
Rich Internet Clients – First Steps with AJAX

By Thomas Maul, General Manager, 4D Germany.
TN 06-05

Abstract
--

This Tech Note gives basic background information on Ajax, describes the
basic steps to implement Ajax-based designs and explains how to do it with
4D. Ajax relies on heavy use of XML and 4D 2004’s rich XML features allow
fast development of Ajax based solutions.

Introduction
--

While most Internet applications have a simple user interface a new
generation of Web applications has recently appeared. These Web
applications use a rich interface that mimics a normal desktop application.
Google (Google Mail, Google Map or Google Suggest) or Flickr
(http://flickr.com/) are some examples.

These Web pages use features like Type Ahead, Drag & Drop and Animations
combined with asynchronous communications with the Web server. Unlike
“normal” Web pages they do not submit entries to the server and reload a
whole new page; only small parts are sent and replaced inside the existing
page, which allows for faster and more user-friendly clients.

This technique is called Asynchronous JavaScript and XML (Ajax) and
involves a combination of several existing standards. Although only very few
Web sites are using this technique, it is not a new idea. There was a session
during 4D Summit 2004 in New Orleans about Ajax, named
“XMLHTTPRequest” (explaining how to use Ajax for Dashboard). This is the
first 4D Tech Note on the subject.

What is Ajax?
--

Wikipedia (http://en.wikipedia.org/wiki/Wikipedia) has the following
definition for Ajax:

Asynchronous JavaScript And XML, or Ajax (pronounced as a word, not as
individual letters), is a Web development technique for creating interactive
Web applications using a combination of:
- XHTML (or HTML) and CSS for marking up and styling information.

(XML is commonly used, although any format will work, including
preformatted HTML, plain text, JSON and even EBML).

- The Document Object Model manipulated through JavaScript to
dynamically display and interact with the information presented

- The XMLHttpRequest object to exchange data asynchronously with the
Web server. In some Ajax frameworks and in some situations, an
IFrame object is used instead of the XMLHttpRequest object to
exchange data with the Web server.

Some examples…
--

This definition might sound very complex and difficult. It is much easier to
understand the power of Ajax by simply trying some examples. Start the
example database, either on Mac or Windows, with 4D 2004. The example is
based on the “Video Library” example (installed with the 2004 product CD,
folder “Application Samples”). The database contains approximately 1500
movies and 13000 actors.

Click on the “Launch the Browser” button to start a Web browser and connect
to the local 4D Web server (or enter http://127.0.0.1:8080 to connect
manually). Note that the Web server will run in demo-mode if a 4D 2004
Web Server license is not installed.

Click the “Type Ahead: Actor Suggest” link. This loads the
“ActorSuggest.html” page:

Start to type a first or last name; try your first name or the name of your
favorite movie actor. While a name is typed the name, the system will start
to search and show possible matches below the text box. Note: the browser
must support JavaScript to do this. If JavaScript is disabled Type Ahead will
not work. Notice that the Type Ahead function is quite fast. As characters are
entered the suggestion list quickly changes. The system searches for first
names and displays the first 10 actors. If there are less than 10, it also
searches for last names that match what has been typed. For example, try
“cu” or “cur”. Notice the speed. There are 13000 actors in the database.
Note: 4D needs to load the index into the cache before the search speed will
be maximized. Thus one or two searches will need to be executed before full
speed is achieved.

Next try using Up/Down Cursor keys to select a name. The Enter key inserts
the full name. The mouse may also be used to navigate.

If Firefox is installed with the “Live HTTP Headers” extension, open the “Live
HTTP Headers” dialog and observe the headers as changes are made to the
“Auto Complete Text Box”. Note: the “Live HTTP Headers” extension for
Firefox may be downloaded for free from:

http://livehttpheaders.mozdev.org

This extension is very useful for debugging Web projects and is a must-have
for Ajax development.

Notice that while text is entered there are invisible connections sent from the
browser to the 4D Web server with the current text box content and 4D
answers with the list of possible matches. Notice that the client uses its own
cache to avoid additional requests if the data is already available. To test
this, try typing “alc”. There are only 4 names that match that name
fragment. Entering “alca” or “alco” will not send another request to the
server because the result is already known.

Impressed? Ok, so try the next example. Use the Back button from the
browser. Notice one click is all it takes to go back to the main home page!
Even if several searches were made, all communication done for the Type
Ahead search was done without changing the URL of the Web page, so the
browser thinks it is still on the same page.

Click the “Live Grid” link to open the next example:

Note the scrollable area.

Many common Website designs involve generating links to handle multiple
pages of data, e.g.:

<Previous page> 1 2 3 4 5 6 7 8 9 1 0 2 0 3 0 4 0 <next page>

This design is so prevalent that it is often used it without thinking.

On the other hand, 4D developers will be very familiar with the concept of
MODIFY SELECTION, which 4D has featured for over 20 years. Additionally,
since 4D Server 1.0 (1992), the user interface of 4D Client is designed to
show only the visible part of the selection and only the visible part is
transferred over the network. The user can then use a scrollbar to browse
through the selection.

Would it not be nice to have a similar user interface in a Web application?
Ajax allows this!

Try to move the scrollbar on the “Live Grid” page. Depending upon the speed
of the client computer, the redraw of the new page will be instant or have a
short delay. While the scrollbar is moved, the browser requests the data from
4D dynamically, all without altering the URL of the Web page. Also try the
scrollbar up/down buttons.

If the client/server communication is observed with “HTTP Live Headers”
notice that the server communication is highly optimized. The client requests
the first 70 movies (even though only 10 are displayed). This allows scrolling
without additional requests. If the scrollbar is directly moved, the next 70
records are requested. If there is no user action for the 1 second, the 70
previous records are requested in order to allow scrolling up, using the
cache.

The Live Grid page allows sorting by column heading as well. Try clicking on
“Year” or “Director”. A second click will change the sorting order.

How does Ajax work?
--

Ajax is a combination of several technologies.

First, and most important, is JavaScript. JavaScript controls all actions on the
client (Web browser). The Ajax design concept will not work without
JavaScript. However, this is also the major disadvantage of Ajax. If
JavaScript is disabled, nothing will work. Because JavaScript may be disabled
for security reasons it may be necessary to have a non-Ajax user interface as
a backup solution.

The Document Object Model (DOM) allows for the manipulation of objects,
like a cell in a table (the LiveGrid example uses a table with 10 rows; the
JavaScript code replaces the contents of the table cells to emulate scrolling).

Cascading Style Sheets (CSS) allows for manipulating the appearance of,
creating, moving and resizing objects on the fly, like in the Type Ahead
example.

The last important technology is the “XMLHTTPRequest” object, which was
introduced with Microsoft Internet Explorer 5.5 and Safari 1.2. This is the key
element that allows asynchronous requests to be sent from a Web browser
and handled in the background without disturbing the user on slow internet
lines.

This Tech Note will not cover JavaScript, DOM nor CSS concepts in detail
(with exception of a very basic JavaScript chapter). There are many training
books and Web sites available on these subjects.

JavaScript

You may want to skip this section if you have JavaScript and DOM
experience.

JavaScript is a simple script language. It is related to Java only in syntax
(and even then it is not as strict). For more information see Wikipedia:

http://en.wikipedia.org/wiki/JavaScript

This page contains basic steps for learning JavaScript and a collection of links
to tutorials, guides, etc.

A simple JavaScript example is contained in the sample database. Use the
back button in the Web browser (or connect again to http://127.0.0.1:8080,
4D must be running with the demo database) and click on “Simple HTML”:

In the text boxes enter some numbers (or characters). As soon you leave a
box the entered value is copied into another (non-enterable) text box. This
behavior very similar to using the “On Data Change Event” in 4D.

Right-click on the Web page and view the source (or open the file
“SimpleHTML.html” in the folder “WebFolder” with a text/html editor). The
HTML code (body part) contains a form and, inside the form, a table. The
table contains 4 rows, one for the header and 3 for the text boxes. Each row
contains two cells. Here is the HTML for the cells:

<td width="103" colspan="2" class="in_label" nowrap>
<input name="artNew1" type="text" class="inp" style="width: 50px;

margin-left: 5px;" ID="Input1"
onChange="setTextValue('Text1', this)">

< / td>
<td width="450" class="in_label" ID="Text1">
< / td>

Note that each cell defines an ID. ID’s are the key element of this concept as
they allow to direct access any object inside the page via JavaScript.

Aside from the visual information for the text box, the first cell also contains
code:

onChange="setTextValue('Text1', this)"

In 4D this could be thought of as calling the “setTextValue” method for the
“On Data Changed” event in an object method:

$event:=Form event
Case of

: ($event:=On Data Change)
setTextValue(“Text1”, Self)

End case

The JavaScript method gets two parameters, a text constant with content
“Text1” and a pointer to the current object (which is called “Self” in 4D and
“this” in JavaScript).

The first parameter “Text1” is the ID of the cell to be changed. In the header
of the HTML page is the definition of the JavaScript method:

<script type="text/javascript">
function setTextValue(id, obj)
{

document.getElementById(id).innerHTML=obj.value;
}
</script>

The function body is only one line. It accesses the document (remember
DOM = Document Object Model) and inside the document it looks for the
element using the ID. This concept allows access to all existing objects in the
document as long they have an unique ID. The attribute “innerHTML” allows

assigning any value, including HTML code. The second parameter “obj” is a
kind of pointer on the calling object, which contains the new value.

Make sure the JavaScript us understood before continuing with the following
chapters. Without basic JavaScript knowledge the material that follows may
be difficult to understand, so an introduction to JavaScript may be required
before moving on.

Debugging JavaScript problems can be difficult. For example, sometimes the
browser appears to do nothing. This is the usual reaction on a programming
error; the execution will simply stop. Firefox includes a tool named
“JavaScript Console” which lists all execution errors. This is a big help during
development. Also take a look at the Venkman JavaScript Debugger, a free
debugger allowing to trace JavaScript and read/write variables:

http://www.mozilla.org/projects/venkman/

The XMLHTTPRequest Object

The XMLHTTPRequest object was originally developed by Microsoft. It has
been available since Internet Explorer 5.0 as an ActiveX object accessible via
JScript, VBScript, or other scripting languages supported by the browser.
Mozilla contributors then implemented a compatible native version in Mozilla
1.0. This was later followed with an implementation by Apple in Safari 1.2
and Opera Software in Opera 8.0. This object allows retrieving data from a
Web server as a background operation. While the data is often XML, it can be
any text based data.

This object is explored in greater detail in the 4D Summit 2004 session notes
on pages 377-381.

A minimal XMLHTTPRequest session looks like this:

var oXMLHTTP = new ActiveXObject(“Microsoft.XMLHTTP”)
var sURL = “/csutomerIDcheck.xml?username=”+custid;
oXMLHTTP.open(“POST”, sURL, false);
oXMLHTTP.send();
alert(oXMLHTTP.responseText);

This minimal code may or may not work as it uses a Microsoft Object not
available on any other browser.

Mozilla uses another object, so we need to try to check which object is
available in order to support both browsers:

if (window.XMLHttpRequest){
 oXMLHTTP =new XMLHttpRequest();
 } else if (window.ActiveXObject){
 oXMLHTTP =new ActiveXObject("Microsoft.XMLHTTP");

 }

The third parameter of the “XMLHTTPRequest.open” method is the async
flag, which tells the browser whether or not to wait until the server has
answered a request. In order to operate in asynchronous mode code will
need to be added to handle the responses from the server (this code is
covered later).

Exception handling in asynchronous mode can be a difficult job. The good
news is that many examples for this already exist. Simply use Google to
search for “XMLHttpRequest”. The Apple Web site contains an example (with
support for Microsoft Internet Explorer on Windows):

http://developer.apple.com/internet/webcontent/xmlhttpreq.html

In order to develop more complex dynamic Web applications it is helpful to
use a JavaScript Framework. These Frameworks, like “Prototype” or “Rico”,
already contain code to handle the XMLHttpRequest object. See the “Type
Ahead” or “Live Grid” examples for more information.

The Rich Internet Client
--

The next step is to put it all together using JavaScript, the XMLHTTPRequest
object, and 4D.

Take a look at the “Simple Ajax” example:

This example is similar to the “Simple HTML” example, but uses the
XMLHTTPRequest to talk to 4D.

Enter any number or character code (e.g. simulating order numbers) in the
text boxes. As soon you leave the box (e.g. by typing tab or clicking in the
next box) the entered text plus the current time is displayed. This data
comes from 4D.

Open the HTML file “SimpleAjax.html” (in the folder “Webfolder”) and the file
“SimpleHTML.html” with a text or HTML editor, so both can be compared.

The HTML body of the two files is identical (except for comments). The
difference is in the HTML header.

In the “SimpleHTML.html” example without Ajax the setTextValue function
was defined as:

function setTextValue(id, obj)
{
document.getElementById(id).innerHTML=obj.value;
}

The Ajax version has two functions:

function setTextValue(id, obj)
{
var url = "/4DAction/Ajax_SimpleRequest/"+obj.value;
var loader=new net.ContentLoader(url, ActionCompleted);
loader.returntarget = id;
}

function ActionCompleted() {
document.getElementById(this.returntarget).innerHTML=

this.req.responseText;
}

The first line of the function “setTextValue” creates a variable and assigns an
URL to it. The URL contains a 4D method named “Ajax_SimpleRequest”,
which will be called using 4DAction, and the content of the text box as a
parameter.

The second line defines the object that will handle all of the Ajax
communication. This object is defined in the file “scripts/ContentLoader.js”.
This line creates the object and passes the URL and the name of a function
(“ActionCompleted”) to be called as soon the server answers.

The last line adds a variable to this object to remember the id we want to
change.

The function “ActionCompleted” is called as soon the Web server answers.
The data is stored in this.req.responseText.

This example shows a possible problem. Wait a minute and then enter the
same value again (in the same text box or a different one). Note that the
time is not updated:

This happens because the Web browser did not send the request to the 4D
Web server. Instead it used the cache. This can be verified with Live HTTP

Headers. If the returned answer from the server is the same (e.g. a product
name), this can be seen as feature to avoid network traffic. If the answer is
likely to be different (e.g. amount of products in stock), this is a problem.
The next chapter explains how to solve that.

Take a look at the 4D code for “Ajax_SimpleRequest” in the sample database
(click the “Goto Design Mode” button to get into Design Mode):

$request:=Substring($1;2) ` parameter contains entered text, starting with “ / ”
$answer:=$request+" time: "+String(Current time) ` calculate the answer
SEND HTML TEXT($answer) ` send the answer

Set a breakpoint at the first line. Switch back to the Web browser and enter
some new values in all three text boxes. The debugger in 4D will stop on the
breakpoint. This simulates a “very slow” Web server; 4D will not answer until
execution continues. Notice that the text beside the box did not change.
However, even if the Web server is slow (or does not answer at all), the
client is still useable. The application is working, only the back end responses
are missing, thanks to the asynchronous calls.

Switch back to 4D and click the “No trace” button (green triangle) in the
debugger (note that there will be one debugger window for each request
sent). In the browser window the responses should appear. The variable
“loader.returntarget” identifies which object the response belongs too.

The Web Browser Cache
--

It was shown before that the Web browser cache can prevent requests from
being sent to the server using asynchronous requests. There are several
ways to handle this problem. Doing a Google Search for “Ajax browser
cache” shows several discussions and possible solutions.

The simplest solution is to send the request as an HTML FORM using a POST
command. In this case the browser will not use the cache and always sent
the request to the Web server.

Try the “Simple Ajax – using form” example. Send a request, wait a minute
and use the same value again. The updated time shows that the browser
cache is not used.

In this example the 4D code is slightly modified:

ARRAY TEXT($name;0)
ARRAY TEXT($values;0)
GET WEB FORM VARIABLES($name;$values)
If (Size of array($values)>0)

$request:=$values{1}
$answer:=$request+" time: "+String(Current time)

SEND HTML TEXT($answer)
Else

$answer:="Server communication error - no parameter passed"
SEND HTML TEXT($answer)

End if

The command GET WEB FORM VARIABLES is used to retrieve the parameter
and the current time is appended to it.

Another possible solution to the Web browser cache problem is to modify the
HTTP header and change the expire date. This solution is used in the more
advanced examples presented in this Tech Note (“Actor Suggest” and “Live
Grid”).

Examples In Depth…
--

Double Combo Box

The “Simple Ajax” examples are very simple. Still they implement the basic
functionality of an Ajax design and demonstrate a drastically improved user
experience.
The next example, “Double Combo Box”, needs more JavaScript code and
shows how generic code can be used.

This example is based on chapter 9 from the book “Ajax in Action”, which is
available as a free download from:

http://www.manning.com/books/crane/chapters

This chapter of the book explains in detail how to build a combo box that
modifies the content of a second combo box. Imagine an online reservation
system to rent videos. The first combo box selects the movie category. The
second shows the available movies after asking the server to check the
availably.

Open the “Double combo box” example in the Web browser. Note that the
second combo box is empty. Use the first one to select a category, like
Fantasy. The second combo box will show the available movies.

This example also shows a possible problem. Select the category “Action”
and immediately open the second combo box. It will still show the old
content. If the combo box is kept open it will display the correct values after
2 or 3 seconds. This delay occurs because there are nearly 500 movies for
the “Action” category and it takes the JavaScript a while to build such a large
combo box. This is an example of a bad use of a combo box (a list box would
be better) but it is impressive that it works and shows the power of
asynchronous code.

The 4D code for this example is very similar to the previous example. Again
GET WEB FORM VARIABLES is used to retrieve the parameters. Because the
reply contains many more items, XML is used to send the data. Please note
while the “x” in Ajax stands for XML, this is the first time XML has been used
in the examples. As mentioned before it is possible to answer with any kind
of text-based data; plain text, ready prepared HTML, XML, encoded pictures,
etc. The DOM commands of 4D 2004 are used to prepare the XML document.

Here is the HTML for the “Double Combo Box” example:

<head>
 <script type="text/javascript" src="ricoscripts/prototype.js"></script>
 <script type="text/javascript" src="ricoscripts/rico.js"></script>
 <script type="text/javascript" src="ricoscripts/doubleCombo.js"></script>
 <script type="text/javascript" >
 function injectComponentBehaviors() {
 var doubleComboOptions = { };
 new DoubleCombo('Group',
 'Movies',
 '/4DAction/Ajax_DoubleCombo',
 doubleComboOptions) ;
 }
 </script>
</head>

<body onload="injectComponentBehaviors()">
…
<select name="Group" ID="Group">

<option value="-1">Pick a categorie</option>
…

</select>
<select name="Movies" ID="Movies" style="width:200px">
…
</body>

Note that the JavaScript code is based on the frameworks mentioned
previously:

Read over with the HTML body. Note that the two combo boxes (noted by the
<select> tag) do not contain any JavaScript! This allows easy integration into
existing Web pages without any modification of the HTML page. The code in
the header “injects” the functionality. The object DoubleCombo (defined in
the function “injectComponentBehaviors”) does the main job; the first
parameter sets the main combo box; the second parameter sets the
secondary combo box (the objects are identified using the ID tags); the third
parameter is the URL to be called; the last parameter allows setting options
which are not needed at this point.

This concept makes the enhancement of existing Web pages very easy. For
detailed information about the JavaScript code read chapter 9 of “Ajax in
Action”. Note that some minor modifications to “DoubleCombo.js” were made
in order to support Safari.

Type Ahead

The design of this example was explained previously. Take a look the 4D
code.

The 4D method “AjaxActorSuggest” handles the back-end part. The code is
very similar to the combo box example. The parameters are retrieved using
GET WEB FORM VARIABLES and the response is built as an XML document.

The JavaScript code uses the same concepts as the “Double Combo Box”. A
generic function “injects” the feature into the HTML code. Take a look at
“ActorSuggest.html”. It is very similar to “DoubleCombo.shtml”.

Live Grid

This is the most complex example in this Tech Note. It makes heavy usage of
the OpenRico framework, which itself uses the Prototype framework.

To further explore the OpenRico framework take a look at:

http://ww.openrico.org

See specially the examples for graphical features, like animations. There is
also a PDF explaining how to use the LiveGrid feature.

The basic steps are:

- Build an HTML table, make sure to use table ID’s to identify the table
and <DIV> statements to organize the table (container, header,
body). The table may contain real data for the first rows, but also can
be empty. The table must contain at least 1 additional row than later
displayed.

- In Onload call Rico.LiveGrid to build the LiveGrid functionality, passing
the name of the table, the number of rows and the URL of the back
end. This object will redesign the table to the correct amount of rows,
request the data from the server, build an internal cache, create a
scrollbar, create the sort on header functionality…in fact it pretty much
does all the work.

- Create a 4D method to build the backend.

The Rico.LiveGrid object allows the inclusion of a method to be called for
each scroll, which allows for modifying other objects in the page. The “Live

Grid” example demonstrates this with a header showing the current scroll
position. This header also contains an URL which can be used as a bookmark.
The bookmark contains the current scroll position and the sorting (object and
order).

The 4D method “Ajax_LiveGrid” handles the back end. The method is very
similar to the “Combo Box” and “Type Ahead” examples in that it reads the
parameters and builds a XML answer.

To see the content of the “Live Grid” XML answer, type this URL into the Web
browser:

http://127.0.0.1:8080/4DAction/Ajax_LiveGrid?id=data_grid&page_size=70&
offset=400&_

Note that the XML answer contains HTML code. This is the preformatted part
that will be inserted into the HTML table.

Ajax Resources
--

Even though Ajax is a combination of existing concepts, there were very few
books specifically covering Ajax development available at the time this Tech
Note was written. There are many Web sites devoted to the topic but, as the
Ajax design is relatively new, the URL’s often change so a list of resources is
not given here.

There is an introduction to Ajax on the IBM website, which contains links to
many other articles:

http://www-128.ibm.com/developerworks/web/library/wa-ajaxintro1.html

Wikipedia also has a list of Tutorials:

http://en.wikipedia.org/wiki/Ajax_%28programming%29

This Tech Note uses an object introduced in chapter 9 of the book “Ajax in
Action” by Dave Crane (ISBN 1932394613), which can be downloaded from:

http://www.manning.com/books/crane/chapters

The JavaScript source can be loaded from the same page.

This book contains an introduction to JavaScript, CSS and DOM so it is a big
help for starting Ajax development. It explains how to do things in detail and
then shows how to create more generic useable objects. There is also an 18
minute movie on the website showing content and examples from the book.

Conclusion
--

This Tech Note gave basic background information on Ajax, described the
basic steps to implement Ajax-based designs and explained how to do it with
4D. An example database was provided to illustrate the Ajax design in action.

