
HTTP://WWW.4D.COM/APICENTER 1

INTRODUCTION

What is the 4D Plug-In Wizard?
The 4D Plug-In Wizard was created to help in the creation of
4th Dimension plug-ins. The API is supported by the 4D Plug-In
Wizard. The Wizard helps in creating a basic framework for the API
so that a developer does not have to worry about how to set up the
Project, header files, and such. This is all done automatically for the
developer.

The plug-in developer creates a project for the plug-in, then enters
the desired names, parameters, and return values of the routines.
The developer arranges the routines by theme, or can tell the Wizard
to prepare the creation of an external area. Once this is done, the 4D
Plug-In Wizard generates all the necessary files: source files,
resource files, export files, and project files (for both MacOS and
Windows if necessary). The source code of the plug-in is generated,
containing all necessary prototypes, constants, parameters, and code
skeletons. The 4D Plug-In Wizard is very useful, particularly for
Windows developers, since it generates the appropriate resources
(‘4BNX’, ‘STR#’). Once the 4D Plug-In Wizard has generated the
files, the developer can open the project and start to write the plug-in
code. Each time the developer needs to use a 4D Plug-In API
function, the developer calls the appropriate routine, (stored in
4DPlug-inAPI) and is ready for compilation. If the plug-in developer
needs to change the syntax of a routine or add routines, etc., the
developer can use the 4D Plug-In Wizard to generate the new
resource file. The developer can also cut and paste parts of the newly
generated source code into the source code under development.

Why use the 4D Plug-In Wizard?
Those who are already familiar with creating and writing plug-ins
for 4th Dimension may not wish to use the Wizard. For the vast
majority of developers, this may be their first attempt to create a
plug-in. This is where the 4D Plug-In Wizard comes in. By using
the 4D Plug-In Wizard the developer does not have to worry about
the small things that can cause a Project not to compile. Its always
the small things that tend to cause the most frustration when writing
code. By using the 4D Plug-In Wizard, we hope to eliminate as
many of the small issues as possible that may pop up while writing
code. We want to enable developers to spend more time writing
code and less time trying to figure out why their projects won’t com-
pile because of possible missing headers.

INTRODUCTION

What is possible and not possible with the
4D Plug-In Wizard?
Do not think that the 4D Plug-In Wizard will write the entire plug-
in. This is not what it was designed to accomplish. It is up to the
developer to write in the missing pieces. For example, the 4D Plug-
In Wizard will create a .c and .h file that will contain the Themes,
which will be explained later, and Commands for a plug-in. It is up
to the developer to actually write the code for the commands. The
4D Plug-In Wizard sets up all the calls to the commands, and the
return and input parameters as well, but it will be up to the
developer to write the core of the code. Once a developer becomes
familiar with how plug-ins are created, he or she may no longer wish
to use the 4D Plug-In Wizard. This is fine. The developer does not
need to use the 4D Plug-In Wizard to create a plug-in. We
recommend using the Wizard since it formalizes the structure of the
plug-in to a larger extent, and will automatically write several pieces
of code that developers would have to write anyway.

Description of various files used by the
4D Plug-In Wizard

4D Plugin API {folder}: This folder contains the various 4D
API .c, .h, and .def files needed to compile a 4D plug-in. These
files consist of four headers, a source file, and a definition file
needed for Windows.

4D PlugIn Wizard and 4D Plug-In Wizard.data: This is the 4D
Plug-In Wizard application.

4D Runtime v6.7: A copy of 4D Runtime is provided in case
the developer does not have access to 4D.

Mac4DX {folder}: This folder contains a file that supports the
4D Plug-In Wizard. This folder must not be removed, other-
wise the 4D Plug-In Wizard will not function properly.

Win4DX {folder}: This folder contains the .RSR file for a 4D
plug-in for Windows. Since the resource and data fork are
separate under Windows, we have provided the .RSR file for
the developer.

Online Documentation.html: This file loads the 4D Web site
on APIs. If developers have any questions regarding a particular
API call, they should use this .html file to look up the com-
mand in question.

by Christian Cypert and Francois Marchal

4D Plug-in Wizard
User Manual

2

4D Plug-In Wizard User Manual

DESCRIPTION OF THE FRAMEWORK OF A 4D PLUG-IN

Parameters and Returned Values
The main routine of the plug-in must be called PluginMain. When
4D calls the plug-in, it calls a routine named FourDPack under
Windows and Main on Macintosh. FourDPack and Main are imple-
mented in the 4DPluginAPI.c source file, and they call the Plugin
Main routine provided by the plug-in.

Parameters
A routine can receive up to 25 parameters. The parameters are
received (among other things) in a PA_PluginBlock structure.
A pointer to this structure (PA_PluginParameters) is passed to
PluginMain. The 4D Plug-in API gives a developer utility
functions to access the parameters, making it easy to get or set
the value of a parameter. Simply call the appropriate API func-
tion and then give it the number of the parameter to access. As
parameters are passed by reference, it is also possible to change
the value of a parameter. The syntax of those API functions are
GetXXXParameter and SetXXXParameter, where XXX is the
type of the parameter. Example: PA_GetLongParameter,
PA_SetLongParameter, PA_GetStringParameter.

As an example, if a routine wants to read the value of parame-
ter 3 that is a long, it can use:

aLong = PA_GetLongParameter(params, 3);

If a routine wants to set the value of parameter 2 that is a short,
it can use:

PA_SetShortParameter(params, 2, aShort);

Returned Values
Similar to parameters, the API gives a developer routines
(PA_ReturnXXX) to return values of any kind. This must be
used when the routine is declared as returning a value (in 4D
Plug-In Wizard). If a routine returns a string, it needs to use
PA_ReturnString(parameters,theString).

Skeleton of a plug-in source code
The Plugin Main routine switches the selector value and calls a
routine for each case, passing the PA_PluginParameters
received to the routine. Each routine then deals with the param-
eters and the returned value.

Let’s look at sample code of this dispatch as it can be generat-
ed by the 4D Plug-In Wizard.

Void PluginMain(long selector, PA_PluginParameters params)
{
switch(selector)

{
case 1:
aRoutine(params);
break;

case 2:
anotherRoutine(params);
break;

}
}

void aRoutine(PA_PluginParameters params)
{
// Code of first routine. It expects a long and a string

long aLong;
char aString[256];

// We get the parameters
aLong = PA_GetLongParameter(params, 1);
PA_GetStringParameter(params, 2, aString);

// . . . the code . . .
}

void anotherRoutine(PA_PluginParameters params)
{
// Say this one returns a numeric value
double theDouble;
// . . . the code . . .
PA_ReturnDouble (params, theDouble);

}

HOW TO USE THE 4D PLUG-IN WIZARD

The 4D Plug-In Wizard is a straightforward 4D application. For
anyone who does not own or use 4D, we have provided 4D Runtime
to allow any developer to run the 4D Plug-In Wizard.

To run the 4D Plug-In Wizard, drag the 4D Plug-In Wizard icon
over the 4D Runtime icon. When the 4D Plug-In Wizard first
comes up, the developer will see a dialog called Projects (see fig.1 on
next page). This dialog allows the developer to create a new Plug-in
Project, or edit or delete a previous Project. Below is an image and
description of this dialog. Notice that any previously created
Projects are listed on the left-hand. The New Button creates a new
Project. The Edit Button opens a previously created Plug-in Project.
The Delete Button deletes the Plug-in Project currently highlight-
ed on the left hand side of the dialog.

HTTP://WWW.4D.COM/APICENTER

3

New/Edit Project for 4D
When creating a new Project, a dialog will be presented asking what
the name of the new Project will be. This name will show up in the
Project listing dialog (see fig. 2) when the 4D Plug-In Wizard is
opened. After this dialog, the main development dialog is displayed.
This is the same dialog that is displayed
when editing a previous Project. This
development window contains a great
deal of information, but is displayed in
a straightforward manner. An image of
the dialog is shown below.

On the left hand side of this
dialog starting from the top down is the
name of the Project. The Hiearchical
List below displays the Themes and
Commands for the Plug-in. Below fur-
ther are six buttons: Add Theme, Add
Command, Add External Area, Delete,
Edit Constants, and Import from Plug-
in.

Add Theme: This button will add
a new Theme to the list above. A
Theme in 4D is what is displayed
in the lower right hand corner of the 4D Method Editor.
When clicking on a Theme, the various commands are then
displayed.

Add Command: This button adds a new Command based on
the currently highlighted Theme.

Add External Area: This button adds an External Area to the
4D plug-in. This will be explained in more detail later.
Delete: This button deletes Themes, Commands, and External
Areas. If a Theme is deleted, the associated Commands are also
deleted.

Edit Constants: This button allows the developer to edit or add
constants to the plug-in. This will be explained in more detail
later.

Import from Plug-in: This button allows the developer to
import constants in from another plug-in to be used by the cur-
rent plug-in. In the middle of the dialog (fig. 2) there is a table
dialog that displays the text of the 4DPlug-in.c and 4DPlugin.h.
When adding a Theme, Command, or External Area, notice that
the 4D Plug-In Wizard is creating the framework code automat-
ically. Below this table area are several options for the developer.

Preview Area Live Update: This checkbox in the upper right
hand corner will turn off the automatic updating of the
4DPlugin.c and 4DPlugin.h areas.

Use Ansi: This checkbox will add the header files "stdio.h" and
"string.h" to the 4DPlugin.c file.

Use Win32 API: This checkbox will add the header file
"Windows.h" to the 4Dplugin.c file.

Use Mac2Win from Altura Software: This checkbox will add the
header file "AsiPort.h" to the 4Dplugin.c file. This allows for the
use of Altura calls from Windows.

Need InitPlugin(): This checkbox will add the InitPlugin phase
to the code automatically. This is needed if the plug-in needs to
run code when initialized.

HTTP://WWW.4D.COM/APICENTER

figure 1.

figure 2.

4

Need DeInitPlugin(): This checkbox will add the DeInitPlugin
phase to the code automatically. This is needed if the plug-in
needs to run code when it is being de-initialized.

Use enums for command numbering: The checkbox changes
the numbering of the main switch statement from numbers to
enums.

Define constants in 4D Plugin.h: If this checkbox is marked
when the plug-in is created, adding constants to the plug-in will
cause the constants to be defined in the 4Dplugin.h file.

Use 4D Dialog File: This checkbox will add a 4D Dialog
(resource ‘FO4D’) to the plug-in. This option is needed if a
developer wishes to use any of the "Form as a Dialog" API calls.
These API calls allow the developer to display a 4D Dialog that
has been saved as a FO4D resource. To specify the file, one would
need to click on the button next to the text area (button with
elipses).

Metrowerks CodeWarrior 5.3 Project: Use this option to create
a CodeWarrior v5.3 Project based on the Plug-in Code.

Microsoft Visual C++ 6.0 Project: Use this option to create a
Visual C++ v6.0 project based on the Plug-in Code.

4D Plug-in API Source Files: This option will copy the 4D API
source files into the newly created 4D Plug-in Project folder.

Source Files: This checkbox will produce the source files (.c, .h)
needed. If not checked when the code is generated, the source
code files will not be produced.

Resource Files: This checkbox will produce the resource files
needed. If not checked when the code is generated, the resource
files will not be produced.

Generate Button: This button creates a folder on the hard drive
that contains all the source files and projects that are needed to
work with and compile the new 4D Plug-in.

Adding Themes and Commands
The first thing a developer must decide is how each plug-in call will
be configured. How many parameters will be passed into and out of
the plug-in? Will the plug-in return a value? These questions should
be answered before adding the commands for the plug-in. Once the
different commands have been decided upon, you are ready to pro-
ceed. First, add a Theme to the plug-in. This is accomplished by click-
ing on the Add Theme button. A dialog box will be displayed asking
what the Theme’s name will be. This is the name that will appear in
the lower right hand corner of the method editor in 4D. When click-
ing on a Theme, a popup will appear displaying all the commands
associated with the theme. Once a Theme has been created, you can
now add a Command. Note: Since many Themes can be added to the
plug-in, make sure the correct one is highlighted before clicking on the
Add Command button.

Steps to adding a command:

1. Click on the Add Command button. A dialog (fig 3.) is dis-
played.

Within this dialog, the parameters for the plug-in are creat-
ed. The name of the command is specified at the top of the
dialog. Just to the right of the Command Name is the return
value, if one exists. If the return value is not specified, then
the plug-in command will not return a value. This would be
similar to the 4D command NEW PROCESS. The NEW
PROCESS command returns the number of the newly creat-
ed process.

2. (Optional) Click on the return type to specify what type of
value is to be returned from the new command.

Within the section called Parameters is where the parameters
to a plug-in command are specified. The Command may not
need any parameters. This would be similar to the BEEP
command.

3. Click on the Add button. A parameter will then be included in
the parameters list.

The Remove Button deletes the parameter currently high-
lighted. When a parameter has been added, there are three
areas that can be modified.

HTTP://WWW.4D.COM/APICENTER

4D Plug-In Wizard User Manual

Modifiable Areas of a Parameter

Type of parameter: By clicking on the type pop-up, a
developer can specify if the parameter is to be a string, text,
integer, real, and so on.

Direction of parameter: A developer can set the direction
of the parameter. He or she can decide whether the parame-
ter will send information into the plug-in, whether the it
will simply be used to return information, or whether it will
do both.

Parameter name: A developer can modify the name of the
parameter by double clicking on the name.

4. When finished with the different parameters, simply click
on the OK button and the command with the specified
parameters will be added to the source code.

Adding External Areas
To add an external area, click on the "Add External Area..." button.
Clicking on this button will present the following dialog (fig 4):

Name: Name given to the plug-in as it will appear on the lay-
out editor, and "Plug-in" menu

General Settings

Visible in "Plug-in" menu: Will display the "Name" of the
plug-in in the "Plug-in" menu.

Area can take focus: The Plug-in area is focusable.

Use Advanced Properties: The area can display the
Advanced Properties dialog.

Customize Menu Icon: A developer can set the icon that
will appear beside the area name in the tools palette plug-
in area pop-up.

Customize area in layout editor: A developer can draw the
plug-in in the form editor. By default, the standard 4D
Plug-in image will be used.

Dropable: A developer can drag information into the plug-
in area.

Customize drag feedback: A developer can allow the plug-
in to handle the drag feedback. By default, 4D will handle
the drag feedback.

Events: Each checkbox represents a different event that the
plug-in will accept. Check the appropriate event boxes that the
plug-in should detect.

Keydown: A key is pressed. Area can call
PA_CallPluginAreaMethod

Mousedown: The mouse button is down. Area can call
PA_CallPluginAreaMethod

Update: Area must be updated, redrawn

Select: The user wants to select the area (PA_AcceptSelect)

Deselect: The user wants to leave the area (PA_AcceptDeselect)

Cursor: Mouse has moved (even if the area is not selected)
over the area

Idle: The user does nothing. The plug-in could, as an
example, draw a clock. A polite plug-in should not take
too much time on this event. Area can call
PA_CallPluginAreaMethod

Load Record: A record of the table of the form that owns
the area is loaded. The area can get a field of this record
(i.e., a field whose name is areaName_, like 4DWrite)

Save Record: The record of the table that owns the area is
saved. The area can save its content back to a field.

HTTP://WWW.4D.COM/APICENTER 5

figure 3.

figure 4.

6

Web Publishing: If the plug-in can also be published on the
Web, choose which type by choosing from the pop-up menu.

Use Image Map: Display the plug-in as an image instead
of HTML on a Web browser.

When finished with setting up the plug-in area, click on the "OK"
button.

Adding Constants
To add or edit a Constant, click on the "Edit Constants..." button.
Below is the dialog (fig 5.) that is displayed:

Add Group: The Add Group button adds a group on the left side
which helps categorize the different constants. A developer can
create several groups to hold different types of constants.

Add Constant: The Add Constant button displays the dialog
shown in figure 6. Clicking on this dialog will add a constant
to the currently highlighted group.

Delete: Deletes a group or constant, depending on which is
highlighted.

Close: Closes the window.

Name: The name of the constant

Type: The type of constant (example: string, real, integer, etc.)

Value: The value of the constant.

Define constants in 4Dplugin.h: This checkbox on the main
development screen will define the newly created constants in
the Header file. Developers may wish to use this option if they
desire.

Generating Code to Disk
When the plug-in Themes and Commands have been setup, it is
now time to determine which options should be checked when pro-
ducing the Source Code. As mentioned above there are several
checkboxes that can be set. When clicking on the different check-
boxes, different types of code and files can be produced.

Metrowerks Codewarrior 5.3 Project: Generates a Codewarrior
project that is compatible with v5.3 and greater.

Microsoft Visual C++ 6.0 Project: Generates a Visual C++
project that is compatible with v6.0 or greater.

4D Plug-in API Source Files: Generates the 4D API source files
to be used in compiling the plug-in.

Source Files: Generates the .c and .h files of the plug-in.

Resource Files: Generates the resource files needed to compile
the plug-in. These files contain the Theme and Command
Syntax information that is displayed in the Method Editor.

Any combination of the checkboxes can be used. For example, if a
developer changes only items that would appear in the .c or .h file,
then he or she can simply output the Source Files and ignore the
rest.

When the different options have been set, click on the Generate but-
ton. This button will ask where the files should be saved. Once com-
pleted, an alert will be displayed letting a developer know that the
files are ready for use. At this point, a developer can open the newly
created plug-in project with Codewarrior for the Mac or Visual C++
for Windows, depending on which option was choosen in the 4D
Plug-In Wizard.

HTTP://WWW.4D.COM/APICENTER

4D Plug-In Wizard User Manual

figure 5.

figure 6.

4D, INC. • 3031 TISCH WAY, SUITE 900 • SAN JOSE, CA 95128 • USA • 408.557.4600 • HTTP://WWW.4D.COM

