Cleaning Whitespace from XML Values

By David Adams

Technical Note 06-42

Overview

XML element values commonly include leading or trailing whitespace
characters that help make the source XML easier to read. For example,
consider the simple XML example below:

<?xml version="1.0" encoding="UTF-8" standalone="no" 2>
<contact>

<business>ACME Black Dot
<phone>123 456 789</phone>
</business>

</contact>

What is the value of the element named business? The obvious answer,
"ACME Black Dot", is incorrect. If using the DOM commands, the complete
value includes all of the text between the opening and closing of the
business tag. If using the SAX commands, the complete value includes all of
the text from the start of the business element to the end of the business
element or the start of the next element, whichever comes first. The
whitespace characters in the XML are shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<contact>

<business>ACME Black Dot CARRIAGE_RETURN
SPACE SPACE SPACE SPACE<phone>123 456 789</phone>CARRIAGE_RETURN
SPACE SPACE</business>
</contact>

The complete value of the business element is shown below:

Read with DOM Commands Read with SAX Commands
ACME Black Dot CARRIAGE_RETURN ACME Black Dot CARRIAGE_RETURN
SPACE SPACE SPACE SPACE CARRIAGE _RETURN SPACE SPACE SPACE SPACE

SPACE SPACE

Unfortunately, 4th Dimension's element reading commands, such as DOM
GET XML ELEMENT VALUE and SAX GET XML ELEMENT VALUE, don't
support trimming leading and trailing whitespace. Fortunately, this missing
functionality is easy to write and is implemented in a sample database
accompanying this note. The note itself reviews the basic rules for XML
whitespace and strategies for trimming it from values.

XML Whitespace

The XML specifications unambiguously identify four characters as whitespace
(ASCII codes given here for simplicity since 4th Dimension doesn't support
Unicode character references):

Name ASCII
Tab 9

Line feed 10
Carriage return 13
Space 32

Designing a Trimming Function

Trimming XML whitespace is a conceptually simple task that can be
implemented in many ways. One straightforward approach is to call
Substring or Delete string repeatedly on the original string until all leading
and trailing whitespace are eliminated. Imagine the source string below:

SPACE SPACE Hello world! SPACE SPACE

Using a naive approach, the string needs to be resized once for each leading
and trailing character, or four times in the example string. This approach
potentially requires 4th Dimension to move memory each time the string is
resized. While memory may not have to be moved, and moving matter may
not make a meaningful performance difference in many cases, it's not
difficult to write a trimming function that only resizes the string once. Instead
of continually modifying the string, the function takes three steps:

1. Scan the string from the front to find the first non-whitespace character,
if any.

2. Scan the string from the end to find the last non-whitespace character, if
any.

3. Extract the non-whitespace characters.

The diagram below identifies the key sections of the SPACE SPACE Hello
world! SPACE SPACE sample string:

First non-whitespace character Last non-whitespace character

F

H e 1 1le 5 w o r 1l d & MNopnwhitespace extract

Notice that the space character within the string Hello world! is not
whitespace. Characters are only considered whitespace when they are
leading or trailing.

Trimming Function Implementation

The sample database included with this technical note contains a function
named XML_CleanWhitespace that implements a trimming function using the
three step strategy described above. To simplify the operation, an
interprocess array including the four XML whitespace characters is initialized
at startup by a call to XML_InitWhitespaceCharacters, listed below:

ARRAY STRING(1;<>XML_WhitespaceCharacters_as;4)
<>XML_WhitespaceCharacters_as{1}:=Char(Tab)
<>XML_WhitespaceCharacters_as{2}:=Char(Line feed)
<>XML_WhitespaceCharacters_as{3}:=Char(Carriage return)
<>XML_WhitespaceCharacters_as{4}:=Char(Space)

The XML_CleanWhitespace function is listed below:

C_TEXT($0;$result_t)
C_TEXT($1;$source_t)
$source_t:=$1
$result_t:=""

C_LONGINT($firstCharacter_index)
C_LONGINT($lastCharacter_index)
$firstCharacter_index:=0
$lastCharacter_index:=0

* 1) Find first non-whitespace character.

C_LONGINT($length)
C_LONGINT($index)
C_LONGINT($element)
$length:=Length($source_t)
$index:=0

$element:=0
C_BOOLEAN($done)
$done:=False

Repeat
$index:=$index+1

If ($index>$length)
$done:=True
Else " Look for the current character in the whitespace array.
$element:=Find in array(<>XML_WhitespaceCharacters_as;$source_t$index)
If ($element<0)" The character being tested is not whitespace, so this is what we're looking
for.
$firstCharacter_index:=$index
$done:=True
End if
End if
Until ($done)

* 2) Find last non-whitespace character.

C_LONGINT($index)
C_LONGINT($element)
$index:=Length($source_t)+1
$element:=0
C_BOOLEAN($done)
$done:=False

Repeat ~ Step backwards through string looking for last non-whitespace character.
$index:=$index-1

If ($index=0)
$done:=True
Else

* Look for the current character in the whitespace array.

$element:=Find in array(<>XML_WhitespaceCharacters_as;$source_t$index)

If ($element<0)
* The character being tested is not whitespace, so this is what we're looking for.
$lastCharacter_index:=$index
$done:=True

End if

End if
Until ($done)

* 3) Extract non-whitespace characters.

C_LONGINT ($result_length)
$result_length:=$lastCharacter_index-$firstCharacter_index+1

Case of
: ($lastCharacter_index=0)
$result_t:=""

: ($firstCharacter_index=0)
$result_t:=""

: ($result_length<1)

$result_t:=""

Else
$result_t:=Substring($source_t;$firstCharacter_index;$result_length)

End case

$0:=%result_t

Additional Comments on the Implementation

The XML_CleanWhitespace function tests if a character is whitespace or not
by checking the contents of the <<XML_WhitespaceCharacters_as array. Why
not simply test the character directly within the code? For example, consider
the code fragment below (assume <>Tab, <<LINE_FEED,
<CARRIAGE_RETURN, and <SPACE have been initialized at startup):

If ($index=0)
$done:=True
Else

Case of
: ($source_t$index=<>TAB)
: ($source_t$index=<>LINE_FEED)
: ($source_t$index=<>CARRIAGE_RETURN)
: ($source_t$index=<>SPACE)
Else ~ The character being tested is not whitespace, so this is what we're looking for.
$lastCharacter_index:=$index
$done:=True
End case

End if

The advantage of the hard-coding shown above is that it's easy to read and
understand. On the other hand, the array-based system used by
XML_CleanWhitespace is also convenient because the same code can be
reused to process other string trimming rules. Using this strategy, changing
the array changes the behavior of the routine while leaving the methods logic
and code intact and unmodified. For example, it is easy to define a different
array that includes a list of unwanted control characters that should also be
removed from the front and back of a string. While the same result could be
achieved by adding new case statements to a hard-coded trimming routine,
it's simpler to define new data and leave the trimming function as generic
trimming engine.

Summary

4th Dimension's XML element value reading commands, such as DOM GET
XML ELEMENT VALUE, DOM Get parent XML element, DOM Get first
child XML element and SAX GET XML ELEMENT VALUE, don't support
trimming leading and trailing whitespace. Fortunately, this missing
functionality is easy to add. This technical note describes an efficient
implementation of a generalized trimming function included in the
accompanying sample database.

