
Difference between DOM and SAX.

By Yvan Ayaay, Technical Support Engineer, 4D Inc.
TN 06-14

Introduction
--

4th Dimension supports two kinds of parsing modes for XML documents: DOM
(Document Object Model) and SAX (Simple API XML). DOM and SAX are
different sets of XML commands for manipulating XML files. Both have
different scopes and programming styles. Their characteristics offer
advantages and disadvantages. In this technote, the differences between the
two will be discussed. It will be shown how to create and parse XML
documents in DOM and in SAX to emphasize their distinction. This technote
will require a basic understanding of XML. You can check the technote “XML:
An Introduction” for more information.

Overview
--

DOM (Document Object Model) and SAX (Simple API XML) are two different
modes in manipulating XML documents that 4th Dimension offers. XML
(Extensible Markup Language) is a standardized data format aimed to reach
universally interchangeable data. The DOM mode and SAX mode are two sets
of XML commands that differ in their flow of parsing, limitations, and
programming approach. For instance, DOM parses and builds an XML tree in
memory and it allows accessing nodes in random either forward or backward.
While SAX does not store XML in memory but follows a top to bottom
traversing. In this regard, though the SAX mode appears to be more memory
efficient, the DOM mode can be more flexible as the SAX XML abides a linear
approach. Nevertheless, deciding which mode to use is really a programming
preference.

The following sections depict the dissimilarities between the DOM and SAX
XML commands. The advantages and disadvantages of these commands are
discussed. Then, examples in the creation and parsing of XML document in
DOM and SAX modes will be illustrated.

Advantages and Disadvantages
--

The SAX and DOM XML commands are two very different modes in parsing
XML documents. Both have advantages and disadvantages:

Memory Usage: DOM stores the entire structure tree in memory. Because
of this, access to each element of the source is extremely fast. However, it
can be a limitation when dealing with very large XML documents as it might
not fit into the available memory. SAX, on the other hand, does not store
XML in memory. It handles an XML document in an event streaming
approach. Because of this, SAX is not restricted to the size of XML document
and to the amount of memory available.

Parsing Traversal: SAX parses an XML document node by node in a linear
fashion. It follows a top to bottom approach returning an event for every
element it encounters such as begin tag, end tag, etc. It does not allow
random access manipulation of an XML document. When parsing an existing
XML document, the document needs to be opened in read-only. Because of
this, you would not be able to modify elements, their values, and attributes
with SAX. Conversely, DOM builds an XML tree in memory and can parse it
in a random approach. This mode allows you to traverse the XML tree in any
direction. You can search tags backward or forward in the XML tree and then
evaluate data that they hold. DOM has many commands that allow you to
modify elements, their values, and attributes.

Choosing one over the other: Deciding between DOM and SAX can be
based on the factors discussed above. DOM will be nice for smaller XML files
since it stores the entire XML document in memory. But for very large XML
documents, SAX would be ideal. If a data needs to be extracted from an XML
file once, SAX could be considered because of its serial approach. However, if
the data need to be randomly selected from the XML file, DOM will be ideal.
Because of DOM’s random approach, it will be a better a choice in dealing
with more complicated XML documents. The programming styles of these two
modes are significantly different. So, it can be a programming preference as
well—whichever you like better.

Creating an XML Document
--

Both the DOM mode and SAX mode allow you to create an XML document.
Their approach in creating the XML structure is much different. DOM builds
the structure in memory, uses references to element nodes to properly build
the hierarchy and then save to file. Whereas SAX creates an XML document
first and uses the document reference to build the hierarchy in a linear
fashion.

When creating an XML document using DOM, you first create an XML tree in
memory--creating elements and putting values--and then save the XML tree

into a file. When creating elements, references to the elements are stored
and taken into account to build a well-formed XML hierarchy. These
references are used to create child and sibling elements.

In contrast, when creating an XML document using SAX, an XML document is
first created and the elements and values are created. Just like creating and
writing to a document in 4th Dimension, a document reference is used. Unlike
DOM which can use many references to properly build the XML tree, only one
reference (document reference) is used in SAX wherein the elements and
values are created sequentially from top to bottom. Once all the elements
are created, the document is closed.

To better illustrate how to create an XML document in these two modes, let
us consider the people table with records as shown below:

Let us say, you want to create an XML document that shows people names
as shown below:

<?xml version="1.0" encoding="UTF-16" standalone="no" ?>
<people>
 <name title="Mr">
 <first>Bob</first>
 <middle>Patrick</middle>
 <last>Jones</last>
 </name>
 <name title="Ms">
 <first>Jane</first>
 <middle>Smith</middle>
 <last>Doe</last>
 </name>
 <name title="Mr">
 <first>George</first>
 <middle>Herbert</middle>
 <last>Bush</last>
 </name>
</people>

The title field is the attribute of the name tag and the rest of the fields--the
first, middle, and last--are child elements of the name element.

In DOM mode

To create the above XML in DOM, you can run the code below:

`Method: XMLCreateDOM
C_STRING(16;vRootRef;vElemRef)
C_TEXT($rootElem;$vElem1;$vElem2;$vElem3)
C_TEXT($mtitle;$myfilepath)
$rootElem:="people"
$myfilepath:="C:\\XMLStuff\\TestPeople1.xml" ` name of the XML file to create.
vRootRef:=DOM Create XML Ref($rootElem)
ALL RECORDS([People])
DOM SET XML OPTIONS(vRootRef;"UTF-16";False) `Set encoding and stand alone values.
 `Go through all records in People table.
For (i;1;Records in selection([People])

$MainElem:="/people/name"
$mtitle:=[People]Title
 `Create name element and the title attribute
vElemRef:=DOM Create XML element(vRootRef;$MainElem;"title";$mtitle)
$vElem1:="first"
 `Create first name element which is a child of name element.
vElemRef1:=DOM Create XML element(vElemRef;$vElem1)
$fname:=[People]FirstName
 `Set first name value
DOM SET XML ELEMENT VALUE(vElemRef1;$fname)
$vElem2:="middle"
 `Create middle name element which is also child of name element.
vElemRef2:=DOM Create XML element(vElemRef;$vElem2)
$middle:=[People]MiddleName
 `Set middle name value
DOM SET XML ELEMENT VALUE(vElemRef2;$middle)
$vElem3:="last "
 `Create last name element
vElemRef3:=DOM Create XML element(vElemRef;$vElem3)
$last:=[People]LastName
 ` set last name value
DOM SET XML ELEMENT VALUE(vElemRef3;$last)
NEXT RECORD([People])

End for
` save XML to file.
DOM EXPORT TO FILE(vRootRef;$myfilepath)

As you can see in the code, an empty XML tree is first created with “people”
as the root element. Then a sub-element “name” is created with a title
attribute using the reference of the “people” element. The “name” should
contain the first, middle, and last name elements and values. So, to create
these child elements, the reference of the “name” element is used to create
the “first”, “middle”, and “last” elements. The respective references for these
child elements are, then, used to create their respective values. To create a
“name” node for every record, the reference of the root element “people” is
used in a loop. Each time, a new “name” element with its child elements and
values is appended to the XML structure. At the end, the XML tree is saved

into a file. As shown in this mode, the element references are used to build
the desired XML structure.

In SAX mode

To create the same XML document above using SAX, you can perform the
code below:

`Method: XMLCreateSAX
C_TIME($docref)
C_TEXT($rootElem;$vElem1;$vElem2;$vElem3)
C_TEXT($mtitle;$myfilepath)

ALL RECORDS([People])
$myfilepath:="C:\\XMLStuff\\TestPeople1.xml"
$DocRef:=Create document($myfilepath)
SAX SET XML OPTIONS($DocRef;"UTF-16";True) ` set encoding and stand alone values
$rootElem:="people"
`Create root element "people". A begin tag of the same name is added.
SAX OPEN XML ELEMENT($DocRef;$rootElem)
 `Go through all the records in table
For ($i;1;Records in selection([People]))

$MainElem:="name"
$mtitle:=[People]Title
 `Create parent element "name" with the title attribute. A begin tag "name" is added.
SAX OPEN XML ELEMENT($DocRef;$MainElem;"title";$mtitle)
$vElem1:="first"
 `Create child element "first". Begin tag "first" is created.
SAX OPEN XML ELEMENT($DocRef;$vElem1)
$fname:=[People]FirstName
 `Set value for the first tag.
SAX ADD XML ELEMENT VALUE($DocRef;$fname)
`Close last element created. An end tag "first" is added.
SAX CLOSE XML ELEMENT($DocRef)
$vElem2:="middle"
`Create a child element "middle". Begin tag "middle" is created.
SAX OPEN XML ELEMENT($DocRef;$vElem2)
$middle:=[People]MiddleName
 `Set value for middle tag.
SAX ADD XML ELEMENT VALUE($DocRef;$middle)
 `Close the "middle" tag. An end tag "middle" is added.
SAX CLOSE XML ELEMENT($DocRef)
$vElem3:="last"
`Create a child element "last". Begin tag "last" is created.
SAX OPEN XML ELEMENT($DocRef;$vElem3)
$last:=[People]LastName
 `Set value for last tag.
SAX ADD XML ELEMENT VALUE($DocRef;$last)
 `Close the "last" tag. An end tag "last" is added.
SAX CLOSE XML ELEMENT($DocRef)

 `Close the "name" tag. An end tag "name" is added.
SAX CLOSE XML ELEMENT($DocRef)
NEXT RECORD([People])

End for
 `Close the "people" tag.
SAX CLOSE XML ELEMENT($DocRef)
CLOSE DOCUMENT($DocRef)

As you can see in the code above, a document is first created. The document
reference is then used to create the elements in a stream-like fashion from
top to bottom. Every time an element is created using the SAX OPEN XML
ELEMENT command, a begin tag for that element is created. You will have to
add a matching close tag at the proper location. This is necessary to properly
build the hierarchy. The SAX CLOSE XML ELEMENT command adds a closing
tag to the last element created by the SAX OPEN XML ELEMENT command.
To create a child element, you will have to create another XML element
without closing the parent element. And to create a sibling element, you will
have to close the current element and then create another element. The
opened elements should be matched with close tags to build the desired XML
structure. The CLOSE DOCUMENT command closes the XML document.

Opening and Traversing XML Documents
--

The DOM and SAX commands open an XML document and parse it quite
differently. DOM opens the document and builds an XML tree in memory. You
can find elements using the XPath notation
(http://www.4d.com/docs/CMU/CMU10099.HTM) starting from a reference
(element reference). You can retrieve and modify the names and values of
the elements. SAX, on other hand, traverses the document in a linear
fashion. SAX returns an event as it reads the document from top to bottom.
The document to be parsed by SAX needs to be open in read-only mode.
Thus, when parsing an existing XML document using SAX, you will not be
able to modify values and element names.

Parsing in DOM mode

DOM can open a document using the DOM Parse XML Source command which
returns a reference to the document. There are many DOM commands that
let you read, parse and write the elements and attributes
(http://www.4d.com/docs/V6U/V6U00067.HTM). You can find and count
elements and get their values and modify element names, its value, and
attributes. Also, you can traverse through the XML structure with commands
that allows you to directly access the parent, next and previous sibling, and
first and last child elements. Using the XPATH notation (designed to navigate
XML structures), you can directly set elements within an XML structure
without having to indicate the full access path.

Below is an example code that illustrates how to find all instances of an
element and return its values. The method below takes three parameters.
The first parameter is the name of the element to find, the second parameter
holds the pointer to an array that will store the values of the elements found,
and the third parameter is the path to the XML document to be parsed. You
pass the name of the element and all the instances of this element are
looked up and their values stored in an array.

 `Method: DOMGetElemVal
 `Description: This method returns the values of the element you want to find.
 ` You pass the name of the element ($1), a pointer to the array ($2) that will
contain the values,
 ` and the path to the XML file ($3) you want to parse.
C_TEXT($1;$fElem;$pathfile;$3)
C_POINTER($2)
$pathfile:=$3
 ` $pathfile:="C:\\XMLStuff\\TestPeopleDOM2.xml"
ARRAY TEXT(ElemVals;0)
 `Parse XML document
$ref1:=DOM Parse XML source($pathfile)
 `Find first element "name" and return reference to this node
vName:=DOM Find XML element($ref1;"/people/name")
$fElem:=$1
 `loop until all element values are found
While ((OK=1) & (vName#""))

 `find reference to the element to find
vFirst:=DOM Find XML element(vName;"/name/"+$fElem)
 `get value of this elemen t
DOM GET XML ELEMENT VALUE(vFirst;value)
 `save value to array
APPEND TO ARRAY(ElemVals;value)
 `go to the next sibling "name" element.
vName:=DOM Get Next sibling XML element(vName)

End while
 `Copy array with values to passed array.
COPY ARRAY(ElemVals;$2->)

As you can see from the code above, the XML document is first parsed using
the DOM PARSE XML Source command. Then the element “name” which
contains the target element is looked up. The DOM Find XML element
command is used to find the reference to the “name” node and this reference
is used to find the child element. Once the child element is found, the
element value is retrieved using the DOM GET XML ELEMENT VALUE
command and is stored in an array in the code above. To go to the next node
of the element “name”, the DOM Get Next sibling XML element command is
used. The reference to the first element “name” is used to go to the next
sibling node. The process is repeated until all the element “name” are
processed.

Parsing in SAX mode

SAX, in contrast, opens an XML document using the OPEN DOCUMENT
command. The document should be opened in read-only mode to avoid any
conflict between 4th Dimension and the Xerces library when you open
"standard" and XML documents simultaneously. If you execute a SAX parsing
command with a document open in read-write mode, an alert message is
displayed and parsing is impossible.

Traversal of the XML structure needs to be carried in a linear fashion from
the beginning to the end of the document when using SAX. To traverse and
move through the document, the SAX Get XML node command is used. This
command returns events for every SAX event encountered. Below is a list of
events that could be returned:

Constant Type Value
XML Start Document Longint 1
XML Comment Longint 2
XML Processing Instruction Longint 3
XML Start Element Longint 4
XML End Element Longint 5
XML DATA Longint 6
XML CDATA Longint 7
XML Entity Longint 8
XML End Document Longint 9

Based on the type of event returned, you can then check and retrieve
information such as element name, value, attributes, entity, comments,
CDATA etc. Every time the SAX Get XML node command is used, you will
have to check the event returned to retrieve the desired information. For
instance, to find a specific element, you will have to call the SAX GET XML
node until an XML Start Element is encountered, then you can then use the
SAX GET XML ELEMENT command to retrieve the element name. You can
then verify if that is the element you are looking for.

Below is a sample code that illustrates how to find elements and retrieve
values using SAX. This method is the same as the example code in the
parsing in DOM mode only that is implemented in SAX.

 `Method: SAXGetElemVal
 `Description: This method finds an element and returns values for all instances found of this
element in the XML document.
 ` Parameter: $1 - name of element to find , $2 - pointer to array which will hold values , $3 -
path to XML document.

C_TEXT($1;$fElem;$pathfile;$3)
C_POINTER($2)
ARRAY TEXT(ElemVals;0)
$pathfile:=$3 ` path to the XML document to be opened.
 `"C:\\XMLStuff\\testpeopledom2.xml"

DocRef:=Open document($pathfile;"xml";Read Mode) ` open XML document as read only.
$fElem:=$1 `element to find

If (OK=1)
Repeat

MyEvent:=SAX Get XML node(DocRef)
If (MyEvent=XML Start Element) ` check if the type of event is an XML Start Element

 `get the name of the element
SAX GET XML ELEMENT(DocRef;name;prefix;attrNames;attrValues)
If (name=$fElem) `check if the element is the one you want

MyEvent:=SAX Get XML node(DocRef) ` get the next node
If (MyEvent=XML DATA) ` check if the event type is data

 `Get the data of the element
SAX GET XML ELEMENT VALUE(DocRef;Value)
 `Append value to array
APPEND TO ARRAY(ElemVals;Value)

End if
End if

End if
Until (MyEvent=XML End Document) ` repeat until the end of XML is reached

End if
CLOSE DOCUMENT(DocRef)
 `Copy array with values to the passed array
COPY ARRAY(ElemVals;$2->)

As you can see from the code above, the document is first opened in read
only mode. Then, you keep on calling the SAX GET XML node command until
the end of document is reached. The said command returns an event each
time. The event returned is checked and if the event is an XML Start
element, the SAX GET XML ELEMENT is used to get the element information.
If the element is the one you are looking, the SAX Get XML node command is
called again to move in the document and then retrieve the data by using
SAX GET XML ELEMENT VALUE. This value is then stored in an array. As you
can see the traversal is done using one document reference and is carried
out in linear approach.

Conclusion
--

DOM (Document Object Model) and SAX (Simple API XML) are different
modes in 4th Dimension for parsing XML documents. These two modes offer
their own advantages and disadvantages. DOM reads the whole XML
document and builds an XML tree in memory. This mode allows flexibility in
XML traversal as you can traverse at any directions but can be limited with
the available memory when dealing with very large documents. Modifications
of elements and their values are possible in this mode when parsing existing
XML documents. Meanwhile, SAX does not generate a representation of XML
content in memory. This mode works in a streaming approach where events
are passed when traversing the document from the beginning to the end.
Though it is not limited with the amount of memory you have, it is not as
flexible as DOM as far as reading, analyzing, and manipulating XML structure.

