
Mirroring with 4D 2004.3

By Kent Wilbur, Manager Information Systems, 4D, Inc.

Technical Note 05-38

Introduction
--

Mirroring used to be built into 4D Backup before 4D 2004. When 2004 was
released, the backup operation was integrated into the 4D application. In the
initial release of 4D 2004 mirroring was not implemented. 4D 2004.3 has
introduced two new language commands that permit creating a mirroring
backup system in your 4D 2004 server. This technical note will discuss these
new commands and how to set up a mirroring system.

The purpose of this technical note is to introduce the new commands to
enable you to implement a mirror. It is not an attempt to write the perfect
solution for your mirroring needs. You will need to modify the code presented
here to suit your own specific requirements.

In addition to the basic purpose of the technical note I’ve had to include
some other interesting techniques just to properly demonstrate mirroring.
Techniques like creating and maintaining preference settings in an XML file.
And modifying preference settings on the server from a 4D Client, which will
require some custom Client-Server communications.

What is mirroring?
--

Mirroring is the concept of having a second identical database running in
parallel to the database in active use. Its purpose is to provide the quickest
possible solution in the event that the main database become inoperative for
any reason. Because mirroring keeps the database synchronized if the main
database fails, the mirror database will be up to date as of the last
synchronization. If the log file that contains everything since the last
synchronization on the main server is recoverable, all that needs to happen is
to synchronize those last few entries and you can be up and running again
using the mirrored server as the primary server.

Since the mirrored server is already a server and is already running the
whole process can literally be complete in a few minutes and the database
will be fully functional again. No restoring from backups. Mirroring is the
fastest way to get a backup server acting as the primary server possible.

Does the mirrored database have any special
requirements?
--

Prior to 2004 the answer was yes. The machines involved really needed to be
almost identical. Same hard drive partitions, same operating system, literally
‘mirrors’ of one another. In the 4D 2004 implementation, this is no longer
true. In 4D 2004.3 mirroring can even take place cross platform. The only
requirement of the mirror machine is that it absolutely can not modify data
on its own. So you will need to be sure that your On Startup doesn’t modify
any data automatically. And also be very sure that nobody accidentally logs
into the database and does something.

Log files
--

At the heart of both the old mirroring system and the 2004 mirroring system
are log files. To set up a mirror you simply backup the database and begin a
log file. Shut down the server and then transfer all the files to a mirror
machine. To create a mirror all the files must be identical. Then both the
mirrored server and the original server are restarted.

To maintain the mirror, periodically on the original server a new log files is
created and the one just closed is sent to the mirror server where it is
integrated. This process can be continued indefinitely maintaining both the
original and complete duplicate copy on the mirrored server.

Log file numbering scheme
--

Each backup and log from a backup gets a unique number. If you are familiar
with using Backup on 4D Server you should easily recognize them. Ex:
MyDatabase[0739].4BK and MyDatabase[0738].4BL.

When a mirroring system is involved each transfer of the log to the mirrored
server creates an additional segmented log file. In order to identify these
logs they are given an additional segment number in the name of the file.
MyDatabase[0739-0001].4BL; MyDatabase[0739-0002].4BL;
MyDatabase[0739-0003].4BL; etc. It is these closed segmented log files that
are sent to the mirrored machine for integration.

New log file function
--

The New log file function closes the current log file, renames it, and creates
a new log file at the same location as the original log file. This is the same
action that takes for a log file during a normal BACKUP command. The
difference is that a backup does not take place. Only the new log file.

The new log file function returns the full Path Name of the log file that has
just been closed and renamed. This name contains the last backup number
and segment number as described above.

The function only executes on a 4D Server. If the command is not executed
on 4D Server an error code of 1412 is generated and nothing else happens.
The function also requires that a log file be active. If there is no log file active
and error of 1403 is returned.

While the New log file function is operating it stops all other processes on
the 4D Server.

Transfer the log file segment
--

Once a log file segment is created and closed it is transferred to the mirrored
server. How the transfer is accomplished is up to the developer. It could be
transferred manually/or programmatically using shared network volumes.
Using the 4D Internet commands you could create an ftp file transfer
mechanism, then use 4D Open to tell the mirrored database to integrate the
ftp’d file. In the example database provided, I have chosen to use 4D SOAP
call to transfer and integrate log files. I chose 4D SOAP as it was the simplest
solution and provided an easy way to communicate success or failure of the
log integration back to the main database.

Backup and log from a backup gets a unique number. If you are familiar with
using Backup on 4D Server you should easily recognize them. Ex:
MyDatabase[0739].4BK and MyDatabase[0738].4BL.
during a normal BACKUP command. The difference is that a backup does not
take place, only the new log file.

INTEGRATE LOG FILE
--

The INTEGRATE LOG FILE command starts the integration of the log file
given to the command. The command closes the existing log file and reads
the entries from the log file and merges them into the datafile. It then makes
the log file segment just read its current log file. Mirroring is now complete
and the two databases are synchronized.

However, several problems might occur along the way. Firs, the command
will only work on a 4D Server. If it is not running on a 4D Server the file is
not integrated and an error of 1412 is generated. Like its counterpart, there
must be a current activated log file. If there is no current log file a 1403 error
is generated.

These two problems are easily overcome. But the bigger problem is if the
files got out of sync. Internal to both the backup and log files are a set of
numbers that for lack of a better term I will call sequence verification
numbers. For successful integration to take place both the backup an logfile
segment internal sequence verification numbers must be correct. You can’t
change these internal numbers simply by renaming the file. These numbers
are imbedded into the files themselves. These numbers insure that the log
file being integrated is the correct ‘next’ log file to go with the appropriate
‘backup’. If anything happens to disrupt the correct sequence of database
events in the log file, the integration of the log file will not occur and an error
code of 1410 is generated which in sort says: “Wrong log file. The log file
exists, but does not correspond to the open database.”

ERROR HANDLING
--

The process of mirroring without problems is essential to those attempting to
set up a mirror. Problems can sometimes occur. Some harmless, and
mirroring should continue at the next available scheduled time. Some errors
are fatal. No matter what the error, it is essential that proper error handling
be observed. If you are not using an ON ERROR CALL routine any time you
use one of the mirroring commands and an error occurs, the process will
abort without completing the task and also without doing anything or even
notifying you about the potential problem. In addition if the process is a self
delaying process, since it aborted, it will not run the next time it should. It is
absolutely essential to create and use an ON ERROR CALL routine when
using any of the mirroring commands.

The example database
--

The example database is designed to demonstrate a simple mirroring
system. It requires two 4D servers running 4D 2004.2 or higher. It contains
some simple preference settings for scheduling mirroring, transferring and
merging the log files, error handling, and disaster recovery.

Creating the example database mirror
--

In order to do mirroring, you must first have log files established. Then you
transfer the database to a mirrored machine. Establishment of a mirror
requires that you follow several exact steps.

1) Launch the database. (This database uses preference settings,
these need to be selected when the database is first launched. For
this database choose the ‘Main DB’ setting.)

2) Perform a backup of the data. (Note: It would be a good idea to
include the plugins folder in the backup)

3) Go to the backup preferences and create a new log file.

4) Shut down the database.
5) Transfer everything, structure, data files, backups, log files, etc. to

a second server machine.
6) In the Preferences folder locate the Mirror folder and trash the

folder.
7) Launch the mirror database on a 4D Server and this time choose

the ‘Mirror’ setting. The mirror is now ready to go.
8) Launch the ‘Main DB’ on a 4D Server.

Any time the mirror is broken, you must go back and recreate the mirror
from scratch, beginning with the backup of the data. The example database
uses preference settings which may or may not be present in what you
create. So those steps might be skipped in your database.

The mirror preference settings
--

I felt it was important to distinguish one database from the other. Since you
can NOT use data to tell the databases apart, that would break the mirror, I
chose an external preference file. It is a simple XML file that stores the
settings. For the mirrored server the only setting used is the fact that it is the
Mirror server. Each time the mirrored server is recreated simply trash the
preferences and choose the ‘Mirror’ setting and that is all the mirror database
needs.

On the other hand, the Main server does all the work. It needs far more
settings.

For security purposes the example database requires the entry of the
mirrored database name. I use this internal name to make sure that the
mirrored database is running, and that the one you are trying to send the log

to is the correct database, before I even call the New log file function. I
don’t want to create a new log file that has nowhere to go.

The second setting necessary is the IP address of the mirrored server. If you
prefer you could use a host name available with a DNS lookup.

Next is the Mirroring Interval. This is in hours and minutes. If the time you
select is 00 Hours and 00 Minutes the mirroring of the server will stop. In a
mirroring system you need some sort of timing mechanism. Perhaps, you
would rather build one that works on certain times of the day, like the
scheduler for the backup system available in 4D Server. If, so, I’ll let you
build it on your own.

The Last Log Transferred is for informational purposes only. It can not be
changed. It indicates the last log successfully integrated into the mirror
server. This will aid in disaster recovery if necessary.

The next section of settings are for an SMTP server and e-mail address where
you would like to send error messages. If you leave this to the default
settings of ‘None’ no messages will be sent.

Finally, at the bottom of the dialog is a status indicator for the mirroring
process on the server. If it is not running you can select the checkbox to
launch the mirroring process on the server. It will launch, provided that you
have entered a mirroring interval. If the process is already running it will be
updated with your revised values.

Mirror preference settings – Server side
--

The mirror preference settings are saved and used on the server. Since 4D
already creates a preferences folder for Backup and other settings the
database will use the same architecture to create its own preferences and
store them in an XML file.

Determining the location of the file: This is done in a single method. If you
want to change the location, the string found here is simply modified to the
location where you would like the file saved. Don’t worry that the values
appears to be a windows format. The code will convert Windows to Mac if
needed.

If (False)
 ` Method: Mirror_tMirrorPath
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/27/2005

 ` Purpose: Contains the location of the Mirror path

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare parameters
C_TEXT($0)

$0:="Preferences\\Mirror\\Settings.xml"
 `End of method

Loading/Creating the preferences file: When the 4D Server launches the
Mirroring process which attempts to load the preferences file using the
Mirror_HandleMirrorPreferences method. All of the manipulation of the
preference file itself occurs in the single recursive method
Mirror_HandleMirrorPreferences, so it might be a little confusing to read at
first. Try first following the code in the method below assuming that the
preference file and folders do not even exist using the portion of the case
statement where $tAction= “Load” located on page 9.

Following through the code with using ‘Load’ will soon call the method again
for ‘create’, simply jump back to the top of the method and follow it through
the second time with $tAction=“Create”.

If (False)
 ` Method: Mirror_HandleMirrorPreferences
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/27/2005

 ` Purpose: Creates a preferences file for the mirror

 ` Parameters
 ` $1 - Action

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare parameters
C_TEXT($1;$tAction)

 ` Declare local variables
C_BOOLEAN($fAbort)
C_STRING(16;$sXML_Reference)
C_STRING(16;$sXML_ElementReference)
C_LONGINT($LProcessID)
C_TEXT($tMirror_TimeInterval)
C_TEXT($tPreferencesPath)
C_TEXT($tSettingsFolderPath)
C_TEXT($tXML_ElementValue)

 ` Reassign for readability
$tAction:=$1

 ` Declare default values
$fAbort:=False

$tPreferencesPath:=GEN_tFormatPathname (Mirror_tMirrorPath)

After getting the path name from Mirror_tMirrorPath, the
GEN_tFormatPathname method simply modifies the path name for the
appropriate platform. (Macintosh or Windows.)

Case of
 : ($tAction="Create")
 CONFIRM("Choose the type for this server.";"Main DB";"Mirror")
 If (OK=1)
 <>tMirror_ServerType:="Main DB"
 Else
 <>tMirror_ServerType:="Mirror"
 End if
 <>tMirror_DatabaseName:="None"
 <>tMirror_ServerIPAddress:="0.0.0.0"
 $tMirror_TimeInterval:="00:00:00"
 <>tMirror_LastLogNumber:="[0000]"
 <>tMirror_SMTPServer:=<>tMirror_DatabaseName
 <>tMirror_ErrorEMailAccount:="someone@domain.com"
 <>tMirror_AuthenticationRequired:="No"
 <>tMirror_AuthenticationUserName:=<>tMirror_DatabaseName
 <>tMirror_AuthenticationPassword:=<>tMirror_DatabaseName

 : (Count parameters#1)
 $fAbort:=True ` Not enough parameters
 Else
 $tMirror_TimeInterval:=String(<>hMirror_TimeInterval;HH MM SS)
End case

Case of
 : ($fAbort)
 : ($tAction="Load")
 $tSettingsFolderPath:=GEN_tGetFolderPathnames ($tPreferencesPath)

GEN_tFolderPathnames method separates the name of the path folders from
the name of the file itself.

 If (Test path name($tSettingsFolderPath)#0) ` See if the directory exists
 GEN_PreparePath ($tSettingsFolderPath)
 End if

The Test path name function will return a 0 if the value being checked is a
folder path. Since we are testing for a folder, if any other value is returned,
one or more of the folders do not exist. GEN_PreparePath is a method that
will create any missing folders in the path.

Below we again check for the file using the Test path name function It will
return a 1 if the value being checked is a file. By checking the full path, file
name included, if anything other than a 1 is returned the file doesn’t exist.

 If (Test path name($tPreferencesPath)#1) ` Check to see if a valid file exists

So we call the Mirror_HandleMirrorPreferences method again to create the
preference file.

 Mirror_HandleMirrorPreferences ("Create") ` If not create a preferences file

 Else

If the file exists, we simply load the preference settings.

 $sXML_Reference:=DOM Parse XML source($tPreferencesPath)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerType")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerType)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerName")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_DatabaseName)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerIPAddress")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerIPAddress)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_TimeInterval")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;$tMirror_TimeInterval)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_LastBackupNumber")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_LastLogNumber)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorSMTPServer")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_SMTPServer)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMail")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ErrorEMailAccount)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailAuthentication")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationRequired)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailUsername")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationUserName)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailPassword")
 DOM GET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationPassword)
 DOM CLOSE XML($sXML_Reference)
 <>hMirror_TimeInterval:=Time($tMirror_TimeInterval)
 End if

 : ($tAction="Save")
 $sXML_Reference:=DOM Parse XML source($tPreferencesPath)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerType")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerType)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerName")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_DatabaseName)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ServerIPAddress")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerIPAddress)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_TimeInterval")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;$tMirror_TimeInterval)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_LastBackupNumber")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_LastLogNumber)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorSMTPServer")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_SMTPServer)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMail")

 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ErrorEMailAccount)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailAuthentication")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationRequired)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailUsername")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationUserName)
 $sXML_ElementReference:=DOM Find XML element($sXML_Reference;"/Mirror/

PreferenceSetting/Mirror_ErrorEMailPassword")
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationPassword)
 DOM EXPORT TO FILE($sXML_Reference;$tPreferencesPath)
 DOM CLOSE XML($sXML_Reference)

 : ($tAction="SaveFromClient") | ($tAction="Save&LaunchFromClient")
 Mirror_HandleMirrorPreferences ("Save")
 Case of
 : ($tAction="Save&LaunchFromClient")
 $LProcessID:=New process("P_MirrorProcess";32000;"MirroringProcess";*)
 Else
 $LProcessID:=Process number("MirroringProcess";*)
 If ($LProcessID>0)
 DELAY PROCESS($LProcessID;0) ` Wake up the process to update the parameters
 End if
 End case

 : ($tAction="Create")
 $sXML_Reference:=DOM Create XML Ref("Mirror")
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ServerType"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerType)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ServerName"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_DatabaseName)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ServerIPAddress"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ServerIPAddress)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_TimeInterval"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;$tMirror_TimeInterval)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_LastBackupNumber"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_LastLogNumber)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ErrorSMTPServer"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_SMTPServer)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ErrorEMail"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_ErrorEMailAccount)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ErrorEMailAuthentication"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationRequired)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ErrorEMailUsername"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationUserName)
 $tXML_ElementValue:="/Mirror/PreferenceSetting/Mirror_ErrorEMailPassword"
 $sXML_ElementReference:=DOM Create XML element($sXML_Reference;$tXML_ElementValue)
 DOM SET XML ELEMENT VALUE($sXML_ElementReference;<>tMirror_AuthenticationPassword)
 DOM EXPORT TO FILE($sXML_Reference;$tPreferencesPath)
 DOM CLOSE XML($sXML_Reference)
 <>hMirror_TimeInterval:=Time($tMirror_TimeInterval)
End case
 `End of method

If you are having trouble with all the XML stuff you might want to study a
little bit about XML by searching the knowledgebase for technical notes on
XML. This is using the DOM (Document Object Model) technique which allows
you to build the structure completely in memory.

What follows is a crude analogy to some 4D concepts as to what is happening
in each of the DOM commands used.

DOM Create XML Reference will create an XML reference in memory
similar in concept to creating a 4D View document in memory.
DOM Create XML element will create a reference to an individual element
in memory, similar to a pointer to a variable. But a hierarchical variable.
Notice all the “/” in the Element Values.
DOM Parse XML Source loads the entire XML source item into memory and
parses through the structure building the entire XML structure in memory.

DOM SET XML ELEMENT VALUE stores a specific value in the individual
element reference. Think of this as $ptrVariable->:=”MyValue”
DOM Find XML element locates the individual specified element in the XML
structure loaded in memory.
DOM GET XML ELEMENT VALUE loads the value of an individual element
into a 4D object. Think of this as myVariable/Field := $ptrVariable->
DOM EXPORT TO FILE writes the entire structure in the file.
DOM CLOSE XML frees the memory taken up by the XML DOM structure.

What results from all this is an XML document that looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Mirror>

 <PreferenceSetting>
 <Mirror_ServerType>Main DB</Mirror_ServerType>
 <Mirror_ServerName>Mirror.4DB</Mirror_ServerName>
 <Mirror_ServerIPAddress>10.96.0.58</Mirror_ServerIPAddress>
 <Mirror_TimeInterval>06:00:00</Mirror_TimeInterval>
 <Mirror_LastBackupNumber>[0000]</Mirror_LastBackupNumber>
 <Mirror_ErrorSMTPServer>smtp.mydomain.com</Mirror_ErrorSMTPServer>
 <Mirror_ErrorEMail>isdept@mydomain.com</Mirror_ErrorEMail>
 <Mirror_ErrorEMailAuthentication>No</Mirror_ErrorEMailAuthentication>
 <Mirror_ErrorEMailUsername>None</Mirror_ErrorEMailUsername>
 <Mirror_ErrorEMailPassword>None</Mirror_ErrorEMailPassword>
 </PreferenceSetting>

</Mirror>

More on saving and modifying the XML next.

Mirror preference settings – Client side
--

Its been several years since any technical note dealt with controlling things
on the server from a client machine. If you are familiar with how this is done,
skip this portion and move on to the next.

The XML preference file resides on the Server machine in its preferences
folder. It would be challenging to try to get a client machine to directly
manipulate the file and modify its content. It is also awkward to have to go
to a Client machine and Execute on server a method that would bring up a
dialog on the Server machine, then run to that machine to enter the data.

Instead we will use some interprocess communication to accomplish the task
by using the GET PROCESS VARIABLE and SET PROCESS VARIABLE
commands. For both these commands you specify a process ID, and the
name of the variable in the other process, as well as the local process
variable that is to receive or currently contains the value. If the process ID is
negative, you are talking about a process ID on the server, not the Client.
Finally we can Execute on server to have the server update the file.

Everything needed takes place in the form method for the dialog that
changes the preference settings

If (False)
 ` Form Method: Mirror_Preferences in the [zDialogs] table
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/27/2005

 ` Purpose: Handles user interface for setting Mirroring Preferences

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare local variables
C_LONGINT($LApplicationType)
C_LONGINT($LFormEvent)
C_LONGINT($LProcessID)
C_LONGINT($LMirrorProcessID)
C_TEXT($tTimeIncrement)

 ` Declare default
$LFormEvent:=Form event
$LApplicationType:=Application type

Case of
 : ($LFormEvent=On Load)
 ARRAY TEXT(atMirror_Authentication;2)
 atMirror_Authentication{1}:="No"
 atMirror_Authentication{2}:="Yes"

 Case of

 : ($LApplicationType=4D Client)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_ServerType;<>tMirror_ServerType)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_DatabaseName;

<>tMirror_DatabaseName)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_ServerIPAddress;

<>tMirror_ServerIPAddress)
 GET PROCESS VARIABLE(LMirrorProcessID;<>hMirror_TimeInterval;<>hMirror_TimeInterval)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_LastLogNumber;

<>tMirror_LastLogNumber)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_SMTPServer;<>tMirror_SMTPServer)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_ErrorEMailAccount;

<>tMirror_ErrorEMailAccount)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationRequired;

<>tMirror_AuthenticationRequired)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationUserName;

<>tMirror_AuthenticationUserName)
 GET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationPassword;

<>tMirror_AuthenticationPassword)

 : ($LApplicationType=4th Dimension)
 Mirror_HandleMirrorPreferences ("Load")

 Else
 CANCEL
 End case

 atMirror_Authentication:=Find in array(atMirror_Authentication;<>tMirror_AuthenticationRequired)
 If (atMirror_Authentication=2) ` authentication required
 SET ENTERABLE(<>tMirror_AuthenticationUserName;True)
 SET ENTERABLE(<>tMirror_AuthenticationPassword;True)
 Else
 SET ENTERABLE(<>tMirror_AuthenticationUserName;False)
 SET ENTERABLE(<>tMirror_AuthenticationPassword;False)
 End if

 $tTimeIncrement:=Substring(String(<>hMirror_TimeInterval;HH MM);1;2)
 atMirror_Hr:=Find in array(atMirror_Hr;$tTimeIncrement)
 $tTimeIncrement:=Substring(String(<>hMirror_TimeInterval;HH MM);4;2)
 atMirror_Min:=Find in array(atMirror_Min;$tTimeIncrement)

 ` Set dialog defaults
 Mirror_ckLaunchProcess:=0
 SET VISIBLE(Mirror_ckLaunchProcess;False)
 SET VISIBLE(*;"MirrorStatus";True)
 Case of
 : (<>tMirror_ServerType="Mirror")
 tMessage:="This server is acting as the Mirrored Server"

 : (Application type#4D Client)
 tMessage:="Mirroring Can Not Run in Single User"

 : (LMirrorProcessID=-1) ` There is no Mirroring process running on the Server
 SET VISIBLE(Mirror_ckLaunchProcess;True)) ` Turn on the start process checkbox
 SET VISIBLE(*;"MirrorStatus";False)
 tMessage:=""
 Else
 tMessage:="Mirroring Process is Running on the Server"
 End case

 : ($LFormEvent=On Unload)
 ARRAY TEXT(atMirror_Authentication;0)

 If (bOK=1)
 Case of
 : ($LApplicationType=4D Client)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_DatabaseName;

<>tMirror_DatabaseName)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_ServerIPAddress;

<>tMirror_ServerIPAddress)
 SET PROCESS VARIABLE(LMirrorProcessID;<>hMirror_TimeInterval;<>hMirror_TimeInterval)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_SMTPServer;<>tMirror_SMTPServer)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_ErrorEMailAccount;

<>tMirror_ErrorEMailAccount)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationRequired;

<>tMirror_AuthenticationRequired)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationUserName;

<>tMirror_AuthenticationUserName)
 SET PROCESS VARIABLE(LMirrorProcessID;<>tMirror_AuthenticationPassword;

<>tMirror_AuthenticationPassword)
 If (Mirror_ckLaunchProcess=1)
 $LProcessID:=Execute on server("Mirror_HandleMirrorPreferences";16000;

"$UpdateMirrorPreferences";"Save&LaunchFromClient")
 Else
 $LProcessID:=Execute on server("Mirror_HandleMirrorPreferences";16000;

"$UpdateMirrorPreferences";"SaveFromClient")
 End if

 : ($LApplicationType=4th Dimension)
 Mirror_HandleMirrorPreferences ("Save")
 End case
 End if
End case
 `End of form method

The Mirroring process – Main Server side
--

The responsibility of actually doing the mirroring falls upon the main server.
Basically it is a process that sleeps until the time where it is scheduled to
create a new log file and mirror the database. The method P_MirrorProcess
is almost 100% involved in simply determining when the process should run.
It handled delaying the process and it also handles rescheduling the mirror
time based upon changes in the preference settings while the process is
delayed. When the client updates the settings, the process wakes up and
recalculates when the next mirroring is to take place. When the mirror should
run is based upon a date/time stamp mechanism.

If (False)
 ` Method: P_MirrorProcess
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/27/2005

 ` Purpose: Begins the Mirroring Process

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare local varaibles
C_STRING(6;$sVersion)
C_LONGINT($LDelayTicks)
C_LONGINT($LErrorCode)

C_TEXT($tClosedLogFileName)
C_TEXT($tDateTimeDelay)
C_TEXT($tLogFilePath)
C_TIME($hCurrentTime)
C_TIME($hDelayInterval)
C_TIME($hDelayUntil)
C_TIME($hTimeChange)

$sVersion:=Application version
Mirror_HandleMirrorPreferences ("Load")

Case of
 : (Application type#4D Server)
 ALERT("Mirroring only works with 4D Server.")
 : (Num($sVersion)<802)
 ALERT("Mirroring requires version 2004.2 or higher.")
 Else
 If (<>hMirror_TimeInterval#?00:00:00?) ` If a delay time has been defined
 $hDelayInterval:=<>hMirror_TimeInterval
 $hCurrentTime:=Current time ` Set now for use later
 Repeat
 ` This section is necessary because other processes might call this process to resume.

But we don't want the process to activate too early
 If ($hDelayInterval<?00:15:00?)
 $hCurrentTime:=Current time ` Less than 15 minutes, set to relative to time last mirroring

 finished rather than time begun
 End if

The next section of the code deals with midnight. If it is past mightnight the
time needs to be revised.

 $hDelayUntil:=$hCurrentTime+$hDelayInterval
 If ($hDelayUntil>?24:00:00?)
 $tDateTimeDelay:=GEN_tDateTimeStamp (Add to date(Current
date;0;0;1);$hCurrentTime+$hDelayInterval-?24:00:00?)
 Else
 $tDateTimeDelay:=GEN_tDateTimeStamp (Current date;$hDelayUntil)
 End if

 Repeat
 $hDelayUntil:=Time(Substring($tDateTimeDelay;9;2)+":"+

Substring($tDateTimeDelay;11;2)+":"+Substring($tDateTimeDelay;13;2))

 If (Num(Substring($tDateTimeDelay;3;2))>(Day of(Current date)))
` Next schedule after midnight

 $LDelayTicks:=($hDelayUntil+?24:00:00?)-$hCurrentTime*60
 Else
 $LDelayTicks:=$hDelayUntil-$hCurrentTime*60
 End if
 DELAY PROCESS(Current process;$LDelayTicks)

 ` It is possible that a Client machine could be changing the delay interval
 ` If this is true the time needs to be recalculated
 Case of
 : ($hDelayInterval=<>hMirror_TimeInterval) ` No changes necessary simply stay delaying

 : ($hDelayInterval><>hMirror_TimeInterval) ` Mirroring interval is being shortened

 $hTimeChange:=($hDelayInterval-<>hMirror_TimeInterval)
 $hDelayUntil:=Time(Substring($tDateTimeDelay;9;2)+":"+

Substring($tDateTimeDelay;11;2)+":"+Substring($tDateTimeDelay;13;2))
 If (Num(Substring($tDateTimeDelay;3;2))>(Day of(Current date))) ` The scheduled time

is tommorw
 $hDelayUntil:=$hDelayUntil+?24:00:00?
 End if

 Case of
 : (($hCurrentTime+$hTimeChange)<$hDelayUntil) ` The new time is before the

scheduled time, simply reset the time
 $hDelayUntil:=$hDelayUntil-$hTimeChange
 If ($hDelayUntil>?24:00:00?)
 $tDateTimeDelay:=GEN_tDateTimeStamp (Add to date(

Current date;0;0;1);$hDelayUntil-?24:00:00?)
 Else
 $tDateTimeDelay:=GEN_tDateTimeStamp (Current date;$hDelayUntil)
 End if
 : (($hCurrentTime+$hTimeChange)>$hDelayUntil)
 ` The old time is before the new time setting, do the old time as scheduled
 End case
 $hDelayInterval:=<>hMirror_TimeInterval ` Reset to the current value

 Else ` Mirroring interval is being lengthened
 $hDelayUntil:=Time(Substring($tDateTimeDelay;9;2)+":"+

Substring($tDateTimeDelay;11;2)+":"+Substring($tDateTimeDelay;13;2))
 If (Num(Substring($tDateTimeDelay;3;2))>(Day of(Current date))) ` The scheduled time

is tommorw
 $hDelayUntil:=$hDelayUntil+?24:00:00?
 End if
 $hDelayUntil:=$hDelayUntil+(<>hMirror_TimeInterval-$hDelayInterval)
 If ($hDelayUntil>?24:00:00?)
 $tDateTimeDelay:=GEN_tDateTimeStamp (Add to date(Current date;0;0;1);

$hDelayUntil-?24:00:00?)
 Else
 $tDateTimeDelay:=GEN_tDateTimeStamp (Current date;$hDelayUntil)
 End if

 $hDelayInterval:=<>hMirror_TimeInterval ` Reset to the current value
 End case

 Until ((GEN_tDateTimeStamp (Current date;Current time)>=
$tDateTimeDelay) | (<>hMirror_TimeInterval=?00:00:00?))

 If (<>hMirror_TimeInterval#?00:00:00?) ` If we are not turning off the mirroring
 $hCurrentTime:=Current time ` Reset for next time interval
 $LErrorCode:=Mirror_LSendLogFile
 Case of
 : ($LErrorCode=1) ` Mirroring Sucessful
 : ($LErrorCode=1411) ` Mirroring did not occur because of critical operation try again next

scheduled time
 : ($LErrorCode=-17050) ` Mirroring database not available mirroring did not take place try

again next scheduled time
 : ($LErrorCode=1403) ` Fatal error no log file, stop mirroring
 <>hMirror_TimeInterval:=?00:00:00? `stop mirroring without changing saved settings
 : ($LErrorCode=1410) ` Fatal error log file out of sync, stop mirroring
 <>hMirror_TimeInterval:=?00:00:00? `stop mirroring without changing saved settings
 : ($LErrorCode=1412) ` Fatal error not running on Server
 <>hMirror_TimeInterval:=?00:00:00? `stop mirroring without changing saved settings
 Else
 ` There might be other errors, leave other errors running

 End case
 End if

 Until ((<>fQuit) | (<>hMirror_TimeInterval=?00:00:00?))
 End if

End case
 `End of method

Be sure to note that it is possible fatal errors might occur which would make
future mirroring impossible. In this case I have stopped the mirroring process
from running causing further problems.

The Mirror_LSendLogFile method does most of the work. First it verifies that
the other mirror is present. If the other mirror is not currently available, a
new log file should not be created.

If (False)
 ` Method: Mirror_LSendLogFile
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/29/2005

 ` Purpose: Handles segmenting and sending the log file to the mirror

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare parameters
C_LONGINT($0)

 ` Declare local variables
C_LONGINT($LAbortCounter)
C_LONGINT($LError)
C_LONGINT($LLastSublogNumber)
C_LONGINT($LPosition)
C_LONGINT($LSMTPid)
C_TEXT($tLastLogFile)
C_TEXT($tLogFilePath)
C_TEXT($tIntegrateType)

Mirror_LError:=0
$LError:=0
$LAbortCounter:=0
$tLastLogFile:=""

If (Not(<>fQuit))
 Case of
 : (proxy_SOAP_LMirrorHandleEvents (<>tMirror_DatabaseName;"VerifyPresent";

<>tMirror_ServerIPAddress)#1) ` Correct database is not available
 $LError:=-17050
 SOAP_tErrorMessage:="Mirror database is not available. Mirroring at "+String(Current time

;HH MM)+" on "+String(Current date;Short)+" did not take place."

 Else
 ON ERR CALL("ERROR_HandleMirrorError")
 $tLastLogFile:=New log file ` Get the full path name of the log file that has just been closed
 ON ERR CALL("")

 End case

Errors are trapped in the ERROR_HandleMirrorError method which simply
assigns the Error variable to the Mirror_LError variable for handling and
better understanding.

 Case of
 : (Mirror_LError=1409) | (Mirror_LError=1411) ` Transaction or other critical operation in progress
 $LAbortCounter:=$LAbortCounter+1
 If ($LAbortCounter>10)
 $LError:=Mirror_LError
 SOAP_tErrorMessage:="Transaction or other critical operation blocking mirroring. Error Code:

 "+String(Mirror_LError)
 End if

If the VerifyPresent routine passes, then a new log file is created. If the
creation of the new log file is successful, the just closed log file segment is
stuffed into a BLOB and sent via SOAP to the mirrored server. (Note: As I
mentioned before this uses SOAP, but other mechanisms could be built
instead.) Feel free to study the code in the proxy_SOAPHandleEvents
method, but it was automatically generated by the Web Services Wizard and
not modified significantly other than to use the preferences settings for the
location of the mirror server.

 : (Length($tLastLogFile)>0)
 $tIntegrateType:="IntegrateLog"
 $LAbortCounter:=0

 DOCUMENT TO BLOB($tLastLogFile;SOAP_oMirrorBLOB)
 If (BLOB size(SOAP_oMirrorBLOB)>10000) ` If larger than10000 bytes compress the blob to

reduce network bandwidth usage
 COMPRESS BLOB(SOAP_oMirrorBLOB)
 End if

 $tLogFilePath:=GEN_tGetFolderPathnames ($tLastLogFile)
 If ($tLogFilePath#$tLastLogFile) ` Strip off the full path name if present
 $tLastLogFile:=(Substring($tLastLogFile;Length($tLogFilePath)+1))
 End if
 $LError:=proxy_SOAP_LMirrorHandleEvents (<>tMirror_DatabaseName;$tIntegrateType;

<>tMirror_ServerIPAddress;->SOAP_oMirrorBLOB;$tLastLogFile)
` Send the log file to the server

 If ($LError=1)
 <>tMirror_LastLogNumber:=$tLastLogFile
 Mirror_HandleMirrorPreferences ("Save") ` This saves the name of the last log number
 End if
 SET BLOB SIZE(SOAP_oMirrorBLOB;0) ` Clean up memory

 Else
 $LError:=Mirror_LError
 End case

End if

$0:=$LError

Finally, if there are errors, error messages are sent via e-mail to the
appropriate party.

Case of
 : ($LError=1) ` Mirroring Sucessful nothing else to do
 : ($LError=0) ` Mirroring did not occur, but nothing to do now
 : (Length(<>tMirror_SMTPServer)=0) & (<>tMirror_SMTPServer#"None") ` Nothing to do no place to

send error message
 : (Position(".";<>tMirror_SMTPServer)<1) | ((Position(".";<>tMirror_SMTPServer))=

(Length(<>tMirror_SMTPServer))) `invalid format for mail server exists (must have a
 period to be valid and not only a period at the end)

 Else
 `E-Mail Error message
 ` Note: This might be added to an existing e-mail or other messaging system in the database.
 ` If such a system involves saving records
 ` But be sure it is NOT done on the mirrored server side only on the Master server

 ` The problem with this solution is if the SMTP server is down, the message will not be sent,
 ` so an existing messaging system already in the database might be a better solution

 $LError:=SMTP_New ($LSMTPid)
 $LError:=SMTP_Host ($LSMTPid;<>tMirror_SMTPServer)
 $LError:=SMTP_From ($LSMTPid;<>tMirror_ErrorEMailAccount)
 $LError:=SMTP_Subject ($LSMTPid;"Error with Mirroring for "+<>tMirror_DatabaseName)
 $LError:=SMTP_To ($LSMTPid;<>tMirror_ErrorEMailAccount)
 $LError:=SMTP_Body ($LSMTPid;SOAP_tErrorMessage)
 If (<>tMirror_AuthenticationRequired="Yes")
 $LError:=SMTP_Auth ($LSMTPid;<>tMirror_AuthenticationUserName;

<>tMirror_AuthenticationPassword)
 End if
 $LError:=SMTP_Send ($LSMTPid)
 $LError:=SMTP_Clear ($LSMTPid)

End case
SOAP_tErrorMessage:=""
 `End of method

The Mirroring process – Mirrored Server side
--

The mirrored server does basically nothing except sit and wait. It isn’t even
running any processes. If your database has stored procedures that run on
the server, you should probably disable them by checking to see if the server
is a mirrored server before beginning the stored procedures.

When a SOAP call from the main server hits the SOAP entry method
SOAP_MirrorHandleEvents the mirrored server goes to work. It returns a 1
for the action succeeded or an error code if the action failed.

It has two actions. First verify that the mirrored database is present and
correctly named. The second is to integrated the log.

If (False)
 ` Method: SOAP_MirrorHandleEvents
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/29/2005

 ` Purpose: Handles SOAP requests for the Mirroring process

 <>f_Version2004x2:=True

 <>fK_Wilbur:=True

End if

 ` Declare variables for SOAP Types
C_BLOB(SOAP_oMirrorBLOB)
C_LONGINT(SOAP_LMirrorResult)
C_TEXT(SOAP_tMirrorAction)
C_TEXT(SOAP_tMirrorDatabaseName)
C_TEXT(SOAP_tMirrorLogFile)

 ` Declare local variables
C_LONGINT($LCompressed)
C_LONGINT($LErrorCode)
C_TEXT($tDatabasePath)
C_TEXT($tDatabaseName)

SOAP DECLARATION(SOAP_tMirrorDatabaseName;Is Text ;SOAP Input ;"SOAP_tMirrorDatabaseName")
SOAP DECLARATION(SOAP_tMirrorAction;Is Text ;SOAP Input ;"SOAP_tMirrorAction")
SOAP DECLARATION(SOAP_oMirrorBLOB;Is BLOB ;SOAP Input ;"SOAP_oMirrorBLOB")
SOAP DECLARATION(SOAP_tMirrorLogFile;Is Text ;SOAP Input ;"SOAP_tMirrorLogFile")
SOAP DECLARATION(SOAP_LMirrorResult;Is LongInt ;SOAP Output ;"SOAP_LMirrorResult")

READ ONLY(*) ` Set tables to read only for now

$LErrorCode:=0
Mirror_LError:=0

$tDatabaseName:=Structure file
$tDatabasePath:=GEN_tGetFolderPathnames ($tDatabaseName)
$tDatabaseName:=(Substring($tDatabaseName;Length($tDatabasePath)+1))
If (SOAP_tMirrorDatabaseName=$tDatabaseName)
 Case of
 : (SOAP_tMirrorAction="VerifyPresent")
 SOAP_LMirrorResult:=1 ` The database is here

 : (SOAP_tMirrorAction="IntegrateLog@")
 READ WRITE(*) ` Set tables to read write for mirror integration
 BLOB PROPERTIES(SOAP_oMirrorBLOB;$LCompressed)
 If ($LCompressed#Is not compressed)
 EXPAND BLOB(SOAP_oMirrorBLOB)
 End if
 ON ERR CALL("ERROR_HandleMirrorError")
 BLOB TO DOCUMENT($tDatabasePath+SOAP_tMirrorLogFile;SOAP_oMirrorBLOB)
 INTEGRATE LOG FILE($tDatabasePath+SOAP_tMirrorLogFile)
 ON ERR CALL("")
 If (OK=1)
 SOAP_LMirrorResult:=OK
 Else
 $LErrorCode:=Mirror_LError
 End if

 End case

Else
 $LErrorCode:=-17051
End if

If ($LErrorCode#0)
 SOAP_LMirrorResult:=$LErrorCode
 SOAP_ErrorHandling ($LErrorCode)
End if

 `End of method

If an error occurred during integration or another error transpired, the error
is interpreted into a error number and message and a SOAP fault is returned
to the main database.

If (False)
 ` Method: SOAP_ErrorHandling
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 9/29/2005

 ` Purpose: Key containing description of the errors

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 `Declare parameters
C_LONGINT($1;$LErrorCode)

 ` Reassign for readability
$LErrorCode:=$1

Case of
 : ($LErrorCode=-1403)
 SOAP_tErrorMessage:="No log file. The mirror database is not configured to have a log file. "+

"Integration can not take place."
 : ($LErrorCode=-1410)
 SOAP_tErrorMessage:="The log files are out of sync. Integration can not take place."+" You will need

to rebuild the mirror server from scratch."
 : ($LErrorCode=-1412)
 SOAP_tErrorMessage:="The mirror database is not running 4D Server. Integration can only occur

when us"+"ing 4D Server."
 : ($LErrorCode=-17051)
 SOAP_tErrorMessage:="Invalid Database Name. Can not merge data into a database with this name.

"+"Check mirror preference settings."
End case

SEND SOAP FAULT(SOAP Client Fault ;String($LErrorCode)+" - "+SOAP_tErrorMessage)
 `End of method

Keeping users out of the mirrored database
--

Both the main server and the mirrored server are online. It is quite possible
that a user might accidentally log into the mirrored server. There are a
couple of things that you can do to prevent this from happening.

First, at the very least rename the Network Publication name for the mirrored
server. This is done under the Preferences for Client-Server.

If the database is named something different at least it is unlikely that a user
will accidentally log into the database.

A more secure solution is to change the port number for 4D Client. Then the
normal 4D Client application can’t accidentally log into the wrong database.
(Don’t forget to restore the Port number if you need to set up the mirror to
act as the main database.

Recovering from a disaster - small
--

The mirroring system is designed for quick recovery from small disasters. For
many, my definition of small would be a major disaster. By small disaster I
mean that the main server becomes inoperative. All data is lost. Recovery is
possible but will take hours to restore from the backups.

If you can access the hard drive for the main server and retrieve the last
open log file that has not yet been integrated into the database, recovery is
easy. The last log file needs to be integrated into the mirrored database.
Below are the specific steps for the example database. Anything you create
will need to include at least some of these steps.

1) Simply move the Log file to a 4D Client machine in a folder by itself.
This is necessary because the last log file will need to be
merged into the mirrored machine before it can be set up as
the main server. The command INTEGRATE LOG FILE can
only occur on the Server. Therefore, the 4D Client machine
will temporarily tack the place of the crashed main 4D Server
and send the last file to the mirrored server for integration.

2) Launch the 4D Client and log into the mirrored database.
Depending on the security measures chosen above it may be
necessary to change the port number of either the server or
the 4D Client.

3) Go to the user environment and execute the method
E_RestoreDataFromMirrorLogs.

We will review this code in the next section.

4) Select the log file to be merged.

5) Go to the server and change the port number if still necessary.

6) Shut down the mirrored server.

7) Trash the mirror prefferences.

8) Launch the server and select the server to be the main database.
You are back in business.

If you can’t recover the last open log file you will have to do without that
data. If this is the case you can skip steps 1 through 4 above and proceed
with step 5.

Recovering from a disaster - major
--

The worst possible scenario is that both the main server and the mirrored
server data files are both damaged. In this case you must go back to the
original backup and begin from there. However, the original backup does not
contain any of the log file segments. It doesn’t matter which database is
used. Follow the steps below to recover from the major disaster.

1) Restore the database from the last backup.
2) Move all the Log files to a 4D Client machine in a folder by themselves.
3) Launch the 4D Client and log into the server.
4) Go to the user environment and execute the method

E_RestoreDataFromMirrorLogs.
5) Select one of the log files to be merged.
6) After merging, do a backup and begin everything again as you set up

the mirror in the first place. You are back in business.

Note: It might be necessary to separately merge the final log file as you did
in the steps above in the recovery from a minor disaster minor. As the code
does not distinguish between active and closed log segments in the same
pass.

If (False)
 ` Method: E_RestoreDataFromMirrorLogs
 ` 4D Technote on Mirroring a 2004 database
 ` Created by: Kent Wilbur
 ` Date: 11/1/2005

 ` Purpose: Integrates log files into a database restored from a backup
 ` Not the mirror

 <>f_Version2004x2:=True
 <>fK_Wilbur:=True

End if

 ` Declare local variables
ARRAY TEXT($atDocuments;0)
ARRAY TEXT($atLogFiles;0)
C_BLOB($oBlob)
C_LONGINT($i)
C_LONGINT($LApplicationType)
C_LONGINT($LError)
C_LONGINT($LPid)
C_LONGINT($LPosition)
C_TEXT($tFileName)
C_TEXT($tFolderPath)
C_TIME($hDocRef)

$LApplicationType:=Application type

Case of
 : ($LApplicationType=4D Client)
 ALERT("Please locate a log file to be integrated.")

 $hDocRef:=Open document("";"";Get Pathname) ` show all files, but if a log file is not chosen this
will not work

 If (OK=1)
 CLOSE DOCUMENT($hDocRef)
 $tFolderPath:=GEN_tGetFolderPathnames (Document)
 $tFileName:=Substring(Document;Length($tFolderPath)+1) ` Get the name of the log file chosen

 ` Get necessary information from the server
 SOAP_tMirrorDatabaseName:=""
 tMirror_ThisServerIPAddress:=""

Even though we are running on a 4D Client machine of the server it is easier
to integrate the log file using the same SOAP methods used by the main
Server. The integration code (SOAP) needs both the name of the database
and IP address of the “mirrored” server. This data is NOT in the mirror
preference settings. So we will use some inter-process communication
between the Client and the Server and as the Server to look up the data for
themselves. The code above reads the values using GET PROCESS
VARIABLE.

 $LPid:=Execute on server("E_RestoreDataFromMirrorLogs";32000)
 Repeat
 PROCESS_MyDelay (Current process;2) ` Wait for the server to get the information
 GET PROCESS VARIABLE($LPid;SOAP_tMirrorDatabaseName;SOAP_tMirrorDatabaseName)
 GET PROCESS VARIABLE($LPid;tMirror_ThisServerIPAddress;tMirror_ThisServerIPAddress)
 Until (Length(SOAP_tMirrorDatabaseName)>0)

Log segments have a specific format [0000-0000]. If we are merging
multiple segments we will look for that format and merge all files that match
this pattern in their file name and have the correct main backup number.

 $LPosition:=Position("[";$tFileName)
 If ($LPosition+10=Position("]";$tFileName)) ` Make sure we are getting mirror log files for merging

 not regular log files
 ` Now we need to find all corresponding log files
 DOCUMENT LIST($tFolderPath;$atDocuments)

 For ($i;1;Size of array($atDocuments))

 Case of
 : (Length($tFileName)#Length($atDocuments{$i})) ` Not the same length, not a log file
 : (Substring($tFileName;1;$LPosition+5)#Substring($atDocuments{$i};1;$LPosition+5))

` Not the same Datafile and backup number
 : (Substring($tFileName;$LPosition+10)#Substring($atDocuments{$i};$LPosition+10))

` Not a log file
 Else
 APPEND TO ARRAY($atLogFiles;$atDocuments{$i})
 End case
 End for

 If (Size of array($atLogFiles)>0) ` Integrate the log files
 SORT ARRAY($atLogFiles)
 For ($i;1;Size of array($atLogFiles))

 DOCUMENT TO BLOB($tFolderPath+$atLogFiles{$i};Mirror_oLogFile)
 If (BLOB size(Mirror_oLogFile)<10000) ` If larger than10000 bytes compress the blob

to reduce network bandwidth usage
 COMPRESS BLOB(Mirror_oLogFile)
 End if
 $LError:=proxy_SOAP_LMirrorHandleEvents (SOAP_tMirrorDatabaseName;"IntegrateLog";

tMirror_ThisServerIPAddress;->Mirror_oLogFile;$atLogFiles{$i})
 ` Send the log file to the server

 If ($LError#1)
 ALERT("Big Problem!")
 $i:=Size of array($atLogFiles)
 End if
 SET BLOB SIZE(Mirror_oLogFile;0) ` Clean up memory

 End for
 End if

Merging a single log file without the closed log format of [0000-0000] is
handled here.

 Else ` Merging single log file
 DOCUMENT TO BLOB($tFolderPath+$tFileName;Mirror_oLogFile)
 If (BLOB size(Mirror_oLogFile)<10000) ` If larger than10000 bytes compress the blob to reduce

network bandwidth usage
 COMPRESS BLOB(Mirror_oLogFile)
 End if
 $LError:=proxy_SOAP_LMirrorHandleEvents (SOAP_tMirrorDatabaseName;"IntegrateLog";

tMirror_ThisServerIPAddress;->Mirror_oLogFile;$tFileName)
` Send the log file to the server

 If ($LError#1)
 ALERT("Log file not merged!")
 End if
 SET BLOB SIZE(Mirror_oLogFile;0) ` Clean up memory

 End if
 End if

This is where the 4D Server looks up the information about itself and saves
the information into some process variables. Once save the process delays
for a few seconds then dies. During those few seconds the code above reads
the contents of the process variables.

 : ($LApplicationType=4D Server)
 SOAP_tMirrorDatabaseName:=""
 $LError:=IT_MyTCPAddr (tMirror_ThisServerIPAddress;$tFileName)
 $tDatabaseName:=Structure file
 $tDatabasePath:=GEN_tGetFolderPathnames ($tDatabaseName)
 SOAP_tMirrorDatabaseName:=(Substring($tDatabaseName;Length($tDatabasePath)+1))
 PROCESS_MyDelay (Current process;300) ` Leave process alive long enough to get variable values

to the client

 Else
 ALERT("Log files can only be integrated from a 4D Client machine.")
End case
 ` End of method

New log file function and critical operations
--

The New log file function and certain critical operations such as transactions
or indexing are mutually exclusive. For example you can not create a New
log file while a client machine or stored procedure has an open transaction,
nor can a new transaction be started while the New log file function is
taking place.

If your database uses transactions, you will want to schedule your mirroring
routine to run when there are no users are active in the database. If
transactions are in progress during the New log file it is possible that the
server might hang for a few minutes waiting for the transaction. You can
minimize the wait by changing some default settings in the backup properties
of the database.

In the General Settings be sure that the Abort backup after waiting (min.)
radio button is selected. Also change the default time from 3 minutes to 1
minute.

DO NOT change the setting to 0 minutes. This has the effect of making the
backup wait for the transaction to complete and never timeout. If necessary
you can code for the success or failure of the New log file function by looking
at the error code. If the error code is 1411, the New log file failed because of
a critical operation. Usually a transaction was in progress. Your scheduler
could try again until successful, or the beginning of the next business day.
Sorry, code for this is not in the example database.

Summary
--

Creating a mirrored system is no longer a database administrator task. It
requires the cooperation and implementation of the developer. However, it
isn’t a difficult task to complete. Administrators of a 4D Database often had
trouble establishing a mirror, so the developer was usually involved anyway.

The new mirroring commands make the task more flexible that in previous
versions of 4D. And a user friendly interface can easily be created to
administer the task.

Although mirroring is possible with 2004.2, I would recommend that you use
at least 2004.3 which fixed a minor bug that this example code would not
have even hit.

Most 4D databases don’t need mirroring. But for those that do, I suggest you
take a look at what can be done with the two new language commands.

