selection([Stocks_History])>500)
 REDUCE SELECTION([Stocks_History];10)
End if
SELECTION TO ARRAY([Stocks_History]CurrentValue;totals_ar)

vMax:=GetMaxValue (->totals_ar)

C_REAL($minYvalue_r;$maxYvalue_r)
ARRAY TEXT(xlabel_at;10) `*** Label on X-Axis (Must use process_array_variable
- TEXT)
ARRAY TEXT(ylabel_at;5) `*** Label on Y-Axis (Must use process_array_variable
- TEXT)

xlabel_at{1}:=String(Current time-†24:00:00†;HH MM)
xlabel_at{2}:=String(Current time-†16:00:00†;HH MM)
xlabel_at{3}:=String(Current time-†08:00:00†;HH MM)

xlabel_at{4}:=String(Current time;HH MM)

xlabel_at{1}:=String(Current time-†09:00:00†;HH MM)
xlabel_at{2}:=String(Current time-†06:00:00†;HH MM)
xlabel_at{3}:=String(Current time-†03:00:00†;HH MM)
xlabel_at{4}:=String(Current time;HH MM)

ylabel_at{1}:="0"
ylabel_at{2}:=String(Int(vMax*0.25))
ylabel_at{3}:=String(Int(vMax*0.5))
ylabel_at{4}:=String(Int(vMax*0.75))
ylabel_at{5}:=String(vMax)
$minYvalue_r:=0 `*** It should correspond to the minimum value in ylabel_at
$maxYvalue_r:=vMax `*** It should correspond to the maximum value in ylabel_at

DAX_Dev_SetDashboardChart (->xlabel_at;->ylabel_at;-
>totals_ar;$minYvalue_r;$maxYvalue_r)

To reiterate, the selection and the contents of the Dashboard have no effect on the Chart that we are going
to build. The most important thing to keep in mind is to validate the name of the Dashboard (in this case
“BGO Chart”) in order to trigger Dax_DevHook_DefineChart, which will populate and define the Chart.

Even though the Dummy Dashboard has no effect on the Chart, it is best to keep the Dashboard simple.
The Dashboard is still sent with the Chart to the browser, thus it is best to keep the traffic light by making
sure the selection is as small as possible.

Dash.html

Add the following code to dash.html within function dax_loginSuccess() in the <script> element:

var Chart_BGO = new dax_chartViewer('BGO Chart', $('dashboardBGOChart'), {
type : dax_chartViewer.TYPE_LINE,

color : '#009900',
hoverBackgroundColor : '#ccffcc',
hoverTextColor : '#cdef01',
labelColor : '#414E4F'

});
Chart_BGO.setRefreshInterval(11);

This code will embed the Dashboard “BGO Chart” within the HTML page in the <div>
“dashboardBGOChart”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 4b: SVG Chart (Optional)

Modify the case statement in Dax_DevHook_DefineChart to show an SVG URL chart instead of
the Canvas chart created in “Example 4b: BGO Chart.” Replace the case statement with the
following:

: ($SelectionName_t="DCS_BGO") & ($ReportName_t="BGO Chart")

C_BLOB($svgblob1)
C_LONGINT($chartarea_l;$i)
C_PICTURE($picture)

ARRAY STRING(40;$label_at;1)
ARRAY REAL($value_ar1;1)
ARRAY REAL($value_ar2;1)
ARRAY REAL($value_ar3;1)
ARRAY REAL($value_ar4;1)
ARRAY REAL($value_ar5;1)

$value_ar1{1}:=50
$value_ar2{1}:=200
$value_ar3{1}:=60
$value_ar4{1}:=30
$value_ar5{1}:=120

GRAPH($chart_l;7;$label_at;$value_ar1;$value_ar2;$value_ar3;$value_ar4;$value_a
r5)
GRAPH SETTINGS($chart_l;0;0;0;2;True;False;False;"";"BGO Inc";" Endiago & Track
Inc";"Liao Factories";"TransAmerica Cruises";"Gondor King United")
WRITE PICTURE FILE("mysvg.svg";$picture;".svg")
DOCUMENT TO BLOB(document;$svgblob1)

DAX_Dev_SetDashboardSVG (->$svgblob1)

Then replace the JavaScript code used in “Example 4b: BGO Chart.”” with:

Chart_BGO = new chartViewer("BGO Chart", $('dashboardBGOChart'));
Chart_BGO.setRefreshInterval(5010);

This is a proof of concept way of seeing how an SVG URL can be displayed in a dashboard.

Example 5: Complementary Dashboard

Here we are going to build two Dashboards that complement each other on the HTML page. They
are a Dashboard and a Chart and they will display similar information for the same imaginary
stock market, the “ESTN Industrial Market.”

Example 5a: ESTN Dashboard

To begin, click the Create link to create a new Dashboard.

• Choose “Markets” as the selection.
• Name the Dashboard “ESTN Trend”
• Set the description as “ESTN Dashboard”
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

• Drag Trend to the Editor.

Now select the Trend detail header cell. It will load the Property Inspector.

This is the Property Inspector. Under the Style Tab it displays different ways the Header can be modified.

Select the Trend header cell.

• Set Column Width: 120px
• Header Text: “ “

Select the Trend detail cell.
• Align: Right

• Under Formatting, set the format for
%, as seen to the left.

• Under Indicators, add a filter where:

o More 100 red button
o Less 100 green button

• Hit the Add button so that it gets
populated in the list.

This Indicator “equal 0 green” really has no meaning to us. Thus, it is a Dummy Indicator. We created this
Indicator to flag the 4D database that the Indicators in this Dashboard can be overridden by the conditions
we set in Dax_DevHook_SetIndicators.

Save the Dashboard.

Add the following Case to the Case Statement in Dax_DevHook_SetIndicators:

: ($ReportName_t="ESTN Trend")
C_LONGINT($foundat_l)
C_REAL($budget_r;$spent_r;$trend_r)
$foundat_l:=Find in array($fieldnames_atp->;"Trend")

If ($foundat_l#-1)
 $trend_r:=Num($fieldvalue_atp->{$foundat_l})
 Case of
 : ($trend_r<0)
 $0:="arrowdown"
 : ($trend_r>0)
 $0:="arrowup"
 Else
 $0:="noarrowyellow"
 End case
End if

With the Dummy Indicators in place, Dax_DevHook_SetIndicators will get triggered.

The code in Dax_DevHook_SetIndicators is displayed and is further explained in the Appendix section.

Dash.html

Add the following code to dash.html within function dax_loginSuccess() in the <script> element:

ESTN_Trend = new dashboardViewer("ESTN Trend", $("dashboardESTN"));
ESTN_Trend.viewport.showVerScrollbar(false);
ESTN_Trend.setRefreshInterval(20000);
ESTN_Trend.setRowHeightInPx(35); // set large row height

Note: Row height was increased so that font can be displayed larger. Also, the Indicators used for this
example are large as well and would also benefit from the height increase.

This code will embed the Dashboard “ESTN Trend” within the HTML page in the <div>
“dashboardESTN”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Example 5b: ESTN Chart

To begin, click the Create link to create a new Dashboard.

• Choose “Markets” as the selection.
• Name the Dashboard “ESTN Chart”
• Set the description as “ESTN Chart”
• Do not select ‘iPhone Support’ for Platform Option. Click Start Dashboard Editor to begin.

• Drag Trend to the Editor.

Make sure the checkbox for “Use Chart” is selected. Save the Dashboard.

Add the following Case to the Case Statement in Dax_DevHook_DefineChart:

: ($SelectionName_t="View_2") & ($ReportName_t="ESTN Chart")

` Declare the arrays
ARRAY REAL(totals_ar;0)

QUERY([Markets_History];[Markets_History]MarketName="ESTN")
$att:=String(Current date-1;7)+":"+String(Current time-†00:08:00†;HH MM SS)
QUERY SELECTION([Markets_History];[Markets_History]KeyTime>=$att)
ORDER BY([Markets_History];[Markets_History]KeyTime;<)
If (Records in selection([Markets_History])>500)
 REDUCE SELECTION([Markets_History];10)
End if
SELECTION TO ARRAY([Markets_History]CurrentValue;totals_ar)

$minYvalue_r:=Min([Markets_History]CurrentValue)
$maxYvalue_r:=Max([Markets_History]CurrentValue)

C_REAL($minYvalue_r;$maxYvalue_r)
ARRAY TEXT(xlabel_at;10) `*** Label on X-Axis (Must use process_array_variable
- TEXT)
ARRAY TEXT(ylabel_at;5) `*** Label on Y-Axis (Must use process_array_variable
- TEXT)

xlabel_at{1}:=String(Current time-†00:06:00†;HH MM)
xlabel_at{2}:=String(Current time-†00:04:00†;HH MM)
xlabel_at{3}:=String(Current time-†00:02:00†;HH MM)
xlabel_at{4}:=String(Current time;HH MM)

ylabel_at{1}:=String(Round(Int($minYvalue_r)/1000;0))+"K"
ylabel_at{2}:=""
ylabel_at{3}:=String(Round(Int(($maxYvalue_r+$minYvalue_r)*0.5)/1000;0))+"K"
ylabel_at{4}:=""
ylabel_at{5}:=String(Round(Int($maxYvalue_r)/1000;0))+"K"
`*** It should correspond to the minimum value in ylabel_at
`*** It should correspond to the maximum value in ylabel_at

DAX_Dev_SetDashboardChart (->xlabel_at;->ylabel_at;-
>totals_ar;$minYvalue_r;$maxYvalue_r)

To reiterate, the selection and the contents of the Dashboard have no effect on the Chart that we are going
to build. The most important thing to keep in mind is to validate the name of the Dashboard (in this case
“ESTN Chart”) in order to trigger Dax_DevHook_DefineChart, which will populate and define the Chart.

Even though the Dummy Dashboard has no effect on the Chart, it is best to keep the Dashboard simple.
The Dashboard is still sent with the Chart to the browser, thus it is best to keep the traffic light by making
sure the selection is as small as possible.

Dash.html

Add the following code to dash.html within function dax_loginSuccess() in the <script> element:

var Chart_ESTN = new dax_chartViewer('ESTN Chart', $('dashboardESTNChart'), {
type : dax_chartViewer.TYPE_LINE,

color : '#0097D1',
hoverBackgroundColor : '#ccffcc',
hoverTextColor : '#cdef01',
labelColor : '#414E4F'

});
Chart_ESTN.setRefreshInterval(12);

This code will embed the Dashboard “ESTN Chart” within the HTML page in the <div>
“dashboardESTNChart”.

Reconnect to http://localhost:8080/dash.html. It should now look like:

Appendix

Limitations

Charts are limited to 500 array values for Desktop Dashboards. This is done to keep optimal
performance and size for the XML files. Sending more than 500 values would comprise the
integrity of the Chart.

Example 2: Flashing Indicators

For reference this is the code in Dax_DevHook_SetIndicators for Example 2: Flashing Indicators:

: ($ReportName_t="My Portfolio")
C_REAL($randomValue)
$randomValue:=Random%(2)
If ($randomValue=1)

Case of
 : ($fieldnames_atp->{$fieldnum_l}="Buy")
 $0:="blue"
 : ($fieldnames_atp->{$fieldnum_l}="Hold")
 $0:="orange"
 Else
 $0:="purple"
 End case
Else

$0:=""
End if

This block of code is called for each detail cell ofnthe table. A random value of “0” or “1” is
generated. If it is “1”, then that cell will be populated with an Indicator. The color of that Indicator
is determined by the column that cell is in.

Random values were generated intentionally for the purpose of demonstrating the look of flashing Indicators.

The order at which these conditions are listed is very important. The conditions are treated as Case
statements. Thus, the first condition in the list that is evaluated as True exits the entire list and no longer
evaluates the remaining conditions.

Example 3: Bonus Indicators

For reference this is the code in Dax_DevHook_SetIndicators for Example 3: Bonus Indicators:

: ($ReportName_t="My International Stocks")

C_LONGINT($foundat_l)
C_REAL($budget_r;$spent_r;$trend_r)

$foundat_l:=Find in array($fieldnames_atp->;"Trend")
 If ($foundat_l#-1)
 $trend_r:=Num($fieldvalue_atp->{$foundat_l})
 Case of
 : ($trend_r<-0.05)
 $0:="redstrong"
 : ($trend_r>0.05)
 $0:="greenstrong"
 : ($trend_r<0)
 $0:="redtriangle"
 : ($trend_r>0)
 $0:="greentriangle"
 Else
 $0:="yellowsquare"
 End case
 End if

Please note that we use a case statement to trap when this specific Dashboard is called. Thus, it
is very important that you name the Dashboard “My International Stocks” as mentioned so that
this code can take effect.

We used case statements to indicate different types of values for Trend.
• Where Trend < -0.05% use “redstrong”.
• Where Trend > 0.05% use “greenstrong”.
• Where Trend < 0% use “redtriangle”.
• Where Trend < 0% use “greentriangle”.
• Else use “yellowsquare”.

The order at which these conditions are listed is very important. The conditions are treated as Case
statements. Thus, the first condition in the list that is evaluated as True exits the entire list and no longer
evaluates the remaining conditions.

Example 5a: ESTN Dashboard

For reference this is the code in Dax_DevHook_SetIndicators for Example 5a: ESTN Dashboard:

: ($ReportName_t="ESTN Trend")
C_LONGINT($foundat_l)
C_REAL($budget_r;$spent_r;$trend_r)
$foundat_l:=Find in array($fieldnames_atp->;"Trend")
If ($foundat_l#-1)
 $trend_r:=Num($fieldvalue_atp->{$foundat_l})
 Case of
 : ($trend_r<0)
 $0:="arrowdown"
 : ($trend_r>0)
 $0:="arrowup"
 Else
 $0:="noarrowyellow"

 End case
End if

Please note that we use a case statement to trap when this specific Dashboard is called. Thus, it
is very important that you name the Dashboard “ESTN Trend” as mentioned so that this code can
take effect.

arrowup

arrowdown

We set case statements in the following manner:

• When the Trend value is < “0”, use “arrowdown”
• When the Trend value is > “0”, use “arrowup”
• Else, use “noarrowyellow”

The order at which these conditions are listed is very important. The conditions are treated as Case
statements. Thus, the first condition in the list that is evaluated as True exits the entire list and no longer
evaluates the remaining conditions.

