
Testing if an XML Node Has Relatives

By David Adams
Technical Note 07-04

Abstract
--

This technical note explains how to test a node for ancestors, children, or siblings
and includes a sample database with the method implemented using the built-in
4th Dimension DOM commands.

Overview
--

4th Dimension's native XML commands provide detailed information about an XML
element, including the element's name, attributes, value, and CDATA section
contents. However, it is often useful or necessary to determine if the current node
has parent, child, or sibling nodes. As an example, imagine a database that displays
XML settings in a hierarchical list. To make the contents of the list easier to
understand visually, elements with children might be in bold, as in the screenshot
below:

The code fragment below illustrates how to achieve this visual effect:

If (XmlNode_HasChildren ($xml_node))
SET LIST ITEM PROPERTIES($list;$list_item;False;Bold;0)

End if

Some other examples of reasons to test for related nodes are listed below:

• Various generic XML tree-walking algorithms require testing for children and
parents to determine when to stop.

• Custom XML import code may need to know if a node has more siblings or any
children to determine when to save and create records and related records.

• When the same element name is used at different levels within an XML tree,
testing for ancestors, children, or siblings is sometimes enough to determine
which instance of an element name is current.

This technical note describes routines to test a node for ancestors, children, or
siblings and includes a sample database with the method implemented.

Background: DOM, SAX and Trees
--

Before looking at the code, it is worth reviewing a few points about XML processing.
The 4th Dimension language supports two different parsers, DOM (Document
Object Model) parser and the SAX (Simple API for XML) parser. Both tools provide
access to the same information about a node but approach XML processing very
differently. Using the SAX model, an XML document is treated as a stream of text.
In this environment, there is not really a concept of related nodes. Using the DOM
model, an XML document is rendered internally in a tree of linked nodes. For
example, consider the short XML sample below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<contacts>

<contact>
<name>Dan West</name>
<business>

<phone>
<area_code>04</area_code>
<number>0035-9110</number>

</phone>
</business>
<home>

<phone>
<area_code>02</area_code>
<number>6493-3250</number>

</phone>
</home>

</contact>
</contacts>

Rendered as a tree, the nodes are linked as diagrammed below:

In a DOM environment, it is meaningful to talk about a node's relatives. For
example, the <business> element has <contact> and <contacts> as ancestors,
<name> and <home> as siblings, and <phone>, <area_code> and <number> as
children.

Note XML paths, element names, and attribute names are all case-sensitive. See 4D
Technical Note 05-41, Case-Sensitive Operations in 4th Dimension, for code to
handle case-sensitive comparisons.

Using the Routines
--

Using the code listed in this technical note is straightforward, as illustrated in the
code fragment below:

C_STRING(16;$contacts_xmlref)
$contacts_xmlref:=DOM Find XML element($root_xmlref;"/contacts/") ` Find a node.
$hasAncestors_b:=DOM_NodeHasAncestors ($contacts_xmlref)
$hasChildren_b:=DOM_NodeHasChildren ($contacts_xmlref)
$hasSiblings_b:=DOM_NodeHasSiblings ($contacts_xmlref)

Calling code needs to do is find an XML node using any of the DOM commands. It
does not matter how the node reference is found or generated, as the relative-
checking routines are entirely generic. Additionally, it is safe to pass an invalid node
referenced to the routines. Internally, the node relative testing routines use a
custom error handler to suppress error displays. If a null or invalid XML reference is
passed into the routines they return a result of False.

The Routines
--

The code of the relative testing routine and their error management routines are
listed below.

DOM_NodeHasChildren
The DOM_NodeHasChildren routine tests if a node has one or more children. The
result is False if the node reference is invalid.

C_BOOLEAN($0;$nodeHasChildren_b)
C_STRING(16;$1;$noderef)

$nodeHasChildren_b:=False` Default to False in case there are errors.

$noderef:=$1

DOM_StartCustomErrorHandling

C_STRING(16;$child_xmlref)
$child_xmlref:=DOM Get first child XML element($noderef)` Try to get a child.
` If the resulting xmlref is valid, there is at least one child.
$nodeHasChildren_b:=DOM_ReferenceIsValid ($child_xmlref)

DOM_StopCustomErrorHandling

$0:=$nodeHasChildren_b

DOM_NodeHasAncestors
The DOM_NodeHasAncestors routine tests if a node has one or more ancestors. The
result is False if the node reference is invalid or points to the #document node. The
#document element is a synthetic node above the root of the tree and should not be
treated as a true ancestor.

C_BOOLEAN($0;$nodeHasAncestors_b)
C_STRING(16;$1;$noderef)

$nodeHasAncestors_b:=False` Default to False in case there are errors.
$noderef:=$1

DOM_StartCustomErrorHandling

C_STRING(16;$parent_xmlref)
C_TEXT($name_text)
$parent_xmlref:=""
$name_text:=""
` Try to get a parent.
$parent_xmlref:=DOM Get parent XML element($noderef;$name_text)
$nodeHasAncestors_b:=DOM_ReferenceIsValid ($parent_xmlref)
` If the resulting xmlref is valid, there is at least one ancestor.
If ($nodeHasAncestors_b)` There appear to be ancestors.

If ($name_text="#document")` #document is an artificial node above the tree.
$nodeHasAncestors_b:=False

End if
End if

DOM_StopCustomErrorHandling

$0:=$nodeHasAncestors_b

DOM_NodeHasSiblings
The DOM_NodeHasSiblings routine tests if a node has one or more siblings. The
result is False if the node reference is invalid.

C_BOOLEAN($0;$nodeHasSiblings_b)
C_STRING(16;$1;$noderef)

$noderef:=$1
$nodeHasSiblings_b:=False` Default to False in case there are errors.

DOM_StartCustomErrorHandling

C_STRING(16;$sibling_xmlref)
` Try to get an earlier sibling.
$sibling_xmlref:=DOM Get previous sibling XML element($noderef)

` If the resulting xmlref is valid, there is at least one sibling.
$nodeHasSiblings_b:=DOM_ReferenceIsValid ($sibling_xmlref)
If (Not($nodeHasSiblings_b))` There was no previous sibling, is there a next sibling?

` Try to get an earlier sibling.
$sibling_xmlref:=DOM Get Next sibling XML element($noderef)
` If the resulting xmlref is valid, there is at least one sibling.
$nodeHasSiblings_b:=DOM_ReferenceIsValid ($sibling_xmlref)

End if

DOM_StopCustomErrorHandling

$0:=$nodeHasSiblings_b

DOM_ReferenceIsValid
The DOM_ReferenceIsValid routine is adapted from 4D Technical Note #06-40,
Enhancing the DOM XML Reading Functions. The modified code is listed below:

C_BOOLEAN($0;$nodrefIsValid_b)
C_STRING(16;$1;$noderef)

$noderef:=$1

$nodrefIsValid_b:=True

DOM_StartCustomErrorHandling

C_TEXT($elementName_t)` Line below should throw an error if the element is not valid.
$elementName_t:=""
DOM GET XML ELEMENT NAME($noderef;$elementName_t)

Case of
: (DOM_Error#0)` There was an error of some kind.

$nodrefIsValid_b:=False

: ($elementName_t="")` Elements must have names to be operated on safely.
$nodrefIsValid_b:=False

Else
$nodrefIsValid_b:=True

End case

DOM_StopCustomErrorHandling

$0:=$nodrefIsValid_b

DOM_StartCustomErrorHandling
The DOM_StartCustomErrorHandling routine stores existing error state information
and installs a custom error handler.

If (Undefined(Error))
Error:=0

End if

C_STRING(80;DOM_PreviousErrorHandler_s)
C_LONGINT(DOM_PreviousValueOfError_l)
C_LONGINT(DOM_Error)
DOM_PreviousErrorHandler_s:=Method called on error
DOM_PreviousValueOfError_l:=Error
DOM_Error:=0` Assign a value in error method, if run.
Error:=0

ON ERR CALL("DOM_ErrorTrappingRoutine")

DOM_StopCustomErrorHandling
The DOM_StopCustomErrorHandling routine clears the custom error handler and
restores the error state information saved by DOM_StartCustomErrorHandling.

ON ERR CALL(DOM_PreviousErrorHandler_s)` Restore original error handler.
Error:=DOM_PreviousValueOfError_l` Restore original value of Error.

DOM_ErrorTrappingRoutine
The DOM_ErrorTrappingRoutine method is installed by the DOM_ReferenceIsValid
and DOM_StartCustomErrorHandling routines to trap errors arising from attempting
to read invalid node references. The error handler includes a single line of code,
listed below:

DOM_Error:=Error

The Sample Database
--

The sample database includes the code listed above and a simple test routine
named Test_NodeHasRelatives. The test code is designed to exercise the
DOM_NodeHasAncestors, DOM_NodeHasChildren, and DOM_NodeHasSiblings
methods in various conditions, including passing in good nodes, bad nodes, and the
synthetic #document node. For each test, the code displays a simple status alert
reporting if the test conditions were met, such as the screen shown below:

Summary
--

It is often helpful during XML processing to test if a node has ancestors, children, or
siblings. While 4th Dimension's XML reading commands do not include functions to
return information about a node's relations, it is easy to add using existing
commands. This technical note documents such code and includes a sample
database with full implementations.

