
4th Dimension

Language Reference
Windows®/Mac OS®

4th Dimension®

© 1985 - 2005 4D SA / 4D, Inc. All Rights Reserved.

__

4th Dimension Language Reference
Version 2004.3 for Windows® and Mac OS®

Copyright © 1985-2005 4D SA/4D, Inc.
All rights reserved
__

The Software described in this manual is governed by the grant of license in the 4D
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the 4D
Product Line License Agreement.

4th Dimension, 4D, the 4D logo and 4D Server are registered trademarks of 4D SA.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac, Mac OS, Laser Writer and QuickTime are trademarks or registered
trademarks of Apple Computer, Inc.
All other referenced trade names are trademarks or registered trademarks of their
respective holders.

Mac2Win Software Copyright © 1990-2005 is a product of Altura Software, Inc.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

4th Dimension includes cryptographic software written by Eric Young
(eay@cryptsoft.com)
4th Dimension includes software written by Tim Hudson (tjh@cryptsoft.com).

Spellchecker © Copyright SYNAPSE Développement, Toulouse, France, 1994-2005.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the 4D Product Line License Agreement, which is
provided in electronic form with the Software. Please read the 4D Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. Introduction 39
Preface 41
Introduction 43
Building a 4D Application 53

2. Language Definition 65
Introduction to the 4D Language 67
Data Types 72
Constants 77
Variables 81
System Variables 86
Pointers 88
Identifiers 97
Control Flow 107
If...Else...End if 109
Case of...Else...End case 111
While...End while 115
Repeat...Until 116
For...End for 117
Methods 123
Project Methods 128

3. 4D Environment 137
Application type 139
Version type 140
Application version 141
Compiled application 143
Application file 144
Structure file 145
Data file 147
Is data file locked 149

4th Dimension Language Reference 3

Get 4D folder 150
DATA SEGMENT LIST 153
ADD DATA SEGMENT 155
FLUSH BUFFERS 157
OPEN DATA FILE 158
CREATE DATA FILE 159
QUIT 4D 160
GET SERIAL INFORMATION 162
Is license available 163
OPEN 4D PREFERENCES 165

4. Arrays 169
Arrays 171
Creating Arrays 172
Arrays and Form Objects 174
Grouped Scrollable Areas 182
Arrays and the 4D Language 185
Arrays and Pointers 187
Using the element zero of an array 189
Two-dimensional Arrays 191
Arrays and Memory 193
ARRAY INTEGER 195
ARRAY LONGINT 196
ARRAY REAL 197
ARRAY STRING 198
ARRAY TEXT 200
ARRAY DATE 201
ARRAY BOOLEAN 202
ARRAY PICTURE 204
ARRAY POINTER 206
Size of array 208
SORT ARRAY 209
MULTI SORT ARRAY 211
Find in array 214
Count in array 216

4 4th Dimension Language Reference

INSERT ELEMENT 217
DELETE ELEMENT 218
APPEND TO ARRAY 219
COPY ARRAY 220
LIST TO ARRAY 221
ARRAY TO LIST 222
SELECTION TO ARRAY 224
SELECTION RANGE TO ARRAY 226
ARRAY TO SELECTION 229
DISTINCT VALUES 231
LONGINT ARRAY FROM SELECTION 233
BOOLEAN ARRAY FROM SET 234

5. Backup 235
BACKUP 237
GET BACKUP INFORMATION 238
RESTORE 239
GET RESTORE INFORMATION 241
SELECT LOG FILE 242
Log File 243
On Backup Startup Database Method 244
On Backup Shutdown Database Method 245
New log file 246
INTEGRATE LOG FILE 247

6. BLOB 249
BLOB Commands 251
SET BLOB SIZE 255
BLOB size 256
COMPRESS BLOB 257
EXPAND BLOB 259
BLOB PROPERTIES 261
DOCUMENT TO BLOB 263

4th Dimension Language Reference 5

BLOB TO DOCUMENT 265
VARIABLE TO BLOB 267
BLOB TO VARIABLE 270
LIST TO BLOB 271
BLOB to list 272
INTEGER TO BLOB 274
LONGINT TO BLOB 276
REAL TO BLOB 278
TEXT TO BLOB 281
BLOB to integer 283
BLOB to longint 285
BLOB to real 287
BLOB to text 289
INSERT IN BLOB 291
DELETE FROM BLOB 292
COPY BLOB 293
ENCRYPT BLOB 294
DECRYPT BLOB 299

7. Boolean 301
Boolean Commands 303
True 304
False 305
Not 306

8. Clipboard 307
APPEND TO CLIPBOARD 309
CLEAR CLIPBOARD 315
GET CLIPBOARD 316
GET PICTURE FROM CLIPBOARD 318
Get text from clipboard 319
SET PICTURE TO CLIPBOARD 321
SET TEXT TO CLIPBOARD 322
Test clipboard 323

6 4th Dimension Language Reference

9. Communications 325
SET CHANNEL 327
SET TIMEOUT 331
USE ASCII MAP 332
GET SERIAL PORT MAPPING 334
SEND PACKET 335
RECEIVE PACKET 337
RECEIVE BUFFER 340
SEND VARIABLE 342
RECEIVE VARIABLE 343
SEND RECORD 344
RECEIVE RECORD 345

10. Compiler 349
Compiler Commands 351
Using Compiler Directives 355
Typing Guide 364
Syntax Details 376
Optimization Hints 387
Error messages 391
C_BLOB 400
C_BOOLEAN 401
C_DATE 402
C_GRAPH 403
C_INTEGER 404
C_LONGINT 405
C_PICTURE 406
C_POINTER 407
C_REAL 408
C_STRING 409
C_TEXT 410
C_TIME 411
IDLE 412

4th Dimension Language Reference 7

11. Database Methods 413
Database Methods 415
On Startup Database Method 417
On Exit Database Method 419

12. Data Entry 425
ADD RECORD 427
MODIFY RECORD 429
ADD SUBRECORD 431
MODIFY SUBRECORD 433
DIALOG 434
Modified 436
Old 438

13. Date and Time 439
Current date 441
Day of 443
Month of 444
Year of 446
Day number 447
Add to date 449
Date 450
Current time 451
Time string 452
Time 453
Tickcount 454
Milliseconds 455
SET DEFAULT CENTURY 456

8 4th Dimension Language Reference

14. Debugging 459
Why a Debugger? 461
Syntax Error Window 465
Debugger 467
Watch Pane 472
Call Chain Pane 478
Custom Watch Pane 479
Source Code Pane 483
Break Points 487
Break List 490
Catching Commands 492
Debugger Shortcuts 496

15. Drag and Drop 499
Drag and Drop 501
Drop position 508
DRAG AND DROP PROPERTIES 510

16. Entry Control 517
ACCEPT 519
CANCEL 520
Keystroke 522
FILTER KEYSTROKE 527
GOTO AREA 533
REJECT 534
EDIT ITEM 536

4th Dimension Language Reference 9

17. External Data Source 539
ODBC LOGIN 541
ODBC LOGOUT 543
ODBC SET OPTION 544
ODBC GET OPTION 545
ODBC EXECUTE 546
ODBC End selection 548
ODBC LOAD RECORD 549
ODBC CANCEL LOAD 550
ODBC SET PARAMETER 551
ODBC GET LAST ERROR 554
ODBC IMPORT 555
ODBC EXPORT 557

18. Form Events 559
Form event 561
Before 579
During 580
After 581
In header 582
In break 583
In footer 584
Activated 585
Deactivated 586
Outside call 587
Get edited text 588
SET TIMER 590
Right click 592
Contextual click 593

10 4th Dimension Language Reference

19. Forms 595
GET FORM PROPERTIES 597
SET FORM SIZE 598
SET FORM HORIZONTAL RESIZING 602
SET FORM VERTICAL RESIZING 603
GET FORM OBJECTS 604
GOTO PAGE 605
FIRST PAGE 606
LAST PAGE 607
NEXT PAGE 608
PREVIOUS PAGE 609
Current form page 610
INPUT FORM 612
OUTPUT FORM 614

20. Graphs 617
GRAPH 619
GRAPH SETTINGS 624
GRAPH TABLE 626

21. Formulas 629
SET ALLOWED METHODS 631
GET ALLOWED METHODS 632
EDIT FORMULA 633

22. Hierarchical Lists 635
Load list 637
SAVE LIST 639
New list 640

4th Dimension Language Reference 11

Copy list 641
CLEAR LIST 642
Count list items 644
Is a list 646
REDRAW LIST 647
SET LIST PROPERTIES 648
GET LIST PROPERTIES 657
SORT LIST 660
APPEND TO LIST 663
INSERT LIST ITEM 670
SET LIST ITEM PROPERTIES 671
GET LIST ITEM PROPERTIES 673
List item position 674
List item parent 675
DELETE LIST ITEM 677
GET LIST ITEM 678
SET LIST ITEM 680
Selected list items 682
SELECT LIST ITEMS BY POSITION 686
SELECT LIST ITEMS BY REFERENCE 689

23. Import and Export 691
IMPORT TEXT 693
EXPORT TEXT 695
IMPORT SYLK 697
EXPORT SYLK 699
IMPORT DIF 701
EXPORT DIF 703
IMPORT DATA 705
EXPORT DATA 707

24. Interruptions 709
ON EVENT CALL 711
Method called on event 715
FILTER EVENT 716

12 4th Dimension Language Reference

ON ERR CALL 717
Method called on error 721
ABORT 722

25. Language 723
Count parameters 725
Type 727
Self 730
RESOLVE POINTER 731
Nil 733
Is a variable 734
Get pointer 735
EXECUTE 736
Command name 737
Current method name 740
TRACE 741
NO TRACE 743

26. List Box 745
Management of List box objects 747
INSERT LISTBOX COLUMN 752
DELETE LISTBOX COLUMN 754
Get number of listbox columns 755
SORT LISTBOX COLUMNS 756
SET LISTBOX COLUMN WIDTH 757
Get listbox column width 758
MOVED LISTBOX COLUMN NUMBER 759
SELECT LISTBOX ROW 760
INSERT LISTBOX ROW 761
DELETE LISTBOX ROW 762
Get number of listbox rows 763
SET LISTBOX ROWS HEIGHT 764
Get listbox rows height 765
MOVED LISTBOX ROW NUMBER 766

4th Dimension Language Reference 13

GET LISTBOX ARRAYS 767
Get listbox information 768
SHOW LISTBOX GRID 770
SET LISTBOX GRID COLOR 771

27. Math 773
Abs 775
Int 776
Dec 777
Round 778
Trunc 779
Random 780
Mod 781
Square root 782
Log 783
Exp 784
Sin 785
Cos 786
Tan 787
Arctan 788
SET REAL COMPARISON LEVEL 789
Display of Real Numbers 790
Euro converter 792

28. Menus 795
Managing Menus 797
MENU BAR 800
HIDE MENU BAR 802
SHOW MENU BAR 803
SET ABOUT 804
Menu selected 805
Count menus 807

14 4th Dimension Language Reference

Count menu items 808
Get menu title 809
Get menu item 810
SET MENU ITEM 811
Get menu item style 812
SET MENU ITEM STYLE 813
Get menu item mark 814
SET MENU ITEM MARK 815
Get menu item key 816
SET MENU ITEM KEY 817
DISABLE MENU ITEM 818
ENABLE MENU ITEM 819
APPEND MENU ITEM 820
INSERT MENU ITEM 822
DELETE MENU ITEM 823

29. Messages 825
MESSAGES OFF 827
MESSAGES ON 828
ALERT 829
CONFIRM 832
Request 835
MESSAGE 837
GOTO XY 841
DISPLAY NOTIFICATION 843

30. Named Selections 845
Named Selections 847
COPY NAMED SELECTION 849
CUT NAMED SELECTION 851
USE NAMED SELECTION 852
CLEAR NAMED SELECTION 853
CREATE SELECTION FROM ARRAY 854

4th Dimension Language Reference 15

31. Object Properties 855
Object Properties 857
FONT 858
FONT SIZE 859
FONT STYLE 860
ENABLE BUTTON 862
DISABLE BUTTON 863
BUTTON TEXT 865
Get format 867
SET FORMAT 869
SET FILTER 876
SET CHOICE LIST 878
SET ENTERABLE 879
SET VISIBLE 881
SET SCROLLBAR VISIBLE 883
SET COLOR 884
SET RGB COLORS 886
GET OBJECT RECT 891
MOVE OBJECT 892
BEST OBJECT SIZE 894
Get alignment 896
SET ALIGNMENT 897

32. Obsolete commands 899
SEARCH BY INDEX 901
SORT BY INDEX 902
SAVE OLD RELATED ONE 903

33. On a Series 905
On a Series 907
Sum 908
Average 909

16 4th Dimension Language Reference

Min 910
Max 911
Std deviation 912
Variance 913
Sum squares 914

34. Operators 915
Operators 917
String Operators 919
Numeric Operators 920
Date Operators 921
Time Operators 922
Comparison Operators 924
Logical Operators 928
Picture Operators 929
Bitwise Operators 938

35. Printing 943
PRINT LABEL 945
PRINT SELECTION 948
Print form 950
PAGE BREAK 953
PRINT RECORD 954
Printing page 956
PRINTERS LIST 957
SET CURRENT PRINTER 958
Get current printer 959
BREAK LEVEL 960
SET PRINT OPTION 961
GET PRINT OPTION 964
PRINT OPTION VALUES 966
ACCUMULATE 968
Subtotal 969
Level 972

4th Dimension Language Reference 17

PAGE SETUP 974
Get print marker 976
PRINT SETTINGS 977
SET PRINT PREVIEW 978
SET PRINT MARKER 979
GET PRINTABLE MARGIN 984
SET PRINTABLE MARGIN 986
GET PRINTABLE AREA 987
Get printed height 988

36. Pictures 989
Pictures 991
COMPRESS PICTURE 994
LOAD COMPRESS PICTURE FROM FILE 995
COMPRESS PICTURE FILE 997
SAVE PICTURE TO FILE 998
PICTURE TO GIF 999
PICTURE TO BLOB 1001
BLOB TO PICTURE 1002
WRITE PICTURE FILE 1003
READ PICTURE FILE 1004
PICTURE TYPE LIST 1005
Picture size 1006
PICTURE PROPERTIES 1007
CREATE THUMBNAIL 1008
PICTURE LIBRARY LIST 1011
GET PICTURE FROM LIBRARY 1013
SET PICTURE TO LIBRARY 1014
REMOVE PICTURE FROM LIBRARY 1017

37. Process (Communications)1019
Semaphore 1021
CLEAR SEMAPHORE 1023
Test semaphore 1024

18 4th Dimension Language Reference

CALL PROCESS 1025
GET PROCESS VARIABLE 1026
SET PROCESS VARIABLE 1029
VARIABLE TO VARIABLE 1032

38. Process (User Interface) 1035
HIDE PROCESS 1037
SHOW PROCESS 1038
BRING TO FRONT 1039
Frontmost process 1040

39. Processes 1041
Processes 1043
New process 1047
Execute on server 1050
DELAY PROCESS 1054
PAUSE PROCESS 1055
RESUME PROCESS 1056
Process aborted 1057
Current process 1058
Process state 1059
PROCESS PROPERTIES 1061
Process number 1063
Count users 1065
Count tasks 1066
Count user processes 1067
EXECUTE ON CLIENT 1068
REGISTER CLIENT 1070
UNREGISTER CLIENT 1073
GET REGISTERED CLIENTS 1074

4th Dimension Language Reference 19

40. Queries 1075
QUERY BY EXAMPLE 1077
QUERY 1078
QUERY SELECTION 1084
QUERY BY FORMULA 1086
QUERY SELECTION BY FORMULA 1088
QUERY WITH ARRAY 1089
SET QUERY DESTINATION 1090
SET QUERY LIMIT 1095
Find index key 1096
ORDER BY 1097
ORDER BY FORMULA 1102

41. Quick Report 1105
QR REPORT 1107
QR REPORT TO BLOB 1110
QR BLOB TO REPORT 1111
QR New offscreen area 1112
QR DELETE OFFSCREEN AREA 1113
QR SET DESTINATION 1114
QR GET DESTINATION 1116
QR SET DOCUMENT PROPERTY 1117
QR Get document property 1118
QR SET REPORT KIND 1119
QR Get report kind 1120
QR SET AREA PROPERTY 1121
QR Get area property 1122
QR SET REPORT TABLE 1123
QR Get report table 1124
QR SET TEXT PROPERTY 1125
QR Get text property 1127
QR RUN 1129
QR EXECUTE COMMAND 1130
QR Get command status 1131

20 4th Dimension Language Reference

QR ON COMMAND 1132
QR Find column 1133
QR SET SELECTION 1134
QR GET SELECTION 1135
QR SET HEADER AND FOOTER 1136
QR GET HEADER AND FOOTER 1138
QR SET BORDERS 1140
QR GET BORDERS 1142
QR SET INFO COLUMN 1144
QR GET INFO COLUMN 1147
QR SET INFO ROW 1150
QR Get info row 1151
QR SET SORTS 1152
QR GET SORTS 1153
QR SET TOTALS DATA 1154
QR GET TOTALS DATA 1157
QR SET TOTALS SPACING 1159
QR GET TOTALS SPACING 1160
QR INSERT COLUMN 1161
QR Get drop column 1162
QR Count columns 1163
QR DELETE COLUMN 1164
QR SET HTML TEMPLATE 1165
QR Get HTML template 1167

42. Record Locking 1169
Record Locking 1171
READ WRITE 1177
READ ONLY 1178
Read only state 1179
LOAD RECORD 1180
UNLOAD RECORD 1181
Locked 1182
LOCKED ATTRIBUTES 1183

4th Dimension Language Reference 21

43. Records 1185
DISPLAY RECORD 1187
CREATE RECORD 1188
DUPLICATE RECORD 1189
Is new record 1190
Modified record 1191
Is record loaded 1192
SAVE RECORD 1193
DELETE RECORD 1194
Records in table 1195
Record number 1196
GOTO RECORD 1197
Sequence number 1198
About Record Numbers 1200
PUSH RECORD 1203
POP RECORD 1204
Using the Record Stack 1205

44. Relations 1207
Relations 1209
SET AUTOMATIC RELATIONS 1212
GET AUTOMATIC RELATIONS 1213
SET FIELD RELATION 1214
GET FIELD RELATION 1216
RELATE ONE 1219
RELATE MANY 1221
CREATE RELATED ONE 1224
SAVE RELATED ONE 1225
OLD RELATED ONE 1226
OLD RELATED MANY 1227
RELATE ONE SELECTION 1228
RELATE MANY SELECTION 1229

22 4th Dimension Language Reference

45. Resources 1231
Resources 1233
Resources and 4D Insider: an Example 1240
Open resource file 1246
Create resource file 1249
CLOSE RESOURCE FILE 1251
RESOURCE TYPE LIST 1252
RESOURCE LIST 1254
STRING LIST TO ARRAY 1256
ARRAY TO STRING LIST 1257
Get indexed string 1259
Get string resource 1260
SET STRING RESOURCE 1261
Get text resource 1262
SET TEXT RESOURCE 1263
GET PICTURE RESOURCE 1264
SET PICTURE RESOURCE 1265
GET ICON RESOURCE 1266
GET RESOURCE 1268
SET RESOURCE 1270
Get resource name 1272
SET RESOURCE NAME 1274
Get resource properties 1275
SET RESOURCE PROPERTIES 1276
DELETE RESOURCE 1279
Get component resource ID 1282

46. Secured Protocol 1285
GENERATE ENCRYPTION KEYPAIR 1287
GENERATE CERTIFICATE REQUEST 1289

4th Dimension Language Reference 23

47. Selection 1293
ALL RECORDS 1295
Records in selection 1296
DELETE SELECTION 1297
Selected record number 1299
GOTO SELECTED RECORD 1300
FIRST RECORD 1302
Displayed line number 1303
NEXT RECORD 1304
LAST RECORD 1305
PREVIOUS RECORD 1306
Before selection 1307
End selection 1309
DISPLAY SELECTION 1311
MODIFY SELECTION 1314
APPLY TO SELECTION 1315
REDUCE SELECTION 1317
SCAN INDEX 1319
ONE RECORD SELECT 1320
HIGHLIGHT RECORDS 1321
GET HIGHLIGHTED RECORDS 1323

48. Sets 1325
Sets 1327
CREATE EMPTY SET 1332
CREATE SET 1333
CREATE SET FROM ARRAY 1334
USE SET 1335
ADD TO SET 1336
REMOVE FROM SET 1337
CLEAR SET 1338
Is in set 1339
Records in set 1340
SAVE SET 1341

24 4th Dimension Language Reference

LOAD SET 1342
DIFFERENCE 1343
INTERSECTION 1345
UNION 1347
COPY SET 1349

49. String 1351
String 1353
Num 1356
Position 1358
Substring 1359
Length 1361
Ascii 1362
Char 1364
Character Reference Symbols 1365
Uppercase 1368
Lowercase 1369
Change string 1370
Insert string 1371
Delete string 1372
Replace string 1373
Mac to Win 1374
Win to Mac 1375
Mac to ISO 1376
ISO to Mac 1379

50. Structure Access 1381
Structure Access 1383
Count tables 1384
Count fields 1385
Table name 1386
Field name 1387
Table 1388

4th Dimension Language Reference 25

GET TABLE PROPERTIES 1389
Field 1390
GET FIELD PROPERTIES 1391
GET FIELD ENTRY PROPERTIES 1393
GET RELATION PROPERTIES 1394
SET INDEX 1395
Get database parameter 1397
SET DATABASE PARAMETER 1399

51. Subrecords 1409
CREATE SUBRECORD 1411
DELETE SUBRECORD 1412
ALL SUBRECORDS 1413
Records in subselection 1414
APPLY TO SUBSELECTION 1415
FIRST SUBRECORD 1416
LAST SUBRECORD 1417
NEXT SUBRECORD 1418
PREVIOUS SUBRECORD 1419
Before subselection 1420
End subselection 1421
ORDER SUBRECORDS BY 1422
QUERY SUBRECORDS 1423

52. System Documents 1425
System Documents 1427
Document type 1434
SET DOCUMENT TYPE 1435
Document creator 1436
SET DOCUMENT CREATOR 1437
Open document 1438
Create document 1441
Append document 1443

26 4th Dimension Language Reference

CLOSE DOCUMENT 1444
COPY DOCUMENT 1445
MOVE DOCUMENT 1446
DELETE DOCUMENT 1447
Select document 1448
Test path name 1451
SHOW ON DISK 1452
CREATE FOLDER 1454
Select folder 1455
DELETE FOLDER 1458
CREATE ALIAS 1459
RESOLVE ALIAS 1461
VOLUME LIST 1462
VOLUME ATTRIBUTES 1463
FOLDER LIST 1466
DOCUMENT LIST 1467
MAP FILE TYPES 1468
GET DOCUMENT PROPERTIES 1470
SET DOCUMENT PROPERTIES 1476
GET DOCUMENT ICON 1477
Get document size 1478
SET DOCUMENT SIZE 1479
Get document position 1480
SET DOCUMENT POSITION 1481

53. System Environment 1483
Screen height 1485
Screen width 1486
Count screens 1487
SCREEN COORDINATES 1488
SCREEN DEPTH 1489
SET SCREEN DEPTH 1491
Menu bar screen 1492
Menu bar height 1493
FONT LIST 1494

4th Dimension Language Reference 27

Font name 1495
Font number 1496
PLATFORM PROPERTIES 1497
System folder 1502
Temporary folder 1504
Current machine 1505
Current machine owner 1506
Gestalt 1507
LOG EVENT 1508
SET ENVIRONMENT VARIABLE 1509
LAUNCH EXTERNAL PROCESS 1510

54. Table 1513
DEFAULT TABLE 1515
Current default table 1517
Current form table 1518

55. Tool Bar 1521
HIDE TOOL BAR 1523
SHOW TOOL BAR 1524

56. Tools 1525
BUILD APPLICATION 1527
ENCODE 1528
DECODE 1529
SPELL CHECKING 1530
SET DICTIONARY 1531

28 4th Dimension Language Reference

57. Transactions 1535
Using Transactions 1537
START TRANSACTION 1541
VALIDATE TRANSACTION 1542
CANCEL TRANSACTION 1543
In transaction 1544

58. Triggers 1545
Triggers 1547
Database event 1558
Trigger level 1560
TRIGGER PROPERTIES 1561

59. User forms 1563
Overview of user forms 1565
EDIT FORM 1567
CREATE USER FORM 1569
LIST USER FORMS 1570
DELETE USER FORM 1571

60. User Interface 1573
BEEP 1575
PLAY 1576
Get platform interface 1578
SET PLATFORM INTERFACE 1579
SET TABLE TITLES 1581
GET TABLE TITLES 1585
SET FIELD TITLES 1586
GET FIELD TITLES 1588

4th Dimension Language Reference 29

Shift down 1589
Caps lock down 1590
Windows Ctrl down 1591
Windows Alt down 1592
Macintosh command down 1593
Macintosh option down 1594
Macintosh control down 1595
GET MOUSE 1596
Pop up menu 1597
POST KEY 1600
POST CLICK 1601
POST EVENT 1602
SCROLL LINES 1603
GET HIGHLIGHT 1604
HIGHLIGHT TEXT 1605
SET CURSOR 1606
Focus object 1607
REDRAW 1608
INVERT BACKGROUND 1609

61. Users and Groups 1611
EDIT ACCESS 1613
CHANGE CURRENT USER 1614
Validate password 1616
CHANGE PASSWORD 1617
Current user 1618
Get default user 1619
User in group 1620
DELETE USER 1621
Is user deleted 1622
GET USER LIST 1623
GET USER PROPERTIES 1624
Set user properties 1626
USERS TO BLOB 1629
BLOB TO USERS 1630
GET GROUP LIST 1631

30 4th Dimension Language Reference

GET GROUP PROPERTIES 1632
Set group properties 1634
CHANGE LICENSES 1636
SET PLUGIN ACCESS 1637
Get plugin access 1638
GET PLUGIN LIST 1639

62. Variables 1641
SAVE VARIABLES 1643
LOAD VARIABLES 1644
CLEAR VARIABLE 1645
Undefined 1647

63. Web Server 1649
Web Server, Overview 1651
Web server configuration and connection management 1655
Your First Time with the Web Server 1666
Connection Security 1676
On Web Authentication Database Method 1684
On Web Connection Database Method 1689
Binding 4D objects with HTML objects 1697
URLs and Form Actions 1708
4D HTML Tags 1715
Web Server Settings 1724
Information about the Web Site 1736
Using the Contextual Mode 1740
Using SSL Protocol 1757
XML and WML Support 1762
Using CGIs 1763
START WEB SERVER 1771
STOP WEB SERVER 1772
SET WEB TIMEOUT 1773
SET HTML ROOT 1774

4th Dimension Language Reference 31

SET WEB DISPLAY LIMITS 1775
SET HOME PAGE 1778
SEND HTML FILE 1779
SEND HTML BLOB 1782
SEND HTML TEXT 1785
PROCESS HTML TAGS 1786
GET WEB FORM VARIABLES 1788
Web Context 1790
SET HTTP HEADER 1791
GET HTTP HEADER 1793
GET HTTP BODY 1796
SEND HTTP RAW DATA 1798
SEND HTTP REDIRECT 1801
WEB CACHE STATISTICS 1803
Secured Web connection 1804
SET CGI EXECUTABLE 1805
OPEN WEB URL 1806

64. Web Services (Client) 1807
Web Services (Client) Commands 1809
SET WEB SERVICE PARAMETER 1810
SET WEB SERVICE OPTION 1812
CALL WEB SERVICE 1814
GET WEB SERVICE RESULT 1818
AUTHENTICATE WEB SERVICE 1820
Get Web Service error info 1821

65. Web Services (Server) 1823
Web Services (Server) Commands 1825
SOAP DECLARATION 1826
SEND SOAP FAULT 1830
Is SOAP request 1831
Get SOAP info 1832

32 4th Dimension Language Reference

66. Windows 1833
Managing Windows 1835
Window Types 1837
Open window 1845
Open external window 1849
CLOSE WINDOW 1851
ERASE WINDOW 1852
REDRAW WINDOW 1853
DRAG WINDOW 1854
HIDE WINDOW 1856
SHOW WINDOW 1857
MAXIMIZE WINDOW 1858
MINIMIZE WINDOW 1860
Get window title 1862
SET WINDOW TITLE 1863
WINDOW LIST 1864
Window kind 1865
Window process 1866
GET WINDOW RECT 1867
SET WINDOW RECT 1868
Frontmost window 1870
Next window 1871
Find window 1872
Open form window 1873
Current form window 1875
RESIZE FORM WINDOW 1876

67. XML 1879
Presentation of XML Commands 1881
DOM Create XML Ref 1886
DOM SET XML OPTIONS 1888
DOM Parse XML source 1889
DOM Parse XML variable 1891
DOM Create XML element 1893
DOM Find XML element 1895
DOM Count XML elements 1897

4th Dimension Language Reference 33

DOM Get XML element 1898
DOM Get parent XML element 1899
DOM Get first child XML element 1900
DOM Get next sibling XML element 1902
DOM Get previous sibling XML element 1904
DOM Get last child XML element 1905
DOM SET XML ELEMENT NAME 1906
DOM GET XML ELEMENT NAME 1907
DOM SET XML ELEMENT VALUE 1908
DOM GET XML ELEMENT VALUE 1909
DOM REMOVE XML ELEMENT 1910
DOM Count XML attributes 1911
DOM SET XML ATTRIBUTE 1913
DOM GET XML ATTRIBUTE BY INDEX 1914
DOM GET XML ATTRIBUTE BY NAME 1915
DOM Get XML information 1917
DOM EXPORT TO FILE 1918
DOM EXPORT TO VAR 1919
DOM CLOSE XML 1920
SAX SET XML OPTIONS 1921
SAX GET XML DOCUMENT VALUES 1922
SAX ADD XML DOCTYPE 1923
SAX Get XML node 1924
SAX ADD XML COMMENT 1925
SAX GET XML COMMENT 1926
SAX OPEN XML ELEMENT 1927
SAX OPEN XML ELEMENT ARRAYS 1928
SAX CLOSE XML ELEMENT 1929
SAX GET XML ELEMENT 1930
SAX ADD XML ELEMENT VALUE 1932
SAX GET XML ELEMENT VALUE 1933
SAX ADD XML CDATA 1934
SAX GET XML CDATA 1936
SAX ADD PROCESSING INSTRUCTION 1937
SAX GET XML PROCESSING INSTRUCTION 1938
SAX GET XML ENTITY 1939
GET XML ERROR 1940
APPLY XSLT TRANSFORMATION 1941
SET XSLT PARAMETER 1943
GET XSLT ERROR 1945

34 4th Dimension Language Reference

68. Error Codes 1947
Syntax Errors 1949
Database Engine Errors 1952
Network Errors 1956
Backup management system errors 1957
OS File Manager Errors 1958
OS Memory Manager Errors 1959
OS Printing Manager Errors 1960
OS Resource Manager Errors 1961
SANE NaN Errors 1962
OS Sound Manager Errors 1963
OS Serial Ports Manager Errors 1964
Mac OS System Errors 1965

69. ASCII Codes 1967
ASCII Codes 1969
ASCII Codes 0..63 1970
ASCII Codes 64..127 1971
ASCII Codes 128..191 1972
ASCII Codes 192..255 1975
Function Key Codes 1978

70. Command Syntax 1979
Command Syntax by Name 1981

Constants 2003
4D Environment 2005
ASCII Codes 2006
Backup and Restore 2008
BLOB 2009
Clipboard 2010
Colors 2011
Communications 2012

4th Dimension Language Reference 35

Database Engine 2013
Database Events 2014
Database Parameters 2015
Date Display Formats 2016
Days and Months 2017
Dictionaries 2018
Euro currencies 2019
Events (Modifiers) 2020
Events (What) 2021
Expressions 2022
External data source 2023
Field and Variable Types 2024
Find window 2025
Font Styles 2026
Form area 2027
Form Events 2028
Form options 2030
Function Keys 2031
Hierarchical Lists 2032
Is license available 2033
ISO Latin Character Entities 2034
List box 2036
Math 2037
Object alignment 2038
Open form window 2039
Open window 2040
Picture Compression 2041
Picture Display Formats 2042
Platform Interface 2043
Platform Properties 2044
Print options 2045
Process state 2046
Process Type 2047
QR Area Properties 2048
QR Borders 2049
QR Commands 2050
QR Document Properties 2052
QR Operators 2053
QR Output Destination 2054
QR Report Types 2055
QR Rows for Properties 2056
QR Text Properties 2057

36 4th Dimension Language Reference

Relations 2059
Resources Properties 2060
SCREEN DEPTH 2061
SET RGB COLORS 2062
Standard System Signatures 2063
System Documents 2064
System Folder 2065
TCP Port Numbers 2066
Time Display Formats 2067
Web Services (Client) 2068
Web Services (Server) 2069
Window kind 2070
Windows Log Events 2071
XML 2072

Command Index 2073

4th Dimension Language Reference 37

38 4th Dimension Language Reference

1

Introduction

4th Dimension Language Reference 39

40 4th Dimension Language Reference

Preface Introduction

version 6.0
__

4th Dimension has its own programming language. This built-in language, consisting of
over 500 commands, makes 4th Dimension a powerful development tool for database
applications on desktop computers. You can use the 4th Dimension language for many
different tasks—from performing simple calculations to creating complex custom user
interfaces. For example, you can:

• Programmatically access any of the editors available to the user in the User
environment,
• Create and print complex reports and labels with the information from the database,
• Communicate with other devices,
• Manage documents,
• Import and export data between 4th Dimension databases and other applications,
• Incorporate procedures written in other languages into the 4th Dimension
programming language.

The flexibility and power of the 4th Dimension programming language make it the ideal
tool for all levels of users and developers to accomplish a complete range of information
management tasks. Novice users can quickly perform calculations. Experienced users
without programming experience can customize their databases. Experienced developers
can use this powerful programming language to add sophisticated features and capabilities
to their databases, including file transfer and communications. Developers with
programming experience in other languages can add their own commands to the
4th Dimension language.

The 4th Dimension programming language is expanded when any of the 4th Dimension
modules are added to the application. Each module includes language commands that are
specific to the capabilities they provide.

About the Manuals
The manuals described here provide a guide to the features of both 4th Dimension and
4D Server. The only exception is the 4D Server Reference, which describes features exclusive
to 4D Server.

• The Language Reference is a guide to using the 4th Dimension language. Use this manual
to learn how to customize your database by incorporating 4th Dimension commands and
functions.
• The Design Reference provides detailed descriptions of the operations you can perform in
the Design environment to create forms for managing data.
• The User Reference provides a description of the User environment, in which users enter
and manipulate data in forms.

4th Dimension Language Reference 41

• The Quickstart manual leads you through example lessons in which you create and use a
4th Dimension database. These examples provide hands-on experience and help you
become familiar with the concepts and features of 4th Dimension and 4D Server.
• The 4D Server Reference, which is included only in the 4D Server package, is a guide to
managing multi-user databases with 4D Server.

About this Manual
This manual describes the 4th Dimension language. It assumes that you are familiar with
terms such as table, field, and form. Before you read this manual, you should:

• Use the Quickstart manual to work through the database example.
• Begin creating your own databases, referring to the Design Reference manual when
necessary.
• Be comfortable with managing your database in the User environment. See the User
Reference manual for more information on the User environment.

Writing conventions
In this manual, several writing conventions are used:
• Following the example of the 4th Dimension Method editor, commands are written in
all caps using special characters, e.g.: OPEN DOCUMENT. Functions (commands that return
a value) start with a capital letter and continue in lower case, e.g.: Change string.
• In the command syntax, the { } characters (braces) indicate optional parameters. For
example, SET DEFAULT CENTURY (century{; pivotYear}) means that the pivotYear parameter
may be omitted when calling the command.
• In the command syntax, the | character indicates an alternative. For example, Table
(tableNum | aPtr) indicates that the function accepts either a table number or a pointer as
parameter.
• In certain examples in this documentation, a line of code may be continued onto the
following line(s) due to lack of space. However, you should type these examples as a single
line of code without using carriage returns.

Where to go from here?
If you are reading this manual for the first time, read the Introduction section.

42 4th Dimension Language Reference

Introduction Introduction

version 2003 (Modified)
__

This topic introduces you to the 4th Dimension programming language. The following
topics are discussed:

• What the language is and what it can do for you,
• How you will use methods,
• How to develop an application with 4th Dimension.

These topics are covered here in general terms; they are covered in greater detail in other
sections.

What is a Language?
__

The 4th Dimension language is not very different from the spoken language we use every
day. It is a form of communication used to express ideas, inform, and instruct. Like a
spoken language, 4th Dimension has its own vocabulary, grammar, and syntax; you use it
to tell 4th Dimension how to manage your database and data.

You do not need to know everything in the language in order to work effectively with
4th Dimension. In order to speak, you do not need to know the entire English language;
in fact, you can have a small vocabulary and still be quite eloquent. The 4th Dimension
language is much the same—you only need to know a small part of the language to
become productive, and you can learn the rest as the need arises.

Why Use a Language?
__

At first it may seem that there is little need for a programming language in 4th
Dimension. The Design and User environments provide flexible tools, which require no
programming to perform a wide variety of data management tasks. Fundamental tasks,
such as data entry, queries, sorting, and reporting are handled with ease. In fact, many
extra capabilities are available, such as data validation, data entry aids, graphing, and label
generation.

Then why do we need a 4th Dimension language? Here are some of its uses:

• Automate repetitive tasks: These tasks include data modification, generation of complex
reports, and unattended completion of long series of operations.
• Control the user interface: You can manage windows and menus, and control forms
and interface objects.
• Perform sophisticated data management: These tasks include transaction processing,
complex data validation, multi-user management, sets, and named selection operations.
• Control the computer: You can control serial port communications, document
management, and error management.

4th Dimension Language Reference 43

• Create applications: You can create easy-to-use, customized databases that use the
Runtime environment.
• Add functionality to the built-in 4D Web Services: Create dynamic HTML pages in
addition to those automatically translated from forms by 4D.

The language lets you take complete control over the design and operation of your
database. While the User environment gives you powerful “generic” tools, the language
lets you customize your database to whatever degree you require.

Taking Control of Your Data
__

The 4th Dimension language lets you take complete control of your data in a powerful
and elegant manner. The language is easy enough for a beginner, and sophisticated
enough for an experienced application developer. It provides smooth transitions from
built-in database functions to a completely customized database.

The commands in the 4th Dimension language provide access to the User environment
editors, with which you are already familiar. For example, when you use the QUERY
command, you are presented with the Query Editor. Using this language command is
almost as easy as choosing the Query command from the Queries menu, but the QUERY
command is even more useful. You can tell the QUERY command to search for explicitly
described data. For example, QUERY ([People];[People]Last Name="Smith") will find all the
people named Smith in your database.

The 4th Dimension language is very powerful—one command often replaces hundreds or
even thousands of lines of code written in traditional computer languages. Surprisingly
enough, with this power comes simplicity—commands have plain English names. For
example, to perform a query, you use the QUERY command; to add a new record, you use
the ADD RECORD command.

The language is designed for you to easily accomplish almost any task. Adding a record,
sorting records, searching for data, and similar operations are specified with simple and
direct commands. But the language can also control the serial ports, read disk documents,
control sophisticated transaction processing, and much more.

The 4th Dimension language accomplishes even the most sophisticated tasks with relative
simplicity. Performing these tasks without using the language would be unimaginable for
many.
Even with the language’s powerful commands, some tasks can be complex and difficult. A
tool by itself does not make a task possible; the task itself may be challenging and the
tool can only ease the process. For example, a word processor makes writing a book faster
and easier, but it will not write the book for you. Using the 4th Dimension language will
make the process of managing your data easier and will allow you to approach
complicated tasks with confidence.

44 4th Dimension Language Reference

Is it a “Traditional” Computer Language?
__

If you are familiar with traditional computer languages, this section may be of interest. If
not, you may want to skip it.

The 4th Dimension language is not a traditional computer language. It is one of the most
innovative and flexible languages available on a computer today. It is designed to work
the way you do, and not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning is one of
the major steps in development. 4th Dimension allows you to start using the language at
any time and in any part of your database. You may start by adding a method to a form,
then later add a few more methods. As your database becomes more sophisticated, you
might add a project method controlled by a menu. You can use as little or as much of the
language as you want. It is not “all or nothing,” as is the case with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic
terms. In 4th Dimension, you simply create an object, such as a button, and use it.
4th Dimension automatically manages the object for you. For example, to use a button,
you draw it on a form and name it. When the user clicks the button, the language
automatically notifies your methods.

Traditional languages are often rigid and inflexible, requiring commands to be entered in
a very formal and restrictive style. The 4th Dimension language breaks with tradition,
and the benefits are yours.

Methods are the Gateway to the Language
__

A method is a series of instructions that causes 4th Dimension to perform a task. Each
line of instruction in a method is called a statement. Each statement is composed of parts
of the language.

Because you have already worked through the Quickstart tutorials (you did go through
Quickstart, didn’t you?), you have already written and used methods.

You can create five types of methods with 4th Dimension:

• Object Methods: Usually short methods used to control form objects.
• Form Methods: Manage the display or printing of a form.
• Table Methods/Triggers: Used to enforce the rules of your database.
• Project methods: Methods that are available for use throughout your database. For
example, methods that can be attached to menus.
• Database methods: Execute initializations or special actions when a database is opened
or closed, or when a Web browser connects to your database published as a Web Server on
Internet an Intranet.

4th Dimension Language Reference 45

The following sections introduce each of these method types and give you a feel for how
you can use them to automate your database.

Getting started with object methods
Any form object that can perform an action (that is, any active object) can have a
method associated with it. An object method monitors and manages the active object
during data entry and printing. A object method is bound to its active object even when
the object is copied and pasted. This allows you to create reusable libraries of scripted
objects. The object method takes control exactly when needed.

Object methods are the primary tools for managing the user interface, which is the
doorway to your database. The user interface consists of the procedures and conventions
by which a computer communicates with the user. The goal is to make the user interface
of your database as simple and easy to use as possible. The user interface should make
interaction with the computer a pleasant process, one that the user enjoys or does not
even notice.

There are two basic types of active objects in a form:
• Those for entering, displaying, and storing data; such as fields and subfields
• Those for control; such as enterable areas, buttons, scrollable areas, hierarchical lists, and
meters

4th Dimension enables you to build classic forms, such as the one shown here:

46 4th Dimension Language Reference

You can also build forms with multiple graphic controls, such as this one:

4th Dimension Language Reference 47

You can even build forms that incorporate a graphical flair limited only by your
imagination:

Whatever your style in building forms, all active objects have built-in aids, like range
checking and entry filters for data entry areas, and automatic actions for controls, menus,
and buttons. Always use these aids before adding object methods. The built-in aids are
similar to methods in that they remain associated with the active object and are active
only when the active object is being used. You will typically use a combination of built-in
aids and object methods to control the user interface.

An object method associated with an active object used for data entry typically performs a
data-management task specific to the field or variable. The method can perform data
validation, data formatting, or calculations. It may even get related information from
other files. Some of these tasks can, of course, also be performed with the built-in data
entry aids for objects. Use object methods when the task is too complex for the built-in
data entry aids to manage. For more information about the built-in data entry aids, refer
to the 4th Dimension Design Reference.

48 4th Dimension Language Reference

Object methods are also associated with active objects used for control, such as buttons.
Active objects used for control are essential to navigating within your database. Buttons
allow you to move from record to record, move to different forms, and add and delete
data. These active objects simplify the use of a database and reduce the time required to
learn it. Buttons also have built-in aids and, as with data entry, you should use these built-
in aids before adding methods. Object methods enable you to add actions that are not
built-in, to your controls. For example, the following window is the object method for a
button that, when clicked, displays the Query editor.

As you become more proficient with scripts, you will find that you can create libraries of
objects with associated methods. You can copy and paste these objects and their methods
between forms, tables, and databases. You can even keep them in the Clipbook
(Windows) or Scrapbook (Macintosh), ready to be used when you need them.

Controlling forms with form methods
In the same way that object methods are associated with the active objects in a form, a
form method is associated with a form. Each form can have one form method. A form is
the means through which you can enter, view, and print your data. Forms allow you to
present the data to the user in different ways. Through the use of forms, you can create
attractive and easy-to-use data entry screens and printed reports. A form method monitors
and manages the use of an individual form both for data entry and for printing.

Form methods manage forms at a higher level than do object methods. Object methods
are activated only when the object is used, whereas a form method is activated when
anything in the form is used. Form methods are typically used to control the interaction
between the different objects and the form as a whole.

As forms are used in so many different ways, it is informative to monitor what is
happening while your form is in use. You use the various form events for this purpose.
They tell you what is currently happening with the form. Each type of event (i.e., clicks,
double-clicks, keystrokes...) enables or disables the execution of the form method as well
as the object method of each object of the form.

For more information about form, objects, events and methods, see the section Form
event.

4th Dimension Language Reference 49

Enforcing the rules of your database using the table methods/triggers
A Trigger is attached to a table; for this reason, it is also called a Table Method. Triggers are
automatically invoked by the 4D database engine each you manipulate the records of a
table (Add, Delete, Modify and Load). Triggers are methods that can prevent “illegal”
operations with the records of your database. For example, in an invoicing system, you
can prevent anyone from adding an invoice without specifying the customer to whom
the invoice is billed. Triggers are a very powerful tool to restrict operations on a table as
well as to prevent accidental data loss or tampering. You can write very simple triggers,
then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

Using project method throughout the database
Unlike object methods, form methods, and triggers, which are all associated with a
particular object, form, or table, project methods are available for use throughout your
database. Project methods are reusable, and available for use by any other method. If you
need to repeat a task, you do not have to write identical methods for each case. You can
call project methods wherever you need them—from other project methods or from
object or form methods. When you call a project method, it acts as if you had written the
method at the location where you called it. Project methods called from other method are
often referred to as “subroutines.”

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

Handling working sessions with database methods
In the same way object and form methods are invoked when events occur in a form,
there are methods associated with the database which are invoked when a working
session event occurs. These are the database methods. For example, each time you open a
database, you may want to initialize some variables that will be used during the whole
working session. To do so, you use the On Startup Database Method, automatically
executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Developing Your Database
__

Development is the process of customizing a database using the language and other built-
in tools.

50 4th Dimension Language Reference

By simply creating a database, you have already taken the first steps to using the
language. All the parts of your database—the tables and fields, the forms and their objects,
and the menus—are tied to the language. The 4th Dimension language “knows” about all
of these parts of your database.

Perhaps your first use of the language is to add a method to a form object in order to
control data entry. Later, you might add a form method to control the display of your
form. As the database becomes more complex, you can add a menu bar with project
methods to completely customize your database.

As with other aspects of 4th Dimension, development is a very flexible process. There is
no formal path to take during development—you can develop in a manner with which
you are comfortable. There are, of course, some general patterns in the process.

• Implementation: Implement your design in the Design environment.
• Testing: You try out the design in the User environment and perhaps stay there to use
your customized database.
• Usage: When your database is fully customized, you use it in the Custom Menus
environment.
• Corrections: If you find errors, you return to the Design environment to fix them.

Special development support tools, hidden until needed, are built into 4th Dimension. As
you use the language more frequently, you will find that these tools facilitate the
development process. For example, the Method Editor catches typing errors and formats
your work; the Interpreter (the engine that runs the language) catches errors in syntax
and shows you where and what they are; and the Debugger lets you monitor the
execution of your methods to catch errors in design.

Building Applications
__

By now you are familiar with the general uses of a database—data entry, searching,
sorting, and reporting. You have performed these tasks in the User environment, using
the built-in menus and editors.

As you use a database, you perform some sequences of tasks repeatedly. For example, in a
database of personal contacts, you might search for your business associates, order them
by last name, and print a specific report each time information about them is changed.
These tasks may not seem difficult, but they can certainly be time-consuming after you
have done them 20 times. In addition, if you don’t use the database for a couple of weeks,
you may return to find that the steps used to generate the report are not so fresh in your
mind. The steps in methods are chained together, so a single command automatically
performs all the tasks linked to it. Consequently, you do not have to worry about the
specific steps.

4th Dimension Language Reference 51

Applications have custom menus and perform tasks that are specific to the needs of the
person using your database. An application is composed of all the pieces of your database:
the structure, the forms, the object, form and project methods, the menus, and the
passwords.

You can compile your databases and create stand-alone Windows and Macintosh
applications. Compiling databases increases the execution speed of the language, protects
your databases, and allows you to create applications that are completely independent.
The integrated compiler also checks the syntax and the types of variables in methods for
consistency.

An application can be as simple as a single menu that lets you enter people’s names and
print a report, or as complex as an invoicing, inventory, and control system. There are no
limits to the uses of database applications. Typically, an application grows from a database
used in the User environment to a database controlled completely by custom menus.

Where to go from here?
• Developing applications can be as simple or complex as you like. For a quick overview
about building a simple 4D application, see the section Building a 4D application.
• If you are new to 4D, refer to the Language Definition sections to learn about the basics
of the 4D language: start with Introduction to the 4D Language.

52 4th Dimension Language Reference

Building a 4D Application Introduction

version 2003 (Modified)
__

An application is a database designed to fill a specific need. It has a user interface designed
specifically to facilitate its use. The tasks that an application performs are limited to those
appropriate for its purpose. Creating applications with 4th Dimension is smoother and
easier than with traditional programming. 4th Dimension can be used to create a variety
of applications, including:

• An invoice system
• An inventory control system
• An accounting system
• A payroll system
• A personnel system
• A customer tracking system
• A database shared over the Internet or an Intranet

It is possible that a single application could even contain all of these systems. Applications
like these are typical uses of databases. In addition, the tools in 4th Dimension allow you
to create innovative applications, such as:

• A document tracking system
• A graphic image management system
• A catalog publishing application
• A serial device control and monitoring system
• An electronic mail system (E-mail)
• A multi-user scheduling system
• A list such as a menu list, video collection, or music collection

An application typically starts as a database used in the User environment. The database
“evolves” into an application as it is customized. What differentiates an application is that
the systems required to manage the database are hidden from the user. Database
management is automated, and users use menus to perform specific tasks.

When you use a 4th Dimension database in the User environment, you must know the
steps to take to achieve a result. In an application, you use the Custom Menus
environment, in which you need to manage all the aspects that are automatic in the User
Environment. These include:

•Table Navigation: The Choose Table/Form dialog box and List of Tables window are not
available to the user. You can use menu commands and methods to control navigation
between tables.
• Menus: In the Custom Menus environment, you only have the default File menu with
the Quit menu command, Edit menu, and the Help menu (Windows only) or the Apple
menu (Macintosh only). If the application requires more menus, you have to create and
manage them using 4D methods.

4th Dimension Language Reference 53

• Editors: The editors, such as the Query and Order By editors, are no longer automatically
available in the Custom Menus environment. If you want to use them in the Custom
Menus environment, you have to call them using 4D methods.

The following sections include examples showing how the language can automate the use
of a database.

Custom Menus: an Example
__

Custom Menus are the primary interface in an application. They make it easier for users
to learn and use a database. Creating custom menus is very simple—you associate
methods or automatic actions with each menu command (also called menu items) in the
Menu editor.

“The User's Perspective” section describes what happens when the user chooses a menu
command. Next, “Behind the Scenes” describes the design work that made it happen.
Although the example is simple, it should be apparent how custom menus make the
database easier to use and learn. Rather than the “generic” tools and menu commands in
the User environment, the user sees only things that are appropriate to his or her needs.

The User’s Perspective
The user chooses a menu item called New from the People menu to add a new person to
the database.

54 4th Dimension Language Reference

The Input form for the People table is displayed.

The user enters the person’s first name and then tabs to the next field.

4th Dimension Language Reference 55

The user enters the person’s last name.

The user tabs to the next field: the last name is converted to uppercase.

56 4th Dimension Language Reference

The user finishes entering the record and clicks the validation button (generally the last
button in the button bar).

Another blank record appears, and the user clicks the Cancel button (the one with the
“X”) to terminate the “data entry loop.” The user is returned to the menu bar.

Behind the Scenes
The menu bar was created in the Design environment, using the Menu Bar Editor.

4th Dimension Language Reference 57

The menu item New has a project method named New Person associated with it. This
method was created in the Design environment, using the Method editor.

When the user chooses this menu item, the New Person method executes:

Repeat
ADD RECORD([People])

Until (OK=0)

The Repeat...Until loop with an ADD RECORD command within the loop acts just like the
New Record menu item in the User environment. It displays the input form to the user,
so that he or she can add a new record. When the user saves the record, another new
blank record appears. This ADD RECORD loop continues to execute until the user clicks
the Cancel button.

When a record is entered, the following occurs:
• There is no method for the First Name field, so nothing executes.
• There is a method for the Last Name field. This Object Method was created in the Design
environment, using the Form and Method editors. The method executes:

Last Name:=Uppercase(Last Name)

This line converts the Last Name field to uppercase characters.

After a record has been entered, when the user clicks the Cancel button for the next one,
the OK variable is set to zero, thus ending the execution of the ADD RECORD loop.

As there are no more statements to execute, the New Person method stops executing and
control returns to the menu bar.

Comparing an Automated Task with the Actions to be performed in the User
environment
__

Let’s compare the way a task is performed in the User environment and the way the same
task is performed using the language. The task is a common one:

• Find a group of records
• Sort them
• Print a report

58 4th Dimension Language Reference

The next section, “Using a Database in the User Environment,” displays the tasks
performed in the User environment.

The following section, “Using the Built-in Editors within the Custom Menus
environment,” displays the same tasks performed in an application.

Note that although both methods perform the same task, the steps in the second section
are automated using the language.

Using a database in the User environment
The user chooses Query>Query... in the Records menu.

The Query editor is displayed.

4th Dimension Language Reference 59

The user enters the criteria and clicks the Query button. The search is performed.

The user chooses Order by from the Records menu.

The Order By editor is displayed.

The user enters the criteria and clicks the Sort button. The sort is performed.

Then, to print the records, these additional steps are required:
• The user chooses Print from the File menu.
• The Choose Print Form dialog box is displayed, because users need to know which form
to print.
• The Printing dialog boxes are displayed. The user chooses the settings, and the report is
printed.

60 4th Dimension Language Reference

Using the built-in editors within the Custom Menus environment
Let’s examine how this can be performed in the Custom Menus environment.

The User chooses Report from the People menu.

Even at this point, using an application is easier for the users—they did not need to know
that querying is the first step!

A method called My Report is attached to the menu command; it looks like this:

QUERY ([People])
ORDER BY ([People])
OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People])

The first line is executed:

QUERY ([People])

The Query editor is displayed.

The user enters the criteria and clicks the Query button. The query is performed.

4th Dimension Language Reference 61

The second line of the My Report method is executed:

ORDER BY ([People])

Note that the user did not need to know that ordering the records was the next step.

The Order By Editor is displayed.

The user enters the criteria and clicks the Sort button. The sort is performed.

The third line of the My Report method is executed:

OUTPUT FORM ([People]; "Report")

Once again, the user did not need to know what to do next; the method takes care of
that.

The final line of the My Report method is executed:

PRINT SELECTION ([People])

The Printing dialog boxes are displayed. The User chooses the settings, and the report is
printed.

62 4th Dimension Language Reference

Automating the Application Further
__

The same commands used in the previous example can be used to further automate the
database.

Let’s take a look at the new version of the My Report method.

The user chooses Report from the People menu. A method called My Report2 is attached
to the menu command. It looks like this:

QUERY([People];[People]Company="Acme")
ORDER BY([People]; [People]Last Name;>;[People]First Name;>)
OUTPUT FORM([People];"Report")
PRINT SELECTION([People];*)

The first line is executed:

QUERY([People];[People]Company="Acme")

The Query editor is not displayed. Instead, the query is specified and performed by the
QUERY command. The user does not need to do anything.

The second line of the My Report2 method is executed:

ORDER BY([People];[People]Last Name;>;[People]First Name;>)

The Order By editor is not displayed, and the sort is immediately performed. Once again,
no user actions are required.

The final lines of the My Report2 method are executed:

OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People]; *)

The Printing dialog boxes are not displayed. The PRINT SELECTION command accepts an
optional asterisk (*) parameter that instructs the command to use the print settings that
were in effect when the report form was created. The report is printed.

This additional automation saved the user from having to enter options in three dialog
boxes. Here are the benefits :
• The query is automatically performed: users may select wrong criteria when making a
query.
• The sort is automatically performed: users may select wrong criteria when defining a
sort.
• The printing is automatically performed: users may select the wrong form to print.

4th Dimension Language Reference 63

Help for Developing 4D Applications
__

As you develop a 4D application, you will discover many capabilities that you did not
notice when you started. You can even augment the standard version of 4D by adding
other tools and plug-ins to your 4D development environment.

Tools and 4D plug-ins
4D provides several tools and plug-ins that can be used for increasing the capabilities of
your 4D applications.

• 4D Insider allows you to cross-reference your 4th Dimension databases. You can use it to
view and print methods, variables, commands, externals, structures, lists, and forms. The
cross-referencing utility tells you where each of these objects is used throughout your
database. It also helps you to move objects like tables, forms, methods, menu bars, lists,
packages, and styles from one database to another.

4D provides the following plug-ins:

• 4D Write: Word-processor
• 4D Draw: Graphical drawing program
• 4D View: Spreadsheet and list editor
• 4D Internet Commands (built-in): Communication utilities via Internet.

• 4D ODBC Pro: Connectivity via ODBC
• 4D for OCI: Connectivity with ORACLE Call Interface
• 4D Open for Java: Connectivity with Java applications
• 4D Open for 4D: Connectivity (from 4D to 4D) for building distributed 4D information
systems.

For more information, contact 4D or its Partners. Visit our Web Sites:

USA & International:
http://www.4d.com

France:
http://www.4d.fr

The 4D community and third party tools
There is a very active worldwide 4D community, composed of User Groups, Electronic
Forums, and 4D Partners. 4D Partners produce Third Party Tools. Browse your 4D CD—it
contains demos and information from 4D Partners. Find out about them on the Web.
You can suscribe to the user forum of 4th Dimension at the following address:

http://forums.4D.fr

The 4D community offers access to tips and tricks, solutions, information, and additional
tools that will save you time and energy, and increase your productivity.

64 4th Dimension Language Reference

2

Language Definition

4th Dimension Language Reference 65

66 4th Dimension Language Reference

Introduction to the 4D Language Language Definition

version 6.0
__

The 4th Dimension language is made up of various components that help you perform
tasks and manage your data.

• Data types: Classifications of data in a database. See discussion in this section as well as
the detailed discussion in the section Data Types.
• Variables: Temporary storage places for data in memory. See detailed discussion in the
section Variables.
• Operators: Symbols that perform a calculation between two values. See discussion in this
section as well as the detailed discussion in the section Operators and its subsections.
• Expressions: Combinations of other components that result in a value. See discussion in
this section.
• Commands: Built-in instructions to perform an action. All 4D commands, such as ADD
RECORD, are described in this manual, grouped by theme; when necessary, the theme is
preceded by an introductory section. You can use 4D Plug-ins to add new commands to
your 4D development environment. For example, once you have added the 4D Write
Plug-in to your 4D system, the 4D Write commands become available for creating and
manipulating word-processing documents.
• Methods: Instructions that you write using all parts of the language listed here. See
discussion in the section Methods and its subsections.

This section introduces Data Types, Operators, and Expressions. For the other components,
refer to the sections cited above.

In addition:
• Language components, such as variables, have names called Identifiers. For a detailed
discussion about identifiers and the rules for naming objects, refer to the section
Identifiers.
• To learn more about array variables, refer to the section Arrays.
• To learn more about BLOB variables, refer to the section BLOB commands.
• If you plan to compile your database, refer to the section Compiler Commands as well as
the Design Reference manual of 4th Dimension.

4th Dimension Language Reference 67

Data Types
__

In the language, the various types of data that can be stored in a 4th Dimension database
are referred to as data types. There are seven basic data types: string, numeric, date, time,
Boolean, picture, and pointer.

• String: A series of characters, such as “Hello there”. Alpha and Text fields, and string and
text variables, are of the string data type.
• Numeric: Numbers, such as 2 or 1,000.67. Integer, Long Integer, and Real fields and
variables are of the numeric data type.
• Date: Calendar dates, such as 1/20/89. Date fields and variables are of the date data type.
• Time: Times, including hours, minutes, and seconds, such as 1:00:00 or 4:35:30 PM.
Time fields and variables are of the time data type.
• Boolean: Logical values of TRUE or FALSE. Boolean fields and variables are of the
Boolean data type.
• Picture: Picture fields and variables are of the picture data type.
• Pointer: A special type of data used in advanced programming. Pointer variables are of
the pointer data type. There is no corresponding field type.

Note that in the list of data types, the string and numeric data types are associated with
more than one type of field. When data is put into a field, the language automatically
converts the data to the correct type for the field. For example, if an integer field is used,
its data is automatically treated as numeric. In other words, you need not worry about
mixing similar field types when using the language; it will manage them for you.

However, when using the language it is important that you do not mix different data
types. In the same way that it makes no sense to store “ABC” in a Date field, it makes no
sense to put “ABC” in a variable used for dates. In most cases, 4th Dimension is very
tolerant and will try to make sense of what you are doing. For example, if you add a
number to a date, 4th Dimension will assume that you want to add that number of days
to the date, but if you try to add a string to a date, 4th Dimension will tell you that the
operation cannot work.

There are cases in which you need to store data as one type and use it as another type. The
language contains a full complement of commands that let you convert from one data
type to another. For example, you may need to create a part number that starts with a
number and ends with characters such as “abc”. In this case, you might write:

[Products]Part Number:=String(Number)+"abc"

If Number is 17, then [Products]Part Number will get the string “17abc”.

The data types are fully defined in the section Data Types.

68 4th Dimension Language Reference

Operators
__

When you use the language, it is rare that you will simply want a piece of data. It is more
likely that you will want to do something to or with that data. You perform such
calculations with operators. Operators, in general, take two pieces of data and perform an
operation on them that results in a new piece of data. You are already familiar with many
operators. For example, 1 + 2 uses the addition (or plus sign) operator to add two numbers
together, and the result is 3. This table shows some familiar numeric operators:

Operator Operation Example
+ Addition 1 + 2 results in 3
– Subtraction 3 – 2 results in 1
* Multiplication 2 * 3 results in 6
/ Division 6 / 2 results in 3

Numeric operators are just one type of operator available to you. 4th Dimension supports
many different types of data, such as numbers, text, dates, and pictures, so there are
operators that perform operations on these different data types.

The same symbols are often used for different operations, depending on the data type. For
example, the plus sign (+) performs different operations with different data:

Data Type Operation Example
Number Addition 1 + 2 adds the numbers and results in 3
String Concatenation “Hello ” + “there” concatenates (joins together)

the strings and results in “Hello there”
Date and Number Date addition !1/1/1989! + 20 adds 20 days to the date

January 1, 1989, and results in the date
January 21, 1989

The operators are fully defined in the section Operators and its subsections.

Expressions
__

Simply put, expressions return a value. In fact, when using the 4th Dimension language,
you use expressions all the time and tend to think of them only in terms of the value
they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language: commands,
operators, variables, and fields. You use expressions to build statements (lines of code),
which in turn are used to build methods. The language uses expressions wherever it needs
a piece of data.

4th Dimension Language Reference 69

Expressions rarely “stand alone.” There are only a few places in 4th Dimension where an
expression can be used by itself:
• Query by Formula dialog box in the User environment
• Debugger where the value of expressions can be checked
• Apply Formula dialog box
• Quick Report editor as a formula for a column

An expression can simply be a constant, such as the number 4 or the string “Hello.” As
the name implies, a constant’s value never changes. It is when operators are introduced
that expressions start to get interesting. In preceding sections you have already seen
expressions that use operators. For example, 4 + 2 is an expression that uses the addition
operator to add two numbers together and return the result 6.

You refer to an expression by the data type it returns. There are seven expression types:
• String expression
• Numeric expression (also referred to as number)
• Date expression
• Time expression
• Boolean expression
• Picture expression
• Pointer expression

The following table gives examples of each of the seven types of expressions.

Expression Type Explanation
“Hello” String The word Hello is a string constant,

indicated by the double quotation marks.
“Hello ” + “there” String Two strings, “Hello ” and “there”, are added

together (concatenated) with the string
concatenation operator (+).
The string “Hello there” is returned.

“Mr. ” + [People]Name String Two strings are concatenated: the string “Mr. ”
and the current value of the Name field in the
People table.
If the field contains “Smith”, the expression
returns “Mr. Smith”.

Uppercase (“smith”) String This expression uses “Uppercase”, a command
from the language, to convert the string
“smith” to uppercase.
It returns “SMITH”.

4 Number This is a number constant, 4.
4 * 2 Number Two numbers, 4 and 2, are multiplied using the

multiplication operator (*).
The result is the number 8.

70 4th Dimension Language Reference

My Button Number This is the name of a button.
It returns the current value of the button:
1 if it was clicked, 0 if not.

!1/25/97! Date This is a date constant for the date 1/25/97
(January 25, 1997).

Current date + 30 Date This is a date expression that uses the command
“Current date” to get today’s date.
It adds 30 days to today’s date and returns
the new date.

?8:05:30? Time This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.

?2:03:04? + ?1:02:03? Time This expression adds two times together and
returns the time 3:05:07.

True Boolean This command returns the Boolean value TRUE.
10 # 20 Boolean This is a logical comparison between two

numbers. The number sign (#) means “is not
equal to”.
Since 10 “is not equal to” 20, the expression
returns TRUE.

“ABC” = “XYZ” Boolean This is a logical comparison between two
strings. They are not equal, so the expression
returns FALSE.

My Picture + 50 Picture This expression takes the picture in My Picture,
moves it 50 pixels to the right, and returns
the resulting picture.

->[People]Name Pointer This expression returns a pointer to the field
called [People]Name.

Table (1) Pointer This is a command that returns a pointer to
the first table.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

4th Dimension Language Reference 71

Data Types Language Definition

version 6.0
__

4th Dimension fields, variables, and expressions can be of the following data types:

Data Type Field Variable Expression
String (see note 1) Yes Yes Yes
Number (see note 2) Yes Yes Yes
Date Yes Yes Yes
Time Yes Yes Yes
Boolean Yes Yes Yes
Picture Yes Yes Yes
Pointer No Yes Yes
BLOB (see note 3) Yes Yes No
Array (see note 4) No Yes No
Subtable Yes No No
Undefined No Yes Yes

Notes
1. String includes alphanumeric field, fixed length variable, and text field or variable.
2. Number includes Real, Integer, and Long Integer field and variable.
3. BLOB is an acronym for Binary Large OBject. For more information about BLOBs, see
the section BLOB Commands.
4. Array includes all types of arrays. For more information, see the section Arrays.

String
__

String is a generic term that stands for:
• Alphanumeric field
• Fixed length variable
• Text field or variable
• Any string or text expression

A string is composed of characters. Each character can be any of the 256 ASCII codes. For
more information about ASCII codes and how 4D handles them in a cross-platform
environment, see the section ASCII Codes.

72 4th Dimension Language Reference

• An Alphanumeric field may contain from 0 to 80 characters (limit depends on the field
definition).
• A Fixed length variable may contain from 0 to 255 (limit depends on the variable
declaration).
• A Text field, variable, or expression may contain from 0 to 32,000 characters.

You can assign a string to a text field and vice-versa; 4D does the conversion, truncating
if necessary. You can mix string and text in an expression.

Note: In the 4D Language Reference, both string and text parameters in command
descriptions are denoted as String, except when marked otherwise.

Number
__

Number is a generic term that stands for:
• Real Field, variable or expression
• Integer field, variable or expression
• Long Integer field, variable or expression

The range for the Real data type is ±1.7e±308 (15 digits)
The range for the Integer data type (2-byte Integer) is -32,768..32,767 (2^15..(2^15)-1)
The range for the Long Integer data type (4-byte Integer) is -2^31..(2^31)-1

You can assign any Number data type to another; 4D does the conversion, truncating or
rounding if necessary. However, when values are out of range, the conversion will not
return a valid value. You can mix Number data types in expressions.

Note: In the 4D Language Reference, no matter the actual data type, the Real, Integer, and
Long Integer parameters in command descriptions are denoted as Number, except when
marked otherwise.

Date
__

• A Date field, variable or expression can be in the range of 1/1/100 to 12/31/32,767.
• Using the US English version of 4D, a date is ordered month/day/year.
• If a year is given as two digits, it is assumed to be in the 1900’s if the value is greater
than or equal to 30, and the 2000’s if the value is less than 30 (this default can be
changed using the command SET DEFAULT CENTURY).

Note: In the 4D Language Reference, Date parameters in command descriptions are
denoted as Date, except when marked otherwise.

4th Dimension Language Reference 73

Time
__

• A Time field, variable or expression can be in the range of 00:00:00 to 596,000:00:00.
• Using the US English version of 4D, time is ordered hour:minute:second.
• Times are in 24-hour format.
• A time value can be treated as a number. The number returned from a time is the
number of seconds that time represents. For more information, see the section Time
Operators.

Note: In the 4D Language Reference, Time parameters in command descriptions are
denoted as Time, except when marked otherwise.

Boolean
__

A Boolean field, variable or expression can be either TRUE or FALSE.

Note: In the 4D Language Reference, Boolean parameters in command descriptions are
denoted as Boolean, except when marked otherwise.

Picture
__

A Picture field, variable or expression can be any Windows or Macintosh picture. In
general, this includes any picture that can be put on the Clipboard or read from the disk
using 4D or Plug-In commands.

Note: In the 4D Language Reference, Picture parameters in command descriptions are
denoted as Picture, except when marked otherwise.

Pointer
__

A Pointer variable or expression is a reference to another variable (including arrays and
array elements), table, or field. There is no field of type Pointer.

For more information about Pointers, see the section Pointers.

Note: In the 4D Language Reference, Pointer parameters in command descriptions are
denoted as Pointer except when marked otherwise.

74 4th Dimension Language Reference

BLOB
__

A BLOB field or variable is a series of bytes (from 0 to 2 GB in length) that you can address
individually or by using the BLOB Commands. There is no expression of type BLOB.

Note: In the 4D Language Reference, BLOB parameters in command descriptions are
denoted as BLOB.

Array
__

Array is not actually a data type. The various types of arrays (such as Integer Array, Text
Array, and so on) are grouped under this title. Arrays are variables—there is no field of
type Array, and there is no expression of type Array. For more information about arrays,
see the section Arrays.

Note: In the 4D Language Reference, Array parameters in command descriptions are
denoted as Array, except when marked otherwise (i.e., String Array, Numeric Array, ...).

Subtable
__

Subtable is not actually a data type. Only fields can be of type Subtable. There is no
variable or expression of type Subtable. For more information about subtables, see the 4th
Dimension Design Reference manual as well as the commands regrouped under the
Subrecords theme.

Undefined
__

Undefined is not actually a data type. It denotes a variable that has not yet been defined.
A function (a project method that returns a result) can return an undefined value if,
within the method, the function result ($0) is assigned an undefined expression (an
expression calculated with at least one undefined variable). A field cannot be undefined.

Converting Data Types
__

The 4D language contains operators and commands to convert between data types, where
such conversions are meaningful. The 4D language enforces data type checking. For
example, you cannot write: "abc"+0.5+!12/25/96!-?00:30:45?. This will generate syntax
errors.

4th Dimension Language Reference 75

The following table lists the basic data types, the data types to which they can be
converted, and the commands used to do so:

Data Type Convert to Convert to Convert to Convert to
String Number Date Time

String Num Date Time
Number (*) String
Date String
Time String
Boolean Num

(*) Time values can be be treated as numbers.

Note: In addition to the data conversions listed inthis table, more sophisticated data
conversions can be obtained by combining operators and other commands.

See Also
Arrays, Constants, Control Flow, Identifiers, Methods, Operators, Pointers, Type, Variables.

76 4th Dimension Language Reference

Constants Language Definition

version 6.0
__

A constant is an expression that has a fixed value. There are two types of constants:
predefined constants that you select by name, and literal constants for which you type
the actual value.

Predefined Constants
__

Version 6 of 4th Dimension introduces predefined constants. These constants are listed in
the Explorer Window:

The predefined constants are listed by theme. To use a predefined constant in a Method
editor window:
• Drag and drop the constant from the Explorer window to the Method Editor window.
• Directly type its name in the Method Editor window.

Predefined constant names can contain up to 31 characters.

Tip: If you directly enter the name of a predefined constant, you can use the @ symbol (at
sign) to avoid typing the entire constant name. For example, if you type “No such da@”,
4D will fill the line with the constant “No such data in clipboard” when you press Return
or Enter to validate the line of code.

4th Dimension Language Reference 77

Note: The predefined constants (about 500) are listed by theme in this manual. See the
section About this manual for more information. When appropriate, predefined constants
are also listed in the command descriptions.

Predefined constants appeared underlined by default within the Method Editor and
Debugger windows:

In the window shown here, On Load, for example, is a predefined constant.

Literal Constants
__

Literal Constants can be of four data types:
• String
• Numeric
• Date
• Time

String Constants
A string constant is enclosed in double, straight quotation marks ("…"). Here are some
examples of string constants:

"Add Records"
"No records found."
"Invoice"

An empty string is specified by two quotation marks with nothing between them ("").

78 4th Dimension Language Reference

Numeric Constants
A numeric constant is written as a real number. Here are some examples of numeric
constants:

27
123.76
0.0076

Negative numbers are specified with the minus sign(–). For example:

–27
–123.76
–0.0076

Date Constants
A date constant is enclosed by exclamation marks (!…!). In the US English version of 4D,
a date is ordered month/day/year, with a slash (/) setting off each part. Here are some
examples of date constants:

!1/1/76!
!4/4/04!
!12/25/96!

A null date is specified by !00/00/00!

Tip: The Method Editor includes a shortcut for entering a null date. To type a null date,
enter the exclamation (!) character and press Enter.

Note: A two-digit year is assumed to be in the 1900’s. Unless this default setting has been
changed using the command SET DEFAULT CENTURY.

Time Constants
A time constant is enclosed by question marks (?...?).

Note: This syntax can be used on both Windows and Macintosh. On Macintosh, you can
also use the Dagger symbol (Option-T on a US keyboard).

In the US English version of 4D, a time constant is ordered hour:minute:second, with a
colon (:) setting off each part. Times are specified in 24-hour format.

4th Dimension Language Reference 79

Here are some examples of time constants:

?00:00:00? ` midnight
?09:30:00? ` 9:30 am
?13:01:59? ` 1 pm, 1 minute, and 59 seconds

A null time is specified by ?00:00:00?

Tip: The Method Editor includes a shortcut for entering a null time. To type a null time,
enter the question mark (?) character and press Enter.

See Also
Control Flow, Data Types, Identifiers, Methods, Operators, Pointers, Variables.

80 4th Dimension Language Reference

Variables Language Definition

version 6.0
__

Data in 4th Dimension is stored in two fundamentally different ways. Fields store data
permanently on disk; variables store data temporarily in memory.

When you set up your 4th Dimension database, you specify the names and types of fields
that you want to use. Variables are much the same—you also give them names and
different types.

The following variable types correspond to each of the data types:
• String: Fixed alphanumeric string of up to 255 characters
• Text: Alphanumeric string of up to 32,000 characters
• Integer: Integer from -32768 to 32767
• Long Integer: Integer from -2^31 to (2^31)-1
• Real: A number to ±1.7e±308 (15 digits)
• Date: 1/1/100 to 12/31/32767
• Time: 00:00:00 to 596000:00:00 (seconds from midnight)
• Boolean: True or False
• Picture: Any Windows or Macintosh picture
• BLOB (Binary Large OBject): Series of bytes up to 2 GB in size
• Pointer: A pointer to a table, field, variable, array, or array element

You can display variables (except Pointer and BLOB) on the screen, enter data into them,
and print them in reports. In these ways, enterable and non-enterable area variables act
just like fields, and the same built-in controls are available when you create them:

• Display formats
• Data validation, such entry filters and default values
• Character filters
• Choice lists (hierarchical lists)
• Enterable or non-enterable values

Variables can also do the following:

• Control buttons (buttons, check boxes, radio buttons, 3D buttons, and so on)
• Control sliders (meters, rulers, and dials)
• Control scrollable areas, pop-up menus, and drop-down list boxes
• Control hierarchical lists and hierarchical pop-up menus
• Control button grids, tab controls, picture buttons, and so on
• Display results of calculations that do not need to be saved.

4th Dimension Language Reference 81

Creating Variables
__

You create variables simply by using them; you do not need to formally define them as
you do with fields. For example, if you want a variable that will hold the current date plus
30 days, you write:

MyDate:=Current date+30

4th Dimension creates MyDate and holds the date you need. The line of code reads
“MyDate gets the current date plus 30 days.” You could now use MyDate wherever you
need it in your database. For example, you might need to store the date variable in a field
of same type:

[MyTable]MyField:=MyDate

Sometimes you may want a variable to be explicitly defined as a certain type. For more
information about typing variables for a database that you intend to compile, see the
section Compiler Commands.

Assigning Data to Variables
__

Data can be put into and copied out of variables. Putting data into a variable is called
assigning the data to the variable and is done with the assignment operator (:=). The
assignment operator is also used to assign data to fields.

The assignment operator is the primary way to create a variable and to put data into it.
You write the name of the variable that you want to create on the left side of the
assignment operator. For example:

MyNumber:=3

creates the variable MyNumber and puts the number 3 into it. If MyNumber already exists,
then the number 3 is just put into it.

Of course, variables would not be very useful if you could not get data out of them. Once
again, you use the assignment operator. If you need to put the value of MyNumber in a
field called [Products]Size, you would write MyNumber on the right side of the assignment
operator:

[Products]Size:=MyNumber

In this case, [Products]Size would be equal to 3. This example is rather simple, but it
illustrates the fundamental way that data is transferred from one place to another by
using the language.

Important: Be careful not to confuse the assignment operator (:=) with the comparison
operator, equal (=). Assignment and comparison are very different operations. For more
information about the comparison operators, see the section Operators.

82 4th Dimension Language Reference

Local, Process, and Interprocess Variables
__

You can create three types of variables: local variables, process variables, and interprocess
variables. The difference between the three types of variables is their scope, or the objects
to which they are available.

Local variables
A local variable is, as its name implies, local to a method—accessible only within the
method in which it was created and not accessible outside of that method. Being local to
a method is formally referred to as being “local in scope.” Local variables are used to
restrict a variable so that it works only within the method.

You may want to use a local variable to:
• Avoid conflicts with the names of other variables
• Use data temporarily
• Reduce the number of process variables

The name of a local variable always starts with a dollar sign ($) and can contain up to 31
additional characters. If you enter a longer name, 4th Dimension truncates it to the
appropriate length.

When you are working in a database with many methods and variables, you often find
that you need to use a variable only within the method on which you are working. You
can create and use a local variable in the method without worrying about whether you
have used the same variable name somewhere else.

Frequently, in a database, small pieces of information are needed from the user. The
Request command can obtain this information. It displays a dialog box with a message
prompting the user for a response. When the user enters the response, the command
returns the information the user entered. You usually do not need to keep this
information in your methods for very long. This is a typical way to use a local variable.
Here is an example:

$vsID:=Request("Please enter your ID:")
If (OK=1)

QUERY ([People];[People]ID =$vsID)
End if

This method simply asks the user to enter an ID. It puts the response into a local variable,
$vsID, and then searches for the ID that the user entered. When this method finishes, the
$vsID local variable is erased from memory. This is fine, because the variable is needed
only once and only in this method.

4th Dimension Language Reference 83

Process variables
A process variable is available only within a process. It is accessible to the process method
and any other method called from within the process.

A process variable does not have a prefix before its name. A process variable name can
contain up to 31 characters.

In interpreted mode, variables are maintained dynamically, they are created and erased
from memory “on the fly.” In compiled mode, all processes you create (user processes)
share the same definition of process variables, but each process has a different instance for
each variable. For example, the variable myVar is one variable in the process P_1 and
another one in the process P_2.

Starting with version 6, a process can “peek and poke” process variables from another
process using the commands GET PROCESS VARIABLE and SET PROCESS VARIABLE. It is
good programming practice to restrict the use of these commands to the situation for
which they were added to 4D:
• Interprocess communication at specific places or your code
• Handling of interprocess drag and drop
• In Client/Server, communication between processes on client machines and the stored
procedures running on the server machines

For more information, see the section Processes and the description of these commands.

Interprocess variables
Interprocess variables are available throughout the database and are shared by all
processes. They are primarily used to share information between processes.

The name of an interprocess variable always begins with the symbols (<>) — a “less than”
sign followed by a “greater than” sign— followed by 31 characters.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

In Client/Server, each machine (Client machines and Server machine) share the same
definition of interprocess variables, but each machine has a different instance for each
variable.

84 4th Dimension Language Reference

Form Object Variables
__

In the Form editor, naming an active object—button, radio button, check box, scrollable
area, meter bar, and so on—automatically creates a variable with the same name. For
example, if you create a button named MyButton, a variable named MyButton is also
created. Note that this variable name is not the label for the button, but is the name of
the button.

The form object variables allow you to control and monitor the objects. For example,
when a button is clicked, its variable is set to 1; at all other times, it is 0. The variable
associated with a meter or dial lets you read and change the current setting. For example,
if you drag a meter to a new setting, the value of the variable changes to reflect the new
setting. Similarly, if a method changes the value of the variable, the meter is redrawn to
show the new value.

For more information about variables and forms, see the 4th Dimension Design Reference
Manual as well as the section Form event.

System Variables
__

4th Dimension maintains a number of variables called system variables. These variables
let you monitor many operations. System variables are all process variables, accessible only
from within a process.

The most important system variable is the OK system variable. As its name implies, it tells
you if everything is OK in the particular process. Was the record saved? Has the importing
operation been completed? Did the user click the OK button? The OK system variable is
set to 1 when a task is completed successfully, and to 0 when it is not.

For more information about system variables, see the section System Variables.

See Also
Arrays, Constants, Control Flow, Data Types, Identifiers, Methods, Operators, Pointers.

4th Dimension Language Reference 85

System Variables Language Definition

version 2004 (Modified)
__

4th Dimension manages system variables, which allow you to control the execution of
different operations. All system variables are process variables that can only be accessed
within one process. This section describes 4th Dimension system variables.

OK
This is the most commonly used system variable. Usually it is set to 1 when an operation
is successfully executed. It is set to 0 when the operation fails. Most of the 4D commands
modify the value of the OK system variable. Refer to the description of each command to
find out whether it affects this system variable.

Document
Document contains either the "long name" (access path+name) or the name (depending
on the value passed as parameter) of the last file opened or created using the following
commands:

Append document BUILD APPLICATION
Create document
Create resource file EXPORT DATA
EXPORT DIF EXPORT SYLK
EXPORT TEXT IMPORT DATA
IMPORT DIF IMPORT SYLK
IMPORT TEXT LOAD SET
LOAD VARIABLES Open document
Open resource file PRINT LABEL
QR REPORT READ PICTURE FILE
SAVE VARIABLES SAVE SET
Select document SELECT LOG FILE
SET CHANNEL USE ASCII MAP
WRITE PICTURE FILE

FldDelimit
FldDelimit contains the ASCII code that will be used as a field separator when importing or
exporting text. By default, this value is set to 9, which is the ASCII code for the Tab key.
To use a different field separator, assign a new value to FldDelimit.

RecDelimit
RecDelimit contains the ASCII code that will be used as a record separator when importing
or exporting text. By default, this value is set to 13, which is the ASCII code for the
Carriage Return key. To use a different record separator, assign a new value to RecDelimit.

Error
Error can only be used in a method installed by the ON ERR CALL command. This variable

86 4th Dimension Language Reference

MouseDown, MouseX, MouseY, KeyCode, Modifiers and MouseProc
These system variables can only be used in a method installed by the ON EVENT CALL
command.

• MouseDown is set to 1 when the mouse button is pushed. Otherwise, it is set to 0.
• If the event is a MouseDown (MouseDown=1), the MouseX and MouseY system variables
are respectively set to the vertical and horizontal coordinates of the location where the
click took place. Both values are expressed in pixels and use the local coordinate system of
the window.
• KeyCode is set to the ASCII code of the key that was just pressed. If the key is a function
key, KeyCode is set to a special code. ASCII codes and function key codes are listed in the
sections ASCII Codes and Function Key Codes.
• Modifiers is set to the keyboard modifier keys (Ctrl/Command, Alt/Option, Shift, Caps
Lock). This variable is only significant in an "interruption on event" installed by the
command ON EVENT CALL.
• MouseProc is set to the process number in which the last event took place.

See Also
Sets, Variables.

4th Dimension Language Reference 87

Pointers Language Definition

version 2004.1 (Modified)
__

Pointers provide an advanced way (in programming) to refer to data.

When you use the language, you access various objects—in particular, tables, fields,
variables, and arrays—by simply using their names. However, it is often useful to refer to
these elements and access them without knowing their names. This is what pointers let
you do.

The concept behind pointers is not that uncommon in everyday life. You often refer to
something without knowing its exact identity. For example, you might say to a friend,
“Let’s go for a ride in your car” instead of “Let’s go for a ride in the car with license plate
123ABD.” In this case, you are referencing the car with license plate 123ABD by using the
phrase “your car.” The phrase “car with license plate 123ABD” is like the name of an
object, and using the phrase “your car” is like using a pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful. In fact,
your friend could get a new car, and the phrase “your car” would still be accurate—it
would still be a car and you could still take a ride in it. Pointers work the same way. For
example, a pointer could at one time refer to a numeric field called Age, and later refer to
a numeric variable called Old Age. In both cases, the pointer references numeric data that
could be used in a calculation.

You can use pointers to reference tables, fields, variables, arrays, and array elements. The
following table gives an example of each data type:

Object To Reference To Use To Assign
Table vpTable:=->[Table] DEFAULT TABLE(vpTable->) n/a
Field vpField:=->[Table]Field ALERT(vpField->) vpField->:="John"
Variable vpVar:=->Variable ALERT(vpVar->) vpVar->:="John"
Array vpArr:=->Array SORT ARRAY(vpArr->;>) COPY ARRAY (Arr;vpArr-
>)
Array element vpElem:=->Array{1} ALERT (vpElem->) vpElem->:="John"

Using Pointers: An Example
__

It is easiest to explain the use of pointers through an example. This example shows how
to access a variable through a pointer. We start by creating a variable:

MyVar:="Hello"

88 4th Dimension Language Reference

MyVar is now a variable containing the string “Hello.” We can now create a pointer to
MyVar:

MyPointer:=->MyVar

The -> symbol means “get a pointer to.” This symbol is formed by a dash followed by a
“greater than” sign. In this case, it gets the pointer that references or “points to” MyVar.
This pointer is assigned to MyPointer with the assignment operator.

MyPointer is now a variable that contains a pointer to MyVar. MyPointer does not contain
“Hello”, which is the value in MyVar, but you can use MyPointer to get this value. The
following expression returns the value in MyVar:

MyPointer->

In this case, it returns the string “Hello”. The -> symbol, when it follows a pointer,
references the object pointed to. This is called dereferencing.

It is important to understand that you can use a pointer followed by the -> symbol
anywhere that you could have used the object that the pointer points to. This means that
you could use the expression MyPointer-> anywhere that you could use the original MyVar
variable.

For example, the following line displays an alert box with the word Hello in it:

ALERT(MyPointer->)

You can also use MyPointer to change the data in MyVar. For example, the following
statement stores the string "Goodbye" in the variable MyVar:

MyPointer->:="Goodbye"

If you examine the two uses of the expression MyPointer->, you will see that it acts just as
if you had used MyVar instead. In summary, the following two lines perform the same
action—both display an alert box containing the current value in the variable MyVar:

ALERT(MyPointer->)
ALERT(MyVar)

The following two lines perform the same action— both assign the string "Goodbye" to
MyVar:

MyPointer->:="Goodbye"
MyVar:="Goodbye"

4th Dimension Language Reference 89

Using Pointers to Buttons
__

This section describes how to use a pointer to reference a button. A button is (from the
language point of view) nothing more than a variable. Although the examples in this
section use pointers to reference buttons, the concepts presented here apply to the use of
all types of objects that can be referenced by a pointer.

Let’s say that you have a number of buttons in your forms that need to be enabled or
disabled. Each button has a condition associated with it that is TRUE or FALSE. The
condition says whether to disable or enable the button. You could use a test like this each
time you need to enable or disable the button:

If (Condition) ` If the condition is TRUE…
ENABLE BUTTON (MyButton) ` enable the button

Else ` Otherwise…
DISABLE BUTTON (MyButton) ` disable the button

End if

You would need to use a similar test for every button you set, with only the name of the
button changing. To be more efficient, you could use a pointer to reference each button
and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the button’s
variables in any other way. For example, here is a project method called SET BUTTON,
which references a button with a pointer:

` SET BUTTON project method
` SET BUTTON (Pointer ; Boolean)
` SET BUTTON (-> Button ; Enable or Disable)
`
` $1 – Pointer to a button
` $2 – Boolean. If TRUE, enable the button. If FALSE, disable the button

If ($2) ` If the condition is TRUE…
ENABLE BUTTON($1->) ` enable the button

Else ` Otherwise…
DISABLE BUTTON($1->) ` disable the button

End if

90 4th Dimension Language Reference

You can call the SET BUTTON project method as follows:

` ...
SET BUTTON (->bValidate;True)

` ...
SET BUTTON (->bValidate;False)

` ...
SET BUTTON (->bValidate;([Employee]Last Name#"")

` ...
For ($vlRadioButton;1;20)

$vpRadioButton:=Get pointer("r"+String($vlRadioButton))
SET BUTTON ($vpRadioButton;False)

End for

Using Pointers to Tables
__

Anywhere that the language expects to see a table, you can use a dereferenced pointer to
the table.
You create a pointer to a table by using a line like this:

TablePtr:=->[anyTable]

You can also get a pointer to a table by using the Table command. For example:

TablePtr:=Table(20)

You can use the dereferenced pointer in commands, like this:

DEFAULT TABLE(TablePtr->)

Using Pointers to Fields
__

Anywhere that the language expects to see a field, you can use a dereferenced pointer to
reference the field. You create a pointer to a field by using a line like this:

FieldPtr:=->[aTable]ThisField

You can also get a pointer to a field by using the Field command. For example:

FieldPtr:=Field(1; 2)

You can use the dereferenced pointer in commands, like this:

FONT(FieldPtr->; "Arial")

4th Dimension Language Reference 91

Using Pointers to Variables
__

The example at the beginning of this section illustrates the use of a pointer to a variable:

MyVar:="Hello"
MyPointer:=->MyVar

You can use pointers to interprocess, process and, starting with version 2004.1, local
variables.

When you use pointers to process or local variables, you must be sure that the variable
pointed to is already set when the pointer is used. Keep in mind that local variables are
deleted when the method that created them has completed its execution and process
variables are deleted at the end of the process that created them. When a pointer calls a
variable that no longer exists, this causes a syntax error in interpreted mode (variable not
defined) but it can generate a more serious error in compiled mode.

Note about local variables: Pointers to local variables allow you to save process variables
in many cases. Pointers to local variables can only be used within the same process.
In the debugger, when you display a pointer to a local variable that has been declared in
another method, the original method name is indicated in parentheses, after the pointer.
For example, if you write in Method1:

$MyVar:="Hello world"
Method2(->$MyVar)

In Method2, the debugger will display $1 as follows:
$1 ->$MyVar (Method1)

The value of $1 will be:
$MyVar (Method1) "Hello world"

Using Pointers to Array Elements
__

You can create a pointer to an array element. For example, the following lines create an
array and assign a pointer to the first array element to a variable called ElemPtr:

ARRAY REAL(anArray; 10) ` Create an array
ElemPtr:=->anArray{1} ` Create a pointer to the array element

You could use the dereferenced pointer to assign a value to the element, like this:

ElemPtr->:=8

92 4th Dimension Language Reference

Using Pointers to Arrays
__

You can create a pointer to an array. For example, the following lines create an array and
assign a pointer to the array to a variable called ArrPtr:

ARRAY REAL(anArray; 10) ` Create an array
ArrPtr := ->anArray ` Create a pointer to the array

It is important to understand that the pointer points to the array; it does not point to an
element of the array. For example, you can use the dereferenced pointer from the
preceding lines like this:

SORT ARRAY(ArrPtr->; >) ` Sort the array

If you need to refer to the fourth element in the array by using the pointer, you do this:

ArrPtr->{4} := 84

Using an Array of Pointers
__

It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a form. Each variable in
the grid is sequentially numbered, for example: Var1,Var2,…, Var10. You often need to
reference these variables indirectly with a number. If you create an array of pointers, and
initialize the pointers to point to each variable, you can then easily reference the
variables. For example, to create an array and initialize each element, you could use the
following lines:

ARRAY POINTER(apPointers; 10) ` Create an array to hold 10 pointers
For ($i; 1; 10) ` Loop once for each variable

apPointers{$i}:=Get pointer("Var"+String($i)) ` Initialize the array element
End for

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill the
variables with the next ten dates (assuming they are variables of the date type), you could
use the following lines:

For ($i; 1; 10) ` Loop once for each variable
apPointers{$i}->:=Current date+$i ` Assign the dates

End for

4th Dimension Language Reference 93

Setting a Button Using a Pointer
__

If you have a group of related radio buttons in a form, you often need to set them
quickly. It is inefficient to directly reference each one of them by name. Let’s say you
have a group of radio buttons named Button1, Button2,…, Button5.

In a group of radio buttons, only one radio button is on. The number of the radio button
that is on can be stored in a numeric field. For example, if the field called
[Preferences]Setting contains 3, then Button3 is selected. In your form method, you could
use the following code to set the button:

Case of
:(Form event=On Load)

` ...
Case of

: ([Preferences]Setting = 1)
Button1:=1

: ([Preferences]Setting = 2)
Button2:=1

: ([Preferences]Setting = 3)
Button3:=1

: ([Preferences]Setting = 4)
Button4:=1

: ([Preferences]Setting = 5)
Button5:=1

End case
` ...

End case

A separate case must be tested for each radio button. This could be a very long method if
you have many radio buttons in your form. Fortunately, you can use pointers to solve
this problem. You can use the Get pointer command to return a pointer to a radio button.
The following example uses such a pointer to reference the radio button that must be set.
Here is the improved code:

Case of
:(Form event=On Load)

` ...
$vpRadio:=Get pointer("Button"+String([Preferences]Setting))
$vpRadio->:=1

` ...
End case

The number of the set radio button must be stored in the field called [Preferences]Setting.
You can do so in the form method for the On Clicked event:

[Preferences]Setting:=Button1+(Button2*2)+(Button3*3)+(Button4*4)+(Button5*5)

94 4th Dimension Language Reference

Passing Pointers to Methods
__

You can pass a pointer as a parameter to a method. Inside the method, you can modify
the object referenced by the pointer. For example, the following method, TAKE TWO,
takes two parameters that are pointers. It changes the object referenced by the first
parameter to uppercase characters, and the object referenced by the second parameter to
lowercase characters. Here is the method:

` TAKE TWO project method
` $1 – Pointer to a string field or variable. Change this to uppercase.
` $2 – Pointer to a string field or variable. Change this to lowercase.

$1->:=Uppercase($1->)
$2->:=Lowercase($2->)

The following line uses the TAKE TWO method to change a field to uppercase characters
and to change a variable to lowercase characters:

TAKE TWO (->[My Table]My Field; ->MyVar)

If the field [My Table]My Field contained the string "jones", it would be changed to the
string "JONES". If the variable MyVar contained the string "HELLO", it would be changed to
the string "hello".

In the TAKE TWO method, and in fact, whenever you use pointers, it is important that
the data type of the object being referenced is correct. In the previous example, the
pointers must point to an object that contains a string or text.

Pointers to Pointers
__

If you really like to complicate things, you can use pointers to reference other pointers.
Consider this example:

MyVar := "Hello"
PointerOne := ->MyVar
PointerTwo := ->PointerOne
(PointerTwo->)-> := "Goodbye"
ALERT((Point Two->)->)

It displays an alert box with the word “Goodbye” in it.

Here is an explanation of each line of the example:

• MyVar:="Hello"
→ This line puts the string "Hello" into the variable MyVar.

• PointerOne:=->MyVar
→ PointerOne now contains a pointer to MyVar.

4th Dimension Language Reference 95

• PointerTwo:=->PointerOne
→ PointerTwo (a new variable) contains a pointer to PointerOne, which in turn points to
MyVar.

• (PointerTwo->)->:="Goodbye"
→ PointerTwo-> references the contents of PointerOne, which in turn references MyVar.
Therefore (PointerTwo->)-> references the contents of MyVar. So in this case, MyVar is
assigned "Goodbye".

• ALERT ((PointerTwo->)->)
→ Same thing: PointerTwo-> references the contents of PointerOne, which in turn
references MyVar. Therefore (PointerTwo->)-> references the contents of MyVar. So in this
case, the alert box displays the contents of myVar.

The following line puts "Hello" into MyVar:

(PointerTwo->)->:="Hello"

The following line gets "Hello" from MyVar and puts it into NewVar:

NewVar:=(PointerTwo->)->

Important: Multiple dereferencing requires parentheses.

See Also
Arrays, Arrays and Pointers, Constants, Control Flow, Data Types, Identifiers, Methods,
Operators, Variables.

96 4th Dimension Language Reference

Identifiers Language Definition

version 6.0
__

This section describes the conventions for naming various objects in the 4th Dimension
language. The names for all objects follow these rules:

• A name must begin with an alphabetic character.
• Thereafter, the name can include alphabetic characters, numeric characters, the space
character, and the underscore character.
• Periods, slashes, and colons are not allowed.
• Characters reserved for use as operators, such as * and +, are not allowed.
• 4th Dimension ignores any trailing spaces.

Tables
__

You denote a table by placing its name between brackets: [...]. A table name can contain
up to 31 characters.

Examples
DEFAULT TABLE ([Orders])
INPUT FORM ([Clients]; "Entry")
ADD RECORD ([Letters])

Fields
__

You denote a field by first specifying the table to which the field belongs. The field name
immediately follows the table name. A field name can contain up to 31 characters.

Do not start a field name with the underscore character (_). The underscore character is
reserved for plug-ins. When 4th Dimension encounters this character at the beginning of
a field in the Method editor, it removes the underscore.

Examples
[Orders]Total:=Sum([Line]Amount)
QUERY([Clients];[Clients]Name="Smith")
[Letters]Text:=Capitalize text ([Letters]Text)

It is a good programming technique to specify the table name before the field, even
though it is not absolutely necessary in a table, form, or object method.

4th Dimension Language Reference 97

Subtables
__

You denote a subtable by first specifying the parent table to which the subtable belongs.
The subtable name immediately follows the table name. A subtable name can contain up
to 31 characters.

Examples
ALL SUBRECORDS ([People]Children)
ADD SUBRECORD ([Clients]Phones;"Add One")
NEXT SUBRECORD ([Letters]Keywords)

A subtable is treated as a type of field; therefore, it follows the same rules as a field when
used in a form. If you are specifying a subtable in the table, form, or object method of the
parent table, you do not need to specify the parent table name. However, it is a good
programming technique to specify the name of the table before the subtable name.

Subfields
__

You denote a subfield in the same way as a field. You denote the subfield by first
specifying the subtable to which the subfield belongs. The subfield name follows, and is
separated from the subtable name by an apostrophe ('). A subfield name can contain up to
31 characters.

Examples
[People]Children'First Name:=Uppercase([People]Children'First Name)
[Clients]Phones'Number:="408 555–1212"
[Letters]Keywords'Word:=Capitalize text ([Letters]Keywords'Word)

If you are specifying a subfield in a subtable, form, or object method of the subfile, you
do not need to specify the subtable name. However it is a good programming technique
to specify the table name and the subtable name before the name of the subfield.

Interprocess Variables
__

You denote an interprocess variable by preceding the name of the variable with the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess variable can have up to 31 characters, not including the <> symbols.

Examples
<>vlProcessID:=Current process
<>vsKey:=Char(KeyCode)
If (<>vtName#"")

98 4th Dimension Language Reference

Process Variables
__

You denote a process variable by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process variable name can contain up to 31 characters.

Examples
<>vrGrandTotal:=Sum([Accounts]Amount)
If (bValidate=1)
vsCurrentName:=""

Local Variables
__

You denote a local variable with a dollar sign ($) followed by its name. A local variable
name can contain up to 31 characters, not including the dollar sign.

Examples
For ($vlRecord; 1; 100)
If ($vsTempVar="No")
$vsMyString:="Hello there"

Arrays
__

You denote an array by using its name, which is the name you passed to the array
declaration (such as ARRAY LONGINT) when you created the array. Arrays are variables,
and from the scope point of view, like variables, there are three different types of arrays:

• Interprocess arrays,
• Process arrays,
• Local arrays.

Interprocess Arrays
The name of an interprocess array is preceded by the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess array name can contain up to 31 characters, not including the <>
symbols.

Examples

ARRAY TEXT(<>atSubjects;Records in table([Topics]))
SORT ARRAY (<>asKeywords; >)
ARRAY INTEGER(<>aiBigArray;10000)

4th Dimension Language Reference 99

Process Arrays
You denote a process array by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process array name can contain up to 31 characters.

Examples

ARRAY TEXT(atSubjects;Records in table([Topics]))
SORT ARRAY (asKeywords; >)
ARRAY INTEGER(aiBigArray;10000)

Local Arrays
The name of a local array is preceded by the dollar sign ($). An local array name can
contain up to 31 characters, not including the dollar sign.

Examples

ARRAY TEXT($atSubjects;Records in table([Topics]))
SORT ARRAY ($asKeywords; >)
ARRAY INTEGER($aiBigArray;10000)

Elements of arrays
You reference an element of an interprocess, process or local array by using the curly
braces({…}). The element referenced is denoted by a numeric expression.

Examples
` Addressing an element of an interprocess array

If (<>asKeywords{1}="Stop")
<>atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{Size of array(<>aiBigArray)}

` Addressing an element of a process array
If (asKeywords{1}="Stop")
atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=aiBigArray{Size of array(aiBigArray)}

` Addressing an element of a local array
If ($asKeywords{1}="Stop")
$atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{Size of array($aiBigArray)}

100 4th Dimension Language Reference

Elements of two-dimensional arrays
You reference an element of a two-dimensional array by using the curly braces ({…})
twice. The element referenced is denoted by two numeric expressions in two sets of curly
braces.

Examples
` Addressing an element of a two-dimensional interprocess array

If (<>asKeywords{$vlNextRow}{1}="Stop")
<>atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{$vlSet}{Size of array(<>aiBigArray{$vlSet})}

` Addressing an element of a two-dimensional process array
If (asKeywords{$vlNextRow}{1}="Stop")
atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=aiBigArray{$vlSet}{Size of array(aiBigArray{$vlSet})}

` Addressing an element of a two-dimensional local array
If ($asKeywords{$vlNextRow}{1}="Stop")
$atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{$vlSet}{Size of array($aiBigArray{$vlSet})}

Forms
__

You denote a form by using a string expression that represents its name. A form name
can contain up to 31 characters.

Examples
INPUT FORM([People];"Input")
OUTPUT FORM([People]; "Output")
DIALOG([Storage];"Note box"+String($vlStage))

Methods
__

You denote a method (procedure and function) by using its name. A method name can
contain up to 31 characters.

Note: A method that does not return a result is also called a procedure. A method that
returns is a result is also called a function.

Examples
If (New client)
DELETE DUPLICATED VALUES
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

4th Dimension Language Reference 101

Tip: It is a good programming technique to adopt the same naming convention as the
one used by 4D for built-in commands. Use uppercase characters for naming your
methods; however if a method is function, capitalize the first character of its name. By
doing so, when you reopen a database for maintenance after a few months, you will
already know if a method returns a result by simply looking at its name in the Explorer
window.

Note: When you call a method, you just type its name. However, some 4D built-in
commands, such as ON EVENT CALL, as well as all the Plug-In commands, expect the
name of a method as a string when a method parameter is passed. Example:

Examples
` This command expects a method (function) or formula

QUERY BY FORMULA ([aTable];Special query)
` This command expects a method (procedure) or statement

APPLY TO SELECTION ([Employees];INCREASE SALARIES)
` But this command expects a method name

ON EVENT CALL ("HANDLE EVENTS")
` And this Plug-In command expects a method name

WR ON ERROR ("WR HANDLE ERRORS")

Methods can accept parameters (arguments). The parameters are passed to the method in
parentheses, following the name of the method. Each parameter is separated from the
next by a semicolon (;). The parameters are available within the called method as
consecutively numbered local variables: $1, $2,…, $n. In addition, multiple consecutive
(and last) parameters can be addressed with the syntax ${n}where n, numeric expression,
is the number of the parameter.

Inside a function, the $0 local variable contains the value to be returned.

Examples
` Within DROP SPACES $1 is a pointer the field [People]Name

DROP SPACES (->[People]Name)

` Within Calc creator:
` - $1 is numeric and equal to 1
` - $2 is numeric and equal to 5
` - $3 is text or string and equal to "Nice"
` - The result value is assigned to $0

$vsResult:=Calc creator (1; 5; "Nice")

` Within Dump:
` - The three parameters are text or string
` - They can be addressed as $1, $2 or $3
` - They can also be addressed as, for instance,
` ${$vlParam} where $vlParam is 1, 2 or 3
` - The result value is assigned to $0

vtClone:=Dump ("is"; "the"; "it")

102 4th Dimension Language Reference

Plug-In Commands (External Procedures, Functions and Areas)
__

You denote a plug-in command by using its name as defined by the plug-in. A plug-in
command name can contain up to 31 characters.

Examples
WR BACKSPACE (wrArea; 0)
$pvNewArea:=PV New offscreen area

Sets
__

From the scope point of view, there are two types of sets:
• Interprocess sets
• Process sets

4D Server also includes:
• Client sets

Interprocess Sets
A set is an interprocess set if the name of the set is preceded symbols (<>) — a “less than”
sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess set name can contain up to 80 characters, not including the <> symbols.
Process Sets
You denote a process set by using a string expression that represents its name (which
cannot start with the <> symbols or the dollar sign $). A set name can contain up to 80
characters.

Client Sets
The name of a client set is preceded by the dollar sign ($). A client set name can contain
up to 80 characters, not including the dollar sign.

Note: In 4D Client/Server up to version 6, a set was maintained on the Client machine
where it was created. Starting with version 6, sets are maintained on the Server machine.
In certain cases, for efficiency or special purposes, you may need to work with sets locally
on the Client machine. To do so, you use Client sets.

4th Dimension Language Reference 103

Examples
` Interprocess sets

USE SET("<>Deleted Records")
CREATE SET([Customers];"<>Customer Orders")
If (Records in set("<>Selection"+String($i))>0)

` Process sets
USE SET("Deleted Records")
CREATE SET([Customers];"Customer Orders")
If (Records in set("<>Selection"+String($i))>0)

` Client sets
USE SET("$Deleted Records")
CREATE SET([Customers];"$Customer Orders")
If (Records in set("$Selection"+String($i))>0)

Named Selections
__

From the scope point of view, there are two types of named selections:
• Interprocess named selections
• Process named selections

Interprocess Named Selections
A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess named selection name can contain up to 80 characters, not including the
<> symbols.

Process Named Selections
You denote a process named selection by using a string expression that represents its
name (which cannot start with the <> symbols nor the dollar sign $). A named selection
name can contain up to 80 characters.

Examples
` Interprocess Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")
` Process Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")

104 4th Dimension Language Reference

Processes
__

In the single-user version, or in Client/Server on the Client side, there are two types of
processes:
• Global processes
• Local processes

Global Processes
You denote a global process by using a string expression that represents its name (which
cannot start with the dollar sign $). A process name can contain up to 31 characters.

Local Processes
You denote a local process if the name of the process is preceded by a dollar ($) sign. The
process name can contain up to 31 characters, not including the dollar sign.

Example
` Starting the global process "Add Customers"

$vlProcessID:=New process("P_ADD_CUSTOMERS";48*1024;"Add Customers")
` Starting the local process "$Follow Mouse Moves"

$vlProcessID:=New process("P_MOUSE_SNIFFER";16*1024;"$Follow Mouse Moves")

Summary of Naming Conventions
__

The following table summarizes 4th Dimension naming conventions.

Type Max. Length Example
Table 31 [Invoices]
Field 31 [Employees]Last Name
Subtable 31 [Friends]Kids
Subfield 31 [Documents]Keyword'Keyword
Interprocess Variable <> + 31 <>vlNextProcessID
Process Variable 31 vsCurrentName
Local Variable $ + 31 $vlLocalCounter
Form 31 "My Custom Web Input"
Interprocess Array <> + 31 <>apTables
Process Array 31 asGender
Local Array $ + 31 $atValues
Method 31 M_ADD_CUSTOMERS
Plug-in Routine 31 WR INSERT TEXT
Interprocess Set <> + 80 "<>Records to be Archived"
Process Set 80 "Current selected records"
Client Set $ + 80 "$Previous Subjects"
Named Selection 80 "Employees A to Z"
Interprocess Named Selection <> + 80 "<>Employees Z to A"
Local Process $ + 31 "$Follow Events"
Global Process 31 "P_INVOICES_MODULE"

4th Dimension Language Reference 105

Resolving Naming Conflicts
__

If a particular object has the same name as another object of a different type (for
example, if a field is named Person and a variable is also named Person), 4th Dimension
uses a priority system to identify the object. It is up to you to ensure that you use unique
names for the parts of your database.

4th Dimension identifies names used in procedures in the following order:

1. Fields
2. Commands
3. Methods
4. Plug-in routines
5. Predefined constants
6. Variables

For example, 4th Dimension has a built-in command called Date. If you named a method
Date, 4th Dimension would recognize it as the built-in Date command, and not as your
method. This would prevent you from calling your method. If, however, you named a
field “Date”, 4th Dimension would try to use your field instead of the Date command.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

106 4th Dimension Language Reference

Control Flow Language Definition

version 6.0
__

Regardless of the simplicity or complexity of a method, you will always use one or more
of three types of programming structures. Programming structures control the flow of
execution, whether and in what order statements are executed within a method. There
are three types of structures:

• Sequential
• Branching
• Looping

The 4th Dimension language contains statements that control each of these structures.

Sequential structure
The sequential structure is a simple, linear structure. A sequence is a series of statements
that 4th Dimension executes one after the other, from first to last. For example:

OUTPUT FORM([People]; "Listing")
ALL RECORDS([People])
DISPLAY SELECTION([People])

A one-line routine, frequently used for object methods, is the simplest case of a sequential
structure. For example:

[People]Last Name:=Uppercase([People]Last Name)

Branching structures
A branching structure allows methods to test a condition and take alternative paths,
depending on the result. The condition is a Boolean expression, an expression that
evaluates TRUE or FALSE. One branching structure is the If...Else...End if structure, which
directs program flow along one of two paths. The other branching structure is the Case
of...Else...End case structure, which directs program flow to one of many paths.

Looping structures
When writing methods, it is very common to find that you need a sequence of
statements to repeat a number of times. To deal with this need, the language provides
three looping structures:

• While...End while
• Repeat...Until
• For...End for

4th Dimension Language Reference 107

The loops are controlled in two ways: either they loop until a condition is met, or they
loop a specified number of times. Each looping structure can be used in either way, but
While loops and Repeat loops are more appropriate for repeating until a condition is met,
and For loops are more appropriate for looping a specified number of times.

Note: 4th Dimension allows you to embed programming structures (If/While/For/Case
of/Repeat) up to a "depth" of 512 levels.

See Also
Logical Operators, Methods.

108 4th Dimension Language Reference

If...Else...End if Language Definition

version 6.0
__

The formal syntax of the If...Else...End if control flow structure is:

If (Boolean_Expression)
statements(s)

Else
statement(s)

End if

Note that the Else part is optional; you can write:

If (Boolean_Expression)
statements(s)

End if

The If...Else...End if structure lets your method choose between two actions, depending on
whether a test (a Boolean expression) is TRUE or FALSE.

When the Boolean expression is TRUE, the statements immediately following the test are
executed. If the Boolean expression is FALSE, the statements following the Else statement
are executed. The Else statement is optional; if you omit Else, execution continues with
the first statement (if any) following the End if.

Example
` Ask the user to enter the name

$Find:=Request(“Type a name:”)
If (OK=1)

QUERY([People]; [People]LastName=$Find)
Else

ALERT("You did not enter a name.")
End if

4th Dimension Language Reference 109

Tip: Branching can be performed without statements to be executed in one case or the
other. When developing an algorithm or a specialized application, nothing prevents you
from writing:

If (Boolean_Expression)
Else

statement(s)
End if

or:

If (Boolean_Expression)
statements(s)

Else
End if

See Also
Case of...Else...End case, Control Flow, For...End for, Repeat...Until, While...End while.

110 4th Dimension Language Reference

Case of...Else...End case Language Definition

version 6.0
__

The formal syntax of the Case of...Else...End case control flow structure is:

Case of
: (Boolean_Expression)

statement(s)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

Else
statement(s)

End case

Note that the Else part is optional; you can write:

Case of
: (Boolean_Expression)

statement(s)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

End case

As with the If...Else...End if structure, the Case of...Else...End case structure also lets your
method choose between alternative actions. Unlike the If...Else...End if structure, the Case
of...Else...End case structure can test a reasonable unlimited number of Boolean expressions
and take action depending on which one is TRUE.

4th Dimension Language Reference 111

Each Boolean expression is prefaced by a colon (:). This combination of the colon and the
Boolean expression is called a case. For example, the following line is a case:

: (bValidate=1)

Only the statements following the first TRUE case (and up to the next case) will be
executed. If none of the cases are TRUE, none of the statements will be executed (if no
Else part is included).

You can include an Else statement after the last case. If all of the cases are FALSE, the
statements following the Else will be executed.

Example
This example tests a numeric variable and displays an alert box with a word in it:

Case of
: (vResult = 1) ` Test if the number is 1

ALERT("One.") ` If it is 1, display an alert
: (vResult = 2) ` Test if the number is 2

ALERT("Two.") ` If it is 2, display an alert
: (vResult = 3) ` Test if the number is 3

ALERT("Three.") ` If it is 3, display an alert
Else ` If it is not 1, 2, or 3, display an alert

ALERT("It was not one, two, or three.")
End case

For comparison, here is the If...Else...End if version of the same method:

If (vResult = 1) ` Test if the number is 1
ALERT("One.") ` If it is 1, display an alert

Else
If (vResult = 2) ` Test if the number is 2

ALERT("Two.") ` If it is 2, display an alert
Else

If (vResult = 3) ` Test if the number is 3
ALERT("Three.") ` If it is 3, display an alert

Else ` If it is not 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")

End if
End if

End if

Remember that with a Case of...Else...End case structure, only the first TRUE case is
executed. Even if two or more cases are TRUE, only the statements following the first
TRUE case will be executed.

112 4th Dimension Language Reference

Consequently, when you want to implement hierarchical tests, you should make sure the
condition statements that are lower in the hierarchical scheme appear first in the test
sequence. For example, the test for the presence of condition1 covers the test for the
presence of condition1&condition2 and should therefore be located last in the test
sequence. For example, the following code will never see its last condition detected:

Case of
: (vResult = 1)

... `statement(s)
: ((vResult = 1) & (vCondition#2)) `this case will never be detected

... `statement(s)
End case

.

In the code above, the presence of the second condition is not detected since the test
"vResult=1" branches off the code before any further testing. For the code to operate
properly, you can write it as follows:

Case of
: ((vResult = 1) & (vCondition#2)) `this case will be detected first

... `statement(s)
: (vResult = 1)

... `statement(s)
End case

.

Also, if you want to implement hierarchical testing, you may consider using hierarchical
code.

Tip: Branching can be performed without statements to be executed in one case or
another. When developing an algorithm or a specialized application, nothing prevents
you from writing:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

.

.

.

: (Boolean_Expression)
statement(s)

Else
statement(s)

End case

4th Dimension Language Reference 113

or:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

Else
End case

or:

Case of
Else

statement(s)
End case

See Also
Control Flow, For...End for, If...Else...End if, Repeat...Until, While...End while.

114 4th Dimension Language Reference

While...End while Language Definition

version 6.0
__

The formal syntax of the While...End while control flow structure is:

While (Boolean_Expression)
statement(s)

End while

A While...End while loop executes the statements inside the loop as long as the Boolean
expression is TRUE. It tests the Boolean expression at the beginning of the loop and does
not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately before
entering the While...End while loop. Initializing the value means setting it to something
appropriate, usually so that the Boolean expression will be TRUE and While...End while
executes the loop.

The Boolean expression must be set by something inside the loop or else the loop will
continue forever. The following loop continues forever because NeverStop is always TRUE:

NeverStop:=True
While (NeverStop)
End while

If you find yourself in such a situation, where a method is executing uncontrolled, you
can use the trace facilities to stop the loop and track down the problem. For more
information about tracing a method, see the section Debugging.

Example

CONFIRM ("Add a new record?") ` The user wants to add a record?
While (OK = 1) ` Loop as long as the user wants to

ADD RECORD([aTable]) ` Add a new record
End while ` The loop always ends with End while

In this example, the OK system variable is set by the CONFIRM command before the loop
starts. If the user clicks the OK button in the confirmation dialog box, the OK system
variable is set to 1 and the loop starts. Otherwise, the OK system variable is set to 0 and
the loop is skipped. Once the loop starts, the ADD RECORD command keeps the loop
going because it sets the OK system variable to 1 when the user saves the record. When
the user cancels (does not save) the last record, the OK system variable is set to 0 and the
loop stops.

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, Repeat...Until.

4th Dimension Language Reference 115

Repeat...Until Language Definition

version 6.0
__

The formal syntax of the Repeat...Until control flow structure is:

Repeat
statement(s)

Until (Boolean_Expression)

A Repeat...Until loop is similar to a While...End while loop, except that it tests the Boolean
expression after the loop rather than before. Thus, a Repeat...Until loop always executes
the loop once, whereas if the Boolean expression is initially False, a While...End while loop
does not execute the loop at all.

The other difference with a Repeat...Until loop is that the loop continues until the Boolean
expression is TRUE.

Example
Compare the following example with the example for the While...End while loop. Note
that the Boolean expression does not need to be initialized—there is no CONFIRM
command to initialize the OK variable.

Repeat
ADD RECORD([aTable])

Until (OK=0)

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, While...End while.

116 4th Dimension Language Reference

For...End for Language Definition

version 6.0
__

The formal syntax of the For...End for control flow structure is:

For (Counter_Variable; Start_Expression; End_Expression {; Increment_Expression})
statement(s)

End for

The For...End for loop is a loop controlled by a counter variable:

• The counter variable Counter_Variable is a numeric variable (Real, Integer, or Long
Integer) that the For...End for loop initializes to the value specified by Start_Expression.
• Each time the loop is executed, the counter variable is incremented by the value
specified in the optional value Increment_Expression. If you do not specify
Increment_Expression, the counter variable is incremented by one (1), which is the default.
• When the counter variable passes the End_Expression value, the loop stops.

Important: The numeric expressions Start_Expression, End_Expression and
Increment_Expression are evaluated once at the beginning of the loop. If these expressions
are variables, changing one of these variables within the loop will not affect the loop.

Tip: However, for special purposes, you can change the value of the counter variable
Counter_Variable within the loop; this will affect the loop.

• Usually Start_Expression is less than End_Expression.
• If Start_Expression and End_Expression are equal, the loop will execute only once.
• If Start_Expression is greater than End_Expression, the loop will not execute at all unless
you specify a negative Increment_Expression. See the examples.

Basic Examples
1. The following example executes 100 iterations:

For (vCounter;1;100)
` Do something

End for

2. The following example goes through all elements of the array anArray:

For ($vlElem;1;Size of array(anArray))
` Do something with the element

anArray{$vlElem}:=...
End for

4th Dimension Language Reference 117

3. The following example goes through all the characters of the text vtSomeText:

For ($vlChar;1;Length(vtSomeText))
` Do something with the character if it is a TAB

If (Ascii(vtSomeText≤$vlChar≥)=Char(Tab))
` ...

End if
End for

4. The following example goes through the selected records for the table [aTable]:

FIRST RECORD([aTable])
For ($vlRecord;1;Records in selection([aTable]))

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the next record

NEXT RECORD([aTable])
End for

Most of the For...End for loops you will write in your databases will look like the ones
listed in these examples.

Decrementing variable counter
In some cases, you may want to have a loop whose counter variable is decreasing rather
than increasing. To do so, you must specify Start_Expression greater than End_Expression
and a negative Increment_Expression. The following examples do the same thing as the
previous examples, but in reverse order:

5. The following example executes 100 iterations:

For (vCounter;100;1;-1)
` Do something

End for

6. The following example goes through all elements of the array anArray:

For ($vlElem;Size of array(anArray);1;-1)
` Do something with the element

anArray{$vlElem}:=...
End for

118 4th Dimension Language Reference

7. The following example goes through all the characters of the text vtSomeText:

For ($vlChar;Length(vtSomeText);1;-1)
` Do something with the character if it is a TAB

If (Ascii(vtSomeText≤$vlChar≥)=Char(Tab))
` ...

End if
End for

8. The following example goes through the selected records for the table [aTable]:

LAST RECORD([aTable])
For ($vlRecord;Records in selection([aTable]);1;-1)

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the previous record

PREVIOUS RECORD([aTable])
End for

Incrementing the counter variable by more than one
If you need to, you can use an Increment_Expression (positive or negative) whose absolute
value is greater than one.

9. The following loop addresses only the even elements of the array anArray:

For ($vlElem;2;((Size of array(anArray)+1)\2)*2;2)
` Do something with the element #2,#4...#2n

anArray{$vlElem}:=...
End for

Note that the ending expression ((Size of array(anArray)+1)\2)*2 takes care of even and
odd array sizes.

Getting out of a loop by changing the counter variable
In some cases, you may want to execute a loop for a specific number of iterations, but
then get out of the loop when another condition becomes TRUE. To do so, you can test
this condition within the loop and if it becomes TRUE, explicitly set the counter variable
to a value that exceeds the end expression.

4th Dimension Language Reference 119

10. In the following example, a selection of the records is browsed until this is actually
done or until the interprocess variable <>vbWeStop, intially set to FALSE, becomes TRUE.
This variable is handled by an ON EVENT CALL project method that allows you to interrupt
the operation:

<>vbWeStop:=False
ON EVENT CALL ("HANDLE STOP")

` HANDLE STOP sets <>vbWeStop to True if Ctrl-period (Windows) or
`Cmd-Period (Macintosh) is pressed

$vlNbRecords:=Records in selection([aTable])
FIRST RECORD([aTable])
For ($vlRecord;1;$vlNbRecords)

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the next record

If (<>vbWeStop)
$vlRecord:=$vlNbRecords+1 ` Force the counter variable to get out of the loop

Else
NEXT RECORD([aTable])

End if
End for
ON EVENT CALL("")
If (<>vbWeStop)

ALERT("The operation has been interrupted.")
Else

ALERT("The operation has been successfully completed.")
End if

Comparing looping structures
Let's go back to the first For...End for example:

The following example executes 100 iterations:

For (vCounter;1;100)
` Do something

End for

It is interesting to see how the While...End while loop and Repeat...Until loop would
perform the same action.

120 4th Dimension Language Reference

Here is the equivalent While...End while loop:

$i := 1 ` Initialize the counter
While ($i<=100) ` Loop 100 times

` Do something
$i := $i + 1 ` Need to increment the counter

End while

Here is the equivalent Repeat...Until loop:

$i := 1 ` Initialize the counter
Repeat

` Do something
$i := $i + 1 ` Need to increment the counter

Until ($i=100) ` Loop 100 times

Tip: The For...End for loop is usually faster than the While...End while and Repeat...Until
loops, because 4th Dimension tests the condition internally for each cycle of the loop and
increments the counter. Therefore, use the For...End for loop whenever possible.

Optimizing the execution of the For...End for loops
You can use Real, Integer, and Long Integer variables as well as interprocess, process, and
local variable counters. For lengthy repetitive loops, especially in compiled mode, use local
Long Integer variables.

11. Here is an example:

C_LONGINT($vlCounter) ` use local Long Integer variables
For ($vlCounter;1;10000)

` Do something
End for

Nested For...End for looping structures
You can nest as many control structures as you (reasonably) need. This includes nesting
For...End for loops. To avoid mistakes, make sure to use different counter variables for each
looping structure.

4th Dimension Language Reference 121

Here are two examples:

12. The following example goes through all the elements of a two-dimensional array:

For ($vlElem;1;Size of array(anArray))
` ...
` Do something with the row
` ...

For ($vlSubElem;1;Size of array(anArray{$vlElem}))
` Do something with the element
anArray{$vlElem}{$vlSubElem}:=...

End for
End for

13. The following example builds an array of pointers to all the date fields present in the
database:

ARRAY POINTER($apDateFields;0)
$vlElem:=0
For ($vlTable;1;Count table)

For($vlField;1;Count fields($vlTable))
$vpField:=Field($vlTable;$vlField)
If (Type($vpField->)=Is Date)

$vlElem:=$vlElem+1
INSERT ELEMENT($apDateFields;$vlElem)
$apDateFields{$vlElem}:=$vpField

End if
End for

End for

See Also
Case of...Else...End case, Control Flow, If...Else...End if, Repeat...Until, While...End while.

122 4th Dimension Language Reference

Methods Language Definition

version 2003 (Modified)
__

In order to make the commands, operators, and other parts of the language work, you
put them in methods. There are several kinds of methods: Object methods, Form
methods, Table methods (Triggers), Project methods, and Database methods. This section
describes features common to all types of methods.

A method is composed of statements; each statement consists of one line in the method.
A statement performs an action, and may be simple or complex. Although a statement is
always one line, that one line can be as long as needed (up to 32,000 characters, which is
probably enough for most tasks).

For example, the following line is a statement that will add a new record to the [People]
table:

ADD RECORD([People])

A method also contains tests and loops that control the flow of the execution. For a
detailed discussion about the control flow programming structures, see the section Control
Flow.

Note: The maximum size of a method is limited to 2 GB of text or 32 000 lines of
command. Beyond these limits, a warning message appears, indicating that the extra lines
will not be displayed.

Types of Methods
__

There are five types of methods in 4th Dimension:

• Object methods: An object method is a property of an object. It is usually a short
method associated with an active form object. Object methods generally “manage” the
object while the form is displayed or printed. You do not call an object method—4D calls
it automatically when an event involves the object to which the object method is
attached.

• Form methods: A form method is a property of a form. You can use a form method to
manage data and objects, but it is generally simpler and more efficient to use an object
method for these purposes. You do not call a form method—4D calls it automatically
when an event involves the form to which the form method is attached.

For more information about Object methods and Form methods, see the 4th Dimension
Design Reference Manual as well as the section Form event.

4th Dimension Language Reference 123

• Table methods (Triggers): A Trigger is a property of a table. You do not call a Trigger.
Triggers are automatically called by the 4D database engine each time that you
manipulate the records of a table (Add, Delete, Modify and Load). Triggers are methods
that can prevent “illegal” operations with the records of your database. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying
the customer to whom the invoice is billed. Triggers are a very powerful tool to restrict
operations on a table, as well as to prevent accidental data loss or tampering. You can
write very simple triggers, and then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

• Project methods: Unlike object methods, form methods, and triggers, which are all
associated with a particular object, form, or table, project methods are available for use
throughout your database. Project methods are reusable, and available for use by any
other method. If you need to repeat a task, you do not have to write identical methods
for each case. You can call project methods wherever you need them—from other project
methods or from object or form methods. When you call a project method, it acts as if
you had written the method at the location where you called it. Project methods called
from other methods are often referred to as “subroutines.” A project method that returns
a result can also be called a function.

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu command is chosen. You can think of the menu command as calling the
project method.

For detailed information about Project methods, see the section Project Methods.

• Database methods: In the same way that object and form methods are called when
events occur in a form, there are methods associated with the database that are called
when a working session event occurs. These are the database methods. For example, each
time you open a database, you may want to initialize some variables that will be used
during the whole working session. To do so, you use the On Startup Database Method,
automatically executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Compatibility with previous versions of 4D
You can skip these compatibility notes if you work with new databases created with
version 6 of 4th Dimension.

1. Version 6 introduces many new object and form events (such as On Double Clicked, On
Getting Focus, and so on) that replace the execution cycles from the previous versions. If
you have converted a version 3 database to version 6, your forms have been converted in
order to preserve the “expected behavior” of your forms and objects. If you want to take
advantage of the new events for forms and objects created with a previous version of 4D,
you must enable the new events in the Property List window for the forms and the
objects.

124 4th Dimension Language Reference

2. Table methods, also called triggers, are a new type of method introduced in version 6.
In previous versions of 4th Dimension, table methods (called file procedures) were
executed by 4D only when a form for a table was used for data entry, display, or printing.
They were rarely used. Note that triggers execute at a much lower level that the old file
procedures. No matter what you do to a record via user actions (like data entry) or
programmatically (like a call to SAVE RECORD), the trigger of a table will be called by 4D.
Triggers are truly quite different from the old file procedures. If you have converted a
version 3 database to version 6, and if you want to take advantage of the new Trigger
capability, you must deselect the Use V3.x.x File Procedure Scheme property in the
Preferences dialog box (shown in this section).

3. Database methods are a new type of method introduced in version 6. In previous
versions of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use V3.x.x Startup Method
Scheme property in the Preferences dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be called
by 4D.

4th Dimension Language Reference 125

An Example Project Method
__

All methods are fundamentally the same—they start at the first line and work their way
through each statement until they reach the last line (i.e., they execute sequentially).
Here is an example project method:

QUERY ([People]) ` Display the Query editor
If (OK=1) ` The user clicked OK, not cancel

If (Records in selection([People])=0) ` If no record was found…
ADD RECORD([People]) ` Let the user add a new record

End if
End if ` The end

Each line in the example is a statement or line of code. Anything that you write using
the language is loosely referred to as code. Code is executed or run; this means that 4th
Dimension performs the task specified by the code.

We will examine the first line in detail and then move on more quickly:

QUERY([People]) ` Display the Query editor

The first element in the line, QUERY, is a command. A command is part of the 4th
Dimension language—it performs a task. In this case, QUERY displays the Query editor.
This is similar to choosing Query from the Records menu in the User environment.

The second element in the line, specified between parantheses, is an argument to the
QUERY command. An argument (or parameter) is data required by a command in order
to complete its task. In this case, [People] is the name of a table. Table names are always
specified inside square brackets ([…]). In our example, the People table is an argument to
the QUERY command. A command can accept several parameters.

The third element is a comment at the end of the line. A comment tells you (and anyone
else who might read your code) what is happening in the code. It is indicated by the
reverse apostrophe (`). Anything (on the line) following the comment mark will be
ignored when the code is run. A comment can be put on a line by itself, or you can put
comments to the right of the code, as in the example. Use comments generously
throughout your code; this makes it easier for you and others to read and understand the
code.

Note: A comment can be up to 32 000 characters long.

The next line of the method checks to see if any records were found:

If (Records in selection([People]) = 0) ` If no record was found…

126 4th Dimension Language Reference

The If statement is a control-of-flow statement—a statement that controls the step-by-
step execution of your method. The If statement performs a test, and if the statement is
true, execution continues with the subsequent lines. Records in selection is a function—a
command that returns a value. Here, Records in selection returns the number of records in
the current selection for the table passed as argument.

Note: Notice that only the first letter of the function name is capitalized. This is the
naming convention for 4th Dimension functions.

You should already know what the current selection is—it is the group of records you are
working on at any given time. If the number of records is equal to 0 (in other words, if
no records were found), then the following line is executed:

ADD RECORD([People]) ` Let the user add a new record

The ADD RECORD command displays a form so that the user can add a new record. 4th
Dimension formats your code automatically; notice that this line is indented to show you
that it is dependent on the control-of-flow statement (If).

End if ` The end

The End if statement concludes the If statement’s section of control. Whenever there is a
control-of-flow statement, you need to have a corresponding statement telling the
language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new, you
may want to review them until they are clear to you.

Where to go from here?
To learn more about:
• Object methods and Form methods, see the section Form event.
• Triggers, see the section Triggers.
• Project methods, see the section Project Methods.
• Database methods, see the section Database Methods.

See Also
Arrays, Constants, Control Flow, Data Types, Database Methods, Identifiers, Operators,
Pointers, Triggers, Variables.

4th Dimension Language Reference 127

Project Methods Language Definition

version 6.0
__

Project methods are aptly named. Whereas form and object methods are bound to forms
and objects, a project method is available anywhere; it is not specifically attached to any
particular object of the database. A project method can have one of the following roles,
depending on how it is executed and used:

• Menu method
• Subroutine and function
• Process method
• Event catching method
• Error catching method

These terms do not distinguish project methods by what they are, but by what they do.

A menu method is a project method called from a custom menu. It directs the flow of
your application. The menu method takes control—branching where needed, presenting
forms, generating reports, and generally managing your database.

The subroutine is a project method that can be thought of as a servant. It performs those
tasks that other methods request it to perform. A function is a subroutine that returns a
value to the method that called it.

A process method is a project method that is called when a process is started. The process
lasts only as long as the process method continues to execute. For more information
about processes, see the section Processes. Note that a menu method attached to a menu
command whose property Start a New Process is selected, is also the process method for
the newly started process.

An event catching method runs in a separate process as the process method for catching
events. Usually, you let 4D do most of the event handling for you. For example, during
data entry, 4D detects keystrokes and clicks, then calls the correct object and form
methods so you can respond appropriately to the events from within these methods. In
other circumstances, you may want to handle events directly. For example, if you run a
lengthy operation (such as For...End For loop browsing records), you may want to be able
to interrupt the operation by typing Ctrl-Period (Windows) or Cmd-Period (Macintosh).
In this case, you should use an event catching method to do so. For more information,
see the description of the command ON EVENT CALL.

An error catching method is an interrupt-based project method. Each time an error or an
exception occurs, it executes within the process in which it was installed. For more
information, see the description of the command ON ERR CALL.

128 4th Dimension Language Reference

Menu Methods
__

A menu method is invoked in the Custom Menus environment when you select the
custom menu command to which it is attached. You assign the method to the menu
command using the Menu editor. The menu executes when the menu command is
chosen. This process is one of the major aspects of customizing a database. By creating
custom menus with menu methods that perform specific actions, you personalize your
database. Refer to the 4th Dimension Design Reference manual for more information about
the Menu editor.

Custom menu commands can cause one or more activities to take place. For example, a
menu command for entering records might call a method that performs two tasks:
displaying the appropriate input form, and calling the ADD RECORD command until the
user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the programming
language. Using custom menus, you can automate task sequences that would otherwise be
carried out manually in the User environment. With custom menus, you provide more
guidance to users of the database.

Subroutines
__

When you create a project method, it becomes part of the language of the database in
which you create it. You can then call the project method in the same way that you call
4th Dimension’s built-in commands. A project method used in this way is called a
subroutine.

You use subroutines to:
• Reduce repetitive coding
• Clarify your methods
• Facilitate changes to your methods
• Modularize your code

For example, let’s say you have a database of customers. As you customize the database,
you find that there are some tasks that you perform repeatedly, such as finding a
customer and modifying his or her record. The code to do this might look like this:

` Look for a customer
QUERY BY EXAMPLE([Customers])

` Select the input form
INPUT FORM([Customers];"Data Entry")

` Modify the customer's record
MODIFY RECORD([Customers])

4th Dimension Language Reference 129

If you do not use subroutines, you will have to write the code each time you want to
modify a customer’s record. If there are ten places in your custom database where you
need to do this, you will have to write the code ten times. If you use subroutines, you will
only have to write it once. This is the first advantage of subroutines—to reduce the
amount of code.

If the previously described code was a method called MODIFY CUSTOMER, you would
execute it simply by using the name of the method in another method. For example, to
modify a customer’s record and then print the record, you would write this method:

MODIFY CUSTOMER
PRINT SELECTION([Customers])

This capability simplifies your methods dramatically. In the example, you do not need to
know how the MODIFY CUSTOMER method works, just what it does. This is the second
reason for using subroutines—to clarify your methods. In this way, your methods become
extensions to the 4th Dimension language.

If you need to change your method of finding customers in this example database, you
will need to change only one method, not ten. This is the next reason to use
subroutines—to facilitate changes to your methods.

Using subroutines, you make your code modular. This simply means dividing your code
into modules (subroutines), each of which performs a logical task. Consider the following
code from a checking account database:

FIND CLEARED CHECKS ` Find the cleared checks
RECONCILE ACCOUNT ` Reconcile the account
PRINT CHECK BOOK REPORT ` Print a checkbook report

Even for someone who doesn’t know the database, it is clear what this code does. It is not
necessary to examine each subroutine. Each subroutine might be many lines long and
perform some complex operations, but here it is only important that it performs its task.

We recommend that you divide your code into logical tasks, or modules, whenever
possible.

130 4th Dimension Language Reference

Passing Parameters to Methods
__

You’ll often find that you need to pass data to your methods. This is easily done with
parameters.

Parameters (or arguments) are pieces of data that a method needs in order to perform its
task. The terms parameter and argument are used interchangeably throughout this
manual. Parameters are also passed to built-in 4th Dimension commands. In this example,
the string “Hello” is an argument to the ALERT command:

ALERT("Hello")

Parameters are passed to methods in the same way. For example, if a method named DO
SOMETHING accepted three parameters, a call to the method might look like this:

DO SOMETHING(WithThis;AndThat;ThisWay)

The parameters are separated by semicolons (;).

In the subroutine (the method that is called), the value of each parameter is automatically
copied into sequentially numbered local variables: $1, $2, $3, and so on. The numbering
of the local variables represents the order of the parameters.

The local variables/parameters are not the actual fields, variables, or expressions passed by
the calling method; they only contain the values that have been passed.

Within the subroutine, you can use the parameters $1, $2... in the same way you would
use any other local variable.

Since they are local variables, they are available only within the subroutine and are cleared
at the end of the subroutine. For this reason, a subroutine cannot change the value of the
actual fields or variables passed as parameters at the calling method level. For example:

` Here is some code from the method MY METHOD
` ...

DO SOMETHING ([People]Last Name) ` Let's say [People]Last Name is equal to "williams"
ALERT([People]Last Name)

` Here is the code of the method DO SOMETHING
$1:=Uppercase($1)
ALERT($1)

The alert box displayed by DO SOMETHING will read “WILLIAMS” and the alert box
displayed by MY METHOD will read “williams”. The method locally changed the value of
the parameter $1, but this does not affect the value of the field [People]Last Name passed
as parameter by the method MY METHOD.

4th Dimension Language Reference 131

There are two ways to make the method DO SOMETHING change the value of the field:

1. Rather than passing the field to the method, you pass a pointer to it, so you would
write:

` Here is some code from the method MY METHOD
` ...
` Let's say [People]Last Name is equal to "williams"

DO SOMETHING (->[People]Last Name)
ALERT([People]Last Name)

` Here the code of the method DO SOMETHING
$1->:=Uppercase($1->)
ALERT($1->)

Here the parameter is not the field, but a pointer to it. Therefore, within the DO
SOMETHING method, $1 is no longer the value of the field but a pointer to the field. The
object referenced by $1 ($1-> in the code above) is the actual field. Consequently,
changing the referenced object goes beyond the scope of the subroutine, and the actual
field is affected. In this example, both alert boxes will read “WILLIAMS”.

For more information about Pointers, see the section Pointers.

2. Rather than having the method DO SOMETHING “doing something,” you can rewrite
the method so it returns a value. Thus you would write:

` Here is some code from the method MY METHOD
` ...
` Let's say [People]Last Name is equal to "williams"

[People]Last Name:=DO SOMETHING ([People]Last Name)
ALERT([People]Last Name)

` Here the code of the method DO SOMETHING
$0:=$1
ALERT($0)

This second technique of returning a value by a subroutine is called “using a function.”
This is described in the next paragraphs.

Advanced note: Parameters within the subroutine are accessible through the local
variables $1, $2... In addition, parameters can be optional and can be referred to using the
syntax ${...}. For more information on parameters, see the description of the command
Count parameters.

132 4th Dimension Language Reference

Functions: Project Methods that return a value
__

Data can be returned from methods. A method that returns a value is called a function.

4D or 4D Plug-in commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length, to
return the length of a string. The statement puts the value returned by Length in a
variable called MyLength. Here is the statement:

MyLength:=Length("How did I get here?")

Any subroutine can return a value. The value to be returned is put into the local variable
$0.

For example, the following function, called Uppercase4, returns a string with the first four
characters of the string passed to it in uppercase:

$0:=Uppercase(Substring($1; 1; 4))+Substring($1; 5)

The following is an example that uses the Uppercase4 function:

NewPhrase:=Uppercase4 ("This is good.")

In this example, the variable NewPhrase gets “THIS is good.”

The function result, $0, is a local variable within the subroutine. It can be used as such
within the subroutine. For example, in the previous DO SOMETHING example, $0 was first
assigned the value of $1, then used as parameter to the ALERT command. Within the
subroutine, you can use $0 in the same way you would use any other local variable. It is
4D that returns the value of $0 (as it is when the subroutine ends) to the called method.

Recursive Project Methods
__

Project methods can call themselves. For example:
• The method A may call the method B which may call A, so A will call B again and so on.
• A method can call itself.

This is called recursion. The 4D language fully supports recursion.

Here is an example. Let’s say you have a [Friends and Relatives] table composed of this
extremely simplified set of fields:
- [Friends and Relatives]Name
- [Friends and Relatives]Children'Name

4th Dimension Language Reference 133

For this example, we assume the values in the fields are unique (there are no two persons
with the same name). Given a name, you want to build the sentence “A friend of mine,
John who is the child of Paul who is the child of Jane who is the child of Robert who is
the child of Eleanor, does this for a living!”:

1. You can build the sentence in this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)

QUERY([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)

$vtTheWholeStory:="A friend of mine, "+$vsName
Repeat

QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$vsName)
$vlQueryResult:=Records in selection([Friends and Relatives])
If ($vlQueryResult>0)

$vtTheWholeStory:=$vtTheWholeStory+" who is the child of "
+[Friends and Relatives]Name

$vsName:=[Friends and Relatives]Name
End if

Until ($vlQueryResult=0)
$vtTheWholeStory:=$vtTheWholeStory+", does this for a living!"
ALERT($vtTheWholeStory)

End if
End if

2. You can also build it this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)

QUERY([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)

ALERT("A friend of mine, "+Genealogy of ($vsName)+", does this for a living!")
End if

End if

with the recursive function Genealogy of listed here:

` Genealogy of project method
` Genealogy of (String) -> Text
` Genealogy of (Name) -> Part of sentence

$0:=$1
QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$1)
If (Records in selection([Friends and Relatives])>0)

$0:=$0+" who is the child of "+Genealogy of ([Friends and Relatives]Name)
End if

134 4th Dimension Language Reference

Note the Genealogy of method which calls itself.

The first way is an iterative algorithm. The second way is a recursive algorithm.

When implementing code for cases like the previous example, it is important to note that
you can always write methods using iteration or recursion. Typically, recursion provides
more concise, readable, and maintainable code, but using it is not mandatory.

Some typical uses of recursion in 4D are:
• Treating records within tables that relate to each other in the same way as in the
example.
• Browsing documents and folders on your disk, using the commands FOLDER LIST and
DOCUMENT LIST. A folder may contain folders and documents, the subfolders can
themselves contain folders and documents, and so on.

Important: Recursive calls should always end at some point. In the example, the method
Genealogy of stops calling itself when the query returns no records. Without this
condition test, the method would call itself indefinitely; eventually, 4D would return a
“Stack Full” error becuase it would no longer have space to “pile up” the calls (as well as
parameters and local variables used in the method).

See Also
Control Flow, Database Methods, Methods.

4th Dimension Language Reference 135

136 4th Dimension Language Reference

3

4D Environment

4th Dimension Language Reference 137

138 4th Dimension Language Reference

Application type 4D Environment

version 2004 (Modified)
__

Application type → Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer ← Numeric value denoting the type of the application

Description
The Application type command returns a numeric value that denotes the type of 4D
environment that you are running. 4D provides the following predefined constants:
Constant Type Value
4th Dimension Long Integer 0
4D Runtime Volume License Long Integer 1
4D Runtime Interpreted Long Integer 2
4D Runtime Single User Long Integer 3
4D Client Long Integer 4
4D Server Long Integer 5
4D First Long Integer 6

Example
Somewhere in your code, other than in the On Server Startup database method, you need
to check if you are running 4D Server. You can write:

⇒ If (Application type=4D Server)
` Perform appropriate actions

End if

See Also
Application version, Version type.

4th Dimension Language Reference 139

Version type 4D Environment

version 6.0
__

Version type → Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer ← 0 -> Full version
1 -> Demo Limited version

Description
The Version type command returns a numeric value that denotes the type of 4D
environment version that you are running. 4D provides the following predefined
constants:
Constant Type Value
Full Version Long Integer 0
Demo Version Long Integer 1

Example
Your 4D application includes some features that are not available when a demo version of
the 4D environment is used. Surround these features with a test that calls Version type:

⇒ If (Version type=Full Version)
` Perform appropriate operations

Else
ALERT("This feature is not available in the Demo version of"

+" Super Management Systems™.")
End if

See Also
Application type, Application version.

140 4th Dimension Language Reference

Application version 4D Environment

version 6.0
__

Application version {(*)} → String

Parameter Type Description
* * → Long version number if passed, otherwise

Short version number

Function result String ← Version number encoded string

Description
The Application version command returns an encoded string value that expresses the
version number of the 4D environment you are running.

• If you do not pass the optional * parameter, a 4-character string is returned, formatted as
follows:
Characters Description
1-2 Version number
3 Update number
4 Revision number

Example: The string "0600" stands for version 6.0.0.

• If you pass the optional * parameter, an 8-character string is returned, formatted as
follows:
Characters Description
1 "F" denotes a final version

"B" denotes a beta version
Other characters denote an 4D internal version

2-3-4 Internal 4D compilation number
5-6 Version number
7 Update number
8 Revision number

Example: The string "B0120602" would stand for the Beta 12 of version 6.0.2.

Examples
1. This example displays the 4D environment version number:

⇒ $vs4Dversion:=Application version
ALERT("You are using the version "+String(Num(Substring($vs4Dversion;1;2)))+"."+

$vs4Dversion≤3≥+"."+$vs4Dversion≤4≥)

4th Dimension Language Reference 141

2. This example tests to verify that you are using a final version:

⇒ If(Substring(Application version(*);1;1)#"F")
ALERT("Please make sure you are using a Final Production version of 4D with

this database!")
QUIT 4D

End if

See Also
Application type, Version type.

142 4th Dimension Language Reference

Compiled application 4D Environment

version 6.0
__

Compiled application → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← Compiled (True), Interpreted (False)

Description
Compiled application tests whether you are running in compiled mode (True) or
interpreted mode (False).

Example
In one of your routines, you include debugging code useful only when you are running
in interpreted mode, so surround this debugging code with a test that calls Compiled
application:

` ...
⇒ If (Not(Compiled application))

` Include debugging code here
End if

` ...

See Also
IDLE, Undefined.

4th Dimension Language Reference 143

Application file 4D Environment

version 6.0
__

Application file → String

Parameter Type Description
This command does not require any parameters

Function result String ← Long name of the 4D executable file or
application

Description
The Application file command returns the long name of the 4D executable file or
application you are running.

On Windows
If, for example, you are running 4th Dimension located at \4DWIN600\PROGRAM on
the volume E, the command returns E:\4DWIN600\PROGRAM\4D.EXE.

On Macintosh
If, for example, you are running 4th Dimension in the folder 4th Dimension® 6.0ƒ on
the disk Macintosh HD, the command returns Macintosh HD:4th Dimension® 6.0ƒ:4th
Dimension® 6.0.

Example
At startup on Windows, you need to check if a DLL Library is correctly located at the
same level as the 4D executable file. In the On Startup database method of your
application you can write:

If (On Windows & (Application type#4D Server))
⇒ If (Test path name (Long name to path name (

Application file)+"XRAYCAPT.DLL")#Is a document)
` Display a dialog box explaining that the library XRAYCAPT.DLL
` is missing. Therefore, the X-ray capture capability will not be available.

End if
End if

Note: The project methods On Windows and Long name to path name are listed in the
section System Documents.

See Also
Data file, DATA SEGMENT LIST, Structure file.

144 4th Dimension Language Reference

Structure file 4D Environment

version 2004.2 (Modified)
__

Structure file → String

Parameter Type Description
This command does not require any parameters

Function result String ← Long name of the database structure file

Description
The Structure file command returns the long name of the structure file for the database
with which you are currently working.

On Windows
If, for example, you are working with the database MyCDs located in \DOCS\MyCDs on
the volume G, the command returns G:\DOCS\MyCDs\MyCDs.4DB.

On Macintosh
If, for example, you are are working with the database located in the folder
Documents:MyCDsƒ: on the disk Macintosh HD, the command returns Macintosh
HD:Documents:MyCDsƒ:MyCDs.

Note: In the particular case of a database that has been compiled and merged with 4D
Runtime, this command returns the pathname of the application file (executable
application) under Windows and Mac OS. Under Mac OS, this file is located inside the
software package, in the [Contents:Mac OS] folder. This stems from a former mechanism
and is kept for compatibility reasons. If you want to get the full name of the software
package itself, it is preferable to use the Application file command. The technique consists
of testing the application using the Application type command, then executing Structure
file or Application file depending on the context.

WARNING: If you call this command while running 4D Client, only the name of the
structure file is returned; the long name is not returned.

4th Dimension Language Reference 145

Example
This example displays the name and the location of the structure file currently in use:

If (Application type#4D Client)
⇒ $vsStructureFilename:=Long name to file name (Structure file)
⇒ $vsStructurePathname:=Long name to path name (Structure file)

ALERT("You are currently using the database "+Char(34)+$vsStructureFilename
+Char(34)+" located at "+Char(34)+$vsStructurePathname+Char(34)+".")

Else
⇒ ALERT("You are connected to the database "+Char(34)+Structure file+Char(34))

End if

Note: The project methods Long name to file name and Long name to path name are listed
in the section System Documents.

See Also
Application file, Data file, DATA SEGMENT LIST.

146 4th Dimension Language Reference

Data file 4D Environment

version 6.0
__

Data file {(segment)} → String

Parameter Type Description
segment Number → Segment number

Function result String ← Long name of the data file for the database

Description
The Data file command returns the long name of the data file or one data segment for the
database with which you are currently working.

If you do not pass the segment parameter, it returns the long name of the data file or the
first segment (if the database is segmented). If you pass the segment parameter, it returns
the long name of the corresponding data segment. If you pass a segment number greater
than the number of data segments, it returns an empty string.

On Windows
If, for example, you are working with the database MyCDs located at \DOCS\MyCDs on
the volume G, a call to Data file returns G:\DOCS\MyCDs\MyCDs.4DD (provided that
you accepted the default location and name proposed by 4D when you created the
database).

On Macintosh
If, for example, you are working with the database located in the folder
Documents:MyCDsƒ: on the disk Macintosh HD, a call to Data file returns Macintosh
HD:Documents:MyCDsƒ:MyCDs.data (provided that you accepted the default location
and name proposed by 4D when you created the database).

WARNING: If you call this command while running 4D Client, only the name of the data
file or the first data segment is returned, not the long name. In addition, even though
the database is segmented, the command returns an empty string for the other data
segments. If you need (for adminstrative purposes) to display a list of the data segments
on a 4D Client station, use a Stored Procedure to build the data segment list and store it in
a variable on the server machine, then get the contents of this variable using the GET
PROCESS VARIABLE command.

4th Dimension Language Reference 147

Example
The following code goes through the data segments of a database.

If (Application type#4D Client)
$vlDataSegNum:=0
Repeat

$vlDataSegNum:=$vlDataSegNum+1
⇒ $vsDataSegName:=Data file($vlDataSegNum)

If ($vsDataSegName#"")
ALERT ("Data segment "+String($vlDataSegNum)+":"+Char(34)+

$vsDataSegName+Char(34)+".")
End if

Until ($vsDataSegName="")
ALERT("There is/are "+String($vlDataSegNum-1)+"data segment(s).")

End if

See Also
Application file, DATA SEGMENT LIST, Structure file.

148 4th Dimension Language Reference

Is data file locked 4D Environment

version 2003
__

Is data file locked → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True = file/segment locked
False = file/segment not locked

Description
The Is data file locked command returns True if the data file of the open database or at least
one of its segments is locked — i.e. write protected.

Placed, for instance, in the On Startup Database Method, this command enables the
prevention of any risk of accidental opening of a locked data file.

Example
This method will prevent the opening of the database if the data file is locked:

⇒ If(Is data file locked)
ALERT("The data file is locked. Impossible to open database.")
QUIT 4D

End if

4th Dimension Language Reference 149

Get 4D folder 4D Environment

version 2004.1 (Modified)
__

Get 4D folder {(folder)} → String

Parameter Type Description
folder Longint → Folder type (if omitted = active 4D folder)

Function result String ← Pathname to 4D Folder

Description
The Get 4D folder command returns the pathname to the active 4D folder of the current
application, or to the 4D environment folder specified by the folder parameter, if passed.
This command allows you to get the actual pathname of the folders used by the 4D
application. By using this command, you ensure that your code will work on any
platform running any localized system.

In folder, you can pass one of the following constants, which are located in the “4D
Environment” theme:
Constant Type Value
Active 4D Folder Longint 0 (default)
Licenses Folder Longint 1
Extras Folder Longint 2
4D Client Database Folder Longint 3

You will find below a description of each folder:

Active 4D Folder
The 4D environment uses the 4D folder to store the following information:
• User registration files
• Preferences files used by the 4D environment applications, tools, and utility programs
• TCP/IP Network protocol option file
• Local database folders created by 4D Client for storing elements downloaded from
4D Server (resources, plug-ins, Extras folder, etc.).

The 4D folder is created at the following location:
• On Windows: {Disk}:\Documents and Settings\All Users\Application Data\4D
Note for 4D Client: With 4D Client, the active 4D folder is created at the following
location:
{Disk}:\Documents and Settings\Current user\Application Data\4D
... where Current user is the name of the user that opened the current Windows session.
• On Mac OS: {Disk}:Library:Application Support:4D

150 4th Dimension Language Reference

Licenses Folder
Folder containing the Licenses files of the machine.
The Licenses folder is placed at the following location:
• On Windows: {Disk}:\Documents and Settings\All Users\Application Data\
4D\Licenses
• On Mac OS: {Disk}:Library:Application Support:4D:Licenses

Extras Folder (Client machines)
Folder with customized contents downloaded to each 4D Client machine.
You use this folder for transferring custom items from the server to the client machines
(resources file, text documents, XML preferences files, etc.). The original hierarchy of the
folder is reconstructed on each client machine.
4D Server automatically manages the modifications made to this folder and only transfers
what is necessary. Moreover, the contents of the folder is compressed in order to optimize
network copying time.
On the server side, the original Extras folder should be placed next to the database
structure file. Pay attention to the fact that the command only returns the 4D Client
Extras folder location; it does not work with 4D Server or 4th Dimension single-user.
On each 4D Client, the Extras folder is downloaded to the same location as the other
structure elements, i.e.:
• On Windows: {Disk}:\Documents and Settings\Current user\Application
Data\4D\DatabaseName_Address\Extras
... where Current user is the name of the user that opened the current Windows session.
• On Mac OS: {Disk}:Library:Application Support:4D:DatabaseName_Address:Extras

4D Client Database Folder (Client machines)
4D database folder created on each 4D Client machine for storing files and folders related
to the database (resources, plug-ins, Extras folder, etc.).
The 4D Client Database Folder is placed at the following location on each client
machine:
• On Windows: {Disk}:\Documents and Settings\Current user\Application
Data\4D\DatabaseName_Address
... where Current user is the name of the user that opened the current Windows session.
• On Mac OS: {Disk}:Library:Application Support:4D:DatabaseName_Address:

4th Dimension Language Reference 151

Example
During the startup of a single-user database, you want to load (or create) your own
settings in a file located in the 4D folder. To do so, in the On Startup Database Method,
you can write code similar to this:

MAP FILE TYPES("PREF";"PRF";"Preferences file")
` Map PREF Mac OS file type to .PRF Windows file extension

⇒ $vsPrefDocName:=Get 4D folder+"MyPrefs" ` Build pathname to the Preferences file
` Check if the file exists

If (Test path name($vsPrefDocName+(".PRF"*Num(On Windows)))#Is a document)
$vtPrefDocRef:=Create document($vsPrefDocName;"PREF") ` If not, create it

Else
$vtPrefDocRef:=Open document($vsPrefDocName;"PREF") ` If so, open it

End if
If (OK=1)

` Process document contents
CLOSE DOCUMENT($vtPrefDocRef)

Else
` Handle error

End if

See Also
System folder, Temporary folder, Test path name.

152 4th Dimension Language Reference

DATA SEGMENT LIST 4D Environment

version 6.0
__

DATA SEGMENT LIST (Segments)

Parameter Type Description
Segments String array ← Long names of data segments for the database

Description
DATA SEGMENT LIST populates the segments array with the long names of the data
segments for the database with which you are currently working.

WARNING: This command does nothing if executed on 4D Client. If you need (for
administrative purposes) to display a list of the data segments on a 4D Client station, use
a Stored Procedure to build the data segment list and store it in a variable on the server
machine, then get the contents of this variable using the GET PROCESS VARIABLE
command.

Examples
1. In the Data Segments Information form for the [Dialogs] table, you want to display a
drop-down list populated with the names of the data segments. To do so, write:

` [Dialogs];"Data Segments Information" form method
Case of

: (Form event=On Load)
` ...

ARRAY STRING(255;asDataSegName;0)
⇒ DATA SEGMENT LIST(asDataSegName)

` ...
End case

2. The following method tells you if a database is segmented.
` Is data file segmented -> Boolean

C_BOOLEAN ($0)
⇒ DATA SEGMENT LIST($asDataSegName)

$0:=(Size of array($asDataSegName)>1)

4th Dimension Language Reference 153

3. After a call to ADD DATA SEGMENT, you want to test whether the user added new
segments.

⇒ DATA SEGMENT LIST($asBefore)
ADD DATA SEGMENT

⇒ DATA SEGMENT LIST($asAfter)
If(Size of array($asBefore)#Size of array($asAfter))

` Yes, there are more data segments
Else

` Same number of data segments
End if

See Also
Application file, Data file, Structure file.

154 4th Dimension Language Reference

ADD DATA SEGMENT 4D Environment

version 2004.2 (Modified)
__

ADD DATA SEGMENT

Parameter Type Description
This command does not require any parameters

Description
The ADD DATA SEGMENT command displays the data segment management dialog box
shown here:

If the user clicks the OK button to validate the dialog box, the OK variable is set to 1. If
the user clicks the Cancel button, OK is set to 0.

NOTE: This command does nothing when used with 4D Server.

When all data segments are full, 4th Dimension or 4D Server automatically creates a new
segment if the Create new data segments as needed option is checked in the application
Preferences (“Database/Data Management” page). Each automatic segment has a
maximum size of 2 GB and is stored next to the last segment created or the data file.

If this option is not checked, the error -9999 is generated. An error message is displayed,
stating that the disk is full.

If you are using 4th Dimension, you can use the ON ERR CALL method to catch the error
message so you can handle the error procedurally. You can then use ADD DATA SEGMENT
to allow the user to add a new data segment on another volume that has available space.

4th Dimension Language Reference 155

If you are using 4D Server, you can display an alert stating that the Database
Administrator must add a new data segment from the server machine.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the data segment management dialog box is validated.

156 4th Dimension Language Reference

FLUSH BUFFERS 4D Environment

version 3
__

FLUSH BUFFERS

Parameter Type Description
This command does not require any parameters

Description
The command FLUSH BUFFERS immediately saves the data buffers to disk. All changes that
have been made to the database are stored on disk.

You usually do not need to call this command, as 4D saves data modification on a regular
basis. The database property Flush Data Buffers (in the Design environment), which
specifies how often to save, is typically used to control buffer flushing.

Note: 4D integrates a built-in data cache scheme for accelerating I/O operations. The fact
that data modifications are, for some time, present in the data cache and not on the disk
is transparent to your coding. For example, if you issue a QUERY call, the 4D database
engine integrates the data cache in the query operation.

4th Dimension Language Reference 157

OPEN DATA FILE 4D Environment

version 6.8
__

OPEN DATA FILE (accessPath)

Parameter Type Description
accessPath String → Name or complete access path of the data file to open

Description
The OPEN DATA FILE command allows changing the data file opened by the 4D
application on-the-fly.

Pass the name or the full access path of the data file to open in the accessPath parameter.
If you pass only the file name, it must be placed next to the structure file of the database.

If the access path sets a valid data file, 4D quits the database in progress and re-opens it
with the specified data file. The On Exit Database Method and the On Startup Database
Method are successively called.

Warning: Since this command causes the application to quit before re-opening with the
specified data file, it is not possible to use it in the On Startup Database Method or in a
method called by this database method.

The command is executed in an asynchronous manner: after its call, 4D continues
executing the rest of the method. Then, the application behaves as if the Quit command
was selected in the File menu: open dialog boxes are cancelled, any open processes have
10 seconds to finish before being terminated, etc.

Before launching the operation, the command checks the validity of the specified data
file: it must have the “.4dd” extension under Windows or have the “dat5” type under
Mac OS. Also, if the file was already open, the command verifies that it corresponds to the
current structure.

If you pass an empty string in accessPath, the command will re-open the database without
changing the data file.

4D Server: This command cannot be used with 4D Client or 4D Server.

See Also
CREATE DATA FILE.

158 4th Dimension Language Reference

CREATE DATA FILE 4D Environment

version 6.8
__

CREATE DATA FILE (accessPath)

Parameter Type Description
accessPath String → Name or complete access path of the data file

to create

Description
The command CREATE DATA FILE allows creating a new data file to disk and to replace the
data file opened by the 4D application on-the-fly.

The general functioning of this command is identical to that of the OPEN DATA FILE
command; the only difference is that the new data file set by the accessPath parameter is
created just after the structure is re-opened.

Before launching the operation, the command verifies that the specified access path does
not correspond to an existing file.

4D Server: This command cannot be used with 4D Client or 4D Server.

See Also
OPEN DATA FILE.

4th Dimension Language Reference 159

QUIT 4D 4D Environment

version 6.8 (Modified)
__

QUIT 4D {(time)}

Parameter Type Description
time Number → Time (mn) before quitting the server

Description
The QUIT 4D command exits 4th Dimension/4D Client or 4D Server and returns to the
Desktop.

The command processing is different whether it is executed on 4th Dimension/4D Client
or on 4D Server.

With 4th Dimension and 4D Client:
After you call QUIT 4D, the current process stops its execution, then 4D acts as follows:

• If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. For example, you can use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop the
execution of operations started by the On Startup Database Method (connection from 4D
to another database server). Note that 4D will eventually quit; the On Exit Database
Method can perform all the cleanup or closing operations you wish, but cannot refuse the
quit and will at some point end.

• If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction.

If the user is performing data entry, the records will be cancelled and not saved.
If you want to let the user save data entry modifications made in the current open
windows, you can use interprocess communication to signal all the other user processes
that the database is going to be exited. To do so, you can adopt two strategies:

• Perform these operations from within the current process before calling QUIT 4D
• Handle these operations from within the On Exit Database Method.

A third strategy is also possible. Before calling QUIT 4D, you check whether a window will
need validation; if that is the case, you ask the user to validate or cancel these windows
and then to choose Quit again. However, from a user interface standpoint, the first two
strategies are preferable.

Note: The time parameter cannot be used with 4th Dimension or 4D Client.

160 4th Dimension Language Reference

With 4D Server (Stored procedure)
The QUIT 4D command can be executed on the server machine, in a stored procedure. In
this case, it accepts the time optional parameter.
The time parameter allows setting a timeout to the 4D Server before the application
actually quits, allowing client machines the time to disconnect. You must pass a value in
minutes in time. This parameter is only taken into consideration during an execution on
the server machine. It is ignored in 4D Client or 4th Dimension.
If you do not pass a parameter for time, 4D Server will wait until all client machines are
disconnected before quitting.

Unlike 4th Dimension and 4D Client, the processing of QUIT 4D by 4D Server is
asynchronous: the method where the command is called is not interrupted after is has
been executed.

If there is an On Server Stop Database Method, it is executed after the delay set by the time
parameter, or after all clients have disconnected, depending on your parameters.

The action of the QUIT 4D command used in a stored procedure is the same as the one for
the Quit command of the 4D Server File menu: it causes a dialog box to appear on each
client machine indicating that the server is about to quit.

Example
The project method listed here is associated with the Quit or Exit menu item in the File
menu.

` M_FILE_QUIT Project Method

CONFIRM("Are you sure that you want to quit?")
If (OK=1)

⇒ QUIT 4D
End if

See Also
On Exit Database Method, On Server Shutdown Database Method.

4th Dimension Language Reference 161

GET SERIAL INFORMATION 4D Environment

version 6.7
__

GET SERIAL INFORMATION (key; user; company; connected; maxUser)

Parameter Type Description
key Longint ← Unique product key (encrypted)
user String ← Registered name
company String ← Registered organization
connected Longint ← Number of connected users
maxUser Longint ← Maximum number of connected users

Description
The command GET SERIAL INFORMATION returns various information about the 4D
current version serialization.

• key: unique ID of the installed product. A unique number is associated to a 4D
application (such as 4D Server, 4th Dimension, 4D Runtime, etc.) installed on a machine.
This number is encrypted, of course.
• user: Name application user as defined when installing.
• company: User’s company or organization name as defined during installation.
• connected: Number of connected users when executing the command.
• maxUsers: Maximal number of users concurrently connected.

Note: The last two parameters always return 1 for 4D single user except in demonstration
versions (0 is then returned).

GET SERIAL INFORMATION is part of the general component protection scheme
implemented in 4D starting from version 6.7 (for more information about components,
refer to 4D Insider documentation). Component developers can associate a copy of their
product to a given installed 4D application, in order to avoid any illegal copies.

The serialization works as follows: a user who wants to get a component sends his unique
key generated through the GET SERIAL INFORMATION command to the developer. This
can be done through an Order form included in a demo version of the component. The
generated key is unique and is associated to a specific 4D application.
The component developer can then generate his own serial number combining the key
and a given cipher. The delivered component will offer a function verifying if the
information returned by the GET SERIAL INFORMATION matches this serial number.
Otherwise, the user will not be able to use the component.

Note: Plug-ins developers can use this protection scheme too. For more information, refer
to the 4D Plugin API Reference.

See Also
Get component resource ID.

162 4th Dimension Language Reference

Is license available 4D Environment

version 2004 (Modified)
__

Is license available {(license)} → Boolean

Parameter Type Description
license Number → Product/plug-in for which license validity testing

is desired

Function result Boolean ← True if product/plug-in is available, otherwise False

Description
The Is license available command enables you to know the availability of a product or plug-
in. It is useful, for instance, for displaying or hiding functions requiring the presence of a
plug-in.

The Is license available command may be used in three different ways:

• The license parameter is omitted: in this case, the command returns False if the 4D
application is in demonstration mode.

• You pass one of the constants of the “Is license available” theme in the license
parameter:
Constant Type Value
4D Draw License Longint 808464694
4D For OCI License Longint 808465208
4D View License Longint 808465207
4D Web License Longint 808464945
4D Write License Longint 808464697
4D Client Web License Longint 808465209
4D Client SOAP License Longint 808465465
4D SOAP License Longint 808465464
4D ODBC Pro License Longint 808464946
4D for ADO License Longint 808465714
4D for MySQL License Longint 808465712
4D for PostgreSQL License Longint 808465713
4D for Sybase License Longint 808465715

In this case, the command returns True if the corresponding product is loaded and if
(with 4D Server) it has a license available.

4th Dimension Language Reference 163

For instance, if you have a serial number for 4D Draw but no available expansion serial
number, the command returns True with a 4th Dimension single-user system but False
with 4D Server. On the contrary, if you have an expansion serial number for 4D Draw but
not a serial number, the command returns True with 4D Server but False with 4th
Dimension. If you have both a serial number and an expansion serial number, the
command returns True in all cases.

• You pass the ID number of the plug-in “4BNX” resource directly in the license
parameter. In this case, the command behaves as described above.

164 4th Dimension Language Reference

OPEN 4D PREFERENCES 4D Environment

version 2004
__

OPEN 4D PREFERENCES (selector)

Parameter Type Description
selector String → Key designating a theme or a page or a

group of parameters in the Preferences
dialog box

Description
The OPEN 4D PREFERENCES command provokes the display of the Preferences dialog box
of the current 4th Dimension application and the display of the theme or page
corresponding to the key passed in selector.

The selector parameter must contain one or more “keys” indicating a theme, page or
group of parameters in the Preferences dialog box. The list of keys that can be used is
provided below.

You can pass either a fixed access path or the name of a single element in selector:
• Fixed access path: The selector parameter is put together in the following manner:
/Theme{/Page{/Parameter group}}.
The string must start with the / character and each level must be separated with a /.
For example, to set the Compiler page of the Design Mode theme, selector must contain
"/Design Mode/Compiler".
• Name (relative path): In this case, the selector parameter cannot start with the /
character. Simply pass the name of the desired element and 4th Dimension will open the
first corresponding element in the following search order: parameter group -> page->
theme.
For example, if you pass “Progress Indicator” in selector, 4th Dimension will open the
Options page of the Application theme.

To open the dialog box directly on the first page, simply pass “/” in selector.

The command opens the Preferences page on the element specified in selector; however,
all other themes and pages remain accessible. It is up to the developer to make sure that
user access to Preferences does not hinder the application. To control user actions, it is
recommended that you enable the user access management system.

Path keys
The following is a list of keys that can be used in the selector parameter:
/Application
/Application/Options
/Application/Options/Options
/Application/Options/Temporary Folder Location
/Application/Options/Drag and Drop Highlight

4th Dimension Language Reference 165

/Application/Access
/Application/Access/Data Access
/Application/Access/User Access
/Application/CPU Priorities
/Application/CPU Priorities/Set CPU Priority to:
/Application/Shortcuts
/Application/Shortcuts/Keys
/Application/Compatibility
/Application/Compatibility/Structure Compatibility
/Application/Compatibility/Web Compatibility
/Application/Compatibility/Platform
/Design Mode
/Design Mode/Structure
/Design Mode/Structure/General Font
/Design Mode/Structure/Forms and Methods Automatic Comments
/Design Mode/Form Editor
/Design Mode/Form Editor/Object Templates
/Design Mode/Form Editor/Move
/Design Mode/Form Editor/Auto Alignment
/Design Mode/Form Editor/Default Display
/Design Mode/Method Editor
/Design Mode/Method Editor/Font
/Design Mode/Method Editor/Default Display
/Design Mode/Method Editor/Options
/Design Mode/Method Editor/Structure Style-Sheets
/Design Mode/Compiler
/Design Mode/Compiler/Compilation Options
/Design Mode/Compiler/Compiler Methods for...
/Design Mode/Documentation
/Design Mode/Documentation/Documentation Access from the Explorer
/Database
/Database/Data Management
/Database/Data Management/General
/Database/Data Management/Database Cache Settings
/Database/Data Management/WEDD
/Database/Script Manager
/Database/Script Manager/Script Manager
/Backup
/Backup/Configuration
/Backup/Configuration/Backup Contents
/Backup/Configuration/Backup File Destination Folder
/Backup/Configuration/Last Backup Information
/Backup/Configuration/Log Management
/Backup/Scheduler
/Backup/Scheduler/Backup Frequency
/Backup/Backup
/Backup/Backup/General
/Backup/Backup/Archive
/Backup/Restore

166 4th Dimension Language Reference

/Client-Server
/Client-Server/Configuration
/Client-Server/Configuration/Network
/Client-Server/Configuration/Client-Server Connections Timeout
/Client-Server/Configuration/Client-Server Communication
/Client-Server/Configuration/4D Open
/Client-Server/Publishing
/Client-Server/Publishing/Publishing Information
/Client-Server/Publishing/Allow-Deny Table Configuration
/Client-Server/Publishing/Encryption
/Web
/Web/Configuration
/Web/Configuration/Web Server Publishing
/Web/Configuration/Default HTML Path
/Web/Configuration/Starting Mode
/Web/Advanced
/Web/Advanced/Cache
/Web/Advanced/Web Process
/Web/Advanced/Options
/Web/Advanced/Web Passwords
/Web/Options
/Web/Options/Text Conversion
/Web/Options/4D WebSTAR
/Web/Options/Persisent Connections
/Web Services
/Web Services/SOAP
/Web Services/SOAP/Server Side
/Web Services/SOAP/Client Side

Examples
(1) Open Preferences on the first page:

⇒ OPEN 4D PREFERENCES("/")

(2) Open the “Shortcuts” page of the “Application” theme:

⇒ OPEN 4D PREFERENCES("/Application/Shortcuts")

(3) Open the “Method Editor” page of the “Design Mode” theme:

⇒ OPEN 4D PREFERENCES("Default Display")

System Variables or Sets
If the requested element is found and opened correctly, the system variable OK returns 1.
Otherwise, it returns 0.

4th Dimension Language Reference 167

168 4th Dimension Language Reference

4

Arrays

4th Dimension Language Reference 169

170 4th Dimension Language Reference

Arrays Arrays

version 6.0
__

An array is an ordered series of variables of the same type. Each variable is called an
element of the array. The size of an array is the number of elements it holds. An array is
given its size when it is created; you can then resize it as many times as needed by adding,
inserting, or deleting elements, or by resizing the array using the same command used to
create it.

You create an array with one of the array declaration commands. For details, see the
section Creating Arrays.

Elements are numbered from 1 to N, where N is the size of the array. An array always has
an element zero that you can access just like any other element of the array, but this
element is not shown when an array is present in a form. Although the element zero is
not shown when an array supports a form object, there is no restriction in using it with
the language. For more information about the element zero, see the section Using the
element zero of an array.

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences. For more information, see the
sections Arrays and the 4D Language and Arrays and Pointers.

Arrays are language objects; you can create and use arrays that will never appear on the
screen. Arrays are also user interface objects. For more information about the interaction
between arrays and form objects, see the sections Arrays and Form Objects and Grouped
Scrollable Areas.

Arrays are designed to hold reasonable amounts of data for a short period of time.
However, because arrays are held in memory, they are easy to handle and quick to
manipulate. For details, see the section Arrays and Memory.

4th Dimension Language Reference 171

Creating Arrays Arrays

version 2004 (Modified)
__

You create an array with one of the array declaration commands described in this chapter.
The following table lists the array declaration commands:

Command Creates or resizes an array of:
ARRAY INTEGER 2-byte Integer values
ARRAY LONGINT 4-byte Integer values (*)
ARRAY REAL Real values
ARRAY TEXT Text values (from 0 to 32,000 characters per element) (**)
ARRAY STRING String values (from 0 to 255 characters per element) (**)
ARRAY DATE Date values
ARRAY BOOLEAN Boolean values
ARRAY PICTURE Pictures values
ARRAY POINTER Pointer values

Each array declaration command can create or resize one-dimensional or two-dimensional
arrays. For more information about two-dimensional arrays, see the section Two-
dimensional Arrays.

(*) Longint arrays allows you to manipulate data of Time type. To display a Time array in a
form, apply to the associated form object the display format &/x, in which x represents
the number of the format in the Time formats list (by order of appearance). For example,
&/4 will display the Hour Min format.

(**) The difference between Text arrays and String arrays lies in the nature of their
elements. In both types of array, elements can hold text values (characters). However:
• In a Text array, each element is of variable length and stores its characters in a separate
part of memory.
• In a String array, all elements have the same fixed length (the length passed when the
array was created). All elements are stored one after the other in the same part of
memory, no matter what the contents.
Due to this structural difference, string arrays act faster than text arrays. Note, however,
that an element of a String array can only hold up to 255 characters.

The following line of code creates (declares) an Integer array of 10 elements:
ARRAY INTEGER(aiAnArray;10)

Then, the following code resizes that same array to 20 elements:
ARRAY INTEGER(aiAnArray;20)

Then, the following code resizes that same array to no elements:
ARRAY INTEGER(aiAnArray;0)

172 4th Dimension Language Reference

You reference the elements in an array by using curly braces ({…}). A number is used
within the braces to address a particular element; this number is called the element
number. The following lines put five names into the array called atNames and then
display them in alert windows:

ARRAY TEXT (atNames;5)
atNames{1} := "Richard"
atNames{2} := "Sarah"
atNames{3} := "Sam"
atNames{4} := "Jane"
atNames{5} := "John"
For ($vlElem;1;5)

ALERT ("The element #"+String($vlElem)+" is equal to: "+atNames{$vlElem})
End for

Note the syntax atNames{$vlElem}. Rather than specifying a numeric literal such as
atNames{3}, you can use a numeric variable to indicate which element of an array you are
addressing.

Using the iteration provided by a loop structure (For...End for, Repeat...Until or While...End
while), compact pieces of code can address all or part of the elements in an array.

Arrays and other areas of the 4D language
There are other 4D commands that can create and work with arrays. More particularly:

• To work with arrays and selection of records, use the commands SELECTION RANGE TO
ARRAY, SELECTION TO ARRAY, ARRAY TO SELECTION and DISTINCT VALUES.

• Objects of the List box type are based on arrays; several commands of the “List box”
theme work with arrays, for instance INSERT LISTBOX ROW.

• You can create graphs and charts on series of values stored in tables, subtables, and
arrays. For more information, see the GRAPH command.

• Although version 6 brings a full set of new commands to work with hierarchical lists,
the commands LIST TO ARRAY and ARRAY TO LIST (from the previous version) have been
retained for compatibility.

• Many commands can build arrays in one call, for example: FONT LIST, WINDOW LIST,
VOLUME LIST, FOLDER LIST, DOCUMENT LIST, GET SERIAL PORT MAPPING, SAX GET XML
ELEMENT, etc.

See Also
ARRAY BOOLEAN, ARRAY DATE, ARRAY INTEGER, ARRAY LONGINT, ARRAY PICTURE, ARRAY
POINTER, ARRAY REAL, ARRAY STRING, ARRAY TEXT, Arrays, Two-dimensional Arrays.

4th Dimension Language Reference 173

Arrays and Form Objects Arrays

version 2004 (Modified)
__

Arrays are language objects—you can create and use arrays that will never appear on the
screen. However, arrays are also user interface objects. The following types of Form
Objects are supported by arrays:

• Pop-up/Drop-down List
• Combo Box
• Scrollable Area
• Tab Control
• List box

While you can predefine these objects in the Design Environment Form Editor using the
Default Values button of the Property List window (except for the List box) , you can also
define them programmatically using the arrays commands. In both cases, the form object
is supported by an array created by you or 4D.

When using these objects, you can detect which item within the object has been selected
(or clicked) by testing the array for its selected element. Conversely, you can select a
particular item within the object by setting the selected element for the array.

When an array is used to support a form object, it has then a dual nature; it is both a
language object and a user interface object. For example, when designing a form, you
create a scrollable area:

174 4th Dimension Language Reference

The name of the associated variable, in this case atNames, is the name of the array you use
for creating and handling the scrollable area.

Notes:
• You cannot display two-dimensional arays or pointer arrays.
• The management of List box type objects (which may contain several arrays) entails
many specific aspects. These particularities are covered in the Management of List Box
objects section.

Example: Creating a drop-down list
__

The following example shows how to fill an array and display it in a drop-down list. An
array arSalaries is created using the ARRAY REAL command. It contains all the standard
salaries paid to people in a company. When the user chooses an element from the drop-
down list, the [Employees]Salary field is assigned the value chosen in the User or Custom
Menus environment.

Create the arSalaries drop-down list on a form
Create a drop-down list and name it arSalaries. The name of the drop-down list should be
the same as the name of the array.

4th Dimension Language Reference 175

Initializing the array
Initialize the array arSalaries using the On Load event for the object. To do so, remember
to enable that event in the Property List window, as shown:

Click the Object Method button and create the method, as follows:

The lines:

ARRAY REAL(arSalaries;10)
For($vlElem;1;10)

arSalaries{$vlElem}:=2000+($vlElem*500)
End for

176 4th Dimension Language Reference

create the numeric array 2500, 3000... 7000, corresponding to the annual salaries $30,000
up to $84,000, before tax.

The lines:

arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

handle both the creation of a new record or the modification of existing record.

• If you create a new record, the field [Employees]Salary is initially equal to zero. In this
case, Find in array does not find the value in the array and returns -1. The test If
(arSalaries=-1) resets arSalaries to zero, indicating that no element is selected in the drop-
down list.
• If you modify an existing record, Find in array retrieves the value in the array and sets
the selected element of the drop-down list to the current value of the field. If the value
for a particular employee is not in the list, the test If (arSalaries=-1) deselects any element
in the list.

Note: For more information about the array selected element, read the next section.

Reporting the selected value to the [Employees]Salary field
To report the value selected from the drop-down list arSalaries, you just need to handle the
On Clicked event to the object. The element number of the selected element is the value
of the array arSalaries itself. Therefore, the expression arSalaries{arSalaries} returns the value
chosen in the drop-down list.

Complete the method for the object arSalaries as follows:

Case of
: (Form event=On Load)

ARRAY REAL(arSalaries;10)
For($vlElem;1;10)

arSalaries{$vlElem}:=2000+($vlElem*500)
End for
arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

: (Form event=On Clicked)
[Employees]Salary:=arSalaries{arSalaries}

End case

4th Dimension Language Reference 177

In the User or Custom Menus environment, the drop-down list looks like this:

The following section describes the common and basic operations you will perform on
arrays while using them as form objects.

Getting the size of the array
__

You can obtain the current size of the array by using the Size of array command. Using
the previous example, the following line of code would display 5:

ALERT ("The size of the array atNames is: "+String(Size of array(atNames)))

Reordering the elements of the array
__

You can reorder the elements of the array using the SORT ARRAY command or of several
arrays using the MULTI SORT ARRAY command. Using the previous example, and provided
the array is shown as a scrollable area:

a. Initially, the area would look like the list on the left.

b. After the execution of the following line of code:
SORT ARRAY(atNames;>)

the area would look like the list in the middle.

178 4th Dimension Language Reference

c. After the execution of the following line of code:
SORT ARRAY(atNames;<)

the area would look like the list on the right.

Adding or deleting elements
__

You can add, insert, or delete elements using the commands APPEND TO ARRAY, INSERT
ELEMENT and DELETE ELEMENT.

Handling clicks in the array: testing the selected element
__

Using the previous example, and provided the array is shown as a scrollable area, you can
handle clicks in this area as follows:

` atNames scrollable area object method
Case of

: (Form event=On Load)
` Initialize the array (as shown further above)

ARRAY TEXT (atNames;5)
` ...

: (Form event=On Unload)
` We no longer need the array

CLEAR VARIABLE(atNames)

: (Form event=On Clicked)
If (atNames#0)

vtInfo:="You clicked on: "+atNames{atNames}
End if

: (Form event=On Double Clicked)
If (atNames#0)

ALERT ("You double clicked on: "+atNames{atNames}
End if

End case

Note: The events must be activated in the properties of the object.

4th Dimension Language Reference 179

While the syntax atNames{$vlElem} allows you to work with a particular element of the
array, the syntax atNames returns the element number of the selected element within
the array. Thus, the syntax atNames{atNames} means “the value of the selected element
in the array atNames.” If no element is selected, atNames is equal to 0 (zero), so the test If
(atNames#0) detects whether or not an element is actually selected.

Setting the selected element
__

In a similar fashion, you can programmatically change the selected element by assigning
a value to the array.

Examples

` Selects the first element (if the array is not empty)
atNames:=1

` Selects the last element (if the array is not empty)
atNames:=Size of array(atNames)

` Deselects the selected element (if any) then no element is selected
atNames:=0

If ((0<atNames)&(atNames<Size of array(atNames))
` If possible, selects the next element to the selected element

atNames:=atNames+1
End if

If (1<atNames)
 ` If possible, selects the previous element to the selected element

atNames:=atNames-1
End if

Looking for a value in the array
__

The Find in array command searches for a particular value within an array. Using the
previous example, the following code will select the element whose value is “Richard,” if
that is what is entered in the request dialog box:

$vsName:=Request("Enter the first name:")
If (OK=1)

$vlElem:=Find in array (atNames;$vsName)
If ($vlElem>0)

atNames:=$vlElem
Else

ALERT ("This is no "+$vsName+" in that list of first names.")
End if

End if

180 4th Dimension Language Reference

Pop-up menus, drop-down lists, scrollable areas, and tab controls can be usually handled in
 the same manner. Obviously, no additional code is required to redraw objects on the
screen each time you change the value of an element, or add or delete elements.

Note: To create and use tab controls with icons and enabled and disabled tabs, you must
use a hierarchical list as the supporting object for the tab control. For more information,
see the example for the New list command.

Handling combo boxes
__

While you can handle pop-up menus, drop-down lists, scrollable areas, and tab controls
with the algorithms described in the previous section, you must handle combo boxes
differently.

A combo box is actually a text enterable area to which is attached a list of values (the
elements from the array). The user can pick a value from this list, and then edit the text.
So, in a combo box, the notion of selected element does not apply.

With combo boxes, there is never a selected element. Each time the user selects one of
the values attached to the area, that value is put into the element zero of the array. Then,
if the user edits the text, the value modified by the user is also put into that element zero.

Example

` asColors Combo Box object method
Case of

: (Form event=On Load)
ARRAY STRING(31;asColors;3)
asColors{1}:="Blue"
asColors{2}:="White"
asColors{3}:="Red"

: (Form event=On Clicked)
If (asColors{0}#"")

` The object automatically changes its value
` Using the On Clicked event with a Combo Box
` is required only when additional actions must be taken

End if
: (Form event=On Data Change)

` Find in array ignores element 0, so returns -1 or >0
If (Find in array(asColors;asColors{0})<0)

` Entered value is not one the values attached to the object
` Add the value to the list for next time

APPEND TO ARRAY(asColors;asColors{0})
Else

` Entered value is among the values attached to the object
End if

End case

See Also
Arrays, Grouped Scrollable Areas.

4th Dimension Language Reference 181

Grouped Scrollable Areas Arrays

version 2004 (Modified)
__

Compatibility note: Grouped scrollable areas can still be used in 4th Dimension; however,
starting with version 2004 they can be replaced by List box type objects. For more
information about this, refer to the Overview of List boxes section.

You can group scrollable areas for display in a form. When several scrollable areas are
grouped, they act as one scrollable area. Each scrollable area can have its own font and
style; however, we recommend that you use the same font height (which depends on the
font and font size) for each column. When displayed during data entry, only the
frontmost scrollable area displays a scroll bar. Following are three scrollable areas grouped
together in the Design environment:

Here are some tips on creating grouped scrollable areas:
• Make sure that all the arrays have been given the same size (number of elements).
• Use the same font size for each area.
• Make each area the same height.
• Align the tops of all the areas.
• Make sure the areas do not overlap.
• Make sure that the area on the right is in front, because the scroll bar appears on the
frontmost area.
• Group the areas (using the Group menu command) to make them work as one
scrollable area.

182 4th Dimension Language Reference

The following project method fills the three arrays and displays them on the screen:

ALL RECORDS(Employees)
SELECTION TO ARRAY([Employees]Last
Name;asName;[Employees]Title;asTitle;[Departments]Name;asDepartment)
DIALOG([Departments];"Example Grouped SA")

This method uses the data in the fields of the [People] table and the [Departments] table.
These tables are shown here:

Note: The [Departments] table can be used, provided that there is an automatic relation
from [People] to [Departments].

The resulting display:

4th Dimension Language Reference 183

Note that only a single scroll bar is displayed; it is always on the frontmost scrollable area.
This scroll bar controls the scrolling of all three arrays as if they were one. When the user
clicks a line, all three areas are highlighted simultaneously. The variable associated with
each scrollable area is set to the number of the line that the user clicks; only the object
method for the area that is clicked executes. For example, if the user clicks the name
“Bentley,” asName, asTitle, and asDepartment are all set to two, but only the object
method for asName executes. If you set the selected element of one of the arrays in the
grouped scrollable areas, the other arrays are set to the same selected element for the next
event, and the respective line in the scrollable area is highlighted.

The arrays can be sorted with the command SORT ARRAY. For example:

SORT ARRAY(asTitle;asName;asDepartment;>)

The following is the result of the sort:

Note that the arrays were sorted based on the first argument to the SORT ARRAY
command; the other two arrays were specified in order to keep the rows synchronized.
The command SORT ARRAY always sorts the arrays (if several are specified) on the values
of the first array and keeps the additional arrays synchronized.

Note: SORT ARRAY does not perform a multi-level sort on arrays. To show a table similar to
the one above and also perform multi-level sorts (i.e., by department, then by title, then
by name), use a subform in which you display the table, and then use ORDER BY.

See Also
Arrays, Arrays and Form Objects.

184 4th Dimension Language Reference

Arrays and the 4D Language Arrays

version 6.0
__

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences.

Local, process and interprocess arrays
__

You can create and work with local, process, and interprocess arrays. Examples:

ARRAY INTEGER ($aiCodes;100)
` This creates a local array of 100 2-byte Integer values
ARRAY INTEGER (aiCodes;100)
` This creates a process array of 100 2-byte Integer values
ARRAY INTEGER (<>aiCodes;100)
` This creates an interprocess array of 100 2-byte Integer values

The scope of these arrays is identical to the scope of other local, process, and interprocess
variables:

Local arrays
A local array is declared when the name of the array starts with a dollar sign ($).

The scope of a local array is the method in which it is created. The array is cleared when
the method ends. Local arrays with the same name in two different methods can have
different types, because they are actually two different variables with different scopes.

When you create a local array within a form method, within an object method, within or
a project method called as subroutine by the two previous type of method, the array is
created and cleared each time the form or object method is invoked. In other words, the
array is created and cleared for each form event. Consequently, you cannot use local
arrays in forms, neither for display nor printing.

As with local variables, it is a good idea to use local arrays whenever possible. In doing so,
you tend to minimize the amount of memory necessary for running your application.

Process arrays
A process array is declared when the name of the array starts with a letter.

The scope of a process array is the process in which it is created. The array is cleared when
the process ends or is aborted. A process array automatically has one instance created per
process. Therefore, the array is of the same type throughout the processes. However, its
contents are particular to each process.

4th Dimension Language Reference 185

Interprocess arrays
An interprocess array is declared when the name of the array starts with <> (on Windows
and Macintosh) or with the diamond sign, Option-Shift-V on a US keyboard (on
Macintosh only).

The scope of an interprocess array consists of all processes during a working session. They
should be used only to share data and transfer information between processes.

Tip: When you know in advance that an interprocess array will be accessed by several
processes that could possible conflict, protect the access to that array with a semaphore.
For more information, see the example for the Semaphore command.

Note: You can use process and interprocess arrays in forms to create form objects such as
scrollable areas, drop-down lists, and so on.

Passing an Array as parameter
__

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method. For details, see the
section Arrays and Pointers.

Assigning and array to another array
__

Unlike text or string variables, you cannot assign one array to another. To copy (assign)
an array to another one, use COPY ARRAY.

See Also
Arrays, Arrays and Pointers.

186 4th Dimension Language Reference

Arrays and Pointers Arrays

version 6.0
__

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method.

Note: You can pass process and interprocess arrays as parameters, but not local arrays.

Here are some examples.

• Given this example:

If ((0<atNames)&(atNames<Size of array(atNames))
` If possible, selects the next element to the selected element

atNames:=atNames+1
End if

If you need to do the same thing for 50 different arrays in various forms, you can avoid
writing the same thing 50 times, by using the following project method:

` SELECT NEXT ELEMENT project method
` SELECT NEXT ELEMENT (Pointer)
` SELECT NEXT ELEMENT (-> Array)

C_POINTER ($1)

If ((0<$1->)&($1-><Size of array($1->))
$1->:=$1->+1 ` If possible, selects the next element to the selected element

End if

Then, you can write:

SELECT NEXT ELEMENT (->atNames)
` ...

SELECT NEXT ELEMENT (->asZipCodes)
` ...

SELECT NEXT ELEMENT (->alRecordIDs)
` ... and so on

4th Dimension Language Reference 187

• The following project method returns the sum of all the elements of a numeric array
(Integer, Long Integer, or real):

` Array sum
` Array sum (Pointer)
` Array sum (-> Array)

C_REAL ($0)

$0:=0
For ($vlElem;1;Size of array($1->))

$0:=$0+$1->{$vlElem}
End for

Then, you can write:

$vlSum:=Array sum (->arSalaries)
` ...

$vlSum:=Array sum (->aiDefectCounts)
` ..

$vlSum:=Array sum (->alPopulations)

• The following project method capitalizes of all the elements of a string or text array:

` CAPITALIZE ARRAY
` CAPITALIZE ARRAY (Pointer)
` CAPITALIZE ARRAY (-> Array)

For ($vlElem;1;Size of array($1->))
If ($1->{$vlElem}#"")

$1->{$vlElem}:=Uppercase($1->{$vlElem}[[1]])+
Lowercase(Substring($1->{$vlElem};2))

End if
End for

Then, you can write:

CAPITALIZE ARRAY (->atSubjects)
` ...

CAPITALIZE ARRAY (->asLastNames)

The combination of arrays, pointers, and looping structures, such as For... End for, allows
you to write many useful small project methods for handling arrays.

See Also
Arrays, Arrays and the 4D Language.

188 4th Dimension Language Reference

Using the element zero of an array Arrays

version 6.0
__

An array always has an element zero. While element zero is not shown when an array
supports a form object, there is no restriction in using it with the language.

One example of the use of element zero is the case of the combo box discussed in the
section Arrays and Form Objects.

Here are two other examples.

1. If you want to execute an action only when you click on an element other than the
previously selected element, you must keep track of each selected element. One way to do
this is to use a process variable in which you maintain the element number of the selected
element. Another way is to use the element zero of the array:

` atNames scrollable area object method
Case of

: (Form event=On Load)
` Initialize the array (as shown further above)

ARRAY TEXT (atNames;5)
` ...
` Initialize the element zero with the number
` of the current selected element in its string form
` Here you start with no selected element

atNames{0}:="0"

: (Form event=On Unload)
` We no longer need the array

CLEAR VARIABLE(atNames)

: (Form event=On Clicked)
If (atNames#0)

If (atNames#Num(atNames{0}))
vtInfo:="You clicked on: "+atNames{atNames}

+" and it was not selected before."
atNames{0}:=String(atNames)

End if
End if

: (Form event=On Double Clicked)
If (atNames#0)

ALERT ("You double clicked on: "+atNames{atNames}
End if

End case

4th Dimension Language Reference 189

2. When sending or receiving a stream of characters to or from a document or a serial
port, 4D provides a way to filter ASCII codes between platforms and systems that use
different ASCII maps— the commands USE ASCII MAP, Mac to ISO, ISO to Mac, Mac to Win
and Win to Mac.

In certain cases, you might want to fully control the way ASCII codes are translated. One
way to do this is to use an Integer array of 255 elements, where the Nth element is set to
the translated ASCII code for the character whose source ASCII code is N. For example, if
the ASCII code #187 must be translated as #156, you would write
<>aiCustomOutMap{187}:=156 and <>aiCustomInMap{156}:=187 in the method that
initializes the interprocess arrays used everywhere in the database. You can then send a
stream of characters with the following custom project method:

` X SEND PACKET (Text { ; Time })
For ($vlChar;1;Length($1))

$1[[vlChar]]:=Char(<>aiCustomOutMap{Ascii($1[[vlChar]])})
End for
If (Count parameters>=2)

SEND PACKET ($2;$1)
Else

SEND PACKET ($1)
End if

` X Receive packet (Text { ; Time }) -> Text
If (Count parameters>=2)

RECEIVE PACKET ($2;$1)
Else

RECEIVE PACKET ($1)
End if
$0:=$1
For ($vlChar;1;Length($1))

$0[[vlChar]]:=Char(<>aiCustomInMap{Ascii($0[[vlChar]])})
End for

In this advanced example, if a stream of characters containing NULL characters (ASCII
code zero) is sent or received, the zero element of the arrays <>aiCustomOutMap and
<>aiCustomInMap will play its role as any other element of the 255 element arrays.

See Also
Arrays.

190 4th Dimension Language Reference

Two-dimensional Arrays Arrays

version 6.0
__

Each of the array declaration commands can create or resize one-dimensional or two-
dimensional arrays. Example:

` Creates a text array composed of 100 rows of 50 columns
ARRAY TEXT (atTopics;100;50)

Two-dimensional arrays are essentially language objects; you can neither display nor print
them.

In the previous example:
• atTopics is a two-dimensional array
• atTopics{8}{5} is the 5th element (5th column...) of the 8th row
• atTopics{20} is the 20th row and is itself a one-dimensional array
• Size of array(atTopics) returns 100, which is the number of rows
• Size of array(atTopics{17}) returns 50, which the number of columns for the 17th row

In the following example, a pointer to each field of each table in the database is stored in
a two-dimensional array:

` Create as many initially empty rows as tables
ARRAY POINTER (<>apFields;Count tables;0)

` For each table
For ($vlTable;1;Size of array(<>apFields))

` Resize the row with as many columns as fields in the table
INSERT ELEMENT (<>apFields{$vlTable};1;Count fields($vlTable))

` Set the values of the elements
For ($vlField;1;Size of array(<>apFields{$vlTable}))

<>apFields{$vlTable}{$vlField}:=Field($vlTable;$vlField)
End for

End for

4th Dimension Language Reference 191

Provided that this two-dimensional array has been initialized, you can obtain the pointers
to the fields for a particular table in the following way:

` Get the pointers to the fields for the table currently displayed at the screen:
COPY ARRAY (<>apFields{Table(Current form table)};$apTheFieldsIamWorkingOn)

` Initialize Boolean and Date fields
For ($vlElem;1;Size of array($apTheFieldsIamWorkingOn))

Case of
: (Type($apTheFieldsIamWorkingOn{$vlElem}->)=Is Date)

$apTheFieldsIamWorkingOn{$vlElem}->:=Current date
: (Type($apTheFieldsIamWorkingOn{$vlElem}->)=Is Boolean)

$apTheFieldsIamWorkingOn{$vlElem}->:=True
End case

End for

Note: As this example suggests, rows of a two-dimensional arrays can be the same size or
different sizes.

See Also
Arrays.

192 4th Dimension Language Reference

Arrays and Memory Arrays

version 6.0
__

Unlike the data you store on disk using tables and records, an array is always held in
memory in its entirety.

For example, if all US zip codes were entered in the [Zip Codes] table, it would contain
about 100,000 records. In addition, that table would include several fields: the zip code
itself and the corresponding city, county, and state. If you select only the zip codes from
California, the 4D database engine creates the corresponding selection of records within
the [Zip Codes] table, and then loads the records only when they are needed (i.e., when
they are displayed or printed). In order words, you work with an ordered series of values
(of the same type for each field) that is partially loaded from the disk into the memory by
the database engine of 4D.

Doing the same thing with arrays would be prohibitive for the following reasons:
• In order to maintain the four information types (zip code, city, county, state), you
would have to maintain four large arrays in memory.
• Because an array is always held in memory in its entirety, you would have to keep all the
zip codes information in memory throughout the whole working session, even though
the data is not always in use.
• Again, because an array is always held in memory in its entirety, each time the database
is started and then quit, the four arrays would have to be loaded and then saved on the
disk, even though the data is not used or modified during the working session.

Conclusion: Arrays are intended to hold reasonable amounts of data for a short period of
time. On the other hand, because arrays are held in memory, they are easy to handle and
quick to manipulate.

However, in some circumstances, you may need to work with arrays holding hundreds or
thousands of elements. The following table lists the formulas used to calculate the
amount of memory used for each array type:

Array Type Formula for determining Memory Usage in Bytes
Boolean (31+number of elements)\8
Date (1+number of elements) * 6
String (1+number of elements) * Declared length (+1 of odd, +2 if even)
Integer (1+number of elements) * 2
Long Integer (1+number of elements) * 4
Picture (1+number of elements) * 4 + Sum of the size of each picture
Pointer (1+number of elements) * 16
Real (1+number of elements) * 8
Text (1+number of elements) * 6 + Sum of the size of each text
Two-dimemsional (1+number of elements) * 12 + Sum of the size of each array

Note: A few additional bytes are required to keep track of the selected element, the
number of elements, and the array itself.

4th Dimension Language Reference 193

When working with very large arrays, the best way to handle full memory situations is to
surround the creation of the arrays with an ON ERR CALL project method. Example:

` You are going to run a batch operation the whole night
` that requires the creation of large arrays. Instead of risking
` occurrences of errors in the middle of the night, put
` the creation of the arrays at the beginning of the operation
` and test the errors at this moment:

gError:=0 ` Assume no error
ON ERR CALL ("ERROR HANDLING") ` Install a method for catching errors
ARRAY STRING (63;asThisArray;50000) ` Roughly 3125K
ARRAY REAL (arThisAnotherArray;50000) ` 488K
ON ERR CALL ("") ` No longer need to catch errors
If (gError=0)

` The arrays could be created
` and let's pursue the operation

Else
ALERT ("This operation requires more memory!")

End if
` Whatever the case, we no longer need the arrays

CLEAR VARIABLE (asThisArray)
CLEAR VARIABLE (arThisAnotherArray)

The ERROR HANDLING project method is listed here:

` ERROR HANDLING project method
gError:=Error ` Just return the error code

See Also
Arrays, ON ERR CALL.

194 4th Dimension Language Reference

ARRAY INTEGER Arrays

version 3
__

ARRAY INTEGER (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY INTEGER creates and/or resizes an array of 2-byte Integer elements
in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY INTEGER to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 2-byte Integer elements:

⇒ ARRAY INTEGER (aiValues;100)

2. This example creates a local array of 100 rows of 50 2-byte Integer elements:

⇒ ARRAY INTEGER ($aiValues;100;50)

3. This example creates an interprocess array of 50 2-byte Integer elements, and sets each
element to its element number:

⇒ ARRAY INTEGER (<>aiValues;50)
For ($vlElem;1;50)

<>aiValues{$vlElem}:=$vlElem
End for

4th Dimension Language Reference 195

ARRAY LONGINT Arrays

version 3
__

ARRAY LONGINT (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY LONGINT creates and/or resizes an array of 4-byte Long Integer
elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

When applying ARRAY LONGINT to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 4-byte Long Integer elements:

⇒ ARRAY LONGINT (alValues;100)

2. This example creates a local array of 100 rows of 50 4-byte Long Integer elements:

⇒ ARRAY LONGINT ($alValues;100;50)

3. This example creates an interprocess array of 50 4-byte Long Integer elements and sets
each element to its element number:

⇒ ARRAY LONGINT (<>alValues;50)
For ($vlElem;1;50)

<>alValues{$vlElem}:=$vlElem
End for

196 4th Dimension Language Reference

ARRAY REAL Arrays

version 3
__

ARRAY REAL (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY REAL creates and/or resizes an array of Real elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY REAL to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Real elements:

⇒ ARRAY REAL (arValues;100)

2. This example creates a local array of 100 rows of 50 Real elements:

⇒ ARRAY REAL ($arValues;100;50)

3. This example creates an interprocess array of 50 Real elements and sets each element to
its element number:

⇒ ARRAY REAL (<>arValues;50)
For ($vlElem;1;50)

<>arValues{$vlElem}:=$vlElem
End for

4th Dimension Language Reference 197

ARRAY STRING Arrays

version 3
__

ARRAY STRING (strLen; arrayName; size{; size2})

Parameter Type Description
strLen Number → Length of string (1... 255)
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY STRING creates and/or resizes an array of String elements in
memory.

• The strLen parameter specifies the maximum number of characters that can be
contained in each array element in a string array. The length can be from 1 to 255
characters.
• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY STRING to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 31-character String elements:

⇒ ARRAY STRING (31;asValues;100)

2. This example creates a local array of 100 rows of 50 63-character String elements:

⇒ ARRAY STRING (63;$asValues;100;50)

198 4th Dimension Language Reference

3. This example creates an interprocess array of 50 255-character String elements and sets
each element to the value “Element #” followed by its element number:

⇒ ARRAY STRING (255;<>asValues;50)
For ($vlElem;1;50)

<>asValues{$vlElem}:="Element #"+String($vlElem)
End for

4th Dimension Language Reference 199

ARRAY TEXT Arrays

version 3
__

ARRAY TEXT (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The ARRAY TEXT command creates and/or resizes an array of Text elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY TEXT to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Text elements:

⇒ ARRAY TEXT (atValues;100)

2. This example creates a local array of 100 rows of 50 Text elements:

⇒ ARRAY TEXT ($atValues;100;50)

3. This example creates an interprocess array of 50 Text elements and sets each element to
the value “Element #” followed by its element number:

⇒ ARRAY TEXT (◊atValues;50)
For ($vlElem;1;50)

◊atValues{$vlElem}:="Element #"+String($vlElem)
End for

See Also
ARRAY STRING.

200 4th Dimension Language Reference

ARRAY DATE Arrays

version 3
__

ARRAY DATE (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY DATE creates and/or resizes an array of Date elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY DATE to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to the null date (!00/00/00!).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Date elements:

⇒ ARRAY DATE (adValues;100)

2. This example creates a local array of 100 rows of 50 Date elements:

⇒ ARRAY DATE ($adValues;100;50)

3. This example creates an interprocess array of 50 Date elements, and sets each element
to the current date plus a number of days equal to the element number:

⇒ ARRAY DATE (<>adValues;50)
For ($vlElem;1;50)

<>adValues{$vlElem}:=Current date+$vlElem
End for

4th Dimension Language Reference 201

ARRAY BOOLEAN Arrays

version 3
__

ARRAY BOOLEAN (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY BOOLEAN creates and/or resizes an array of Boolean elements in
memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY BOOLEAN to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to False.
• If you reduce the array size, the last elements deleted from the array are lost.

Tip: In some contexts, an alternative to using Boolean arrays is using an Integer array
where each element “means true” if different from zero and “means false” if equal to
zero.

Examples
1. This example creates a process array of 100 Boolean elements:

⇒ ARRAY BOOLEAN (abValues;100)

2. This example creates a local array of 100 rows of 50 Boolean elements:

⇒ ARRAY BOOLEAN ($abValues;100;50)

202 4th Dimension Language Reference

3. This example creates an interprocess array of 50 Boolean elements and sets each even
element to True:

⇒ ARRAY BOOLEAN (<>abValues;100)
For ($vlElem;1;50)

<>abValues{$vlElem}:=(($vlElem%2)=0)
End for

4th Dimension Language Reference 203

ARRAY PICTURE Arrays

version 3
__

ARRAY PICTURE (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array, or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY PICTURE creates and/or resizes an array of Picture elements in
memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY PICTURE to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to empty pictures. This means that Picture size applied to one of
these elements will return 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Picture elements:

⇒ ARRAY PICTURE (agValues;100)

2. This example creates a local array of 100 rows of 50 Picture elements:

⇒ ARRAY PICTURE ($agValues;100;50)

204 4th Dimension Language Reference

3. This example creates an interprocess array of Picture elements and loads each picture
into one of the elements of the array. The array’s size is equal to the number of 'PICT'
resources available to the database. The array’s resource name starts with "User Intf/":

RESOURCE LIST("PICT";$aiResIDs;$asResNames)
⇒ ARRAY PICTURE (◊agValues;Size of array($aiResIDs))

$vlPictElem:=0
For ($vlElem;1;Size of array(◊agValues))

If ($asResNames="User Intf/@")
$vlPictElem:=vlPictElem+1
GET PICTURE RESOURCE("PICT";$aiResIDs{$vlElem};$vgPicture)
◊agValues{$vlPictElem}:=$vgPicture

End if
End for
ARRAY PICTURE (◊agValues;$vlPictElem)

4th Dimension Language Reference 205

ARRAY POINTER Arrays

version 3
__

ARRAY POINTER (arrayName; size{; size2})

Parameter Type Description
arrayName Array → Name of the array
size Number → Number of elements in the array, or

Number of rows if size2 is specified
size2 Number → Number of columns in a two-dimensional array

Description
The command ARRAY POINTER creates or resizes an array of Pointer elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the firt dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY POINTER to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to null pointer. This means that Nil applied to one of these
elements will return True.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Pointer elements:

⇒ ARRAY POINTER (apValues;100)

2. This example creates a local array of 100 rows of 50 Pointer elements:

⇒ ARRAY POINTER ($apValues;100;50)

206 4th Dimension Language Reference

3. This example creates an interprocess array of Pointer elements and sets each element
pointing to the table whose number is the same as the element. The size of the array is
equal to the number of tables in the database:

⇒ ARRAY POINTER (<>apValues;Count tables)
For ($vlElem;1;Size of array(<>apValues))

<>apValues{$vlElem}:=Table($vlElem)
End for

4th Dimension Language Reference 207

Size of array Arrays

version 3
__

Size of array (array) → Number

Parameter Type Description
array Array → Array whose size is returned

Function result Number ← Returns the number of elements in array

Description
The command Size of array returns the number of elements in array.

Example
1. The following example returns the size of the array anArray:

⇒ vlSize:=Size of array(anArray) ` vlSize gets the size of anArray

2. The following example returns the number of rows in a two-dimensional array:

⇒ vlRows:=Size of array(a2DArray) ` vlRows gets the size of a2DArray

3. The following example returns the number of columns for a row in a two-dimensional
array:

⇒ vlColumns:=Size of array(a2DArray{10}) ` vlColumns gets the size of a2DArray{10}

See Also
DELETE ELEMENT, INSERT ELEMENT.

208 4th Dimension Language Reference

SORT ARRAY Arrays

version 3
__

SORT ARRAY (array{; array2; ...; arrayN}{; > or <})

Parameter Type Description
array Array → Arrays to sort
> or < → > to sort in Ascending order, or

< to sort in Descending order, or
Ascending order if omitted

Description
The command SORT ARRAY sorts one or more arrays into ascending or descending order.

Note: You cannot sort Pointer or Picture arrays. You can sort the elements of a two-
dimensional array (i.e., a2DArray{$vlThisElem}) but you cannot sort the two-dimensional
array itself (i.e., a2DArray).

The last parameter specifies whether to sort array in ascending or descending order. The
“greater than” symbol (>) indicates an ascending sort; the “less than” symbol (<)
indicates a descending sort. If you do not specify the sorting order, then the sort is
ascending.

If more than one array is specified, the arrays are sorted following the sort order of the
first array; no multi-level sorting is performed here. This feature is especially useful with
grouped scrollable areas in a form; SORT ARRAY maintains the synchronicity of the arrays
that sustain the scrollable areas.

Examples
1. The following example creates two arrays and then sorts them by company:

ALL RECORDS ([People])
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

⇒ SORT ARRAY (asCompanies; asNames;>)

However, because SORT ARRAY does not perform multi-level sorts, you will end up with
people‘s names in random order within each company. To sort people by name within
each company, you would write:

ALL RECORDS ([People])
ORDER BY ([People];[People]Company;>;[People]Name;>)
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

4th Dimension Language Reference 209

2. You display the names from a [People] table in a floating window. When you click on
buttons present in the window, you can sort this list of names from A to Z or from Z to A.
As several people may have the same name, you also can use a [People]ID number field,
which is indexed unique. When you click in the list of names, you will retrieve the record
for the name you clicked. By maintaing a synchronized and hidden array of ID numbers,
you are sure to access the record corresponding to the name you clicked:

` asNames array object method
Case of

: (Form event=On Load)
ALL RECORDS([People])
SELECTION TO ARRAY([People]Name;asNames;[People]ID number;alIDs)

⇒ SORT ARRAY(asNames;alIDs;>)
: (Form event=On Unload)

CLEAR VARIABLE(asNames)
CLEAR VARIABLE(alIDs)

: (Form event=On Clicked)
If (asNames#0)

` Use the array alIDs to get the right record
QUERY([People];[People]ID Number=alIDs{asNames})

` Do something with the record
End if

End case

` bA2Z button object method
` Sort the arrays in ascending order and keep them synchronized

⇒ SORT ARRAY(asNames;alIDs;>)

` bZ2A button object method
` Sort the arrays in descending order and keep them synchronized

⇒ SORT ARRAY(asNames;alIDs;<)

See Also
ORDER BY, SELECTION TO ARRAY.

210 4th Dimension Language Reference

MULTI SORT ARRAY Arrays

version 2004 (Modified)
__

MULTI SORT ARRAY (array{; sort}{; array2; sort2; ...; arrayN; sortN})

Parameter Type Description
array Array → Array(s) to be sorted
sort > or < → > to sort by increasing order or

< to sort by decreasing order
If omitted = no sort

MULTI SORT ARRAY (ptrArrayName; sortArrayName)

Parameter Type Description
ptrArrayName Pointer array → Array of array pointers
sortArrayName Longint array → Sort order array(1 = sort by increasing

order, -1 = sort by decreasing order,
0 = synchronization with previous sorts)

Description
The MULTI SORT ARRAY command enables you to carry out a multi-level sort on a set of
arrays. This function is particularly useful in the context of grouped scrolling areas in
forms.

This command accepts two different syntaxes.

• First syntax: MULTI SORT ARRAY (array{; sort}{; array2; sort2; ...; arrayN; sortN})
This syntax is the simplest; it lets you directly pass the names of the synchronized arrays
where you want to apply a multi-criteria sort.

You can pass an unlimited number of pairs (array;> or <) and/or only arrays. All the arrays
passed as parameters are sorted in a synchronized manner.

You can pass arrays of any type except for Pointer or Picture arrays. You can sort an
element of a two-dimensional array (i.e. a2DArray{$vlThisElement}), but you cannot sort
the 2D array itself (i.e. a2DArray).

To use the contents of an array as sort criteria, pass the sort parameter. The value of the
parameter (> or <) determines the order (ascending or descending) in which the array will
be sorted. If the sort parameter is omitted, the contents of the array are not used as sort
criteria.

Note: Keep in mind that at least one sort criterion must be passed in order for the
command to work. If no sort criterion is set, an error is generated.

The sort levels are determined by the order in which the arrays are passed to the

4th Dimension Language Reference 211

• Second syntax: MULTI SORT ARRAY (ptrArrayName; sortArrayName)
This syntax, more complex, is also invaluable for generic developments (for example, you
can create a generic method for sorting arrays of all types, or yet again, create the
equivalent of a generic SORT ARRAY command).

The ptrArrayName parameter contains the name of an array of array pointers; each
element of this array is a pointer designating an array to be sorted. The sorts are
performed in the order of the array pointers defined by ptrArrayName. Warning: all the
arrays pointed to by ptrArrayName must have the same number of elements.

Note: ptrArrayName can be an array of local ($ptrArrayName), process (ptrArrayName) or
inter-process (<>ptrArrayName) pointers. Conversely, the elements of this array must
point to process or inter-process arrays only.

The sortArrayName parameter contains the name of an array in which each element
indicates the sorting order (-1, 0 or 1) of the element of the corresponding array of
pointers:
-1 = Sort by decreasing order.
0 = The array is not used as a sorting criterion but must be sorted according to the other
sorts.
1 = Sort by increasing order.

Note: You cannot sort arrays of the Pointer or Picture type. You can sort an element of a
two-dimensional array (i.e. a2DArray{$vlThisElement}), but you cannot sort the 2D array
itself (i.e. a2DArray).

For each element of the ptrArrayName array, there must be a corresponding element of
the sortArrayName array. Both arrays must therefore have exactly the same number of
elements.

Examples
1. The following example uses the first syntax: it creates four arrays and sorts them by
city (ascending order) then by salary (descending order) with the last two arrays,
names_array and telNum_array, being synchronized according to the previous sort criteria:

ALL RECORDS([Employees])
SELECTION TO ARRAY([Employees]City;cities;[Employees]Salary;salaries;

[Employees]Name;names;[Employees]TelNum;telNums)
⇒ MULTI SORT ARRAY (cities;>;salaries;<;names;telNums)

If you want for the names array to be used as the third sort criteria, just add > or < after
the names_array parameter.
Note that the syntax:
⇒ MULTI SORT ARRAY (cities;>;;salaries;names;telNums)
is equivalent to:

SORT ARRAY(cities;salaries;names;telNums;>)

212 4th Dimension Language Reference

2. The following example uses the second syntax: it creates four arrays and sorts them by
city (increasing order) and company (decreasing order); the last two arrays, names_Array
and telNum_Array, being synchronized according to previous sort criteria:

ALL RECORDS([Employees])
SELECTION TO ARRAY([Employees]City;cities;[Employees]Company;companies;

[Employees]Name;names;[Employees]TelNum;telNums)
ARRAY POINTER(pointers_Array;4)
ARRAY LONGINT(sorts_Array;4)
pointers_Array{1}:=->cities
sorts_Array{1}:=1
pointers_Array{2}:=->companies
sorts_Array{2}:=-1
pointers_Array{3}:=->names
sorts_Array{3}:=0
pointers_Array{4}:=->telNums
sorts_Array{4}:=0

⇒ MULTI SORT ARRAY (pointers_Array;sorts_Array)

If you want the array of names be used as a third sort criterion, you need to assign the
value 1 to the sorts_Array{3} element. Or else, if you want the arrays to be sorted only by
the city criterion, assign the value 0 to the sorts_Array{2}, sorts_Array{3} and sorts_Array{4}
elements. In this way, you obtain an identical result to SORT
ARRAY(cities;companies;names;telNums;>).

See also
ORDER BY, SELECTION TO ARRAY, SORT ARRAY.

4th Dimension Language Reference 213

Find in array Arrays

version 3
__

Find in array (array; value{; start}) → Number

Parameter Type Description
array Array → Array to search
value Expression → Value of same type to search in the array
start Number → Element at which to start searching

Function result Number ← Number of the first element in array
that matches value

Description
The command Find in array returns the number of the first element in array that matches
value.

Find in array can be used with Text, String, Numeric, Date, Pointer, and Boolean arrays.
The array and value parameters must be of the same type.

If no match is found, Find in array returns –1.

If start is specified, the command starts searching at the element number specified by
start. If start is not specified, the command starts searching at element 1.

Examples
1. The following project method deletes all empty elements from the string or text array
whose pointer is passed as parameter:

` CLEAN UP ARRAY project method
` CLEAN UP ARRAY (Pointer)
` CLEAN UP ARRAY (-> Text or String array)

C_POINTER ($1)
Repeat

⇒ $vlElem:=Find in array ($1->;"")
If ($vlElem>0)

DELETE ELEMENT ($1->;$vlElem)
End if

Until ($vlElem<0)

214 4th Dimension Language Reference

After this project method is implemented in a database, you can write:

ARRAY TEXT (atSomeValues;...)
` ...
` Do plenty of things with the array
` ...
` Eliminate empty string elements

CLEAN UP ARRAY (->atSomeValues)

2. The following project method selects the first element of an array whose pointer is
passed as the first parameter that matches the value of the variable or field whose pointer
is passed as parameter:

` SELECT ELEMENT project method
` SELECT ELEMENT (Pointer ; Pointer)
` SELECT ELEMENT (-> Text or String array ; -> Text or String variable or field)

⇒ $1->:=Find in array ($1->;$2->)
If ($1->=-1)

$1->:=0 ` If no element was found, set the array to no selected element
End if

After this project method is implemented in a database, you can write:

` asGender pop-up menu object method
Case of

: (Form Event=On Load)
SELECT ELEMENT (->asGender;->[People]Gender)

End case

See Also
DELETE ELEMENT, INSERT ELEMENT, Size of array.

4th Dimension Language Reference 215

Count in array Arrays

version 2004
__

Count in array (array; value) → Longint

Parameter Type Description
array Array → Array where count should occur
value Expression → Value to count

Function result Longint ← Number of instances found

Description
The Count in array command returns the number of times value is found in array.

This command can be used with the following array types: Text, Alpha, number, Date,
Pointer and Boolean. The array and value parameters must be the same type or compatible.

If no element in array matches value, the command returns 0.

Example
The following example allows displaying the number of selected lines in a list box:

`tBList is the name of a List box column array
⇒ ALERT(String(Count in array(tBList;True))+" line(s) selected in the list box")

See also
Find in array.

216 4th Dimension Language Reference

INSERT ELEMENT Arrays

version 3
__

INSERT ELEMENT (array; where{; howMany})

Parameter Type Description
array Array → Name of the array
where Number → Where to insert the elements
howMany Number → Number of elements to be inserted, or

1 element if omitted

Description
The command INSERT ELEMENT inserts one or more elements into the array array. The
new elements are inserted before the element specified by where, and are initialized to the
empty value for the array type. All elements beyond where are consequently moved
within the array by an offset of one or the value you pass in howMany.

If where is greater than the size of the array, the elements are added to the end of the
array.

The howMany parameter is the number of elements to insert. If howMany is not specified,
then one element is inserted. The size of the array grows by howMany.

Example
1. The following example inserts five new elements, starting at element 10:

⇒ INSERT ELEMENT (anArray;10;5)

2. The following example appends an element to an array:

$vlElem:=Size of array(anArray)+1
⇒ INSERT ELEMENT (anArray;$vlElem)

anArray{$vlElem}:=...

See Also
DELETE ELEMENT, Size of array.

4th Dimension Language Reference 217

DELETE ELEMENT Arrays

version 3
__

DELETE ELEMENT (array; where{; howMany})

Parameter Type Description
array Array → Array from which to delete elements
where Number → Element at which to begin deletion
howMany Number → Number of elements to delete, or

1 element if omitted

Description
The command DELETE ELEMENT deletes one or more elements from array. Elements are
deleted starting at the element specified by where.

The howMany parameter is the number of elements to delete. If howMany is not specified,
then one element is deleted. The size of the array shrinks by howMany.

Examples
1. The following example deletes three elements, starting at element 5:

⇒ DELETE ELEMENT (anArray; 5; 3)

2. The following example deletes the last element from an array, if it exists:

$vlElem:=Size of array(anArray)
If ($vlElem>0)

⇒ DELETE ELEMENT (anArray;$vlElem)
End if

See Also
INSERT ELEMENT, Size of array.

218 4th Dimension Language Reference

APPEND TO ARRAY Arrays

version 2004
__

APPEND TO ARRAY (array; value)

Parameter Type Description
array Array → Array to which an element will be appended
value Expression → Value to append

Description
The APPEND TO ARRAY command adds a new element at the end of array and assigns
value to the element. In interpreted mode, if array does not exist, the command creates it
with regard to the type of value.

This command works with all kind of arrays: string, number, Boolean, date, pointer and
picture.

The type of value must match the array type, otherwise the syntax error 54 “Argument
types are incompatible” is generated. The following values will, however, be accepted:
• a string array (Text or String) accepts any value of the Text or String type.
• a number array (Integer, Longint or Real) accepts any value of the Integer, Longint, Real
or Time type.

Example
The following code:

INSERT ELEMENT($myarray;Size of array($myarray)+1)
$myarray{Size of array($myarray)}:=$myvalue

... can be replaced with:

⇒ APPEND TO ARRAY($myarray;$myvalue)

See also
DELETE ELEMENT, INSERT ELEMENT.

4th Dimension Language Reference 219

COPY ARRAY Arrays

version 3
__

COPY ARRAY (source; destination)

Parameter Type Description
source Array → Array from which to copy
destination Array ← Array to which to copy

Description
The command COPY ARRAY creates or overwrites the destination array destination with
the exact contents, size, and type of the source array source.

The source and destination arrays can be local, process, or interprocess arrays. When
copying arrays, the scope of the array does not matter.

Examples
The following example fills the array named C. It then creates a new array, named D, of
the same size as C and with the same contents:

ALL RECORDS ([People]) ` Select all records in People
SELECTION TO ARRAY ([People]Company; C) ` Move company field data into array C

⇒ COPY ARRAY (C; D) ` Copy the array C to the array D

220 4th Dimension Language Reference

LIST TO ARRAY Arrays

version 3
Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you start using
the command Load list to work with the hierarchical lists defined in the Design
environment List Editor.

__

LIST TO ARRAY (list; array{; itemRefs})

Parameter Type Description
list String → List from which to copy the first level items
array Array ← Array to which to copy the list items
itemRefs Array ← List item reference numbers

Description
The command LIST TO ARRAY creates or overrides the array array with the first level items
of the list list.

LIST TO ARRAY creates or overrides an array with a new text array.

The optional itemRefs parameter (a numeric array) returns the list item reference numbers.

Compatibility Note: In the previous version of 4D, this array was filled with the names of
any linked lists. If an element of the list had a linked list, the name of the linked list was
put into the array element with the same number as the list element. If there was no
linked list, then the element was the empty string. The second array was set to the same
size as array. You could use the names in this array to access the linked lists.

You can continue to use LIST TO ARRAY to build an array based on the first level items of a
hierarchical list. However, this command does not provide you with the child items, if
any. To work with hierarchical lists, use the new Hierarchical Lists commands introduced
in version 6.

Example
The following example copies the items of a list called Regions into an array called
atRegions:

⇒ LIST TO ARRAY ("Regions"; atRegions)

See Also
ARRAY TO LIST, Load list, SAVE LIST.

4th Dimension Language Reference 221

ARRAY TO LIST Arrays

version 3

Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you use the
command SAVE LIST to work with the hierarchical lists defined in the Design
environment List Editor.

__

ARRAY TO LIST (array; list{; itemRefs})

Parameter Type Description
array Array → Array from which to copy array elements
list String → List into which to copy array elements
itemRefs Array → Numeric array of item reference numbers

Description
The command ARRAY TO LIST creates or replaces the list list (as defined in the Design
environment List Editor) using the elements of the array array.

This command allows you to define only the first level items of the list.

The optional itemRefs parameter, if specified, must be a numeric array synchronized with
the array array. Each element, then, indicates the list item reference number for the
corresponding element in array. If you omit this parameter, 4D automatically sets the list
item reference numbers to 1, 2... N.

Compatibility Note: In the previous version of 4D, this parameter was used to link other
lists to each element in array. If an element of the links array was the name of an existing
list, then that list was attached to the corresponding item.

You can continue to use ARRAY TO LIST to build a list based on the elements of an array.
However, this command does not provide a means of working with the child items. To
work with hierarchical lists, use the new Hierarchical Lists commands introduced in
version 6.

222 4th Dimension Language Reference

Example
The following example copies the array atRegions to the list called “Regions:”

⇒ ARRAY TO LIST (atRegions;"Regions")

See Also
LIST TO ARRAY, Load list, ON ERR CALL, SAVE LIST.

Error Handling
An error -9957 is generated when ARRAY TO LIST is applied to a list that is currently being
edited in the Design environment List Editor. You can catch this error using an ON ERR
CALL project method.

4th Dimension Language Reference 223

SELECTION TO ARRAY Arrays

version 3
__

SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...; fieldN | tableN; arrayN})

Parameter Type Description
field | table Field or Table → Field to use for retrieving data or

Table to use for retrieving record numbers
array Array ← Array to receive field data or record numbers

Description
The command SELECTION TO ARRAY creates one or more arrays and copies data in the
fields or record numbers from the current selection into the arrays.

The command SELECTION TO ARRAY applies to the selection for the table specified in the
first parameter. SELECTION TO ARRAY, can perform the following:
• Load values from one or several fields.
• Load Record numbers using the syntax ...;[table];Array;...
• Load values from related fields, provided that there is a Many to One automatic relation
between the tables or provided that you have previously called SET AUTOMATIC
RELATIONS to make manual Many to One relations automatic. In both cases, values are
loaded from tables through several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:
• If a Text field is copied into a String array, the array will remain a String array.
• A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.

If you load record numbers, they are copied into a Long Integer array.

4D Server: The SELECTION TO ARRAY command is optimized for 4D Server. Each array is
created on the server and then sent, in its entirety, to the client machine.

WARNING: The SELECTION TO ARRAY command can create large arrays, depending on the
range you specify in start and end, and on the type and size of the data you are loading.
Arrays reside in memory, so it is a good idea to test the result after the command is
completed. To do so, test the size of each resulting array or cover the call to the
command, using an ON ERR CALL project method.

Note: After a call to SELECTION TO ARRAY, the current selection and current record
remain the same, but the current record is no longer loaded. If you need to use the values
of the fields in the current record, use the LOAD RECORD command after the SELECTION
TO ARRAY command.

224 4th Dimension Language Reference

Examples
1. In the following example, the [People] table has an automatic relation to the
[Company] table. The two arrays asLastName and asCompanyAddr are sized according to
the number of records selected in the [People] table and will contain information from
both tables:

⇒ SELECTION TO ARRAY ([People]Last Name;asLastName;[Company]Address;
asCompanyAddr)

2. The following example returns the [Clients] record numbers in the array
alRecordNumbers and the [Clients]Names field values in the array asNames:

⇒ SELECTION TO ARRAY([Clients];alRecordNumbers;[Clients]Names; asNames)

See Also
ARRAY TO SELECTION, MULTI SORT ARRAY, ON ERR CALL, SELECTION RANGE TO ARRAY,
SET AUTOMATIC RELATIONS.

4th Dimension Language Reference 225

SELECTION RANGE TO ARRAY Arrays

version 3.5.3
__

SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})

Parameter Type Description
start Number → Selected record number where data retrieval starts
end Number → Selected record number where data retrieval ends
field | table Field or Table → Field to use for retrieving data or

Table to use for retrieving record numbers
array Array ← Array to receive field data or record numbers

Description
SELECTION RANGE TO ARRAY creates one or more arrays and copies data from the fields or
record numbers from the current selection into the arrays.

Unlike SELECTION TO ARRAY, which applies to the current selection in its entirety,
SELECTION RANGE TO ARRAY only applies to the range of selected records specified by the
parameters start and end.

The command expects you to pass in start and end the selected record numbers
complying with the formula 1 <= start <= end <= Records in selection ([...]).

If you pass 1 <= start = end < Records in selection ([...]), you will load fields or get the
record number from the record whose selected record is start = end.

If you pass incorrect selected record numbers, the command does the following:
• If end > Records in selection ([...]), it returns values from the selected record specified by
start to the last selected record.
• If start > end, it returns values from the record whose selected record is start only.
• If both parameters are inconsistent with the size of the selection, it returns empty
arrays.

Like SELECTION TO ARRAY, the SELECTION RANGE TO ARRAY command applies to the
selection for the table specified in the first parameter.

Also like SELECTION TO ARRAY, SELECTION RANGE TO ARRAY can perform the following:
• Load values from one or several fields.
• Load Record numbers using the syntax ...;[table];Array;...
• Load values from related fields, if there is a Many to One automatic relation between the
tables or if you have previously called SET AUTOMATIC RELATIONS to change manual
Many to One relations to automatic. In both cases, values can be loaded from tables
through several levels of Many to One relations.

226 4th Dimension Language Reference

Each array is typed according to the field type. There are two exceptions:
• If a Text field is copied into a String array. In this case, the array will remain a String
array.
• A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.

If you load record numbers, they are copied into a Long Integer array.

4D Server: SELECTION RANGE TO ARRAY is optimized for 4D Server. Each array is created
on the server and then sent, in its entirety, to the client machine.

WARNING: SELECTION RANGE TO ARRAY can create large arrays, depending on the range
you specify in start and end, and on the type and size of the data you are loading. Arrays
reside in memory, so it is a good idea to test the result after the command is completed.
To do so, test the size of each resulting array or cover the call to the command, using an
ON ERR CALL project method.

If the command is successful, the size of each resulting array is equal to (end-start)+1,
except if the end parameter exceeded the number of records in the selection. In such a
case, each resulting array contains (Records in selection([...])-start)+1 elements.

Examples
1. The following code addresses the first 50 records from the current selection for the
[Invoices] table. It loads the values from the [Invoices]Invoice ID field and the
[Customers]Customer ID related field.

⇒ SELECTION RANGE TO ARRAY(1;50;[Invoices]Invoice
ID;alInvoID;[Customers]Customer ID;alCustID)

2. The following code addresses the last 50 records from the current selection for the
[Invoices] table. It loads the record numbers of the [Invoices] records as well as those of the
[Customers] related records:

lSelSize := Records in selection ([Invoices])
⇒ SELECTION RANGE TO ARRAY (lSelSize-49;lSelSize;[Invoices];alInvRecN;[Customers];

alCustRecN)

4th Dimension Language Reference 227

3. The following code process, in sequential “chunks”of 1000 records, a large selection
that could not be downloaded in its entirety into arrays:

lMaxPage := 1000
lSelSize := Records in selection ([Phone Directory])
For ($lPage ; 1; 1+((lSelSize-1)\lMaxPage))

` Load the values and/or record numbers
⇒ SELECTION RANGE TO ARRAY (1+(lMaxPage*($lPage-1));lMaxPage*$lPage;

...;...;...;...;...;...)
` Do something with the arrays

End for

See Also
ON ERR CALL, SELECTION TO ARRAY, SET AUTOMATIC RELATIONS.

228 4th Dimension Language Reference

ARRAY TO SELECTION Arrays

version 3
__

ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})

Parameter Type Description
array Array → Array to copy to the selection
field Field ← Field to receive the array data

Description
The ARRAY TO SELECTION command copies one or more arrays into a selection of records.
All fields listed must belong to the same table.

If a selection exists at the time of the call, the elements of the array are put into the
records, based on the order of the array and the order of the records. If there are more
elements than records, new records are created. The records, whether new or existing, are
automatically saved.

If the arrays are of different sizes, the first array is used to determine how many elements
to copy. Any additional arrays are moved into the field that follows each array name.

This command does the reverse of SELECTION TO ARRAY. However, the ARRAY TO
SELECTION command does not allow fields from different tables, including related tables,
even when an automatic relation exists.

WARNING: Use ARRAY TO SELECTION with caution, because it overwrites information in
existing records. If a record is locked by another process during the execution of ARRAY
TO SELECTION, that record is not modified. Any locked records are put into the process set
called LockedSet. After ARRAY TO SELECTION has executed, you can test the set LockedSet
to see if any records were locked.

4D Server: The command is optimized for 4D Server. Arrays are sent by the client
machine to the server, and the records are modified or created on the server machine. As
such a request is handled synchronously, the client machine must wait for the operation
to be completed successfully. In the multi-user or multi-process environment, any records
that are locked will not be overwritten.

4th Dimension Language Reference 229

Example
In the following example, the two arrays asLastNames and asCompanies place data in the
[People] table. The values from the array asLastNames area placed in the field [People]Last
Name and the values from the array asCompanies are placed in the field [People]Company:

⇒ ARRAY TO SELECTION (asLastNames;[People]Last
Name;asCompanies;[People]Company)

See Also
SELECTION TO ARRAY.

230 4th Dimension Language Reference

DISTINCT VALUES Arrays

version 6.0 (modified)
__

DISTINCT VALUES (field; array)

Parameter Type Description
field Field or Subfield → Indexable field or subfield to use for data
array Array ← Array to receive field data

Description
The DISTINCT VALUES command creates and populates the array array with non-repeated
(unique) values coming from the field field for the current selection of the table to which
the field or subfield belongs.

You can pass to DISTINCT VALUES any indexable field or subfield, that is, whose type
supports indexing without necessarily being indexed.
However, executing this command on unindexed fields will be slower. Also note that, in
this case, the command looses the current record.

Note: As this command now functions with indexed and unindexed fields, its execution
mode can now be set by using the SET DATABASE PARAMETER command.

If you pass the field of a table, DISTINCT VALUES browses and retains the non-repeated
values present only in the currently selected records. However, if you pass a subfield,
DISTINCT VALUES browses all the subrecords present in each currently selected record.

Note: Starting from 4D 6.5, when the DISTINCT VALUES command is called during a
transaction (that has not yet finished), it will take into account records created during
that transaction.

If you create the array prior to the call, DISTINCT VALUES expects an array type compatible
with the field or subfield you pass. Otherwise, in interpreted mode, DISTINCT VALUES will
create an array of the proper type. However, if the field or subfield is of type Time, the
command expects or creates a LongInt array.

After the call, the size of the array is equal to the number of distinct values found in the
selection. The command does not change the current selection or the current record. The
DISTINCT VALUES command uses the index of the field, so the elements in array are
returned sorted in ascending order. If this is the order you need, you do not need to call
SORT ARRAY after using DISTINCT VALUES.

WARNING: DISTINCT VALUES can create large arrays depending on the size of the
selection and the number of different values in the records. Arrays reside in memory,
therefore it is a good idea to test the result after the completion of the command. To do
so, test the size of the resulting array or cover the call to the command, using an ON ERR
CALL project method.

4th Dimension Language Reference 231

4D Server: The command is optimized for 4D Server. The array is created and the values
are calculated on the server machine; the array is then sent, in its entirety, to the client.

Examples
1. The following example creates a list of cities from the current selection and tells the
user the number of cities in which the firm has stores:

ALL RECORDS([Retail Outlets]) ` Create a selection of records
⇒ DISTINCT VALUES([Retail Outlets]City;asCities)

ALERT("The firm has stores in " +String(Size of array(asCities))+" cities.")

2. The following example returns in asKeywords all the keywords that are attached (using
a subtable) to the 4D Write documents stored in the table [Documentation] and whose
theme is “Economy”:

QUERY ([Documentation];[Documentation]Theme="Economy")
⇒ DISTINCT VALUES([Documentation]Keywords'Keyword;asKeywords)

After this array has been built, you can reuse it to quickly locate all the documents
associated with the selected keyword:

QUERY ([Documentation];[Documentation]Keywords'Keyword=
asKeywords{asKeywords})

SELECTION TO ARRAY ([Documentation]Subject;asSubjects)
` ...

See Also
ON ERR CALL, SELECTION RANGE TO ARRAY, SELECTION TO ARRAY, SET DATABASE
PARAMETER.

232 4th Dimension Language Reference

LONGINT ARRAY FROM SELECTION Arrays

version 6.7 (Modified)
__

LONGINT ARRAY FROM SELECTION (table; recordArray{; selection})

Parameter Type Description
table Table → Table of the current selection
recordArray Longint Array ← Array of record numbers
selection String → Name of the named selection or

the current selection if this parameter is omitted

Description
The LONGINT ARRAY FROM SELECTION command fills the recordArray array with the
(absolute) record numbers that are in selection.

If you do not pass the selection parameter, the command will use the current selection of
table.

Note: The array element number 0 is initialized to -1.

See Also
CREATE SELECTION FROM ARRAY.

4th Dimension Language Reference 233

BOOLEAN ARRAY FROM SET Arrays

version 6.5
__

BOOLEAN ARRAY FROM SET (booleanArr{; set})

Parameter Type Description
booleanArr Boolean Array ← Array to indicate if a record is in the set or not
set String → Name of the set or

UserSet if this parameter is omitted

Description
The command BOOLEAN ARRAY FROM SET fills an array of booleans indicating if each
record in the table is or is not in set.

The elements in the array are ordered in the order in which the records are created in the
table (absolute record numbers). If N is the number of records in the table, element 0 of
the array corresponds to record number 0, element 1 of the array corresponds to record
number 1, etc.

Each element of the array is:
• True if the corresponding record belongs to the set.
• False if the corresponding record does not belong to the set.

Warning: The total number of elements in the booleanArr array is not significant. For
structural reasons, this number can be different from the number of records actually
present in the table. Possible extra elements are set to False.

If you don’t pass the set parameter, the command will use UserSet in the current process.

See Also
CREATE SET FROM ARRAY.

234 4th Dimension Language Reference

5

Backup

4th Dimension Language Reference 235

236 4th Dimension Language Reference

BACKUP Backup

version 2004
__

BACKUP

Parameter Type Description
This command does not require any parameters

Description
The BACKUP command starts the backup of the database using the current backup
settings. No confirmation dialog is displayed; however, a progress bar appears on screen.

Backup settings are set in the application Preferences. They are also stored in the
Backup.XML file located in the subfolder Preferences/Backup of the database.

The BACKUP command calls the On Backup Startup database method at the beginning of
its execution and the On Backup Shutdown database method at the end of its execution.
Because of this mechanism, the command should not be called from one of these
database methods.

4D Server: When called from a client machine, BACKUP is considered as a stored
procedure; it is still executed on the server.

See also
GET BACKUP INFORMATION, On Backup Startup database method, RESTORE.

System Variables or Sets
If the backup is performed correctly, the system variable OK is set to 1; otherwise, it is set
to 0.

Error Handling
In case of any incidents, an error is generated which you can intercept by means of an
error-handling method installed using the ON ERR CALL command.

4th Dimension Language Reference 237

GET BACKUP INFORMATION Backup

version 2004
__

GET BACKUP INFORMATION (selector; info1; info2)

Parameter Type Description
selector Longint → Type of information to get
info1 Date | Integer ← Value 1 of the selector
info2 Time | String ← Value 2 of the selector

Description
The GET BACKUP INFORMATION command allows getting information related to the last
backup performed on the database data.

Pass the type of information to get in selector. You can use one of the following
constants, placed in the “Backup and Restore” theme:
Constant Type Value
Last Backup Date Longint 0
Last Backup Status Longint 2
Next Backup Date Longint 4

The type and content of the info1 and info2 parameters depend on the value of selector.
• If selector = 0 (Last Backup Date), info1 returns the date and info2 the time of the last
backup.
• If selector = 2 (Last Backup Status), info1 returns the number and info2 the text of the
status of the last backup.
• If selector = 4 (Next Backup Date), info1 returns the date and info2 the time of the next
scheduled backup.

See also
RESTORE.

238 4th Dimension Language Reference

RESTORE Backup

version 2004
__

RESTORE

Parameter Type Description
This command does not require any parameters

Description
The RESTORE command provokes the display of the Restore page of the 4D Welcome
dialog box:

The user can then select an archive to restore.

4th Dimension Language Reference 239

This command is useful with customized interfaces for managing backups.

Note: In a 4D application that is compiled and merged with 4D Runtime Volume License,
the RESTORE command causes the display of a standard open file dialog box that lists by
default any files having the “4BK” extension.

See also
BACKUP, GET RESTORE INFORMATION.

240 4th Dimension Language Reference

GET RESTORE INFORMATION Backup

version 2004
__

GET RESTORE INFORMATION (selector; info1; info2)

Parameter Type Description
selector Longint → Type of information to get
info1 Date | Integer ← Value 1 of the selector
info2 Time | String ← Value 2 of the selector

Description
The GET RESTORE INFORMATION command allows getting information related to the last
automatic database restore.

Pass the type of information to get in selector. You can use one of the following
constants, placed in the “Backup and Restore” theme:
Constant Type Value
Last Restore Date Longint 0
Last Restore Status Longint 2

The type and content of the info1 and info2 parameters depend on the value of selector.
• If selector = 0 (Last Restore Date), info1 returns the date and info2 the time of the last
automatic database restore.
• If selector = 2 (Last Restore Status), info1 returns the number and info2 the text of the
status of the last automatic database restore.

Note: This command does not take manual database restores into account.

See also
RESTORE.

4th Dimension Language Reference 241

SELECT LOG FILE Backup

version 2004.3 (Modified)
__

SELECT LOG FILE (logFile | *)

Parameter Type Description
logFile | * String | * → Name of the Log file or

"*" for closing the current Log file

Description
The SELECT LOG FILE command opens, creates, or closes the Log File according to the
value you pass in logFile.

Note: Calling SELECT LOG FILE is the same as selecting/deselecting the Use Log File option
on the Backup/Configuration page of the application Preferences.

In logFile, pass the name or the full pathname of the log file to be opened or created. If
you only pass a name, the file will be searched for or created next to the database
structure file.
If you pass an empty string in logFile, SELECT LOG FILE presents an Open File dialog box,
allowing the user to open a log file or to create a new one. If the user clicks the Open
button and the file is opened correctly, the OK variable is set to 1. Otherwise, if the user
clicks Cancel or if the Log File could not be opened or created, OK is set to 0.

If you pass "*" in logFile, SELECT LOG FILE closes the current Log File for the database. The
OK variable is set to 1 when the log file is closed.

If you use SELECT LOG FILE to create or open a Log File when a full backup has not yet
been performed and the data file already contains records, 4D then generates an error -
4447, which you can intercept with an ON ERR CALL method.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Log File is correctly opened, created, or closed.

Error Handling
An error -4447 is generated if the operation cannot be performed because the database
needs to be backed up. You can intercept the error with an ON ERR CALL method.

242 4th Dimension Language Reference

Log File Backup

version 2004.3
__

Log File → String

Parameter Type Description
This command does not require any parameters

Function result String ← Long name of the database log file

Description
The Log File command returns the long name (i.e. the complete pathname of the file,
including its name) of the current log file of the open database.

If the database is operating without a log file, the command returns an empty string and
the system variable OK is set to 0.

If the database operates with a log file, the system variable OK is set to 1. The pathname
returned by the command is expressed with the syntax of the current platform.

WARNING: If you execute this command from a 4D Client machine, only the log file
name is returned, not the long name

See also
SELECT LOG FILE.

System Variables or Sets
If the database is operating without a log file, the system variable OK is set to 0;
otherwise, it is set to 1.

4th Dimension Language Reference 243

On Backup Startup Database Method Backup

version 2004
__

The On Backup Startup Database Method is called every time a database backup is about to
start (manual backup, scheduled automatic backup, or using the BACKUP command).
This concerns all 4D environments: 4th Dimension, 4D Server, 4D Client, 4D Runtime
and databases merged with 4D Runtime Volume Licence.

The On Backup Startup Database Method allows verifying that the backup started. In this
method, you should return a value that authorizes or refuses the backup in the $0
parameter:
• If $0 = 0, the backup can be launched.
• If $0 # 0, the backup is not authorized. The operation is cancelled and an error is
returned. You can get the error using the GET BACKUP INFORMATION command.

You can use this database method to verify backup execution conditions (user, date of the
last backup, etc.).

Note: You must declare the $0 parameter (longint) in the database method:
C_LONGINT($0).

See also
BACKUP, On Backup Shutdown Database Method.

244 4th Dimension Language Reference

On Backup Shutdown Database Method Backup

version 2004
__

The On Backup Shutdown Database Method is called every time a database backup ends.
The reasons for the stoppage of a backup can be the end of the copy, user interruption or
an error.
This concerns all 4D environments: 4th Dimension, 4D Server, 4D Client, 4D Runtime
and databases merged with 4D Runtime Volume License.

The On Backup Shutdown Database Method allows verifying that the backup was executed
correctly. It receives, in the $1 parameter, a value representing the status of the backup
once completed:
• If the backup was executed correctly, $1 equals 0.
• If the backup was interrupted by the user or following an error, $1 is different from 0. If
the backup was stopped by the On Backup Startup database method ($0 # 0), $1 gets the
value actually returned in the $0 parameter. This allows you to implement a customized
error management system.
In any case, you can get information about the error using the GET BACKUP
INFORMATION command.

Note: You must declare the $1 parameter (longint) in the database method:
C_LONGINT($1)

See also
BACKUP, On Backup Startup Database Method.

4th Dimension Language Reference 245

New log file Backup

version 2004.3
__

New log file → Text

Parameter Type Description
This command does not require any parameters

Function result Text ← Full pathname of closed log file

Preliminary note: This command only works with 4D Server. It can only be executed via
the Execute on server command or in a stored procedure.

Description
The New log file command closes the current log file, renames it and creates a new one
with the same name in the same location as the previous one. This command is meant to
be used for setting up a backup system using a logical mirror (see the section “Setting up a
logical mirror” in the 4D Server Reference Manual).

The command returns the full pathname (access path + name) of the log file being closed
(called the “segment”). This file is stored in the same location as the current log file
(specified on the Configuration page in the Backup theme of the Preferences). The
command does not carry out any processing (compression, segmentation) on the saved
file. No dialog box appears.

The file is renamed with the current backup numbers of the database and of the log file,
as shown in the following example: DatabaseName[BackupNum-LogBackupNum].4DL. For
instance:
• If the MyDatabase.4DD database has been saved 4 times, the last backup file will be
named MyDatabase[0004].4BK. The name of the first “segment” of the log file will
therefore be MyDatabase[0004-0000].4DL.
• If the MyDatabase.4DD database has been saved 3 times and the log file has been saved
5 times since, the name of the 6th backup of the log file will be MyDatabase[0003-
0005].4DL.

Before performing this operation, 4D Server checks that no other critical operation
(transaction or indexing) is underway. If a critical operation is underway, 4D Server
respects the waiting times set on the Backup page in the Backup theme of the Preferences.

See also
INTEGRATE LOG FILE.

Error Handling
In the event of an error, the command generates a code that can be intercepted using the
ON ERR CALL command.

246 4th Dimension Language Reference

INTEGRATE LOG FILE Backup

version 2004.3
__

INTEGRATE LOG FILE (pathName)

Parameter Type Description
pathName Text → Name or pathname of the log file

to be integrated

Preliminary note: This command only works with 4D Server. It can only be executed via
the Execute on server command or in a stored procedure.

Description
The INTEGRATE LOG FILE command integrates the log file, whose name or pathname was
passed in the pathName parameter, into the current database. Afterwards, the file that was
integrated becomes the new current log file of the database. This command is meant to
be used for setting up a backup system using a logical mirror (see the section “Setting up a
logical mirror” in the 4D Server Reference manual).

Only log files that are not filed (extension .4DL) can be integrated using this command.
No dialog box appears; but a progress bar is displayed on screen.

In the pathName parameter, you can pass an absolute pathname or one that is relative to
the database folder. If you pass an empty string in this parameter, a standard open file
dialog box will be displayed to allow you to indicate the file to be integrated. If this dialog
box is cancelled, no file will be integrated and the system variable OK is set to 0.

When using this command, it is up to the developer to:

• Install the mirror database on the mirror machine and make sure that the data file will
not be modified other than by the integration of the log file using the INTEGRATE LOG
FILE command. In order to detect whether it is the mirror version of the database, it is
possible to place a file in the 4D Extensions folder or database folder and to test for its
presence for instance during the On Startup database method. If the file is present, the
mirror mode is activated.

• Set up a communication system between the operational database and the mirror
database in order to organize the sending and receiving of the log file segments. To do
this, it is possible to use a Web service, the 4D Open for 4D plug-in or the 4D Internet
Commands.

4th Dimension Language Reference 247

• Handle any possible transmission errors that may occur between the two databases.

See also
New log file.

System Variables or Sets
If the integration is carried out correctly, the system variable OK is set to 1; otherwise, it
is set to 0.

Error Handling
In the event of an error, the command generates a code that can be intercepted using the
ON ERR CALL command. If there are any locked records in the database, the command
does nothing and the error 1420 is generated.

248 4th Dimension Language Reference

6

BLOB

4th Dimension Language Reference 249

250 4th Dimension Language Reference

BLOB Commands BLOB

version 6.7 (Modified)
__

Definition
4th Dimension version 6 introduces the BLOB (Binary Large OBjects) data type.

You can define BLOB fields and BLOB variables:
• To create a BLOB field, select BLOB in the Field type drop-down-list within the Field
Properties window.
• To create a BLOB variable, use the compiler declaration command C_BLOB. You can
create local, process, and interprocess variables of type BLOB.

Note: There is no array for BLOBs.

Within 4th Dimension, a BLOB is a contiguous series of variable length bytes, which can
be treated as one whole object or whose bytes can be addressed individually. A BLOB can
be empty (null length) or can contain up to 2147483647 bytes (2 GB).

BLOBs and Memory
A BLOB is loaded into memory in its entirety. A BLOB variable is held and exists in
memory only. A BLOB field is loaded into memory from the disk, like the rest of the
record to which it belongs.

Like the other field types that can retain a large amount of data (Picture and subtable field
types), BLOB fields are not duplicated in memory when you modify a record.
Consequently, the result returned by the commands Old and Modified is not significant
when applied to a BLOB field.

Displaying BLOBs
A BLOB can retain any type of data, so it has no default representation on the screen. If
you display a BLOB field or variable in a form, it will always appear blank, whatever its
contents.

BLOB fields
You can use BLOB fields to store any kind of data, up to 2 GB. You cannot index a BLOB
field, so you must use a formula in order to search records on values stored in a BLOB
field. Do not use BLOB fields for storing data that you want to retrieve quickly with a
search operation. For example, do not store keywords in a BLOB field; instead, use a subfile
in which you can index the keyword subfield.

4th Dimension Language Reference 251

Parameter passing, Pointers and function results
4th Dimension BLOBs can be passed as parameters to 4D commands or 4D Extensions
routines that expect a BLOB parameters. On the other hand, they cannot be passed as
parameters to a user method. A BLOB cannot be returned as a function result.

To pass a BLOB to your own methods, define a pointer to the BLOB and pass the pointer
as parameter.

Examples:
` Declare a variable of type BLOB

C_BLOB (anyBlobVar)
` The BLOB is passed as parameter to a 4D command

SET BLOB SIZE (anyBlobVar;1024*1024)
` The BLOB is passed as parameter to an external routine

$errCode:= Do Something With This BLOB (anyBlobVar)
` A pointer to the BLOB is passed as parameter to a user method

COMPUTE BLOB (->anyBlobVar)
` Declare a variable of type Pointer

C_POINTER (aPointer)
` Define a pointer to the BLOB

aPointer := ->anyBlobVar
` A pointer to the BLOB is passed as parameter to a user method

COMPUTE BLOB (aPointer)

Note for Plug-ins developers: A BLOB parameter is declared as “&O” (the letter “O”, not
the digit “0”).

Assignment
You can assign BLOBs to each other.

Example:
` Declare two variables of type BLOB

C_BLOB (vBlobA;vBlobB)
` Set the size of the first BLOB to 10K

SET BLOB SIZE (vBlobA;10*1024)
` Assign the first BLOB to the second one

vBlobB:=vBlobA

However, no operator can be applied to BLOBs; there is no expression of type BLOB.

252 4th Dimension Language Reference

Addressing BLOB contents
You can address each byte of a BLOB individually using the curly brackets symbols {...}.
Within a BLOB, bytes are numbered from 0 to N-1, where N is the size of the BLOB.
Example:

` Declare a variable of type BLOB
C_BLOB (vBlob)

` Set the size of the BLOB to 256 bytes
SET BLOB SIZE (vBlob;256)

` The loop below initializes the 256 bytes of the BLOB to zero
For (vByte ; 0 ; BLOB size (vBlob)-1)

vBlob{vByte}:=0
End for

Because you can address all the bytes of a BLOB individually, you can actually store
whatever you want in a BLOB field or variable.

BLOBs 4th Dimension commands
4th Dimension provides the following commands for working BLOBS:

• SET BLOB SIZE resizes a BLOB field or variable.
• BLOB size returns the size of a BLOB.
• DOCUMENT TO BLOB and BLOB TO DOCUMENT enable you to load and write a whole
document to and from a BLOB (optionally, the data and resource forks on Macintosh).
• VARIABLE TO BLOB and BLOB TO VARIABLE as well as LIST TO BLOB and BLOB to list allow
you to store and retrieve 4D variables in BLOBs.
• COMPRESS BLOB, EXPAND BLOB and BLOB PROPERTIES allow you to work with
compressed BLOBs
• The commands BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO
BLOB, LONGINT TO BLOB, REAL TO BLOB and TEXT TO BLOB enable you to manipulate
any structured data coming from disk, resources, OS, and so on.
• DELETE FROM BLOB, INSERT IN BLOB and COPY BLOB allow quick handling of large
chunks of data within BLOBs.
• ENCRYPT BLOB and DECRYPT BLOB allow you to encrypt and decrypt data in a 4D
database.

These commands are described in this chapter.

4th Dimension Language Reference 253

In addition:

• C_BLOB declares a variable of type BLOB. Refer to the Compiler chapter for more
information.
• GET CLIPBOARD and APPEND CLIPBOARD enable you to deal with any data type stored
in the Clipboard. Refer to the Clipboard chapter for more information.
• GET RESOURCE and SET RESOURCE enable you to work with any type stored of resource
stored on disk. Refer to the Resources chapter for more information.
• SEND HTML BLOB enable you to send any type of data to a Web browser. Refer to the
Web Server chapter for more information.
• PICTURE TO BLOB, BLOB TO PICTURE and PICTURE TO GIF allow you to open and
convert pictures. Refer to the Pictures chapter for more information.
• GENERATE ENCRYPTION KEYPAIR and GENERATE CERTIFICATE REQUEST are encryption
commands used by the SSL (Secured Socket Layer) secured connection protocol. Refer to
the Secured Protocol chapter for more information.

254 4th Dimension Language Reference

SET BLOB SIZE BLOB

version 6.0
__

SET BLOB SIZE (blob; size{; filler})

Parameter Type Description

blob BLOB → BLOB field or variable
size Number → New size of the BLOB
filler Number → ASCII code of filler character

Description

SET BLOB SIZE resizes the BLOB blob according to the value passed in size.

If you want to allocate new bytes to a BLOB and want to have those bytes initialized to a
specific value, pass the value (0..255) into the filler optional parameter.

Examples

1. When you are through with a large process or interprocess BLOB, it is good idea to free
the memory it occupies. To do so, write:

⇒ SET BLOB SIZE(aProcessBLOB;0)
⇒ SET BLOB SIZE(◊anInterprocessBLOB;0)

2. The following example creates a BLOB of 16K filled of 0xFF:

C_BLOB(vxData)

⇒ SET BLOB SIZE(vxData;16*1024;0xFF)

See Also

BLOB size.

Error Handling

If you cannot resize a BLOB due to insufficient memory, the error -108 is generated. You
can trap this error using an ON ERR CALL interruption method.

4th Dimension Language Reference 255

BLOB size BLOB

version 6.0
__

BLOB size (blob) → Longint

Parameter Type Description

blob BLOB → BLOB field or variable

Function result Longint ← Size in bytes of the BLOB

Description
BLOB size returns the size of blob expressed in bytes.

Examples
The line of code adds 100 bytes to the BLOB myBlob:

⇒ SET BLOB SIZE (BLOB size(myBlob)+100)

See Also
SET BLOB SIZE.

256 4th Dimension Language Reference

COMPRESS BLOB BLOB

version 6.5.3 (Modified)
__

COMPRESS BLOB (blob{; compression})

Parameter Type Description
blob BLOB → BLOB to compress
compression Number → If not omitted:

1, compress as compact as possible
2, compress as fast as possible

Description
The COMPRESS BLOB command compresses the BLOB blob using the internal
4th Dimension compression algorithm. This command only compresses BLOB whose size
is over 255 bytes.

The optional compression parameter allows to set the way the BLOB will be compressed:
• If you pass 1, the BLOB is compressed as much as possible, at the expanse of the speed of
compression and decompression operations.
• If you pass 2, the BLOB is compressed as fast as possible (and will be decompressed as fast
as possible), at the expense of the compression ratio (the compressed BLOB will be bigger).
• If you pass another value or if you omit the parameter, the BLOB is compressed as much
as possible, using the compression mode 1.

4th Dimension provides the following predefined constants:

Constant Type Value
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

After the call, the OK variable is set to 1 if the BLOB has been successfully compressed. If
the compression could not be performed, the OK variable is set to 0. If the compression
could not be performed because of a lack of memory or because the actual size of the blob
is less than 255 bytes, no error is generated and the method resumes its execution.
In any other cases (i.e. the BLOB is damaged), the error -10600 is generated. This error can
be trapped using the ON ERR CALL command.

After a BLOB has been compressed, you can expand it using the EXPAND BLOB command.

To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.

WARNING: A compressed BLOB is still a BLOB, so there is nothing to stop you from
modifying its contents. However, if you do so, the EXPAND BLOB command will not be
able to decompress the BLOB properly.

4th Dimension Language Reference 257

Examples
1. This example tests if the BLOB vxMyBlob is compressed, and, if it is not, compresses it:

BLOB PROPERTIES (vxMyBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed=Is not compressed)

⇒ COMPRESS BLOB (vxMyBlob)
End if

Note however, that if you apply COMPRESS BLOB to an already compressed BLOB, the
command detects it and does nothing.

2. This example allows you to select a document and then compress it:
$vhDocRef := Open document ("")
If (OK=1)

CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)

⇒ COMPRESS BLOB (vxBlob)
If (OK=1)

BLOB TO DOCUMENT (Document;vxBlob)
End if

End if
End if

See Also
BLOB PROPERTIES, EXPAND BLOB.

System Variables or Sets
The OK variable is set to 1 if the BLOB has been successfully compressed; otherwise, it is
set to 0.

258 4th Dimension Language Reference

EXPAND BLOB BLOB

version 6.5.3 (Modified)
__

EXPAND BLOB (blob)

Parameter Type Description
blob BLOB → BLOB to expand

Description
The EXPAND BLOB command expands the BLOB blob that was previously compressed
using the COMPRESS BLOB command.

After the call, the OK variable is set to 1 if the BLOB has been expanded. If the expansion
could not be performed, the OK variable is set to 0.

If the expansion could not be performed because of a lack of memory, no error is
generated and the method resumes its execution.
In any other case (i.e. the BLOB has not been compressed or is damaged), the error -10600
is generated. This error can be trapped using the ON ERR CALL command.

To check if a BLOB has been compressed, use the BLOB PROPERTIES command.

Examples
1. This example tests if the BLOB vxMyBlob is compressed and, if so, expands it:

BLOB PROPERTIES (vxMyBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed#Is not compressed)

⇒ EXPAND BLOB (vxMyBlob)
End if

2. This example allows you to select a document and then expand it, if it is compressed:
$vhDocRef := Open document ("")
If (OK=1)

CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)

BLOB PROPERTIES (vxBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed#Is not compressed)

⇒ EXPAND BLOB (vxBlob)
If (OK=1)

BLOB TO DOCUMENT (Document;vxBlob)
End if

End if
End if

End if

4th Dimension Language Reference 259

See Also
BLOB PROPERTIES, COMPRESS BLOB.

System Variables or Sets
The OK variable is set to 1 if the BLOB has been successfully expanded, otherwise it is set
to 0.

260 4th Dimension Language Reference

BLOB PROPERTIES BLOB

version 6.0
__

BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})

Parameter Type Description
blob BLOB → BLOB for which to get information
compressed Number ← 0 = BLOB is not compressed

1 = BLOB compressed compact
2 = BLOB compressed fast

expandedSize Number ← Size of BLOB (in bytes) when not compressed
currentSize Number ← Current size of BLOB (in bytes)

Description
The BLOB PROPERTIES command returns information about the BLOB blob.

• The compressed parameter tells whether or not the BLOB is compressed, and returns one
of the following values. Note: 4th Dimension provides the predefined constants.

Constant Type Value
Is not compressed Long Integer 0
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

• Whatever the compression status of the BLOB, the expandedSize parameter returns the
size of the BLOB when it is not compressed.

• The parameter currentSize returns the current size of the BLOB. If the BLOB is
compressed, you will usually obtain currentSize less than expandedSize. If the BLOB is not
compressed, you will always obtain currentSize equal to expandedSize.

4th Dimension Language Reference 261

Examples
1. See examples for the commands COMPRESS BLOB and EXPAND BLOB.

2. After a BLOB has been compressed, the following project method obtains the
percentage of space saved by the compression:

` Space saved by compression project method
` Space saved by compression (Pointer {; Pointer }) -> Long
` Space saved by compression (-> BLOB {; -> savedBytes }) -> Percentage

C_POINTER ($1;$2)
C_LONGINT ($0;$vlCompressed;$vlExpandedSize;$vlCurrentSize)

⇒ BLOB PROPERTIES ($1->;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlExpandedSize=0)

$0:=0
If (Count parameters>=2)

$2->:=0
End if

Else
$0:=100-(($vlCurrentSize/$vlExpandedSize)*100)
If (Count parameters>=2)

$2->:=$vlExpandedSize-$vlCurrentSize
End if

End if

After this method has been added to your application, you can use it this way:
` ...

COMPRESS BLOB (vxBlob)
$vlPercent:=Space saved by compression (->vxBlob;->vlBlobSize)
ALERT ("The compression saved "+String (vlBlobSize)+" bytes, so "+String
($vlPercent;"#0%")+" of space.")

See Also
COMPRESS BLOB, EXPAND BLOB.

262 4th Dimension Language Reference

DOCUMENT TO BLOB BLOB

version 6.0
__

DOCUMENT TO BLOB (document; blob{; *})

Parameter Type Description
document String → Name of the document
blob BLOB → BLOB field or variable to receive the document

← Document contents
* * → On Macintosh only:

Resource fork is loaded if * is passed
otherwise Data fork is loaded

Description
DOCUMENT TO BLOB loads the whole contents of document into blob. You must pass the
name of an existing document that is not already open, otherwise an error will be
generated. To let the user choose the document to be loaded into the BLOB, use the
command Open document and the process variable document (see Example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command DOCUMENT TO BLOB loads
the Data fork of the document. To load the Resource fork of the document instead, pass
the optional * parameter. On Windows, the optional * parameter is ignored. Note that the
4D environment provides the equivalent of Mac OS resource forks on Windows. For
example, the data fork of a 4D database is stored in a file with the file extension .4DB; the
resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example
You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button that allows you to load a document
into a BLOB field. The method for this button could be:

$vhDocRef:=Open document("") ` Select the document of your choice
If (OK=1) ` If a document has been chosen

CLOSE DOCUMENT($vhDocRef) ` We don't need to keep it open
⇒ DOCUMENT TO BLOB (Document;[YourTable]YourBLOBField)

If (OK=0)
` Handle error

End if
End if

4th Dimension Language Reference 263

See Also
BLOB TO DOCUMENT, Open document.

System Variables
OK is set to 1 if the document is correctly loaded, otherwise OK is set to 0 and an error is
generated.

Error Handling
• If you try to load (into a BLOB) a document that does not exist or that is already open
by another process or application, the appropriate File Manager error is generated.
• An I/O error can occur if the document is locked, located on a locked volume, or if there
is problem in reading the document.
• If there is not enough memory to load the document, an error -108 is generated.

In each case, you can trap the error using an ON ERR CALL interruption method.

264 4th Dimension Language Reference

BLOB TO DOCUMENT BLOB

version 6.0
__

BLOB TO DOCUMENT (document; blob{; *})

Parameter Type Description
document String → Name of the document
blob BLOB → New contents for the document
* * → On Macintosh only:

Resource fork is written if * is passed;
otherwise, Data fork is written

Description
BLOB TO DOCUMENT rewrites the whole contents of document using the data stored in
blob. If you want to let the user choose the document, use the commands Open document
or Create document and use the process variable document (see example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command BLOB TO DOCUMENT rewrites
the Data fork of the document. To rewrite the Resource fork of the document instead,
pass the optional * parameter. On Windows, the optional * parameter is ignored. Note
that the 4D environment provides the equivalent of Mac OS resource forks on Windows.
For example, the data fork of a 4D database is stored in a file with the file extension .4DB;
the resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example
You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button which allows you to save a
document that will contain the data previously loaded into a BLOB field. The method for
this button could be:

$vhDocRef:=Create document("") ` Save the document of your choice
If (OK=1) ` If a document has been created

CLOSE DOCUMENT($vhDocRef) ` We don't need to keep it open
⇒ BLOB TO DOCUMENT (Document;[YourTable]YourBLOBField)

` Write the document contents
If (OK=0)

` Handle error
End if

End if

4th Dimension Language Reference 265

See Also
Create document, DOCUMENT TO BLOB, Open document.

System Variables
OK is set to 1 if the document is correctly written, otherwise OK is set to 0 and an error is
generated.

Error Handling
• If you try to rewrite a document that does not exist or that is already open by another
process or application, the appropriate File Manager error is generated.
• The disk space may be insufficient for writing the new contents of the document.
• I/O errors can occur while writing the document.
In all cases, you can trap the error using an ON ERR CALL interruption method.

266 4th Dimension Language Reference

VARIABLE TO BLOB BLOB

version 6.0
__

VARIABLE TO BLOB (variable; blob{; offset | *})

Parameter Type Description
variable Variable → Variable to store in the BLOB
blob BLOB → BLOB to receive the variable
offset | * Character → Offset within the BLOB (expressed in bytes)

or * to append the value
← New offset after writing if not *

Description
The command VARIABLE TO BLOB stores the variable variable in the BLOB blob.

If you specify the * optional parameter, the variable is appended to the BLOB and the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of variables or lists (see other BLOB commands) in a BLOB, as long as
the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the
variable is stored at the beginning of the BLOB, overriding its previous contents; the size
of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the variable is written at the offset (starting from
zero) within the BLOB. No matter where you write the variable, the size of the BLOB is
increased according to the location you passed (plus the size of the variable, if necessary).
Newly allocated bytes, other than the ones you are writing, are initialized to zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another variable or list.

VARIABLE TO BLOB accepts any type of variable (including other BLOBs), except the
following:
• Pointer
• Array of pointers
• Two-dimensional arrays

4th Dimension Language Reference 267

However, if you store a Long Integer variable that is a reference to a hierarchical list
(ListRef), VARIABLE TO BLOB will store the Long Integer variable, not the list. To store and
retrieve hierarchical lists in and from a BLOB, use the commands LIST TO BLOB and BLOB
to list.

WARNING: If you use a BLOB for storing variables, you must later use the command
BLOB TO VARIABLE for reading back the contents of the BLOB, because variables are stored
in BLOBs using a 4D internal format.

After the call, if the variable has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, there was not
enough memory.

Note regarding Platform Independence: VARIABLE TO BLOB and BLOB TO VARIABLE use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Examples
1. The two following project methods allow you to quickly store and retrieve arrays into
and from documents on disk:

` SAVE ARRAY project method
` SAVE ARRAY (String ; Pointer)
` SAVE ARRAY (Document ; -> Array)

C_STRING (255;$1)
C_POINTER ($2)
C_BLOB ($vxArrayData)

⇒ VARIABLE TO BLOB ($2->;$vxArrayData) ` Store the array into the BLOB
COMPRESS BLOB ($vxArrayData) ` Compress the BLOB
BLOB TO DOCUMENT ($1;$vxArrayData) ` Save the BLOB on disk

` LOAD ARRAY project method
` LOAD ARRAY (String ; Pointer)
` LOAD ARRAY (Document ; -> Array)

C_STRING (255;$1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
DOCUMENT TO BLOB ($1;$vxArrayData) ` Load the BLOB from the disk
EXPAND BLOB ($vxArrayData) ` Expand the BLOB

⇒ BLOB TO VARIABLE ($vxArrayData;$2->) ` Retrieve the array from the BLOB

268 4th Dimension Language Reference

After these methods have been added to your application, you can write:
ARRAY STRING (...;asAnyArray;...)

` ...
SAVE ARRAY ($vsDocName;->asAnyArray)

` ...
LOAD ARRAY ($vsDocName;->asAnyArray)

2. The two following project methods allow you to quickly store and retrieve any set of
variables into and from a BLOB:

` STORE VARIABLES INTO BLOB project method
` STORE VARIABLES INTO BLOB (Pointer { ; Pointer ... { ; Pointer } })
` STORE VARIABLES INTO BLOB (BLOB { ; Var1 ... { ; Var2 } })

C_POINTER (${1})
C_LONGINT ($vlParam)

SET BLOB SIZE ($1->;0)
For ($vlParam;2;Count parameters)

⇒ VARIABLE TO BLOB (${$vlParam}->;$1->;*)
End for

` RETRIEVE VARIABLES FROM BLOB project method
` RETRIEVE VARIABLES FROM BLOB (Pointer { ; Pointer ... { ; Pointer } })
` RETRIEVE VARIABLES FROM BLOB (BLOB { ; Var1 ... { ; Var2 } })

C_POINTER (${1})
C_LONGINT ($vlParam;$vlOffset)

$vlOffset:=0
For ($vlParam;2;Count parameters)

⇒ BLOB TO VARIABLE ($1->;${$vlParam}->;$vlOffset)
End for

After these methods have been added to your application, you can write:
STORE VARIABLES INTO BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

` ...
RETRIEVE VARIABLES FROM BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

See Also
BLOB to list, BLOB TO VARIABLE, LIST TO BLOB.

System Variables or Sets
The OK variable is set to 1 if the variable has been successfully stored, otherwise it is set to
0.

4th Dimension Language Reference 269

BLOB TO VARIABLE BLOB

version 6.0
__

BLOB TO VARIABLE (blob; variable{; offset})

Parameter Type Description
blob BLOB → BLOB containing 4D variables
variable Variable ← Variable to write with BLOB contents
offset Number → Position of variable within BLOB

← Position of following variable within BLOB

Description
The command BLOB TO VARIABLE rewrites the variable variable with the data stored within
the BLOB blob at the byte offset (starting at zero) specified by offset.

The BLOB data must be consistent with the destination variable. Typically, you will use
BLOBs that you previously filled out using the command VARIABLE TO BLOB.

If you do not specify the optional offset parameter, the variable data is read starting from
the beginning of the BLOB. If you deal with a BLOB in which several variables have been
stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the variable has been successfully rewritten, the OK variable is set to 1. If
the operation could not be performed, the OK variable is set to 0; for example, if there
was not enough memory.

Note regarding Platform Independence: BLOB TO VARIABLE and VARIABLE TO BLOB use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Example
See the examples for the command VARIABLE TO BLOB.

See Also
VARIABLE TO BLOB.

System Variables or Sets
The OK variable is set to 1 if the variable has been successfully rewritten, otherwise it is set
to 0.

270 4th Dimension Language Reference

LIST TO BLOB BLOB

version 6.0
__

LIST TO BLOB (list; blob{; *})

Parameter Type Description
list ListRef → Hierarchical list to store in the BLOB
blob BLOB → BLOB to receive the Hierarchical list
* * → * to append the value

Description
The command LIST TO BLOB stores the hierarchical list list in the BLOB blob.

If you specify the * optional parameter, the hierarchical list is appended to the BLOB and
the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of variables or lists (see other BLOB commands) in a BLOB,
as long as the BLOB fits into memory.

If you do not specify the * optional parameter, the hierarchical list is stored at the
beginning of the BLOB, overriding its previous contents; the size of the BLOB is adjusted
accordingly.

Wherever the hierarchical list is stored, the size of the BLOB will be increased if necessary
according to the specified location (plus up to the size of the list if necessary). Modified
bytes (other than the ones you set) are reset to 0 (zero).

WARNING: If you use a BLOB for storing lists, you must later use the command BLOB to
list for reading back the contents of the BLOB, because lists are stored in BLOBs using a
4D internal format.

After the call, if the list has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, if there was
not enough memory.

Note regarding Platform Independence: LIST TO BLOB and BLOB to list use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those commands can be reused on Macintosh, and vice-
versa.

Examples
See example for the command BLOB to list.

See Also
BLOB to list, BLOB TO VARIABLE, VARIABLE TO BLOB.

4th Dimension Language Reference 271

BLOB to list BLOB

version 6.0
__

BLOB to list (blob{; offset}) → ListRef

Parameter Type Description
blob BLOB → BLOB containing a hierarchical list
offset Number → Offset within the BLOB (expressed in bytes)

← New offset after reading

Function result ListRef ← Reference to newly created list

Description
The command BLOB to list creates a new hierarchical list with the data stored within the
BLOB blob at the byte offset (starting at zero) specified by offset and returns a List
Reference number for that new list.

The BLOB data must be consistent with the command. Typically, you will use BLOBs that
you previously filled out using the command LIST TO BLOB.

If you do not specify the optional offset parameter, the list data is read starting from the
beginning of the BLOB. If you deal with a BLOB in which several variables or lists have
been stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the hierarchical list has been successfully created, the OK variable is set to
1. If the operation could not be performed, the OK variable is set to 0; for example, if
there was not enough memory.

Note regarding Platform Independence: BLOB to list and LIST TO BLOB use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those two commands can be reused on Macintosh and
vice-versa.

272 4th Dimension Language Reference

Example
In this example, the form method for a data entry form extracts a list from a BLOB field
before the form appears on the screen, and stores it back to the BLOB field if the data
entry is validated:

` [Things To Do];"Input" Form Method

Case of

: (Form event=On Load)
⇒ hList:=BLOB to list([Things To Do]Other Crazy Ideas)

If (OK=0)
hList:=New list

 End if

: (Form event=On Unload)
CLEAR LIST(hList;*)

: (bValidate=1)
⇒ LIST TO BLOB(hList;[Things To Do]Other Crazy Ideas)

End case

See Also
LIST TO BLOB.

System Variables and Sets
The OK variable is set to 1 if the list has been successfully created, otherwise it is set to 0.

4th Dimension Language Reference 273

INTEGER TO BLOB BLOB

version 6.0
__

INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})

Parameter Type Description
integer Number → Integer value to write into the BLOB
blob BLOB → BLOB to receive the Integer value
byteOrder Number → 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset | * Variable | * ← New offset after writing if not *

Description
The command INTEGER TO BLOB writes the 2-byte Integer value integer into the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be written.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between the Macintosh
and PC platforms, it is up to you to manage byte swapping issues when using this
command.

If you specify the * optional parameter, the 2-byte Integer value is appended to the BLOB
and the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of Integer, Long Integer, Real or Text values (see other BLOB
commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the 2-byte
Integer value is stored at the beginning of the BLOB, overriding its previous contents; the
size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 2-byte Integer value is written at the byte
offset (starting from zero) within the BLOB. No matter where you write the 2-byte
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 2 bytes, if necessary). Newly allocated bytes, other than the ones you are writing,
are initialized to zero.

274 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

⇒ INTEGER TO BLOB (0x0206;vxBlob;Native byte ordering)

• The size of vxBlob is 2 bytes
• On Macintosh vxBLOB{0} = $02 and vxBLOB{1} = $06
• On PC vxBLOB{0} = $06 and vxBLOB{1} = $02

2. After executing this code:

⇒ INTEGER TO BLOB (0x0206;vxBlob;Macintosh byte ordering)

• The size of vxBlob is 2 bytes
• On all platforms vxBLOB{0} = $02 and vxBLOB{1} = $06

3. After executing this code:

⇒ INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering)

• The size of vxBlob is 2 bytes
• On all platforms vxBLOB{0} = $06 and vxBLOB{1} = $02

4. After executing this code:
SET BLOB SIZE (vxBlob;100)

⇒ INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering;*)

• The size of vxBlob is 102 bytes
• On all platforms vxBLOB{100} = $06 and vxBLOB{101} = $02
• The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vlOffset:=50

⇒ INTEGER TO BLOB (518;vxBlob;Macintosh byte ordering;vlOffset)

• The size of vxBlob is 100 bytes
• On all platforms vxBLOB{50} = $02 and vxBLOB{51} = $06
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 2 (and is now equal to 52)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, LONGINT TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 275

LONGINT TO BLOB BLOB

version 6.0
__

LONGINT TO BLOB (longInt; blob; byteOrder{; offset | *})

Parameter Type Description
longInt Number → Long Integer value to write into the BLOB
blob BLOB → BLOB to receive the Long Integer value
byteOrder Number → 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset | * Variable | * → Offset within the BLOB (expressed in bytes)
or * to append the value

← New offset after writing if not *

Description
The command LONGINT TO BLOB writes the 4-byte Long Integer value integer into the
BLOB blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
written. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the * optional parameter, the 4-byte Long Integer value is appended to the
BLOB and the size of the BLOB is extended accordingly. Using the * optional parameter,
you can sequentially store any number of Integer, Long Integer, Real or Text values (see
other BLOB commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the 4-
byte Long Integer value is stored at the beginning of the BLOB, overriding its previous
contents; the size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 4-byte Long Integer value is written at the
offset (starting from zero) within the BLOB. No matter where you write the 4-byte Long
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 4 bytes, if necessary). New allocated bytes, other than the ones you are writing, are
initialized to zero.

276 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

⇒ LONGINT TO BLOB (0x01020304;vxBlob;Native byte ordering)

• The size of vxBlob is 4 bytes
• On Macintosh vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=$04
• On PC vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

2. After executing this code:

⇒ LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering)

• The size of vxBlob is 4 bytes
• On all platforms vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=$04

3. After executing this code:

⇒ LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering)

• The size of vxBlob is 4 bytes
• On all platforms vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

4. After executing this code:
SET BLOB SIZE (vxBlob;100)

⇒ LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering;*)

• The size of vxBlob is 104 bytes
• On all platforms vxBLOB{100}=$04, vxBLOB{101}=$03, vxBLOB{102}=$02,
vxBLOB{103}=$01
• The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vlOffset:=50

⇒ LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering;vlOffset)

• The size of vxBlob is 100 bytes
• On all platforms vxBLOB{50}=$01, vxBLOB{51}=$02, vxBLOB{52}=$03, vxBLOB{53}=$04
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 4 (and is now equal to 54)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 277

REAL TO BLOB BLOB

version 6.0
__

REAL TO BLOB (real; blob; realFormat{; offset | *})

Parameter Type Description
real Number → Real value to write into the BLOB
blob BLOB → BLOB to receive the Real value
realFormat Number → 0 Native real format

1 Extended real format
2 Macintosh Double real format
3 Windows Double real format

offset | * Variable | * → Offset within the BLOB (expressed in bytes)
or * to append the value

← New offset after writing if not *

Description
The command REAL TO BLOB writes the Real value real into the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be written. You pass one of the following predefined constants provided by 4th
Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Platform Independence Note: If you exchange BLOBs between Macintosh and PC
platforms, it is up to you to manage real formats and byte swapping issues when using
this command.

If you specify the * optional parameter, the Real value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the Real
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

278 4th Dimension Language Reference

If you pass the offset variable parameter, the Real value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Real value, the size of the
BLOB is increased according to the location you passed (plus up to 8 or 10 bytes, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

C_REAL (vrValue)
vrValue := ...

⇒ REAL TO BLOB (vrValue;vxBlob;Native real format)

• On PC and Power Macintosh, the size of vxBlob is 8 bytes
• On Macintosh 68K, the size of vxBlob is 10 bytes

2. After executing this code:
C_REAL (vrValue)
vrValue := ...

⇒ REAL TO BLOB (vrValue;vxBlob;Extended real format)

• On all platforms, the size of vxBlob is 10 bytes

3. After executing this code:
C_REAL (vrValue)
vrValue := ...

` or Windows double real format
⇒ REAL TO BLOB (vrValue;vxBlob;Macintosh Double real format)

• On all platforms, the size of vxBlob is 8 bytes

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...

 ` or Macintosh double real format
⇒ INTEGER TO BLOB (vrValue;vxBlob;Windows Double real format)

• On all platforms, the size of vxBlob is 8 bytes

4th Dimension Language Reference 279

5. After executing this code:
SET BLOB SIZE (vxBlob;100)

⇒ REAL TO BLOB (vrValue;vxBlob;Extended real format;*)

• On all platforms, the size of vxBlob is 110 bytes
• On all platforms, the real value is stored at the bytes #100 to #109
• The other bytes of the BLOB are left unchanged

6. After executing this code:
SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...
vlOffset:=50

` or Macintosh double real format
⇒ REAL TO BLOB (vrValue;vxBlob;Windows Double real format;vlOffset)

• On all platforms, the size of vxBlob is 100 bytes
• On all platforms, the real value is stored in the bytes #50 to #57
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 8 (and is now equal to 58)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, TEXT TO BLOB.

280 4th Dimension Language Reference

TEXT TO BLOB BLOB

version 6.0
__

TEXT TO BLOB (text; blob; textFormat{; offset | *})

Parameter Type Description
text String → Text value to write into the BLOB
blob BLOB → BLOB to receive the text value
textFormat Number → 0 C String

1 Pascal String
2 Text with length
3 Text without length

offset | * Variable | * → Offset within the BLOB (expressed in bytes)
or * to append the value

← New offset after writing if not *

Description
The command TEXT TO BLOB writes the Text value text into the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be written. You
pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
C string Long Integer 0
Pascal string Long Integer 1
Text with length Long Integer 2
Text without length Long Integer 3

The following table describes each of these formats:

Text format Description and Examples
C string The text is ended by a NULL character (ASCII code $00)

"" → $00
"Hello World!" → $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00

Pascal string The text is preceded by a 1-byte length
"" → $00
"Hello World!" → $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Text with length The text is preceded by a 2-byte length
"" → $00 00
"Hello World!" → $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 281

Text without length The text is composed only of its characters.
"" → No data
"Hello World!" → $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Note: The command accepts both Text (declared with C_TEXT) and String (declared with
C_STRING) expressions. Remember that a Text variable can contain up to 32,000
characters and a String variable can contain up to the number of characters in its
declaration, with a maximum of 255 characters.

If you specify the * optional parameter, the Text value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the Text
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the Text value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Text value, the size of the
BLOB is, increased according to the location you passed (plus up to the size of the text, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therfore, you can reuse that same variable with another
BLOB writing command to write another value.

Example
After executing this code:

SET BLOB SIZE (vxBlob;0)
C_TEXT (vtValue)
vtValue := "Hello World!" ` Length of vtValue is 12 bytes

⇒ TEXT TO BLOB (vtValue;vxBlob;C string) ` Size of BLOB becomes 13 bytes
⇒ TEXT TO BLOB (vtValue;vxBlob;Pascal string) ` Size of BLOB becomes 13 bytes
⇒ TEXT TO BLOB (vtValue;vxBlob;Text with length) ` Size of BLOB becomes 14 bytes
⇒ TEXT TO BLOB (vtValue;vxBlob;Text without length) ` Size of BLOB becomes 12 bytes

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, REAL TO BLOB.

282 4th Dimension Language Reference

BLOB to integer BLOB

version 6.0
__

BLOB to integer (blob; byteOrder{; offset}) → Number

Parameter Type Description
blob BLOB → BLOB from which to get the integer value
byteOrder Number → 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset Variable → Offset within the BLOB (expressed in bytes)
← New offset after reading

Function result Number ← 2-byte Integer value

Description
The command BLOB to integer returns a 2-byte Integer value read from the BLOB blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be read.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues when using this command.

 If you specify the optional offset variable parameter, the 2-byte Integer value is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first two bytes of the BLOB are read.

Note: You should pass an offset (in bytes) value between 0 (zero) and the size of the BLOB
minus 2. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read, Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 283

Example
The following example reads 20 Integer values from a BLOB, starting at the offset 0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

⇒ $viValue:=BLOB to integer(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $viValue

End for

See Also
BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

284 4th Dimension Language Reference

BLOB to longint BLOB

version 6.0
__

BLOB to longint (blob; byteOrder{; offset}) → Number

Parameter Type Description
blob BLOB → BLOB from which to get

the Long Integer value
byteOrder Number → 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset Variable → Offset within the BLOB (expressed in bytes)
← New offset after reading

Function result Number ← 4-byte Long Integer value

Description
The command BLOB to longint returns a 4-byte Long Integer value read from the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the optional offset variable parameter, the 4-byte Long Integer is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first four bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 4.
If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 285

Example
The following example reads 20 Long Integer values from a BLOB, starting at the offset
0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

⇒ $vlValue:=BLOB to longint(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $vlValue

End for

See Also
BLOB to integer, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

286 4th Dimension Language Reference

BLOB to real BLOB

version 6.0
__

BLOB to real (blob; realFormat{; offset}) → Real

Parameter Type Description
blob BLOB → BLOB from which to get the Real value
realFormat Number → 0 Native real format

1 Extended real format
2 Macintosh Double real format
3 Windows Double real format

offset Variable → Offset within the BLOB (expressed in bytes)
← New offset after reading

Function result Real ← Real value

Description
The command BLOB to real returns a Real value read from the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage real formats and byte swapping issues while using
this command.

If you specify the optional offset variable parameter, the Read value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the first 8 or 10 bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 8
or 10. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 287

Example
The following example reads 20 Real values from a BLOB, starting at the offset 0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

⇒ $vrValue:=BLOB to real(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $vrValue

End for

See Also
BLOB to integer, BLOB to longint, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB,
REAL TO BLOB, TEXT TO BLOB.

288 4th Dimension Language Reference

BLOB to text BLOB

version 6.0
__

BLOB to text (blob; textFormat{; offset{; textLength}}) → Text

Parameter Type Description
blob BLOB → BLOB from which to get the Text value
textFormat Number → 0 C String

1 Pascal String
2 Text with length
3 Text without length

offset Variable → Offset within the BLOB (expressed in bytes)
← New offset after reading

textLength Number → Number of characters to be read

Function result Text ← Text value

Description
The BLOB to text command returns a Text value read from the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be read. You pass
one of the following predefined constants provided by 4th Dimension:

Constant Type Value
C string Long Integer 0
Pascal string Long Integer 1
Text with length Long Integer 2
Text without length Long Integer 3

The following table describes each of these formats:

Text format Description & Examples
C string The text is ended by a NULL character (ASCII code $00)

"" → $00
"Hello World!" → $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00

Pascal string The text is preceded a 1-byte length
"" → $00
"Hello World!" → $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Text with length The text is preceded by a 2-byte length
"" → $00 00
"Hello World!" → $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Text without length The text is only composed of its characters.
"" → No data
"Hello World!" → $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 289

WARNING: The number of characters to be read is determined by the textFormat
parameter, EXCEPT for the format Text without length, for which you MUST specify the
number of characters to be read in the parameter textLength. For the other formats,
textLength is ignored and you can omit it.

Remember that a Text variable can contain up to 32,000 characters and a String variable
can contain up to the number of characters in its declaration, with a maximum of 255
characters. If you try to read more data than a variable can hold, 4D will truncate the
result of the command when placing it into the variable.

If you specify the optional offset variable parameter, the Text value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the beginning of the BLOB is read according to the value you pass in
textFormat. Note that you must pass the offset variable parameter when you are reading
text without length.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus
the size of the text to be read. If you do not do so, the function result is unpredictable.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

Example
The following example reads an hypothetical Mac OS-based resource whose internal
format is identical to that of the 'STR#' resources:

GET RESOURCE ("ABCD";viResID;vxResData;viMyResFile)
vlSize:=BLOB Size(vxResData)
If (vlSize>0)

` The resource starts with a 2-byte integer specifying the number of strings
vlOffset:=0
viNbEntries:=BLOB to integer(vxResData;Macintosh Byte Ordering;vlOffset)

` Then the resource contains concatenated, not padded, Pascal strings
For (viEntry;1;viNbEntries)

If (vlOffset<vlSize)
⇒ vsEntry:=BLOB to text(vxResData;Pascal string;vlOffset)

` Do something with vsEntry
Else

` Resource data is invalid, get out of the loop
viEntry:=viNbEntries+1

End if
End for

End if

See Also
BLOB to integer, BLOB to longint, BLOB to real, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

290 4th Dimension Language Reference

INSERT IN BLOB BLOB

version 6.0
__

INSERT IN BLOB (blob; offset; len{; filler})

Parameter Type Description
blob BLOB → BLOB into which bytes will be inserted
offset Variable → Starting position where bytes will be inserted
len Number → Number of bytes to be inserted
filler Number → Default byte value (0x00..0xFF)

0x00 if omitted

Description
The command INSERT IN BLOB inserts the number of bytes specified by len into the BLOB
blob at the position specified by offset. The BLOB then becomes len bytes larger.

If you do not specify the optional filler parameter, the bytes inserted into the BLOB are set
to 0x00. Otherwise, the bytes are set to the value you pass in filler (modulo 256 — 0..255).

Before the call, you pass in the offset variable parameter the position of the insertion
relative to the beginning of the BLOB.

See Also
DELETE FROM BLOB.

4th Dimension Language Reference 291

DELETE FROM BLOB BLOB

version 6.0
__

DELETE FROM BLOB (blob; offset; len)

Parameter Type Description
blob BLOB → BLOB from which to delete bytes
offset Number → Starting offset where bytes will be deleted
len Number → Number of bytes to be deleted

Description
The command DELETE FROM BLOB deletes the number of bytes specified by len from the
BLOB blob at the position specified by offset (expressed relative to the beginning of the
BLOB). The BLOB then becomes len bytes smaller.

See Also
INSERT IN BLOB.

292 4th Dimension Language Reference

COPY BLOB BLOB

version 6.0
__

COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)

Parameter Type Description
srcBLOB BLOB → Source BLOB
dstBLOB BLOB → Destination BLOB
srcOffset Variable → Source position for the copy
dstOffset Variable → Destination position for the copy
len Number → Number of bytes to be copied

Description
The COPY BLOB command copies the number of bytes specified by len from the BLOB
srcBLOB to the BLOB dstBLOB.

The copy starts at the position (expressed relative to the beginning of the source BLOB)
specified by srcOffset and takes place at the position (expressed relative to the beginning
of the destination BLOB) specified by dstOffset.

Note: The destination BLOB can be resized if necessary.

See Also
DELETE FROM BLOB, INSERT IN BLOB.

4th Dimension Language Reference 293

ENCRYPT BLOB BLOB

version 6.7
__

ENCRYPT BLOB (toEncrypt; sendPrivKey{; recipPubKey})

Parameter Type Description
toEncrypt BLOB → Data to encrypt

← Encrypted data
sendPrivKey BLOB → Sender’s private key
recipPubKey BLOB → Recipient’s public key

Description
The command ENCRYPT BLOB encrypts the content of the toEncrypt BLOB with the
sender’s private key sendPrivKey, as well as optionally the recipient’s public key
recipPubKey. These keys should be generated by the command GENERATE ENCRYPTION
KEYPAIR (within the “Secured Protocol” theme).

Note: This command uses the SSL protocol algorithm and encryption features. To be able
to use this command, make sure that the components necessary to the SSL protocol are
installed properly on your machine — even though you do not want to use SSL for 4D
Web server connections. For detailed information on this protocol, please refer to section
Web Services, Using SSL Protocol.

• If one key is used for the encryption (the sender’s private key), only people in
possession of the public key will be able to read the information. This system guarantees
that the sender himself has encrypted the information.
• The simultaneous use of the sender’s private key and recipient’s public key guarantees
that only one recipient will be able to read the information.

The BLOB containing the keys has a PKCS internal forma. This standard cross platform
format allows exchanging or handling keys simply by copy-pasting in an Email or a text
file.

Once the command has been run, the toEncrypt BLOB contains the encrypted data that
will be decrypted only with the DECRYPT BLOB command, with the sender’s public key
passed as parameter.
Moreover, if the optional recipient’s public key has been used to encrypt the information,
the recipient’s private key will also be necessary for decrypting.

294 4th Dimension Language Reference

Encryption principle with public and private keys for message exchange between two
people, “Alice” and “Bob”:

Note: The cipher contains a checksum functionality in order to avoid any BLOB content
modification (deliberately or not). Consequently, an encrypted BLOB should not be
modified otherwise it might not be decrypted.

Optimizing Encryption Commands
Data encryption slows down the execution of your applications, especially if a pair of keys
is used. However, you can consider the following optimization tips:

• Depending on the current available memory, the command will execute in
“synchronous” or “asynchronous” mode.
The asynchronous mode is faster, since it does not freeze the other processes. This mode is
automatically used if the available memory is at least twice the size of the data to encrypt.
Otherwise, for security reasons, the synchronous mode is used. This mode is slower since
it freezes the other processes.

• Regarding large BLOBs, you can encrypt only a small “strategic” part of the BLOB in
order to reduce the size of data to be processed as well as the processing time.

4th Dimension Language Reference 295

Examples
• Using a single key
A company wants to keep the data stored in a 4D database private. It has to regularly send
these information to its subsidiaries through files, via the Internet.

1. The company generates a pair of keys with the command GENERATE ENCRYPTION
KEYPAIR:

`Method GENERATE_KEYS_TXT
C_BLOB($BPublicKey; $BPrivateKey)
GENERATE ENCRYPTION KEYPAIR($BPrivateKey; $BPublicKey)
BLOB TO DOCUMENT("PublicKey.txt"; $BPublicKey)
BLOB TO DOCUMENT("PrivateKey.txt"; $BPrivateKey)

2. The company keeps the private key and sends a copy of the document containing the
public key to each subsidiary. For maximum security, the key should be copied on a disk
handed over to the subsidiaries.

3. Then the company copies the private information (stored in the text field, for
example) in BLOBs which will be encrypted with the private key:

`Method ENCRYPT_INFO
C_BLOB($vbEncrypted;$vbPrivateKey)
C_TEXT($vtEncrypted)

$vtEncrypted:=[Private]Info
VARIABLE TO BLOB ($vtEncrypted;$vbEncrypted)
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If(OK=1)

⇒ ENCRYPT BLOB ($vbEncrypted; $vbPrivateKey)
BLOB TO DOCUMENT ("Update.txt";$vbEncrypted)

End if

4. The update files can be sent to the subsidiaries (though a non-secured channel such as
the Internet). If a third person gets hold of the encrypted file, he will not be able to
decrypt it without the public key.

5. Each subsidiary can decrypt the document with the public key:

`Method DECRYPT_INFO
C_BLOB($vbEncrypted;$vbPublicKey)
C_TEXT($vtDecrytped)
C_TIME ($vtDocRef)

ALERT ("Please select an encrypted document.")
$vtDocRef:=Open document("") `Select Update.txt

296 4th Dimension Language Reference

If (OK=1)
CLOSE DOCUMENT($vtDocRef)
DOCUMENT TO BLOB(Document;$vbEncrypted)
DOCUMENT TO BLOB("PublicKey.txt"; $vbPublicKey)
If (OK=1)

⇒ DECRYPT BLOB ($vbEncrypted; $vbPublicKey)
BLOB TO VARIABLE($vbEncrypted; $vtDecrypted)
CREATE RECORD ([Private])
[Private]Info:=$vtDecrypted
SAVE RECORD([Private])

End if
End if

• Using keypairs
A company wants to use the Internet to exchange information. Each subsidiary receives
private information and also sends information to the corporate office. Consequently
there are two requirements:
- The recipient only should be able to read the message,
- The recipient must have proof that the message was sent by the sender himself.

1. The corporate office and each subsidiary generate their own key pairs (with the
GENERATE_KEYS_TXT method).

2. The private key is kept secret by both sides. Each subsidiary sends its public key to the
corporate office who, in its turn, sends its public key too. This key transfer does not need
to be done through a secured channel as the public key is not enough to decrypt the
message.

3. To encrypt the information to send, the subsidiary or the corporate house executes the
ENCRYPT_INFO_2 method which uses the sender’s private key and the recipient’s public
key to encrypt the information:

`Method ENCRYPT_INFO_2
C_BLOB($vbEncrypted;$vbPrivateKey;$vbPublicKey)
C_TEXT($vtEncrypt)
C_TIME ($vtDocRef)

$vtEncrypt:= [Private]Info
VARIABLE TO BLOB ($vtEncrypt;$vbEncrypted)

` Your own private key is loaded...
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If (OK=1)

` ...and the recipient’s public key
ALERT ("Please select the recipient’s public key.")
$vhDocRef:=Open document("") `Public key to load

4th Dimension Language Reference 297

If (OK=1)
CLOSE DOCUMENT($vtDocRef)
DOCUMENT TO BLOB(Document;$vbPublicKey)

`BLOB encryption with the two keys as parameters
⇒ ENCRYPT BLOB ($vbEncrypted; $vbPrivateKey; $vbPublicKey)

BLOB TO DOCUMENT ("Update.txt";$vbEncrypted)
End if

End if

4. The encrypted file can then be sent to the recipient via the Internet. If a third person
gets hold of it, he or she will not be able to decrypt the message, even if he or she has the
public keys as the recipient’s private key will also be required.

5. Each recipient can decrypt the document by using his/her own private key and the
sender’s public key:

`Method DECRYPT_INFO_2
C_BLOB($vbEncrypted;$vbPublicKey;$vbPrivateKey)
C_TEXT($vtDecrypted)
C_TIME ($vhDocRef)

ALERT ("Please select the encrypted document.")
$vhDocRef:=Open document("") `Select the Update.txt file
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
DOCUMENT TO BLOB(Document;$vbEncrypted)

`Your own private key is loaded
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If (OK=1)

` ...and the sender’s public key
ALERT ("Please select the sender’s public key.")
$vhDocRef:=Open document("") `Public key to load
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
DOCUMENT TO BLOB(Document;$vbPublicKey)

`Decrypting the BLOB with two keys as parameters
⇒ DECRYPT BLOB ($vbEncrypted; $vbPublicKey;$vbPrivateKey)

BLOB TO VARIABLE($vbEncrypted; $vtDecrypted)
CREATE RECORD ([Private])
[Private]Info:=$vtDecrypted
SAVE RECORD([Private])

End if
End if

End if

See Also
DECRYPT BLOB, GENERATE ENCRYPTION KEYPAIR.

298 4th Dimension Language Reference

DECRYPT BLOB BLOB

version 6.7
__

DECRYPT BLOB (toDecrypt; sendPubKey{; recipPrivKey})

Parameter Type Description
toDecrypt BLOB → Data to decrypt

← Decrypted data
sendPubKey BLOB → Sender’s public key
recipPrivKey BLOB → Recipient’s private key

Description
The command DECRYPT BLOB decrypts the content of the BLOB toDecrypt using the
sender’s public key sendPubKey and, optionally, the recipient’s private key recipPrivKey.

The BLOB containing the sender’s public key is passed in the sendPubKey parameter. This
key has been generated by the sender using the GENERATE ENCRYPTION KEYPAIR
command and it has to be sent to the recipient.

The BLOB containing the recipient’s private key can be passed in the optional parameter
recipPrivKey. In this case, the recipient has to generate a pair of encryption keys with the
GENERATE ENCRYPTION KEYPAIR command and has to send his/her public key to the
sender. The keypair-based encryption system guarantees that the message has been
encrypted by the sender only and it can be decrypted by the recipient only. For more
information about the keypair-based encryption system, refer to the routine ENCRYPT
BLOB.

The command DECRYPT BLOB offers a checksum functionality in order to avoid any
BLOB content modification (deliberate or not). If the encrypted BLOB is damaged or
modified, the command will do nothing and an error will be returned.

Example
Refer to the examples given for the ENCRYPT BLOB command.

See Also
ENCRYPT BLOB, GENERATE ENCRYPTION KEYPAIR.

4th Dimension Language Reference 299

300 4th Dimension Language Reference

7

Boolean

4th Dimension Language Reference 301

302 4th Dimension Language Reference

Boolean Commands Boolean

version 6.0
__

4D includes Boolean functions, are used for Boolean calculations:

True
False
Not

Examples
This example sets a Boolean variable based on the value of a button. It returns True in
myBoolean if the myButton button was clicked and False if the button was not clicked.
When a button is clicked, the button variable is set to 1.

If (myButton=1) ` If the button was clicked
 myBoolean:=True ` myBoolean is set to True

Else ` If the button was not clicked,
myBoolean:=False ` myBoolean is set to False

End if

The previous example can be simplified into one line.

myBoolean:=(myButton=1)

See Also
False, Logical Operators, Not, True.

In addition, the following 4D commands return a Boolean result: Activated, After, Before,
Before selection, Before subselection, Caps lock down, Compiled application, Deactivated,
During, End selection, End subselection, In break, In footer, In header, In transaction, Is a list,
Is a variable, Is in set, Is user deleted, Locked, Macintosh command down, Macintosh control
down, Macintosh option down, Modified, Modified record, Nil, Outside call, Read only state,
Semaphore, Shift down, True, Undefined, User in group, Windows Alt down, Windows Ctrl
down.

4th Dimension Language Reference 303

True Boolean

version 3
__

True → Boolean

Parameter Type Description
This command does not require any parameters

Description
True returns the Boolean value True.

Example
The following example sets the variable vbOptions to True:

⇒ vbOptions:=True

See Also
False, Not.

304 4th Dimension Language Reference

False Boolean

version 3
__

False → Boolean

Parameter Type Description
This command does not require any parameters

Description
False returns the Boolean value False.

Example
The following example sets the variable vbOptions to False:

⇒ vbOptions:=False

See Also
Not, True.

4th Dimension Language Reference 305

Not Boolean

version 3
__

Not (boolean) → Boolean

Parameter Type Description
boolean Boolean → Boolean value to negate

Description
The Not function returns the negation of boolean, changing True to False or False to True.

Example
This example first assigns True to a variable, then changes the variable value to False, and
then back to True.

vResult:=True ` vResult is set to True
⇒ vResult:=Not(vResult) ` vResult is set to False
⇒ vResult:=Not(vResult) ` vResult is set to True

306 4th Dimension Language Reference

8

Clipboard

4th Dimension Language Reference 307

308 4th Dimension Language Reference

APPEND TO CLIPBOARD Clipboard

version 6.0
__

APPEND TO CLIPBOARD (dataType; data)

Parameter Type Description
dataType String → 4-character data type string
data BLOB → Data to append to the Clipboard

Description
The APPEND TO CLIPBOARD command appends to the Clipboard the data contained in
the BLOB data under the data type specified in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the BLOB data is correctly appended to the Clipboard, the OK variable is set to 1.
Otherwise the OK variable is set to 0 and an error may be generated.

Usually, you will use the APPEND TO CLIPBOARD command to append multiple instances
of the same data to the Clipboard or to append data that is not of type TEXT or PICT. To
append new data to the Clipboard, you must first clear the Clipboard using the
CLEAR CLIPBOARD command.

If you want to clear and append:
• text to the Clipboard, use the SET TEXT TO CLIPBOARD command,
• a picture to the Clipboard, use the SET PICTURE TO CLIPBOARD command.

However, note that if a BLOB actually contains some text or a picture, you can use the
APPEND TO CLIPBOARD command to append a text or a picture to the Clipboard.

Example
Using Clipboard commands and BLOBs, you can build sophisticated Cut/Copy/Paste
schemes that deal with structured data rather than a unique piece of data. In the
following example, the two project methods SET RECORD TO CLIPBOARD and GET
RECORD FROM CLIPBOARD enable you to treat a whole record as one piece of data to be
copied to or from the Clipboard.

4th Dimension Language Reference 309

` SET RECORD TO CLIPBOARD project method
` SET RECORD TO CLIPBOARD (Number)
` SET RECORD TO CLIPBOARD (Table number)

C_LONGINT($1;$vlField;$vlFieldType)
C_POINTER($vpTable;$vpField)
C_STRING(255;$vsDocName)
C_TEXT($vtRecordData;$vtFieldData)
C_BLOB($vxRecordData)

` Clear the Clipboard (it will stay empty if there is no current record)
⇒ CLEAR CLIPBOARD

` Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)

` If there is a current record for that table
If ((Record number($vpTable->)>=0) | (Is new record($vpTable->)))

` Initialize the text variable that will hold the text image of the record
$vtRecordData:=""

` For each field of the record:
For ($vlField;1;Count fields($1))

` Get the type of the field
GET FIELD PROPERTIES($1;$vlField;$vlFieldType)

` Get a pointer to the field
$vpField:=Field($1;$vlField)

` Depending on the type of the field, copy (or not) its data
` in the appropriate manner

Case of
: (($vlFieldType=Is Alpha field) | ($vlFieldType=Is Text))

$vtFieldData:=$vpField->
: (($vlFieldType=Is Real) | ($vlFieldType=Is Integer) |

($vlFieldType=Is LongInt) | ($vlFieldType=Is Date) | ($vlFieldType=Is Time))
$vtFieldData:=String($vpField->)

: ($vlFieldType=Is Boolean)
$vtFieldData:=String(Num($vpField->);"Yes;;No")

Else
` Skip and ignore other field data types

$vtFieldData:=""
End case

` Accumulate the field data into the text variable holding
` the text image of the record

$vtRecordData:=$vtRecordData+Field name($1;$vlField)+":"+Char(9)
+$vtFieldData+CR

` Note: The method CR returns Char(13) on Macintosh
` and Char(13)+Char(10) on Windows

End for
` Put the text image of the record into the clipboard

SET TEXT TO CLIPBOARD($vtRecordData)

310 4th Dimension Language Reference

` Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))

` Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)

` Create scrap file
SET CHANNEL(10;$vsDocName)

` Send the whole record into the scrap file
SEND RECORD($vpTable->)

` Close the scrap file
SET CHANNEL(11)

` Load the scrap file into a BLOB
DOCUMENT TO BLOB($vsDocName;$vxRecordData)

` We longer need the scrap file
DELETE DOCUMENT($vsDocName)

` Append the full image of the record into the Clipboard
` Note: We use arbitrarily "4Drc" as data type

⇒ APPEND TO CLIPBOARD("4Drc";$vxRecordData)
` At this point, the clipboard contains:
` (1) A text image of the record (as shown in the screen shots below)
` (2) A whole image of the record (Picture, Subfile and BLOB fields included)

End if

While entering the following record:

4th Dimension Language Reference 311

If you apply the method SET RECORD TO CLIPBOARD to the [Employees] table, the
Clipboard will contain the text image of the record, as shown, and also the whole image
of the record.

You can paste this image of the record to another record, using the method GET RECORD
FROM CLIPBOARD, as follows:

` GET RECORD FROM CLIPBOARD method
` GET RECORD FROM CLIPBOARD (Number)
` GET RECORD FROM CLIPBOARD (Table number)

C_LONGINT($1;$vlField;$vlFieldType;$vlPosCR;$vlPosColon)
C_POINTER($vpTable;$vpField)
C_STRING(255;$vsDocName)
C_BLOB($vxClipboardData)
C_TEXT($vtClipboardData;$vtFieldData)

` Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)

` If there is a current record
If ((Record number($vpTable->)>=0) | (Is new record($vpTable->)))

Case of
` Does the clipboard contain a full image record?

: (Test clipboard("4Drc")>0)
` If so, extract the clipboard contents

GET CLIPBOARD("4Drc";$vxClipboardData)
` Name for scrap file in Temporary folder

$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
` Delete the scrap file if it exists (error should be tested here)

DELETE DOCUMENT($vsDocName)
` Save the BLOB into the scrap file

BLOB TO DOCUMENT($vsDocName;$vxClipboardData)

312 4th Dimension Language Reference

` Open the scrap file
SET CHANNEL(10;$vsDocName)

` Receive the whole record from the scrap file
RECEIVE RECORD($vpTable->)

` Close the scrap file
SET CHANNEL(11)

` We longer need the scrap file
DELETE DOCUMENT($vsDocName)

` Does the clipboard contain TEXT?
: (Test clipboard("TEXT")>0)

` Extract the text from the clipboard
$vtClipboardData:=Get text from clipboard

` Initialize field number to be increment
$vlField:=0
Repeat

` Look for the next field line in the text
$vlPosCR:=Position(CR ;$vtClipboardData)
If ($vlPosCR>0)

` Extract the field line
$vtFieldData:=Substring($vtClipboardData;1;$vlPosCR-1)

` If there is a colon ":"
$vlPosColon:=Position(":";$vtFieldData)
If ($vlPosColon>0)

` Take only the field data (eliminate field name)
$vtFieldData:=Substring($vtFieldData;$vlPosColon+2)

End if
` Increment field number

$vlField:=$vlField+1
` Clipboard may contain more data than we need...

If ($vlField<=Count fields($vpTable))
` Get the type of the field

GET FIELD PROPERTIES($1;$vlField;$vlFieldType)
` Get a pointer to the field

$vpField:=Field($1;$vlField)
` Depending on the type of the field,
` copy (or not) the text in the appropriate manner

Case of
: (($vlFieldType=Is Alpha field) | ($vlFieldType=Is Text))

$vpField->:=$vtFieldData
: (($vlFieldType=Is Real) |

($vlFieldType=Is Integer) | ($vlFieldType=Is LongInt))
$vpField->:=Num($vtFieldData)

: ($vlFieldType=Is Date)
$vpField->:=Date($vtFieldData)

: ($vlFieldType=Is Time)
$vpField->:=Time($vtFieldData)

4th Dimension Language Reference 313

: ($vlFieldType=Is Boolean)
$vpField->:=($vtFieldData="Yes")

Else
` Skip and ignore other field data types

End case
Else

` All fields have been assigned, get out of the loop
$vtClipboardData:=""

End if
` Eliminate text that has just been extracted

$vtClipboardData:=Substring($vtClipboardData;$vlPosCR+Length(CR))
Else

` No delimiter found, get out of the loop
$vtClipboardData:=""

End if
` Repeat as long as we have data

Until (Length($vtClipboardData)=0)
Else

ALERT("The Clipboard does not any data that can be pasted as a record.")
End case

End if

See Also
CLEAR CLIPBOARD, SET PICTURE TO CLIPBOARD, SET TEXT TO CLIPBOARD.

System Variables
If the BLOB data is correctly appended to the clipboard, OK is set to 1; otherwise OK is set
to 0 and an error may be generated.

Error Handling
If there is not enough memory to append the BLOB data to the clipboard, an error -108 is
generated.

314 4th Dimension Language Reference

CLEAR CLIPBOARD Clipboard

version 6.0
__

CLEAR CLIPBOARD

Parameter Type Description
This command does not require any parameters

Description
The CLEAR CLIPBOARD command clears the Clipboard of its contents. If the Clipboard
contains multiple instances of the same data, all instances are cleared. After a call to
CLEAR CLIPBOARD, the Clipboard becomes empty.

You must call CLEAR CLIPBOARD once before appending new data to the Clipboard using
the command APPEND TO CLIPBOARD, because this latter command does not clear the
Clipboard before appending the new data.

Calling CLEAR CLIPBOARD once and then calling APPEND TO CLIPBOARD several times
enables you to Cut or Copy the same data under different formats.

On the other hand, the commands SET TEXT TO CLIPBOARD and SET PICTURE TO
CLIPBOARD automatically clear the Clipboard before appending the TEXT or PICT data to
it.

Example
(1) The following code clears and then appends data to the clipboard:

⇒ CLEAR CLIPBOARD ` Make sure the clipboard becomes empty
APPEND TO CLIPBOARD('XWKZ';$vxSomeData) ` Append some data of type 'XWKZ'
APPEND TO CLIPBOARD('SYLK';$vxSylkData) ` Append same data but as Sylk data

(2) See example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD.

4th Dimension Language Reference 315

GET CLIPBOARD Clipboard

version 6.0
__

GET CLIPBOARD (dataType; data)

Parameter Type Description
dataType String → 4-character string data type
data BLOB ← Requested data extracted from the clipboard

Description
The GET CLIPBOARD command returns into the BLOB field or into the variable data the
data present in the Clipboard and whose type you pass in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the data is correctly extracted from the clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contains any data of the specified type, the
command returns an empty BLOB, sets the OK variable to 0 and generates an error -102.
If there is not enough memory to extract the data from the clipboard,the command sets
the OK variable to 0 and generates an error -108.

Example
The following object methods for two buttons copy from and paste data to the array
asOptions (pop-up menu, drop-downlist,...) located in a form:

` bCopyasOptions object method
If (Size of array(asOptions)>0) ` Is there something to copy?

` Accumulate the array elements in a BLOB
VARIABLE TO BLOB (asOptions;$vxClipData)
CLEAR CLIPBOARD ` Empty the clipboard
APPEND TO CLIPBOARD ("artx";asOptions) ` Note the data type arbitrarily chosen

End if

` bPasteasOptions object method
If (Test clipboard ("artx")>0) ` Is there some "artx" data in the clipboard?

⇒ GET CLIPBOARD ("artx";$vxClipData) ` Extract the data from the clipboard
` Populate the array with the BLOB data

BLOB TO VARIABLE ($vxClipData;asOptions)
asOptions:=0 ` Reset the selected element for the array

End if

316 4th Dimension Language Reference

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

System Variables
If the data is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the data, an error -108 is generated.
• If there is no data of the requested type in the clipboard, an error -102 is generated.

4th Dimension Language Reference 317

GET PICTURE FROM CLIPBOARD Clipboard

version 6.0
__

GET PICTURE FROM CLIPBOARD (picture)

Parameter Type Description
picture Picture ← Picture extracted from the Clipboard

Description
GET PICTURE FROM CLIPBOARD returns the picture present in the Clipboard into the
picture field or variable picture.

If the picture is correctly extracted from the Clipboard, the command sets the OK variable
to 1. If the Clipboard is empty or does not contain a picture, the command returns an
empty picture, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the picture from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

Examples
The following button’s object method assigns the picture present in the Clipboard (if
any) to the field [Employees]Photo:

If (Test clipboard ("PICT")>0)
⇒ GET PICTURE FROM CLIPBOARD ([Employees]Photo)

Else
ALERT ("The clipboard does not contain any picture.")

End if

See Also
GET CLIPBOARD, Get text from clipboard, Test clipboard.

System Variables
If the picture is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the picture, an error -108 is generated.
• If there is no picture in the Clipboard, an error -102 is generated.

318 4th Dimension Language Reference

Get text from clipboard Clipboard

version 6.0
__

Get text from clipboard → String

Parameter Type Description
This command does not require any parameters

Function result String ← Returns the text (if any) present
in the Clipboard

Description
Get text from clipboard returns the text present in the clipboard.

If the text is correctly extracted from the Clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contain any text, the command returns an
empty string, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the text from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

4th Dimension text fields and variables can contain up to 32,000 characters. If there are
more than 32,000 characters in the Clipboard, the result returned by Get text from
clipboard will be truncated when placed into the field or variable receiving the value. To
handle very large Clipboard text contents, first test the size of the data using the
command Test clipboard. Then, if the text exceeds 32,000 characters, use the command
GET CLIPBOARD instead of Get text from clipboard.

Examples
The following example tests the for the presence of text in the Clipboard, then,
depending on the size of the data, extracts the text from the Clipboard as text or as a
BLOB:

$vlSize:=Test clipboard ("TEXT")
Case of

: ($vlSize<=0)
ALERT ("There is no text in the clipboard.")

: ($vlSize<=32000)
⇒ $vtClipData:=Get text from clipboard

If (OK=1)
` Do something with the text

End if

4th Dimension Language Reference 319

: ($vlSize>32000)
GET CLIPBOARD ("TEXT";$vxClipData)
If (OK=1)

` Do something with the BLOB
End if

End case

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Test clipboard.

System Variables
If the text is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the text, an error -108 is generated.
• If there is no text in the Clipboard, an error -102 is generated.

320 4th Dimension Language Reference

SET PICTURE TO CLIPBOARD Clipboard

version 6.0
__

SET PICTURE TO CLIPBOARD (picture)

Parameter Type Description
picture Picture → Picture whose copy is to be put into the Clipboard

Description
SET PICTURE TO CLIPBOARD clears the Clipboard and puts a copy of the picture you passed
in picture into the Clipboard.

After you have put a picture into the Clipboard, you can retrieve it using the command
GET PICTURE FROM CLIPBOARD or by calling GET CLIPBOARD ("PICT";...).

If the picture is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the picture into the Clipboard, the OK variable is set to
0, but no error is generated.

Example
Using a floating window, you display a form that contains the array asEmployeeName,
which lists the names of the employees from an [Employees] table. Each time you click
on a name, you want to copy the employee's picture to the Clipboard. In the object
method for the array, you write:

If (asEmployeeName#0)
QUERY ([Employees];[Employees]Last name=asEmployeeName{asEmployeeName})
If (Picture size ([Employees]Photo)>0)

⇒ SET PICTURE TO CLIPBOARD ([Employees]Photo) ` Copy the employee's photo
Else

CLEAR CLIPBOARD ` No photo or no record found
End if

End if

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD.

System Variables or Sets
If a copy of the picture is correctly put into the Clipboard, the OK variable is set to 1.

4th Dimension Language Reference 321

SET TEXT TO CLIPBOARD Clipboard

version 6.0
__

SET TEXT TO CLIPBOARD (text)

Parameter Type Description
text String → Text whose copy is to be put into the Clipboard

Description
SET TEXT TO CLIPBOARD clears the clipboard and then puts a copy of the text you passed
in text into the Clipboard.

After you have put some text into the Clipboard, you can retrieve it using the Get text
from clipboard command or by calling GET CLIPBOARD ("TEXT";...).

If the text is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the text into the Clipboard, the OK variable is set to 0,
but no error is generated.

4th Dimension text expressions can contain up to 32,000 characters. To copy larger text
values, accumulate the text into a BLOB, call CLEAR CLIPBOARD, then call APPEND TO
CLIPBOARD ("TEXT";...).

Example
See the example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD, Get text from clipboard.

System Variables or Sets
If a copy of the text is correctly put into the Clipboard, the OK variable is set to 1.

322 4th Dimension Language Reference

Test clipboard Clipboard

version 6.0
__

Test clipboard (dataType) → Number

Parameter Type Description
dataType String → 4-character data type string

Function result Number ← Size (in bytes) of data stored in Clipboard
or error code result

Description
The Test clipboard command allows you to test if there is data of the type you passed in
dataType present in the Clipboard.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the Clipboard is empty or does not contain any data of the specified type, the
command returns an error -102 (see the table of predefined constants). If the Clipboard
contains data of the specified type, the command returns the size of this data, expressed
in bytes.

After you have detected that the Clipboard contains data of the type in which you are
interested, you can extract that data from the Clipboard using one the following
commands:
• If the Clipboard contains type TEXT data, you can obtain that data using the
Get text from clipboard command, which returns a text value, or the GET CLIPBOARD
command, which returns the text into a BLOB.
• If the Clipboard contains type PICT data, you can obtain that data using the
GET PICTURE FROM CLIPBOARD command, which returns the picture into a picture field
or variable, or the GET CLIPBOARD command, which returns the picture into a BLOB.
• For any other data type, use the GET CLIPBOARD command, which returns the data into
a BLOB.

4th Dimension provides the following predefined constants:
Constant Type Value
No such data in clipboard Long Integer -102
Text data String TEXT
Picture data String PICT

4th Dimension Language Reference 323

Examples
(1) The following code tests whether the Clipboard contains a picture and, if so, copies
that picture into a 4D variable:

⇒ If (Test clipboard (Picture data) > 0) ` Is there a picture in the clipboard?
 ` If so, extract the picture from the clipboard

GET PICTURE FROM CLIPBOARD ($vPicVariable)
Else

ALERT("There is no picture in the clipboard.")
End if

(2) Usually, applications cut and copy data of type TEXT or PICT into the Clipboard,
because most applications recognize two standard data types. However, an application can
append to the Clipboard several instances of the same data in different formats. For
example, each time you cut or copy a part of a spreadsheet, the spreadsheet application
could append the data under the hypothetical ‘SPSH’ format, as well as in SYLK and TEXT
formats. The ‘SPSH’ instance would contain the data formatted using the application’s
data structure. The SYLK form would contain the same data, but using the SYLK format
recognized by most of the other spreadsheet programs. Finally, the TEXT format would
contain the same data, without the extra information included in the SYLK or the
hypothetical ‘SPSH’ format. At this point, while writing Cut/Copy/Paste routines between
4th Dimension and that hypothetical spreadsheet application, assuming you know the
description of the ‘SPSH’ format and that you are ready to parse SYLK data, you could
write something like:

Case of
` First, check whether the clipboard contains data
` from the hypothetical spreadsheet application

⇒ : (Test clipboard ('SPSH') > 0)
` ...
` Second, check whether the clipboard contains Sylk data

⇒ : (Test clipboard ('SYLK') > 0)
` ...
` Finally check whether the clipboard contains Text data

⇒ : (Test clipboard ('TEXT') > 0)
` ...

End case

In other words, you try to extract from the Clipboard the instance of the data that carries
most of the original information.

(3) See the example for the APPEND TO CLIPBOARD command.

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

324 4th Dimension Language Reference

9

Communications

4th Dimension Language Reference 325

326 4th Dimension Language Reference

SET CHANNEL Communications

version 3
__

SET CHANNEL (port | operation{; settings | document})

Parameter Type Description
port | operation Number → Serial port number, or

Document operation to perform
settings | document Number | String → Serial port settings, or

Document name

Description
The SET CHANNEL command opens a serial port or a document. You can open only one
serial port or one document at a time with this command. To close an opened serial port,
pass SET CHANNEL (11).

Historical Note: This command was originally the first 4D command used for working
with serial ports and documents on disks. Since that time, new commands have been
added. Today, you will typically work with documents on disk using the commands Open
document, Create document and Append document. With these commands, you can read
and write characters to and from documents using SEND PACKET or RECEIVE PACKET
(these commands work with SET CHANNEL, too). However, if you want to use the
commands SEND VARIABLE, RECEIVE VARIABLE, SEND RECORD and RECEIVE RECORD, you
must use SET CHANNEL to access the document on disk.

The description of SET CHANNEL is composed of two sections:
• Working with Serial Ports
• Working with Documents

Working with Serial Ports - SET CHANNEL (port;settings)
__

The first form of the SET CHANNEL command opens a serial port, setting the protocol and
other port information. Data can be sent with SEND PACKET, SEND RECORD or SEND
VARIABLE, and received with RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD or RECEIVE
VARIABLE.

The port Parameter
The first parameter, port, selects the port and the protocol.

4th Dimension Language Reference 327

You can address up to 99 serial ports (one at a time). The following table lists the values
for port:

Value for port Description
0 Printer port (Macintosh) or COM2 (PC) with no protocol
1 Modem port (Macintosh) or COM1 (PC) with no protocol
20 Printer port (Macintosh) or COM2 (PC) with sofware protocol such as

XON/XOFF
21 Modem port (Macintosh) or COM1 (PC) with sofware protocol such as

XON/XOFF
30 Printer port (Macintosh) or COM2 (PC) with hardware protocol such as

RTS/CTS
31 Modem port (Macintosh) or COM1 (PC) with hardware protocol such

as RTS/CTS
101 to 199 Serial communication with no protocol
201 to 299 Serial communication with software protocol such as XON/XOFF
301 to 399 Serial communication with hardware protocol such as RTS/CTS

Important: The value you pass in port must refer to an existing serial COM port
recognized by the operating system. For example, in order to be able to use the values
101, 103 and 125, the serial ports COM1, COM3 and COM25 must have been set up
correctly.

Note on serial ports
In a standard configuration Mac OS and Windows support two serial ports: on Mac OS,
the modem port and the printer port; on Windows, the COM1 and COM2 ports.
However, additional serial ports can be added by the use of extension boards. Originally,
4th Dimension only adressed two standard serial ports and it was only later that the
support of additional ports was implemented. For compatibility reasons, both addressing
systems were kept.
- If you want to address a standard serial port (printer/COM2 or modem/COM1), you can
either pass in the port parameter one of the following values 0, 1, 20, 21, 30 and 31 (that
corresponds to the old addressing method), or a value greater than 100 (please see the
following explanation).
- If you want to address additional serial ports, you need to pass the value N+100 (where N
is the value of the port to address). You may also consider adding 100 or 200 to the value
mentioned above (N+100), if you want to select respectively a software or a hardware
protocol.

Examples :
(1) If you want to use the printer/COM2 port with no protocol, you can use one of the
following syntaxes:

⇒ SET CHANNEL (0;param)
or
⇒ SET CHANNEL (102;param)

328 4th Dimension Language Reference

(2) If you want to use the modem/COM1 port with the XON/XOFF protocol, you can use
one of the following syntaxes:

⇒ SET CHANNEL (21;param)
or
⇒ SET CHANNEL (201;param)

(3) If you want to use the COM 25 port with the RTS/CTS protocol, you need to use the
following syntax:

⇒ SET CHANNEL (325;param)

The settings Parameter
The settings parameter sets the speed, number of data bits, number of stop bits, and
parity. You determine the value for settings by adding the speed, data bits, stop bits, and
parity values as listed in the following table. For example, to set 1200 baud, 8 data bits, 1
stop bit, and no parity, you would add 94 + 3072 + 16384 + 0 = 19550. You would then
use 19550 as the value of the setup parameter.

Value to accumulate Description
in settings parameter

Speed 380 300
(in baud) 189 600

94 1200
62 1800
46 2400
30 3600
22 4800
14 7200
10 9600
4 19200
2 28800
1 38400
0 57600
1022 115200
1021 230400

Data bits 0 5
2048 6
1024 7
3072 8

Stop bits 16384 1
–32768 1.5
–16384 2

Parity 0 None
4096 Odd
12288 Even

4th Dimension Language Reference 329

Working with Documents on Disk - SET CHANNEL(operation;document)
__

The second form of the SET CHANNEL command allows you to create, open, and close a
document. Unlike the System documents commands, it can open only one document at a
time. The document can be read from or written to.

The operation parameter specifies the operation to be performed on the document
specified by document. The following table lists the values of operation and the resulting
operation with different values for document. The first column lists the allowed values for
operation. The second column lists the allowed values for document. The third column
lists the resulting operation.

For example, to display an Open File dialog box to open a text file, you would use the
following line:

⇒ SET CHANNEL (13; "")

Operation Document Result
10 String Opens the document specified by String.

If the document doesn’t exist, the document is opened
and created.

10 "" (empty string) Displays the Open File dialog box to open a file.
All file types are displayed.

11 none Closes an open file.
12 "" (empty string) Displays the Save File dialog box to create a new file.
13 "" (empty string) Displays the Open File dialog box to open a file. Only text

file types are displayed.

All of the operations in this table set the Document system variable if appropriate. They
also set the OK system variable to 1 if the operation was successful. Otherwise, the OK
system variable is set to 0.

Examples
See examples for the commands RECEIVE BUFFER, SET TIMEOUT and RECEIVE RECORD.

See Also
Append document, Create document, GET SERIAL PORT MAPPING, Open document, RECEIVE
BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE, SEND PACKET, SEND
RECORD, SEND VARIABLE, SET TIMEOUT.

330 4th Dimension Language Reference

SET TIMEOUT Communications

version 3
__

SET TIMEOUT (seconds)

Parameter Type Description
seconds Number → Seconds until the timeout

Description
SET TIMEOUT specifies how much time a serial port command has to complete. If the
serial port command does not complete within the specified time, seconds, the serial port
command is canceled, an error -9990 is generated, and the OK system variable is set to 0.
You can catch the error with an error-handling method installed using ON ERR CALL.

Note that the time is the total time allowed for the command to execute, not the time
between characters received. To cancel a previous setting and stop monitoring serial port
communication, use a setting of 0 for seconds.

The commands that are affected by the timeout setting are:
• RECEIVE PACKET
• RECEIVE RECORD
• RECEIVE VARIABLE

Example
The following example sets the serial port to receive data. It then sets a time-out. The data
is read with RECEIVE PACKET. If the data is not received in time, an error occurs:

` Open Serial Port
SET CHANNEL (MacOS Serial Port; Speed 9600 + Data Bits 8 + Stop Bits One +

Parity None)
⇒ SET TIMEOUT (10) ` Set the timeout for 10 seconds

ON ERR CALL ("CATCH COM ERRORS") ` Do not let the method being interrupted
RECEIVE PACKET (vtBuffer; Char (13)) ` Read until a carriage return is met
If (OK=0)

ALERT ("Error receiving data.")
Else

[People]Name:=vtBuffer ` Save received data in a field
End if
ON ERR CALL("")

See Also
ON ERR CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE.

4th Dimension Language Reference 331

USE ASCII MAP Communications

version 3
__

USE ASCII MAP (map | *{; mapInOut})

Parameter Type Description
map | * String | * → Document name of the map to use, or

* to reset to default ASCII map
mapInOut Number → 0 = Output map

1 = Input map
If omitted, output map

Description
USE ASCII MAP has two forms. The first form loads the ASCII map named map from disk
and uses that ASCII map. If mapInOut is 0, the map is loaded as the output map. If
mapInOut is 1, the map is loaded as the input map.

The ASCII map must have been previously created with the ASCII map dialog box in the
User environment. After an ASCII map is loaded, 4th Dimension uses the map during
transfer of data between the database and a document or a serial port. Transfer operations
include the import and export of text (ASCII), DIF, and SYLK files. An ASCII map also
works on data transferred with SEND PACKET, RECEIVE PACKET, and RECEIVE BUFFER. It has
no effect on transfers of data done with SEND RECORD, SEND VARIABLE, RECEIVE RECORD,
and RECEIVE VARIABLE.

If you give an empty string for map, USE ASCII MAP displays a standard Open File dialog
box so that the user can specify an ASCII map document. Whenever you execute USE
ASCII MAP, the OK system variable is set to 1 if the map is successfully loaded, and to 0 if
it is not.

The second form of USE ASCII MAP, with the asterisk (*) parameter instead of map, restores
the default ASCII map. If mapInOut is 0, the map is reset for output. If mapInOut is 1, the
map is reset for input. The default ASCII map has no translation between characters.

Note: When passing "*" the OK system variable is set to 0.

332 4th Dimension Language Reference

Example
The following example loads a special ASCII map from disk. It then exports data. Finally,
the default ASCII map is restored:

⇒ USE ASCII MAP ("MactoPC"; 0) ` Load an alternative ASCII map
EXPORT TEXT ([MyTable]; "MyText") ` Export data through the map

⇒ USE ASCII MAP (*; 0) ` Restore the default map

See Also
EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, Mac
to Win, RECEIVE BUFFER, RECEIVE PACKET, SEND PACKET, Win to Mac.

4th Dimension Language Reference 333

GET SERIAL PORT MAPPING Communications

version 2004
__

GET SERIAL PORT MAPPING (numArray; nameArray)

Parameter Type Description
numArray Number array ← Array of port numbers
nameArray String array ← Array of port names

Description
The GET SERIAL PORT MAPPING command returns two arrays, numArray and nameArray,
containing the serial port numbers and the serial port names of the current machine.

This command is useful under Mac OS X, where the operating system dynamically
allocates the port number when using a USB serial adapter. You can address any extended
serial port using its name (static), regardless of its actual number.

Note: This command does not return meaningful values with standard ports. If you want
to address a standard port, you must pass its value (0 or 1) directly using the SET CHANNEL
command (former operation of 4D).

Example
This project method can be used to address the same serial port (without protocol),
regardless of the number that has been assigned to it:

ARRAY TEXT($arrPortNames;0)
ARRAY LONGINT($arrPortNums;0)
C_LONGINT($vPortNum)

`Find out the current numbers of the serial ports
⇒ GET SERIAL PORT MAPPING($arrPortNums;$arrPortNames)

$vPortNum:=Find in array($arrPortNums;vPortName)
` vPortName contains the name of the port to be used; it may come from
`a dialog box, a value stored in a field, etc.

If ($vPortNum>0)
SET CHANNEL($vPortNum+100; params) `params contains the communication

`parameters. Don't forget to add 100 to the number since it is an extended port
End if
... `Carry out the desired operations
SET CHANNEL(11) `Closing of port

See also
SET CHANNEL.

334 4th Dimension Language Reference

SEND PACKET Communications

version 3
__

SEND PACKET ({docRef; }packet)

Parameter Type Description
docRef DocRef → Document reference number, or

Current channel (serial port or document)
packet String → String or Text to be sent

Description
SEND PACKET sends a packet to a serial port or to a document. If docRef is specified, the
packet is written to the document referenced by docRef. If docRef is not specified, the
packet is written to the serial port or document previously opened by the SET CHANNEL
command. A packet is just a piece of data, generally a string of characters.

Before you use SEND PACKET, you must open a serial port or a document with SET
CHANNEL, or open a document with one of the document commands.

When writing to a document, the first SEND PACKET begins writing at the beginning of
the document unless the document was opened with Append document. Until the
document is closed, each subsequent packet is appended to any previously sent packets.

Version 6 Note: This command is still useful for a document opened with SET CHANNEL.
On the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

Important: SEND PACKET writes Mac OS ASCII data on both Windows and Macintosh
platforms. Mac OS ASCII data uses eight bits. Standard ASCII uses only the lower seven
bits. Many devices do not use the eighth bit in the same way as does
Windows/Macintosh. If the string to be sent contains data that uses the eighth bit, be
sure to create an ASCII map to translate the ASCII characters, and execute USE ASCII MAP
before using SEND PACKET. You can also use the Mac to Win function (for more
information, refer to the example for this function). Protocols like XON/XOFF use some
low ASCII codes to establish communication between machines. Be careful to not send
such ASCII codes, as this may interfere with the protocol or even break communication.

4th Dimension Language Reference 335

Example
The following example writes data from fields to a document. It writes the fields as fixed-
length fields. Fixed-length fields are always of a specific length. If a field is shorter than
the specified length, the field is padded with spaces. (That is, spaces are added to make up
the specified length.) Although the use of fixed-length fields is an inefficient method of
storing data, some computer systems and applications still use them:

$vhDocRef := Create document ("") ` Create a document
If (OK=1) ` Was the document created?

For ($vlRecord; 1; Records in selection ([People])) ` Loop once for each record
` Send a packet. Create the packet from a string of 15 spaces containing the
` first name field

⇒ SEND PACKET ($vhDocRef; Change string(15 * Char(Space); [People]First;1))
` Send a second packet. Create the packet from a string of 15 spaces
` containing the last name field
` This could be in the first SEND PACKET, but is separated for clarity

⇒ SEND PACKET ($vhDocRef; Change string (15 * Char(Space); [People]Last; 1))
NEXT RECORD([People])

End for
` Send a Char(26), which is used as an end-of-file marker for some computers

⇒ SEND PACKET ($vhDocRef; Char(SUB ASCII Code))
CLOSE DOCUMENT ($vhDocRef) ` Close the document

End if

See Also
Get document position, RECEIVE PACKET, SET DOCUMENT POSITION.

336 4th Dimension Language Reference

RECEIVE PACKET Communications

version 6.8 (Modified)
__

RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)

Parameter Type Description
docRef DocRef → Document reference number, or

Current channel (serial port or document)
receiveVar Variable → Variable to receive data
stopChar | numChars String | Number → Character(s) at which to stop receiving, or

Number of characters to receive

Description
RECEIVE PACKET reads characters from a serial port or from a document.

If docRef is specified, this command reads characters from a document opened using Open
document, Create document or Append document. If docRef is omitted, this command
reads characters from the serial port or the document opened using SET CHANNEL.

Whatever the source, the characters read are returned in receiveVar, which must be a Text
or String variable. Remember that String variables accept up to 255 characters and have a
fixed size whereas Text variables do not have a set size and can accept up to 32,000
characters.

To read a particular number of characters, pass this number in numChars. You can read up
to 32,000 characters in a single call if the receiveVar variable is of the Text type. To
specify the maximum number of characters, you can pass the MAXTEXTLEN constant in
numChars.

To read characters until a particular string (composed of one or more characters) is
encountered, pass this string in stopChar (the string is not returned in receiveVar).

In this case, if the character string specified by stopChar is not found:
• When RECEIVE PACKET is reading a document, it will stop reading at the end of the
document.
• When RECEIVE PACKET is reading from a serial port, it will attempt to wait indefinitely
until the timeout (if any) has elapsed (see SET TIMEOUT) or until the user interrupts the
reception (see below).

During execution of RECEIVE PACKET, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL. Usually, you will only have to handle interruption of a reception
when communicating over a serial port.

4th Dimension Language Reference 337

When reading a document, the first RECEIVE PACKET begins reading at the beginning of
the document. The reading of each subsequent packet begins at the character following
the last character read.

Note: This command is useful for document opened with SET CHANNEL. On the other
hand, for a document opened with Open document, Create document and Append
document, you can use the Get document position and SET DOCUMENT POSITION
commands to get and change the location in the document where the next writing
(SEND PACKET) or reading (RECEIVE PACKET) will occur.

When attempting to read past the end of a file, RECEIVE PACKET will return with the data
read up to that point and the variable OK will be set to 1. Then, the next RECEIVE PACKET
will return an empty string and set the OK variable to zero.

Note: When you use the RECEIVE PACKET command to read characters from a Windows
document and do not want to use ASCII maps to convert Windows characters into
Mac OS characters, you can use the Win to Mac function.

Examples
1. The following example reads 20 characters from a serial port into the variable
getTwenty:

⇒ RECEIVE PACKET (getTwenty; 20)

2. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters a carriage return:

⇒ RECEIVE PACKET (myDoc;vData;Char (Carriage Return))

3. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters the </TD> (end of table cell)
HTML tag:

⇒ RECEIVE PACKET (myDoc;vData;"</TD>")

4. The following example reads data from a document into fields. The data is stored as
fixed-length fields. The method calls a subroutine to strip any trailing spaces (spaces at the
end of the string). The subroutine follows the method:

$vhDocRef := Open document ("";"TEXT") ` Open a TEXT document
If (OK=1) ` If the document was opened

Repeat ` Loop until no more data
⇒ RECEIVE PACKET ($vhDocRef; $Var1; 15) ` Read 15 characters
⇒ RECEIVE PACKET ($vhDocRef; $Var2; 15) ` Do same as above for second field

338 4th Dimension Language Reference

If (OK = 1) ` If we are not beyond the end of the document
CREATE RECORD([People]) ` Create a new record
[People]First := Strip ($Var1) ` Save the first name
[People]Last := Strip ($Var2) ` Save the last name
SAVE RECORD([People]) ` Save the record

End if
Until (OK =0)
CLOSE DOCUMENT ($vhDocRef) ` Close the document

End if

The spaces at the end of the data are stripped by the following method, called Strip:
For ($i; Length ($1); 1; –1) ` Loop from end of string to start

If ($1≤$i≥ # " ") ` If it is not a space…
$i := -$i ` Force the loop to end

End if
End for
$0 := Delete string ($1; –$i; Length ($1)) ` Delete the spaces

See Also
Get document position, RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION, SET
TIMEOUT.

System Variables or Sets
After a call to RECEIVE PACKET, the OK system variable is set to 1 if the packet is received
without error. Otherwise, the OK system variable is set to 0.

4th Dimension Language Reference 339

RECEIVE BUFFER Communications

version 6.8.3 (Modified)
__

RECEIVE BUFFER (receiveVar)

Parameter Type Description
receiveVar Variable → Variable to receive data

Description
RECEIVE BUFFER reads the serial port that was previously opened with SET CHANNEL. The
serial port has a buffer that fills with characters until a command reads from the buffer.
RECEIVE BUFFER gets the characters from the serial buffer, put them into receiveVar then
clears the buffer. If there are no characters in the buffer, then receiveVar will contain
nothing.

On Windows
The Windows serial port buffer is limited in size to 10 Kbytes. This means that the buffer
can overflow. When it is full and new characters are received, the new characters replace
the oldest characters. The old characters are lost; therefore, it is essential that the buffer is
read quickly when new characters are received.

On Mac OS
The Mac OS 9.x serial port buffer is limited in size to 10 Kbytes. Under Mac OS X, its
capacity is, in theory, unlimited (depending on the available memory). If the buffer is full
and new characters are received, the new characters replace the oldest characters. The old
characters are lost; therefore, it is essential that the buffer is read quickly when new
characters are received.

Note: There are 4D plug-ins that enable you to increase the size of the serial buffer.

RECEIVE BUFFER is different from RECEIVE PACKET in that it takes whatever is in the buffer
and then immediately returns. RECEIVE PACKET waits until it finds a specific character or
until a given number of characters are in the buffer.

During the execution of RECEIVE BUFFER, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL.

340 4th Dimension Language Reference

Example
The project method LISTEN TO SERIAL PORT uses RECEIVE BUFFER to get text from the
serial port and accumulate it into a an interprocess variable:

` LISTEN TO SERIAL PORT
` Opening the serial port

SET CHANNEL (201; Speed 9600 + Data Bits 8 + Stop Bits One + Parity None)
<>IP_Listen_Serial_Port:=True
While (<>IP_Listen_Serial_Port)

RECEIVE BUFFER($vtBuffer)
If ((Length($vtBuffer)+Length(<>vtBuffer))>MAXTEXTLEN)

<>vtBuffer:=""
End if
<>vtBuffer:=<>vtBuffer+$Buffer

End while

At this point, any other process can read the interprocess ◊vtBuffer to work with the data
coming from the serial port.

To stop listening to the serial port, just execute:

` Stop listening to the serial port
◊IP_Listen_Serial_Port:=False

Note that access to the interprocess ◊vtBuffer variable should be protected by a
semaphore, so that processes will not conflict. See the command Semaphore for more
information.

See Also
ON ERR CALL, RECEIVE PACKET, Semaphore, SET CHANNEL, Variables.

4th Dimension Language Reference 341

SEND VARIABLE Communications

version 3
__

SEND VARIABLE (variable)

Parameter Type Description
variable Variable → Variable to send

Description
SEND VARIABLE sends variable to the document or serial port previously opened by SET
CHANNEL. The variable is sent with a special internal format that can be read only by
RECEIVE VARIABLE. SEND VARIABLE sends the complete variable (including its type and
value).

Notes
1. If you send a variable to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND VARIABLE with a
document opened with Open document, Append document or Create document.
2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND RECORD, SET CHANNEL.

342 4th Dimension Language Reference

RECEIVE VARIABLE Communications

version 3
__

RECEIVE VARIABLE (variable)

Parameter Type Description
variable Variable → Variable in which to receive

Description
RECEIVE VARIABLE receives variable, which was previously sent by SEND VARIABLE from the
document or serial port previously opened by SET CHANNEL.

In interpreted mode, if the variable does not exist prior to the call to RECEIVE VARIABLE,
the variable is created, typed and assigned according to what has been received. In
compiled mode, the variable must be of the same type as what is received. In both cases,
the contents of the variable are replaced with what is received.

Notes
1. If you receive a variable from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE VARIABLE
with a document opened with Open document, Append document or Create document.
2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.
3. During the execution of RECEIVE VARIABLE, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
See example for the command RECEIVE RECORD.

See Also
ON ERR CALL, RECEIVE RECORD, SEND RECORD, SEND VARIABLE.

System Variables or Sets
The OK system variable is set to 1 if the variable is received. Otherwise, the OK system
variable is set to 0.

4th Dimension Language Reference 343

SEND RECORD Communications

version 3
__

SEND RECORD {(table)}

Parameter Type Description
table Table → Table from which to send the current record,

or Default table, if omitted

Description
SEND RECORD sends the current record of table to the serial port or document opened by
the SET CHANNEL command. The record is sent with a special internal format that can be
read only by RECEIVE RECORD. If no current record exists, SEND RECORD has no effect.

The complete record is sent. This means that all subrecords, pictures and BLOBs stored in
the record are also sent.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Note: If you send a record to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND RECORD with a
document opened with Open document, Append document or Create document.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND VARIABLE.

344 4th Dimension Language Reference

RECEIVE RECORD Communications

version 3
__

RECEIVE RECORD {(table)}

Parameter Type Description
table Table → Table into which to receive the record, or

Default table, if omitted

Description
RECEIVE RECORD receives a record into table from the serial port or document opened by
the SET CHANNEL command. The record must have been sent with SEND RECORD. When
you execute RECEIVE RECORD, a new record is automatically created for table. If the record
is received correctly, you must then use SAVE RECORD to save the new record.

The complete record is received. This means that all subrecords, pictures and BLOBs stored
in the record are also received.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Notes
1. If you receive a record from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE RECORD
with a document opened with Open document, Append document or Create document.
2. During the execution of RECEIVE RECORD, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
A combined use of SEND VARIABLE, SEND RECORD, RECEIVE VARIABLE and RECEIVE RECORD
is ideal for archiving data or for exchanging data between identical single-user databases
used in different places. You can exchange data between 4D databases using the
import/export commands such as EXPORT TEXT and IMPORT TEXT. However, if your data
contains graphics, subtables and/or related tables, using SEND RECORD and RECEIVE
RECORD is far more convenient.

For instance, the documentation you are currently reading has been created using 4D and
4D Write. Because several writers in different locations wordwide were working on it, we
needed a simple way to exchange data between the different databases.

4th Dimension Language Reference 345

Here is a simplified view of the database structure:

The table [Commands] contains the description of each command or topic. The tables [CM
US Params] and [CM FR Params] respectivily contain the parameter list for each command
in English and in French. The table [CM See Also] contains the commands listed as
reference (See Also section) for each command. Exchanging documentation between
databases therefore consists in sending the [Commands] records and their related records.
To do so, we use SEND RECORD and RECEIVE RECORD. In addition, we use SEND VARIABLE
and RECEIVE VARIABLE in order to mark the import/export document with tags.

Here is the (simplified) project method for exporting the documentation:

` CM_EXPORT_SEL project method
` This method works with the current selection of the [Commands] table

⇒ SET CHANNEL(12;"") ` Let's the user create an open a channel document
If (OK=1)

` Tag the document with a variable that indicates its contents
` Note: the BUILD_LANG process variable indicates if US (English)
` or FR (French) data is sent

$vsTag:="4DV6COMMAND"+BUILD_LANG
⇒ SEND VARIABLE($vsTag)

` Send a variable indicationg how many [Commands] are sent
 $vlNbCmd:=Records in selection([Commands])
⇒ SEND VARIABLE($vlNbCmd)
 FIRST RECORD([Commands])

` For each command
For ($vlCmd;1;$vlNbCmd)

` Send the [Commands] record
⇒ SEND RECORD([Commands])

` Select all the related records
RELATE MANY([Commands])

346 4th Dimension Language Reference

` Depending on the language, send a variable indicating
` the number of parameters that will follow

Case of
: (BUILD_LANG="US")

$vlNbParm:=Records in selection([CM US Params])
: (BUILD_LANG="FR")

$vlNbParm:=Records in selection([CM FR Params])
End case

⇒ SEND VARIABLE($vlNbParm)
` Send the parameter records (if any)

For ($vlParm;1;$vlNbParm)
Case of

: (BUILD_LANG="US")
⇒ SEND RECORD([CM US Params])

NEXT RECORD([CM US Params])
: (BUILD_LANG="FR")

⇒ SEND RECORD([CM FR Params])
NEXT RECORD([CM FR Params])

 End case
End for

` Send a variable indicating how many “See Also” will follow
$vlNbSee:=Records in selection([CM See Also])

⇒ SEND VARIABLE($vlNbSee)
` Send the [See Also] records (if any)

For ($vlSee;1;$vlNbSee)
⇒ SEND RECORD([CM See Also])

NEXT RECORD([CM See Also])
End for

` Go to the next [Commands] record and continue the export
NEXT RECORD([Commands])

End for
⇒ SET CHANNEL(11) ` Close the document

End if

Here is the (simplified) project method for importing the documentation:

` CM_IMPORT_SEL project method

⇒ SET CHANNEL(10;"") ` Let's user open an existing document
If (OK=1) ` If a document was open

⇒ RECEIVE VARIABLE($vsTag) ` Try receiving the expected tag variable
If ($vsTag="4DV6COMMAND@") ` Did we get the right tag?

$CurLang:=Substring($vsTag;Length($vsTag)-1) `Extract language from the tag
If (($CurLang="US") | ($CurLang="FR")) ` Did we get a valid language

⇒ RECEIVE VARIABLE($vlNbCmd)

4th Dimension Language Reference 347

` How many commands are there in this document?
If ($vlNbCmd>0) ` If at least one

For ($vlCmd;1;$vlNbCmd) ` For each archived [Commands] record
` Receive the record

⇒ RECEIVE RECORD([Commands])
` Call a subroutine that saves the new record or copies its values
` into an already existing record

CM_IMP_CMD ($CurLang)
` Receive the number of parameters (if any)

⇒ RECEIVE VARIABLE($vlNbParm)
If ($vlNbParm>=0)

` Call a subroutine that calls RECEIVE RECORD then saves the new
` records or copies them into already existing records

CM_IMP_PARM ($vlNbParm;$CurLang)
End if

` Receive the number of “See Also” (if any)
⇒ RECEIVE VARIABLE($vlNbSee)

If ($vlNbSee>0)
` Call a subroutine that calls RECEIVE RECORD then saves the new
` records or copies them into already existing records

CM_IMP_SEEA ($vlNbSee;$CurLang)
End if

End for
Else

ALERT("The number of commands in this export document is invalid.")
End if

Else
ALERT("The language of this export document is unkown.")

End if
Else

ALERT("This document is NOT a Commands export document.")
End if

⇒ SET CHANNEL(11) ` Close document
End if

Note that we do not test the OK variable while receiving the data nor try to catch the
errors. However, because we stored variables in the document that describes the document
itself, if these variables, once received, made sense, the probability for an error is very low.
If for instance a user opens a wrong document, the first test stops the operation right
away.

See Also
RECEIVE VARIABLE, SEND RECORD, SEND VARIABLE.

System Variables or Sets
The OK system variable is set to 1 if the record is received. Otherwise, the OK system
variable is set to 0.

348 4th Dimension Language Reference

10

Compiler

4th Dimension Language Reference 349

350 4th Dimension Language Reference

Compiler Commands Compiler

version 2003 (Modified)
__

The integrated compiler of 4th Dimension translates your database applications into
assembly level instructions. The advantages of the compiler are:

• Speed: Your database can run from 3 to 1,000 times faster.

• Code checking: Your database application is scanned for the consistency of code. Both
logical and syntactical conflicts are detected.

• Protection: once your database is compiled, you can delete the interpreted code, Then,
the compiled database is functionally identical to the original, except that the structure
and procedures cannot be viewed or modified, deliberately or inadvertently.

• Stand-alone double-clickable applications: compiled databases can also be transformed
into stand-alone applications (.EXE files) with their own icon.

For a description of the operation of the 4th Dimension compiler, refer to the Design
Reference manual.

The commands in this theme relate to the use of the compiler. They enable you to
normalize data types throughout your database. The IDLE command is specifically used in
compiled databases.

C_BLOB C_INTEGER C_REAL IDLE
C_BOOLEAN C_LONGINT C_STRING
C_DATE C_PICTURE C_TEXT
C_GRAPH C_POINTER C_TIME

These commands, except IDLE, declare variables and cast them as a specified data type.
Declaring variables resolves ambiguities concerning a variable’s data type. If a variable is
not declared with one of these commands, the compiler attempts to determine a
variable’s data type. The data type of a variable used in a form is often difficult for the
compiler to determine. Therefore, it is especially important that you use these commands
to declare a variable used in a form.

Note: To save time, you can use the option for generating and updating typing methods
(called “Compiler methods”) found in the compiler window. This option automatically
creates typing methods that take stock of and assign a type to all of the variables used in
the database.

Arrays are variables that must follow the same rules as standard variables with respect to
compilation. The array declaration commands are grouped together in the “Arrays”
theme.

4th Dimension Language Reference 351

General rules about writing code that will be compiled

• You must not give the same name to more than one method or variable. You cannot
have a method with the same name as a variable.

• Variable indirection as used in 4th Dimension version 1 is not allowed. You cannot use
alpha indirection, with the section symbol (§), to indirectly reference variables. Nor can
you use numeric indirection, with the curly braces ({...}), for this purpose. Curly braces
can only be used when accessing specific elements of an array that has been declared.
However, you can use parameter indirection.

• You can’t change the data type of any variable or array.

• You can’t change a one-dimensional array to a two-dimensional array, or change a two-
dimensional array to a one-dimensional array.

• You can’t change the length of string variables or of elements in string arrays.

• Although the compiler will type the variable for you, you should specify the data type
of a variable by using compiler directives where the data type is ambiguous, such as in a
form.

• Another reason to explicitly type your variables is to optimize your code. This rule
applies especially to any variable used as a counter. Use variables of a long integer data
type for maximum performance.

• To clear a variable (initialize it to null), use CLEAR VARIABLE with the name of the
variable. Do not use a string to represent the name of the variable in the CLEAR VARIABLE
command.

• The Undefined function will always return False. Variables are always defined.

• Numeric operations on long integer and integer variables are usually much faster than
operations on the default numeric type (real).

These principles are detailed in the following sections:
• Using Compiler Directives, explains when and where to write compiler directives,
• Typing Guide, describes the different types of conflicts that may occur during the
compilation of 4th Dimension databases,
• Syntax Details, provides additional information concerning several 4th Dimension
commands,
• Optimization Hints, offers hints to accelerate the running of applications in compiled
mode.

352 4th Dimension Language Reference

Examples

(1) The following are some basic variable declarations for the compiler:

` The process variable vxMyBlob is declared as a variable of type BLOB
⇒ C_BLOB(vxMyBlob)

` The interprocess variable ◊OnWindows is declared as a variable of type Boolean
⇒ C_BOOLEAN(◊OnWindows)

` The local variable $vdCurDate is declared as a variable of type Date
⇒ C_DATE($vdCurDate)

` The 3 process variables vg1, vg2 and vg3 are declared as variables of type Graph
⇒ C_GRAPH(vg1;vg2;vg3)

(2) In the following example, the project method OneMethodAmongOthers declares 3
parameters:

` OneMethodAmongOthers Project Method
` OneMethodAmongOthers (Real ; Integer { ; Long })
` OneMethodAmongOthers (Amount ; Percentage { ; Ratio })

⇒ C_REAL($1) ` 1st parameter is of type Real
⇒ C_INTEGER($2) ` 2nd parameter is of type Integer
⇒ C_LONGINT($3) ` 3rd parameter is of type Long Integer

` ...

(3) In the following example, the project method Capitalize accepts a string parameter and
returns a string result:

` Capitalize Project Method
` Capitalize (String) -> String
` Capitalize (Source string) -> Capitalized string

⇒ C_STRING(255;$0;$1)
$0:=Uppercase(Substring($1;1;1))+Lowercase(Substring($1;2))

4th Dimension Language Reference 353

(4) In the following example, the project method SEND PACKETS accepts a time parameter
followed by a variable number of text parameters:

` SEND PACKETS Project Method
` SEND PACKETS (Time ; Text { ; Text2... ; TextN })
` SEND PACKETS (docRef ; Data { ; Data2... ; DataN })

⇒ C_TIME ($1)
⇒ C_TEXT (${2})
⇒ C_LONGINT ($vlPacket)

For ($vlPacket;2;Count parameters)
SEND PACKET ($1;${$vlPacket})

End for

(5) In the following example, the project method COMPILER_Param_Predeclare28
predeclares the syntax of other project methods for the compiler:

` COMPILER_Param_Predeclare28 Project Method

` OneMethodAmongOthers (Real ; Integer { ; Long })
⇒ C_REAL(OneMethodAmongOthers;$1)
⇒ C_INTEGER(OneMethodAmongOthers;$2) ` ...
⇒ C_LONGINT(OneMethodAmongOthers;$3) ` ...
⇒ C_STRING(Capitalize;255;$0;$1) ` Capitalize (String) -> String
⇒ C_TIME(SEND PACKETS;$1) ` SEND PACKETS (Time ; Text { ; Text2... ; TextN })
⇒ C_TEXT(SEND PACKETS;${2}) ` ...

See Also
C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT, C_PICTURE,
C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME, IDLE.

354 4th Dimension Language Reference

Using Compiler Directives Compiler

version 2003 (Modified)
__

Data types of variables
__

4th Dimension has three categories of variables:
• Local variables,
• Process variables,
• Interprocess variables.

For more information about this point, refer to the Variables section. Process and
interprocess variables are structurally the same for the compiler.

Since the compiler cannot determine the process in which the variable will be used,
process variables should be used with more care than interprocess variables. All process
variables are systematically duplicated when a new process begins. A process variable can
have a different value in each process, but it has the same type for the entire database.

Variable types
All variables have a type. As described in the Data Types section, there are 12 different
types of variables:
Boolean
Fixed string
Date
Integer
Longint
Graph
Time
Picture
Number (or Real)
Pointer
Text
BLOB

There are nine different types of arrays:
Boolean Array
String Array
Date Array
Integer Array
Longint Array
Picture Array
Real Array
Pointer Array
Text Array

4th Dimension Language Reference 355

Creation of the symbol table
In interpreted mode, a variable can have more than one data type. This is possible because
the code is interpreted rather than compiled. 4th Dimension interprets each statement
separately and comprehends its context. When you work in a compiled environment, the
situation is different. While interpretation is performed line by line, the compilation
process looks at a database in its entirety.

The compiler's approach is the following:
• The compiler systematically analyzes the objects in the database. The objects are
database, project, form, trigger and object methods.
• The compiler scans the objects to determine the data type of each variable used in the
database, and it generates the table of variables and methods (the symbol table).
• Once it has established the data types of all variables, the compiler translates (compiles)
the database. However, it cannot compile the database unless it can determine the data
type for each of the variables.

If the compiler comes across the same variable name and two different data types, it has
no reason to favor any particular one. In other words, in order to type an object and give
it a memory address, the compiler must know the precise identity of that object (i.e., its
name and its data type). The compiler determines its size from the data type. For every
compiled database, the compiler creates a map that lists, for each variable, its name (or
identifier), its location (or memory address), and the space it occupies (indicated by its
data type). This map is called the symbol table. An option in the Preferences lets you
choose whether to generate this table in the form of a file during compilation.
This map is also used for the automatic generation of compiler methods.

Typing variables
The compiler must respect the identification criteria of the variables.
There are two possibilities:
• If the variables are not typed, the compiler can do it for you automatically. Whenever
possible––as long as there is no ambiguity––the compiler determines a variable's type from
the way it is used. For example, if you write:

V1 := True

the compiler determines that variable V1 is of data type Boolean.

By the same token, if you write:
V2:= "This is a sample phrase"

the compiler determines that V2 is a Text type variable.

The compiler is also capable of establishing the data type of a variable in less
straightforward situations:

V3:= V1 `V3 is of the same type as V1
V4:= 2*V2 `V4 is of the same type as V2

356 4th Dimension Language Reference

The compiler also determines the data type of your variables according to calls to
4th Dimension commands and according to your methods. For example if you pass a
Boolean type parameter and a Date type parameter to a method, the compiler assigns the
Boolean type and the Date type to the local variables $1 and $2 in the called method.

When the compiler determines the data type by inference, unless indicated otherwise in
the Preferences, it never assigns the limiting data types: Integer, Longint or String. The
default type assigned by the compiler is always the widest possible. For example, if you
write:

Number:=4

the compiler assigns the Real data type to Number, even though 4 happens to be an
integer. In other words, the compiler does not rule out the possibility that, under other
circumstances, the variable's value might be 4.5.
If it is appropriate to type a variable as Integer, Longint or String, you can do so using a
compiler directive. It is to your advantage to do so, because these data types occupy less
memory and performing operations on them is faster.

If you have already typed your variables and are sure that your typing is coherent and
complete, you may explicitly ask the compiler not to redo this work, using the
compilation Preferences. In case your typing was not complete and exhaustive, at the
time of compilation, the compiler will return errors requesting you to make the necessary
modifications.

• The compiler directive commands enable you to explicitly declare the variables used in
your databases.
They are used in the following manner:

C_BOOLEAN(Var)

Through such directives, you inform the compiler to create a variable Var that will be a
Boolean.
Whenever an application includes compiler directives, the compiler detects them and
thus avoids guesswork.

A compiler directive has priority over deductions made from assignments or use.

Variables declared with the compiler directive C_INTEGER are actually the same as those
declared by the directive C_LONGINT. They are, in fact, long integers between
–2147483648 and +2147483647.

When to use compiler directives
__

Compiler directives are useful in two cases:
• The compiler is unable to determine the data type of a variable from its context,
• You do not want the compiler to determine a variable's type from its use.
Furthermore, using compiler directives allows you to reduce compilation time.

4th Dimension Language Reference 357

Cases of ambiguity
Sometimes the compiler cannot determine the data type of a variable. Whenever it
cannot make a determination, the compiler generates an appropriate error message.
There are three major causes that prevent the compiler from determining the data type:
multiple data types, ambiguity on a forced deduction and the inability to determine a
data type.

• Multiple data types
If a variable has been retyped in different statements in the database, the compiler
generates an error that is easy to fix.
The compiler selects the first variable it encounters and arbitrarily assigns its data type to
the next occurrence of the variable having the same name but a different data type.

Here is a simple example:

in method A,
Variable:=True

in method B,
Variable:="The moon is green"

If method A is compiled before method B, the compiler considers the statement
Variable:="The moon is green" as a data type change in a previously encountered variable.
The compiler notifies you that retyping has occurred. It generates an error for you to
correct. In most cases, the problem can be fixed by renaming the second occurrence of
the variable.

• Ambiguity on a forced deduction
Sometimes, due to a sequence, the compiler can deduce that an object's type is not the
proper type for it. In this case, you must explicitly type the variable with a compiler
directive.

Here is an example using the default values for an active object:
In a form, you can assign default values for the following objects: combo boxes, pop-up
menus, tab controls, drop-down lists, menu/drop-down lists and scrollable areas using the
Edit button for the Value List (under the Entry Control theme of the Property List) (for
more information, refer to the 4th Dimension Design Reference manual). The default values
are automatically loaded into an array whose name is the same as the name of the object.
If the object is not used in a method, the compiler can deduce the type, without
ambiguity, as a text array.
However, if a display initialization must be performed, the sequence could be:

Case of
: (Form event=On Load)

MyPopUp:=2
...

End case

358 4th Dimension Language Reference

In this case, the ambiguity appears––when parsing methods, the compiler will deduce a
Real data type for the object MyPopUp. In this case, it is necessary to explicitly declare the
array in the form method or in a compiler method:

Case of
: (Form event=On Load)

ARRAY TEXT(MyPopUp;2)
MyPopUp:=2
...

End case

• Inability to determine a data type
This case can arise when a variable is used without having been declared, within a context
that does not provide information about its data type. Here, only a compiler directive can
guide the compiler.
This phenomenon occurs primarily within four contexts:
- when pointers are used,
- when you use a command with more than one syntax,
- when you use a command having optional parameters of different data types,
- when you use a 4D method called via a URL.

- Pointers
A pointer cannot be expected to return a data type other than its own.
Consider the following sequence:

Var1:=5.2 (1)
Pointer:=->Var1 (2)
Var2:=Pointer-> (3)

Although (2) defines the type of variable pointed to by Pointer, the type of Var2 is not
determined. During compilation, the compiler can recognize a pointer, but it has no way
of knowing what type of variable it is pointing to. Therefore it cannot deduce the data
type of Var2. A compiler directive is needed, for example C_REAL(Var2).

- Multi-syntax commands
When you use a variable associated with the function Year of, the variable can only be of
the data type Date, considering the nature of this function. However, things are not
always so simple. Here is an example:
The GET FIELD PROPERTIES command accepts two syntaxes:
GET FIELD PROPERTIES(tableNo;fieldNo;type;length;index)
GET FIELD PROPERTIES(fieldPointer;type;length;index)

When you use a multi-syntax command, the compiler cannot guess which syntax and
parameters you have selected. You must use compiler directives to type variables passed to
the command, if they are not typed according to their use elsewhere in the database.

4th Dimension Language Reference 359

- Commands with optional parameters of different data types
When you use a command that contains several optional parameters of different data
types, the compiler cannot determine which optional parameters have been used. Here is
an example:
The GET LIST ITEM command accepts two optional parameters; the first as a Longint and
the other as a Boolean.
The command can thus either be used as follows:
GET LIST ITEM(list;itemPos;itemRef;itemText;sublist;expanded)
or like this:
GET LIST ITEM(list;itemPos;itemRef;itemText;expanded)
You must use compiler directives to type optional variables passed to the command, if
they are not typed according to their use elsewhere in the database.

- Methods called via URLs
If you write 4D methods that need to be called via a URL, and if you do not use $1 in the
method, you must explicitly declare the text variable $1 with the following sequence:
C_TEXT($1)
In fact, the compiler cannot determine that the 4D method will be called via a URL.

Reducing time needed to compile
If all the variables used in the database are explicitly declared, it is not necessary for the
compiler to check the typing. In this case, you can set the options so that the compiler
only executes the translation phase of the method. This saves at least 50% in compilation
time.

Optimizing code
You can speed up your methods by using compiler directives. For more details on this
subject, refer to the Optimization Hints section. To give a simple example, suppose you
need to increment a counter using a local variable. If you do not declare the variable, the
compiler assumes that is a Real. If you declare it as a Longint, the compiled database will
perform more efficiently. On a PC, for instance, a Real takes 8 bytes, but if you type the
counter as a Longint, it only uses 4 bytes. Incrementing an 8-byte counter obviously
takes longer than incrementing a 4-byte one.

Where to place your compiler directives
__

Compiler directives can be handled in two different ways, depending on whether or not
you want the compiler to type your variables.

Variables typed by the compiler
If you want the compiler to check the typing of your variables or to type them itself, it is
easy to place a compiler directive for this purpose. You can choose between two different
possibilities, depending on your working methods:
• Either use the directive in the method in which the variable first appears, depending on
whether it is a local, proces or interprocess variable. Be sure to use the directive the very
first time you use the variable, in the first method to be executed. Keep in mind that
during compilation, the compiler takes the methods in the order of their creation in 4th
Dimension, and not in the order in which they are displayed in the Explorer.

360 4th Dimension Language Reference

• Or, if you are systematic in your approach, group all the process and interprocess
variables with the different compiler directives in the On Startup Database Method or in a
method called by the On Startup Database Method.
For local variables, group the directives at the beginning of the method in which they
appear.

Variables typed by the developer
If you do not want the compiler to check your typing, you must give it a code to identify
the compiler directives.
The convention to follow is:
Compiler directives for the process and interprocess variables and the parameters should
be placed in one or more methods, the names of which begin with the key word
Compiler.
By default, the compiler lets you automatically generate five types of Compiler methods,
which group together the directives for variables, arrays and method parameters (for
more information about this point, refer to the Design Reference manual).

Note: The syntax for declaring these parameters is the following:
Directive (methodName;parameter). This syntax is not executable in interpreted mode.

Particular parameters
• Parameters received by database methods
If these parameters have not been explicitly declared, they are typed by the compiler.
Nevertheless, if you declare them, the declaration must be done inside the database
methods.
This parameter declaration cannot be written in a Compiler method.
Example: On Web Connection Database Method receives six parameters, $1 to $6, of the
data type Text. At the beginning of the database method, you must write:
C_TEXT($1;$2;$3;$4;$5;$6)

• Triggers
The $0 parameter (Longint), which is the result of a trigger, is typed by the compiler if
the parameter has not been explicitly declared. Nevertheless, if you want to declare it, you
must do so in the trigger itself.
This parameter declaration cannot be written in a Compiler method.

• Objects that accept the “On Drag Over” form event
The $0 parameter (Longint), which is the result of the “On Drag Over” form event, is
typed by the compiler if the parameter has not been explicitly declared. Nevertheless, if
you want to decalre it, you must do so in the object method.
This parameter declaration cannot be written in a Compiler method.

4th Dimension Language Reference 361

Note: The compiler does not initialize the $0 parameter. So, as soon as you use the On
Drag Over form event, you must initialize $0. For example:

C_LONGINT($0)
If (Form event=On Drag Over)

$0:=0
...
If ($DataType=Is Picture)

$0:=-1
End if
...

End if

The C_STRING compiler directive
The C_STRING command uses a different syntax than the other directives because it
accepts an additional parameter––the maximum string length.
C_STRING(length;var1{;var2;…;varN})

Since C_STRING types fixed-length strings, you specify the maximum length of such
strings. In a compiled database, you must specify the length of the string with a constant
rather than with a variable.
In an interpreted database, the following sequence is acceptable:

TheLength:=15
C_STRING(TheLength;TheString)

4th Dimension interprets TheLength, then replaces TheLength with its value in the
C_STRING compiler directive.
However, the compiler uses this command when typing variables with no specific
assignment in mind. Thus, it is not in a position to know that TheLength equals 15. Not
knowing the string's length, the compiler cannot keep a space for it in the symbol table.

Therefore, with compilation in mind, use a constant to specify the length of the declared
character string. For example, use a statement such as this:

C_STRING(15;TheString)

The same rule applies to declaring fixed string arrays, which are typed with the command:
ARRAY STRING(length;arrayName;size)

The parameter that indicates string lengths in the array must be a constant.

However, you can specify the length of the string with a 4D constant or a hexadecimal
value in these two compiler directives. For example:

C_STRING(4DConstant;TheString)
ARRAY STRING(4DConstant;TheArray;2)
C_STRING(0x000A;TheString)
ARRAY STRING(0x000A;TheArray;2)

362 4th Dimension Language Reference

Do not confuse the length of an Alphanumeric field, which has a maximum of 80
characters, with a fixed string variable. The maximum length of a string declared by a
C_STRING directive, or belonging to an ARRAY STRING, is between 1 and 255.

Note: The syntax of this command allows you to declare several variables of the same
length in a single line. If you want to declare several strings of different lengths, do so on
separate lines.

A certain liberty permitted by the compiler
Compiler directives remove any ambiguity concerning data types and, in the case of
alphanumeric strings, lengths. Although a certain rigor is necessary, this does not
necessarily mean that the compiler is intolerant of any and every inconsistency.
For example, if you assign a real value to a variable declared as an Integer, or if you assign
a string of 30 characters to a variable declared as a 10-character string, the compiler does
not regard either assignment as a type conflict and assigns the corresponding values
according to your directives. So, if you write:

C_INTEGER(vInteger)
vInteger:=2.5

The compiler does not regard it as a data type conflict that will prevent compilation;
instead, the compiler simply rounds off to the closest integer value (3 instead of 2.5).
Similarly, if you declare a string that is shorter than the one you are dealing with, the
compiler will only take the number of characters declared in the directives. Therefore, in
the following sequence:

C_STRING(10;MyString)
MyString:="It is a beautiful day"

the compiler takes the first ten characters of the constant, i.e. “It is a be”.

See also
Optimization Hints, Syntax Details, Typing Guide.

4th Dimension Language Reference 363

Typing Guide Compiler

version 2004 (Modified)
__

This section describes the main causes of typing conflicts on variables, as well as ways to
avoid them.

Conflicts on simple variables
__

Simple data type conflicts can be summarized as follows:
• conflict between two uses,
• conflict between use and a compiler directive,
• conflict resulting from implicit retyping,
• conflict between two compiler directives.

Conflicts between two uses
The simplest data type conflict is one that stems from a single variable name designating
two different objects. Suppose that, in an application, you write:

Variable:=5
and that elsewhere, in the same application, you write:

Variable:=True
This generates a data type conflict. The problem can be solved by renaming one of the
variables.

Conflict between use and a compiler directive
Suppose that, in an application, you write:

Variable:=5
and that elsewhere, in the same application, you write:

C_BOOLEAN(Variable)
Since the compiler scans the directives first, it will type Variable as Boolean, but when it
finds the statement:

Variable:=5
it detects a data type conflict. You can solve the problem by renaming your variable or
modifying the compiler directive.

Using variables of different data types in one expression creates inconsistencies. The
compiler points out incompatibilities. Here is a simple example:

vBool:=True `The compiler infers that vBoolean is data type Boolean
C_INTEGER(<>vInteger) `Declaration of an Integer by a compiler directive
<>vInteger:=3 `Command compatible with the compiler directive
Var:= <>vInteger+vBool `Operation containing variables with incompatible data types

Conflict stemming from implicit retyping
Some functions return variables of a very precise data type. Assigning the result of one of
such variables to a variable already typed differently will cause a data type conflict if you
are not careful.

364 4th Dimension Language Reference

For example, in an interpreted application, you can write:
IdentNo:=Request("Identification Number") `IdentNo is data type Text
If(Ok=1)

IdentNo:=Num(IdentNo) `IdentNo is data type Real
QUERY([Contacts]Id=IdentNo)

End if

In this example, you create a type conflict in the third line. The solution consists in
controlling the behavior of the variable. In some cases, you must create an intermediate
variable that uses a different name. In other cases, such as this, your method can be
structured differently:

IdentNo:=Num(Request("Identification Number")) `IdentNo is data type Real
If(Ok=1)

QUERY([Contacts]Id=IdentNo)
End if

Conflict between two compiler directives
Declaring the same variable through two conflicting compiler directives constitutes a
retyping. If, in the same database, you write:

C_BOOLEAN(Variable)
C_TEXT(Variable)

the compiler detects the conflict and reports an error in the error file. Typically, you can
solve the problem by renaming one of the variables.

Keep in mind that a data type conflict can arise concerning the use of C_STRING if you
modify the maximum string length. Thus, if you write:

C_STRING(5;MyString)
MyString:="Hello"
C_STRING(7;MyString)
MyString:="Flowers"

the compiler identifies a conflict because it must provide an adequately-sized location
when declaring String variables.
The solution is to use a compiler directive that gives the maximum length, since, by
default, the compiler will accept a shorter length. You can write:

C_STRING(7;String)
String:="Flowers"
String:="Hello"

Note: If you have written C_STRING(7;String) twice, i.e.:
C_STRING(7;String)
String:="Flowers"
C_STRING(7;String)
String:="Hello"

the compiler will nevertheless accept the directives; the second directive is simply
redundant.

4th Dimension Language Reference 365

Note concerning local variables
Data type conflicts involving local variables are identical to those in process or
interprocess variables. The only difference is that there must be consistency only within a
specified method.
For process and interprocess variables, conflicts occur at the general leve of teh database.
For local variables, conflicts occur at the level of the method. For example, you cannot
write in the same method:

$Temp:="Flowers"
and then

$Temp:=5
However, you can write:

$Temp:="Flowers"
in method M1, and:

$Temp:=5
in method M2, because the scope of local variables is the method itself and not the entire
database.

Conflicts in arrays
__

Conflicts concerning an array are never size-related. As in uncompiled databases, arrays
are managed dynamically. The size of an array can vary throughout methods, and you do
not have to declare a maximum size for an array.
Therefore, you can size an array to null, add or remove elements, or delete the contents.

You should follow these guidelines when writing a database intended for compilation:
• Do not change data types of array elements,
• Do not change the number of dimensions of an array,
• For a String array, do not change character-string length.

Changing data types of array elements
If you declare an array as an Integer array, it must remain an integer array throughout
the database. It can never contain, for example, Boolean type elements.
If you write:

ARRAY INTEGER(MyArray;5)
ARRAY BOOLEAN(MyArray;5)

the compiler cannot type MyArray.
Just rename one of the arrays.

Changing the number of dimensions of an array
In an uncompiled database, you can change the number of dimensions in an array.
When the compiler sets up the symbol table, one-dimensional arrays and two-
dimensional arrays are managed differently.
Consequently, you cannot redeclare a one-dimensional array as two-dimensional, or vice
versa.
Therefore, in the same database, you cannot have:

ARRAY INTEGER(MyArray1;10)
ARRAY INTEGER(MyArray1;10;10)

366 4th Dimension Language Reference

However, you can write the following statements in the same application:
ARRAY INTEGER(MyArray1;10)
ARRAY INTEGER(MyArray2;10;10)

The number of dimensions in an array cannot be changed in a database. However, you
can change the size of an array. You can resize one array of a two-dimensional array and
write:

ARRAY BOOLEAN(MyArray;5)
ARRAY BOOLEAN(MyArray;10)

Note: A two-dimensional array is, in fact, a set of several one-dimensional arrays. For more
information, refer to the Two-dimensional Arrays section.

Case of fixed string arrays
String arrays follow the same rules as fixed strings, for the same reasons.
If you write:

ARRAY STRING(5;MyArray;10)
ARRAY STRING(10;MyArray;10)

the compiler detects a length conflict. The solution is simple: declare the maximum string
length. The compiler automatically handles shorter length strings.

Implicit retyping
When using commands such as COPY ARRAY, LIST TO ARRAY, ARRAY TO LIST, SELECTION
TO ARRAY, SELECTION RANGE TO ARRAY, ARRAY TO SELECTION, or DISTINCT VALUES, you
may change, voluntarily or not, the data types of elements, the number of dimensions,
or, in a String array, the string length. You will thus find yourself in one of the three
situations previously mentioned.
The compiler generates an error message; the required correction is usually quite obvious.
Examples of implicit array retyping are provided in the Syntax Details section.

Local arrays
If you want to compile a database that uses local arrays (arrays only visible by the
methods that created them), you must explicitly declare them in 4th Dimension before
using them.
Explicitly declaring an array means using a command of the type ARRAY REAL, ARRAY
INTEGER, etc.
For example, if a method creates a local integer array of 10 elements, you should have the
following line in your method:

ARRAY INTEGER($MyArray;10)

4th Dimension Language Reference 367

Typing of variables created in forms
__

Variables created in a form (e.g., buttons, drop-down list boxes, and so forth) are always
process or interprocess variables.
In an interpreted database, the data type of such variables is not important. However, in
compiled applications, it may have to be taken into consideration. The rules are,
nevertheless, quite clear:
• You can type form variables using compiler directives, or
• The compiler assigns it a default type that can be set in the compilation Preferences (see
the Design Reference manual).

Variables considered by default as Real
The following form variables are typed as Real by default:
Check box
3D check box
Button
Highlight button
Invisible button
3D button
Picture button
Button grid
Radio button
3D radio button
Radio picture
Picture menu
Hierarchical pop-up menu
Hierarchical list
Ruler
Dial
Thermometer.

Note: The Ruler, Dial and Thermometer form variables are always typed as Reals, even if
you choose Long integer as the Default Button Type in the Preferences.

For one of these variables, the only data type conflict that could arise would be if the
name of a variable were identical to that of another one located elsewhere in the database.
In this case, rename the second variable.

Graph variable
A graph area is automatically data type Graph (Longint). This variable never creates a data
type conflict. For a Graph type variable, the only possible data type conflict that could
arise would be if the name of a variable were identical to that of another one located
elsewhere in the database. In this case, rename the second variable.

368 4th Dimension Language Reference

Plug-in area variable
A plug-in area is always a Longint. There can never be a data type conflict.
For a plug-in area, the only possible data type conflict that could arise would be if the
name of a variable were identical to that of another one located elsewhere in the database.
In this case, rename the second variable.

Variables considered by default as Text
These variables are of the following types:
Non-enterable variable,
Enterable variable,
Drop-down list,
Menu/drop-down list,
Scrollable area,
Combo box,
Pop-up Menu,
Tab control.

These variables are divided into two categories:
• simple variables (enterable and non-enterable variables),
• display variables (drop-down lists, menus/drop-down lists, scrollable areas, pop-up
menus, combo boxes and tab controls).

• Simple variables
Their default data type is Text. When used in methods or object methods, they are
assigned the data type selected by you. There is no danger of conflict other than one
resulting from assigning the same name to another variable.

• Display variables
Some variables are used to display arrays in forms. If default values have been entered in
the Form editor, you must explicitly declare the corresponding variables using the Array
Declaration commands (ARRAY STRING, ARRAY TEXT...).

Pointers
__

When you use pointers in your database, you take advantage of a powerful and versatile
4th Dimension tool. The compiler preserves all the benefits of pointers.
A pointer can point to variables of different data types. Do not create a conflict by
assigning different data types to a variable. Be careful not to change the data type of a
variable to which a pointer refers.
Here is an example of this problem:

Variable:=5.3
Pointer:=-> Variable
Pointer->:=6.4
Pointer->:=False

In this case, your dereferenced pointer is a Real variable. By assigning it a Boolean value,
you create a data type conflict.

4th Dimension Language Reference 369

If you need to use pointers for different purposes in the same method, make sure that
your pointers are defined:

Variable:=5.3
Pointer:=-> Variable
Pointer->:=6.4
Bool:=True
Pointer:=->Bool
Pointer->:=False

A pointer is always defined in relation to the object to which it refers. That is why the
compiler cannot detect data type conflicts created by pointers. In case of a conflict, you
will get no error message while you are in the typing phase or in the compilation phase.
This does not mean that the compiler has no way to detect conflicts involving pointers.
The compiler can verify your use of pointers when you check the Range Checking option
in the compilation Preferences (see the Design Reference manual).

Plug-in Commands
__

General points
During compilation, the compiler analyzes the definitions of the plug-in commands used
in the database, i.e. the number and type of parameters of these commands. There is no
danger of confusion at the typing level if your calls are consistent with the declaration of
the method.

Make sure that your plug-ins are installed in the PlugIns folder, in one of the locations
authorized by 4th Dimension: next to the database structure file or next to the executable
application (Windows) / in the software package (Mac OS). For compatibility reasons, it is
still possible to use the Win4DX or Mac4DX folder next to the structure file. For more
information, refer to the Installation Guide of 4th Dimension.
The compiler does not duplicate these files, but analyzes them to determine the proper
declaration of their routines.
If your plug-ins are located elsewhere, the compiler will ask you to locate them during
typing, via an Open file dialog box.

Plug-in commands receiving implicit parameters
Certain plug-ins, for example 4D Write, implement commands that implicitly call
4th Dimension commands.
Take the example of 4D Write. The syntax for the WR ON EVENT command is:
WR ON EVENT(area;event;eventMethod)

370 4th Dimension Language Reference

The last parameter is the name of the method that you have created in 4th Dimension.
This method is called by 4D Write each time the event is received. It automatically
receives the following parameters:
Parameters Type Description
$0 Longint Function return
$1 Longint 4D Write area
$2 Longint Shift key
$3 Longint Alt key (Windows); Option key (Mac OS)
$4 Longint Ctrl key (Windows), Command key (Mac OS)
$5 Longint Type of event
$6 Longint Value depends on the Event parameter

For the compiler to take these parameters into account, you must make sure that they
have been typed, either by a compiler directive, or by their usage in the method. If they
have been used procedurally, the usage has to be explicit enough to be able to deduce the
type clearly.

4D components
__

4th Dimension and 4D Insider allow creation and management of 4D components. 4D
components can be compared to 4D object libraries, in which each object is assigned an
attribute (“Private”, “Protected” or “Public”) to indicate if it will be visible, modifiable, etc.
For more information about 4D components management, refer to 4D Insider
documentation.
In principle, the 4D component developer should make sure that the component can be
compiled and will not generate conflicts. However, this possibility can never be totally
excluded. In case of a compilation error caused by an object belonging to a component,
the compiler will display the following information, depending on the object attribute:
• “Private”: the compiler will not provide the name of the object concerned, but only the
name of the 4D component.
• “Protected” or “Public”: the compiler will provide the object name, just as it would for
any other database object (standard behavior).

Handling local variables $0…$N and parameter passing
__

The handling of local variables follows all the rules that have already been stated. As with
all other variables, their data types cannot be altered while the method executes. In this
section, we examine two instances that could lead to data type conflicts:
• When you actually require retyping. The use of pointers helps avoid data type conflicts.
• When you need to address parameters by indirection.

4th Dimension Language Reference 371

Using pointers to avoid retyping
A variable cannot be retyped. However, it is possible to use a pointer to refer to variables
of different data types.
As an example, consider a function that returns the memory size of a one-dimensional
array. In all but two cases, the result is a Real; for Text arrays and Picture arrays, the
memory size depends on values that cannot be expressed numerically (see the Arrays and
Memory section).
For Text and Picture arrays, the result is returned as a string of characters. This function
requires a parameter: a pointer to the array whose memory size we want to know.
There are two methods to carry out this operation:
• Work with local variables without worrying about their data types; in such case, the
method runs only in interpreted mode.
• Use pointers, and proceed in interpreted or in compiled mode.

• MemSize function, only in interpreted mode (example for Macintosh)
$Size:=Size of array($1->)
$Type:=Type($1->)
Case of

:($Type=Real array)
$0:=8+($Size*10) ` $0 is a Real

:($Type=Integer array)
$0:=8+($Size*2)

:($Type=LongInt array)
$0:=8+($Size*4)

:($Type=Date array)
$0:=8+($Size*6)

:($Type=Text array)
$0:=String(8+($Size*4))+("+Sum of text lengths") ` $0 is a Text

:($Type=Picture array)
$0:=String(8+($Size*4))+("+Sum of picture sizes") ` $0 is a Text

:($Type=Pointer array)
$0:=8+($Size*16)

:($Type=Boolean array)
$0:=8+($Size/8)

End case

In the above method, the data type of $0 changes according to the value of $1; therefore,
it is not compatible with the compiler.

372 4th Dimension Language Reference

• MemSize function in interpreted and compiled modes (example for Macintosh)
Here, the method is written using pointers:

$Size:=Size of array($1->)
$Type:=Type($1->)
VarNum:=0
Case of

:($Type=Real array)
VarNum:=8+($Size*10) ` VarNum is a Real

:($Type=Integer array)
VarNum:=8+($Size*2)

:($Type=LongInt array)
VarNum:=8+($Size*4)

:($Type=Date array)
VarNum:=8+($Size*6)

:($Type=Text array)
VarText:=String(8+($Size*4))+("+Sum of text lengths")

:($Type=Picture array)
VarText:=String(8+($Size*4))+("+Sum of picture sizes")

:($Type=Pointer array)
VarNum:=8+($Size*16)

:($Type=Boolean array)
VarNum:=8+($Size/8)

End case
If (VarNum#0)

$0:=->VarNum
Else

$0:=->VarText
End if

Here are the key differences between the two functions:
• In the first case, the function's result is the expected variable,
• In the second case, the function's result is a pointer to that variable. You simply
dereference your result.

Parameter indirection
The compiler manages the power and versatility of parameter indirection. In interpreted
mode, 4th Dimension gives you a free hand with numbers and data types of parameters.
You retain this freedom in compiled mode, provided that you do not introduce data type
conflicts and that you do not use more parameters than you passed in the calling
method.
To prevent possible conflicts, parameters addressed by indirection must all be of the same
data type.
This indirection is best managed if you respect the following convention: if only some of
the parameters are addressed by indirection, they should be passed after the others.
Within the method, an indirection address is formatted: ${$i}, where $i is a numeric
variable. ${$i} is called a generic parameter.

4th Dimension Language Reference 373

As an example, consider a function that adds values and returns the sum formatted
according to a format that is passed as a parameter. Each time this method is called, the
number of values to be added may vary. We must pass the values as parameters to the
method and the format in the form of a character string. The number of values can vary
from call to call.
This function is called in the following manner:

Result:=MySum("##0.00";125,2;33,5;24)

In this case, the calling method will get the string “182.70”, which is the sum of the
numbers, formatted as specified. The function's parameters must be passed in the correct
order: first the format and then the values.

Here is the function, named MySum:
$Sum:=0
For($i;2;Count parameters)

$Sum:=$Sum+${$i}
End for
$0:=String($Sum;$1)

This function can now be called in various ways:
Result:=MySum("##0.00";125,2;33,5;24)
Result:=MySum("000";1;18;4;23;17)

As with other local variables, it is not necessary to declare generic parameters by compiler
directive. When required (in cases of ambiguity or for optimization), it is done using the
following syntax:

C_INTEGER(${4})

This command means that all parameters starting from the fourth (included) will be
addressed by indirection and will be of the data type Integer. $1, $2 and $3 can be of any
data type. However, if you use $2 by indirection, the data type used will be the generic
type. Thus, it will be of the data type Integer, even if for you it was, for instance, of the
data type Real.

Note: The compiler uses this command in the typing phase. The number in the
declaration has to be a constant and not a variable.

Reserved variables and constants
__

Some 4th Dimension variables and constants are assigned a data type and an identity by
the compiler. Therefore, you cannot create a new variable, method, function or plug-in
command using any of these variables or constant names. You can test their values and
use them as you do in interpreted mode.

374 4th Dimension Language Reference

System variables
Here is a complete list of 4th Dimension System Variables with their data types.
Variable Type
OK Longint
Document String (255)
FldDelimit Longint
RecDelimit Longint
Error Longint
MouseDown Longint
KeyCode Longint
Modifiers Longint
MouseX Longint
MouseY Longint
MouseProc Longint

Quick report variables
When you create a calculated column in a report, 4th Dimension automatically creates a
variable C1 for the first one, C2 for the second one, C3 and so forth. This is done
transparently.
If you use these variables in methods, keep in mind that, like other variables, C1, C2, ...
Cn cannot be retyped.

4D predefined constants
A complete list of the predefined constants in 4th Dimension can be found in this
manual. 4D constants are also displayed in the Explorer, in Design mode.

See also
Error messages, Optimization Hints, Syntax Details, Using Compiler Directives.

4th Dimension Language Reference 375

Syntax Details Compiler

version 2003 (Modified)
__

The compiler expects that the usual syntactic rules for 4th Dimension commands are
followed. It does not require any special modifications for databases that will be compiled.

This section nevertheless provides certain reminders and specific details:
• Some commands that affect a variable's data type may lead, if you are not careful, to
data type conflicts.
• Since certain commands use more than one kind of syntax or parameters, it is to your
advantage to know which is the most appropriate one to select.

Strings
__

Ascii (character)
For commands operating on strings, only the Ascii function requires special attention. In
interpreted mode, you can pass either a non-empty string or an empty string to this
function.
In compiled mode, you cannot pass an empty string.
If you pass an empty string, and if the argument passed to Ascii is a variable, the compiler
will not be able to detect an error in compilation.

Communications
__

SEND VARIABLE(variable)
RECEIVE VARIABLE(variable)
These two commands are used for writing and receiving variables sent to disk. Variables
are passed as parameters to these commands.
The parameter you pass must always be of the same data type. Suppose you want to send a
list of variables to a file. To eliminate the risk of changing data types inadvertently, we
recommend that you specify the data type of the variables being sent at the head of the
list. This way, when you receive these variables, you will always begin by getting an
indicator. Then, when you call RECEIVE VARIABLE, the transfer is managed by a Case of
statement.

376 4th Dimension Language Reference

Example:
SET CHANNEL(12;"File")

If (OK=1)
$Type:=Type([Client]Total_TO)
SEND VARIABLE($Type)
For($i;1;Records in selection)

$Send_TO:=[Client]Total_TO
SEND VARIABLE($Send_TO)

End for
End if
SET CHANNEL(11)
SET CHANNEL(13;"MyFile")
If (OK=1)

RECEIVE VARIABLE($Type)
Case of

:($Type=Is String Var)
RECEIVE VARIABLE($String)

`Processing variable received
:($Type=Is Real)

RECEIVE VARIABLE($Real)
`Processing variable received

:($Type=Is Text)
RECEIVE VARIABLE($Text)

`Processing variable received
End case

End if
SET CHANNEL(11)

Structure access

Field (field pointer) or (table number;field number)
Table(table pointer) or (table number) or (field pointer)
These two commands return results of different data types, according to the parameters
passed to them:
• If you pass a pointer to the Table function, the result returned is a number.
• If you pass a number to the Table function, the result returned is a pointer.
The two functions are not sufficient for the compiler to determine the data type of the
result. In such cases, use a compiler directive to avoid any ambiguity.

Documents

Keep in mind that the document references returned by the Open document, Append
document and Create document functions are of the data type Time.

4th Dimension Language Reference 377

Math

Mod (value;divider)
The expression “25 modulo 3” can be written in two different ways in 4th Dimension:

Variable:=Mod(25;3)
or

Variable:=25%3
The compiler sees a difference between the two: Mod applies to all numerics, while the
operator % applies only to Integers and Long Integers. If the operand of the % operator
exceeds the range of the Long Integer data type, the returned result is likely to be wrong.

Exceptions

IDLE
ON EVENT CALL (Method{; ProcessName})
ABORT

ON EVENT CALL
The IDLE command has been added to 4th Dimension language to manage exceptions.
This command should be used whenever you use the ON EVENT CALL command.

This command could be defined as an event management directive.
Only the kernel of 4th Dimension is able to detect a system event (mouse click, keyboard
activity, and so forth). In most cases, kernel calls are initiated by the compiled code itself,
in a way that is transparent to the user.

On the other hand, when 4th Dimension is waiting passively for an event––for example,
in a waiting loop––it is clear that there will be no call.

Example under Windows
`MouseClick Method

If (MouseDown=1)
<>vTest:=True
ALERT("Somebody clicked the mouse")

End if

`Wait Method
<>vTest:=False
ON EVENT CALL("MouseClick")
While(<>vTest=False)

`Event's waiting loop
End while
ON EVENT CALL("")

378 4th Dimension Language Reference

In this case, you would add the IDLE command in the following manner:
`Wait Method

<>vTest:=False
ON EVENT CALL("MouseClick")
While(<>vTest=False)

IDLE
`Kernel call to sense an event

End while
ON EVENT CALL("")

ABORT
Use this command only in error-handling project methods. It works exactly as it does in
4th Dimension, except in a method that has been called by one of the following
commands: EXECUTE, APPLY TO SELECTION and APPLY TO SUBSELECTION. Try to avoid
this situation.

Arrays
__

Seven 4th Dimension commands are used by the compiler to determine the data type of
an array. They are:
COPY ARRAY(source;destination)
SELECTION TO ARRAY(field;array)
ARRAY TO SELECTION(array;field)
SELECTION RANGE TO ARRAY(start;end;field;array)
LIST TO ARRAY(list;array{; itemRefs})
ARRAY TO LIST(array;list{; itemRefs})
DISTINCT VALUES(field;array)

COPY ARRAY
The COPY ARRAY command accepts two array type parameters. If one of the array
parameters is not declared elsewhere, the compiler determines the data type of the
undeclared array from the data type of the declared one.
This deduction is performed in the two following cases:
• The array typed is the first parameter. The compiler assigns the data type of the first
array to the second array.
• The declared array is the second parameter. Here, the compiler assigns the data type of
the second array to the first array.

Since the compiler is strict about data types, COPY ARRAY can be performed only from an
array of a certain data type to an array of the same type.
Consequently, if you want to copy an array of elements whose data types are similar, i.e.,
Integers, Long Integers and Reals, or Texts and Strings, or Strings with different lengths,
you have to copy the elements one by one.

4th Dimension Language Reference 379

Suppose you want to copy elements from an Integer array to a Real array. You can
proceed as follows:

$Size:=Size of array(ArrInt)
ARRAY REAL(ArrReal;$Size)

`Set same size for Real array as the Integer array
For($i;1;$Size)

ArrReal{$i}:=ArrInt{$i}
`Copy each of the elements

End for

Remember that you cannot change the number of dimensions of an array during the
process. If you copy a one-dimensional array into a two-dimensional array, the compiler
generates an error message.

SELECTION TO ARRAY, ARRAY TO SELECTION, DISTINCT VALUES, SELECTION RANGE
TO ARRAY
As with 4th Dimension in interpreted mode, these four commands do not require the
declaration of arrays. The undeclared array will be assigned the data type of the field
specified in the command.
If you write:

SELECTION TO ARRAY([MyTable]IntField;MyArray)
the data type of MyArray would be an Integer array having one dimension (assuming that
IntField is an integer field).

If the array has been declared, make sure that the field is of the same data type. Although
Integer, Longint and Real are similar types, they are not equivalent.
On the other hand, in the case of Text and String data types, you have a little more
latitude. By default, if an array was not previously declared and you apply a command
that includes a String type field as a parameter, the default data type assigned to the array
is Text. If the array was previously declared as String or Text, these commands will follow
your directives.

The same is true for Text type fields––your directives have priority.
Remember that the SELECTION TO ARRAY, SELECTION RANGE TO ARRAY, ARRAY TO
SELECTION and DISTINCT VALUES commands can only be used with a one-dimensional
array.

The SELECTION TO ARRAY command also has a second syntax:
SELECTION TO ARRAY(table;array).
In this case, the MyArray variable will be an array of Longints. The SELECTION RANGE TO
ARRAY command works in the same way.

LIST TO ARRAY, ARRAY TO LIST
The LIST TO ARRAY and ARRAY TO LIST commands only concern two types of arrays:
• one-dimensional String arrays, and
• one-dimensional Text arrays.

380 4th Dimension Language Reference

These commands do not require that the array passed as a parameter be declared. By
default, the non-declared array will be typed as a Text array. If the array was previously
declared as String or Text, these commands will follow your directives.

Using pointers in array-related commands
The compiler cannot detect a data type conflict if you use a dereferenced pointer as a
parameter to an array-declaration command. If you write:

SELECTION TO ARRAY([Table]Field;Pointer->)
where Pointer-> stands for an array, the compiler cannot check whether the field type and
array type are identical. It is up to you to prevent such conflicts; you should type the
array referred to by the pointer.

The compiler issues a warning whenever it encounters an array declaration statement in
which one of the parameters is a pointer. These messages can be helpful in detecting this
type of conflict.

Local arrays
If your database uses local arrays (arrays recognized only in the method in which they
were created), it is necessary to declare them explicitly in 4th Dimension before using
them.

To declare a local array, use one of the array commands such as ARRAY REAL, ARRAY
INTEGER, etc.

For example, if a method creates a local Integer array with 10 elements, you need to
declare the array before using it. Use the command:

ARRAY INTEGER($MyArray;10)

Language
__

Get pointer(varName)
Type (object)
EXECUTE(statement)
TRACE
NO TRACE

Get pointer
Get pointer is a function that returns a pointer to the parameter that you passed to it.
Suppose you want to initialize an array of pointers. Each element in that array points to a
given variable. Suppose there are twelve such variables named V1, V2, …V12. You could
write:

ARRAY POINTER(Arr;12)
Arr{1}:=->V1
Arr{2}:=->V2
…
Arr{12}:=->V12

4th Dimension Language Reference 381

You could also write:
ARRAY POINTER(Arr;12)
For($i;1;12)

Arr{$i}:=Get pointer("V"+String($i))
End for

At the end of this operation, you get an array of pointers where each element points to a
variable Vi.

These two sequences can be compiled. However, if the variables V1 to V12 are not used
explicitly elsewhere in the database, the compiler cannot type them. Therefore, they must
be used or declared explicitly elsewhere.
Such explicit declaration may be performed in two ways:
• By declaring V1, V2, …V12 through a compiler directive:

C_LONGINT(V1;V2;V3;V4;V5;V6;V7;V8;V9;V10;V11;V12)
• By assigning these variables in a method:

V1:=0
V2:=0
…
V12:=0

Type (object)
Since each variable in a compiled database has only one data type, this function may
seem to be of no use. However, it can be useful when you work with pointers. For
example, you may need to know the data type of the variable to which a pointer refers;
due to the flexibility of pointers, one cannot always be sure to what object it points.

EXECUTE
This command offers benefits in interpreted mode that are not carried over to compiled
mode.
In compiled mode, a method name passed as a parameter to this command is interpreted.
Therefore, you miss some of the advantages provided by the compiler, and your
parameter's syntax cannot be checked.
Moreover, you cannot pass local variables as parameters to it.
EXECUTE can be replaced by a series of statements. Two examples are given below.

Given the following sequence:
i:= FormFunc
EXECUTE("INPUT FORM (Form"+String(i)+")")

It can be replaced by:
i:=FormFunc
VarForm:="Form"+String(i)
INPUT FORM(VarForm)

382 4th Dimension Language Reference

Below is another example:
$Num:=SelPrinter
EXECUTE("Print"+$Num)

Here, EXECUTE can be replaced with Case of:
Case of

: ($Num=1)
Print1

: ($Num=2)
Print2

: ($Num=3)
Print3

End case

The EXECUTE command can always be replaced. Since the method to be executed is
chosen from the list of the database's project methods or the 4th Dimension commands,
there is a finite number of methods. Consequently, it is always possible to replace
EXECUTE with either Case of or with another command. Furthermore, your code will
execute faster.

TRACE, NO TRACE
These two commands are used in the debugging process. They serve no purpose in a
compiled database. However, you can keep them in your methods; they will simply be
ignored by the compiler.

Variables
__

Undefined(variable)
SAVE VARIABLES(document;variable1{; variable2…})
LOAD VARIABLES(document;variable1{; variable2…})
CLEAR VARIABLE(variable)

Undefined
Considering the typing process carried out by the compiler, a variable can never be
undefined in compiled mode. In fact, all the variables have been defined by the time
compilation has been completed. The Undefined function therefore always returns False,
whatever parameter it is passed.

Note: To know if your application is running in compiled mode, call the Compiled
application command.
SAVE VARIABLES, LOAD VARIABLES
In interpreted mode, you can check that the document exists by testing if one of the
variables is undefined after performing a LOAD VARIABLES. This is no longer feasible in
compiled databases, because the Undefined function always returns False.

4th Dimension Language Reference 383

This test can be performed in either interpreted or compiled mode by:
1. Initializing the variables that you will receive to a value that is not a legal value for any
of the variables.
2. Comparing one of the received variables to the initialization value after LOAD
VARIABLES.
The method can be written as follows:

Var1:="xxxxxx"
`"xxxxxx" is a value that cannot be returned by LOAD VARIABLES

Var2:="xxxxxx"
Var3:="xxxxxx"
Var4:="xxxxxx"
LOAD VARIABLES("Document";Var1;Var2;Var3;Var4)
If(Var1="xxxxxx")

`Document not found
…

Else
`Document found

…
End if

CLEAR VARIABLE
This routine uses two different syntaxes in interpreted mode:
CLEAR VARIABLE(variable)
CLEAR VARIABLE("a")
In compiled mode, the first syntax of CLEAR VARIABLE(variable) reinitializes the variable
(set to null for a numeric; empty string for a character string or a text, etc.), since no
variable can be undefined in compiled mode.
Consequently, CLEAR VARIABLE does not free any memory in compiled mode, except in
four cases: Text, Picture, BLOB and Array type variables.
For an array, CLEAR VARIABLE has the same effect as a new array declaration where the size
is set to null.

For an array MyArray whose elements are of the Integer type, CLEAR VARIABLE(MyArray)
has the same effect as one of the following expressions:

ARRAY INTEGER(MyArray;0)
`if it as a one-dimensional array

ARRAY INTEGER(MyArray;0;0)
`if it is a two-dimensional array

The second syntax, CLEAR VARIABLE("a"), is incompatible with the compiler, since
compilers access variables by address, not by name.

384 4th Dimension Language Reference

Pointers with certain commands
__

The following commands have one common feature: they accept an optional first
parameter [Table], and the second parameter can be a pointer.
ADD TO SET LOAD SET
APPLY TO SELECTION LOCKED ATTRIBUTES
COPY NAMED SELECTION ORDER BY
CREATE EMPTY SET ORDER BY FORMULA
CREATE SET OUTPUT FORM
CUT NAMED SELECTION PAGE SETUP
DIALOG Print form
EXPORT DIF PRINT LABEL
EXPORT SYLK QR REPORT
EXPORT TEXT QUERY
GOTO RECORD QUERY BY FORMULA
GOTO SELECTED RECORD QUERY SELECTION
GRAPH TABLE QUERY SELECTION BY FORMULA
IMPORT DIF REDUCE SELECTION
IMPORT SYLK RELATE MANY
IMPORT TEXT REMOVE FROM SET
INPUT FORM

In compiled mode, it is easy to return the optional [Table] parameter. However, when the
first parameter passed to one of these commands is a pointer, the compiler does not know
to what the pointer is referring; the compiler treats it as a table pointer.

Take the case of the QUERY command whose syntax is as follows:
QUERY({table{;formula{;*}})
The first element of the formula parameter must be a field.
If you write :

QUERY(PtrField->=True)
the compiler will look for a symbol representing a field in the second element. When it
finds the "=" sign, it will issue an error message, since it cannot identify the command
with an expression that it knows how to process.

On the other hand, if you write:
QUERY(PtrTable->;PtrField->=True)

or
QUERY([Table];PtrField->=True)

you will avoid any possible ambiguity.

4th Dimension Language Reference 385

Constants
__

If you create your own 4DK# resources (constants), make sure that numerics are declared
as Longints (L) or Reals (R) and character strings as Strings (S). Any other type will
generate a warning.

See also
Optimization Hints, Typing Guide, Using Compiler Directives.

386 4th Dimension Language Reference

Optimization Hints Compiler

version 2003 (Modified)
__

It is difficult to state a definitive “good-programming” method, but we wish to stress the
advantages of well-structured programs. The capacity for structured programming in
4th Dimension can be a great help.
The compilation of a well-structured database can yield much better results than the same
effort performed in a poorly-designed one. For instance, if you write a generic method to
manage n object methods, you will get higher quality results in both interpreted and
compiled modes than in a situation where n object methods comprise n times the same
set of statements.
In other words, the quality of the programming does have an impact on the quality of
the compiled code.
With practice, you can gradually improve your 4th Dimension code. Frequent use of the
compiler gives you corrective feedback that enables you to reach instinctively for the
most efficient solution.
In the meantime, we can offer some advice and a few tricks that will save you time in
performing simple, recurring tasks.

Using comments in code
__

Certain programming techniques may make your code less readable both for yourself or
another person at a later time. Because of this, we encourage you to comment your
methods with a lot of detail. In fact, while excessive comments have a tendency to slow
down interpreted databases, they have absolutely no influence on the execution time in a
compiled database.

Using compiler directives to optimize code
__

Compiler directives can help you speed up your code considerably. When typing variables
on the basis of their use, the compiler uses the data type with the largest scope possible so
as not to penalize you. For example, if you do not type the variable defined by the
statement: Var:= 5, the compiler will type it as Real, even if it could be declared an
Integer.

Numeric Variables
The compiler gives numeric variables (not typed by compiler directives) the default data
type Real if the Preferences are not set to anything else. But calculations performed on a
Real are slower than on a Longint. If you know that a numeric variable will always be an
integer, it is to your advantage to declare it through the compiler directives C_INTEGER or
C_LONGINT.
For example, it is good practice to declare your loop counters as Integers.

4th Dimension Language Reference 387

Some 4th Dimension functions return Integers (e.g., Ascii, Int...). If you assign the result
of one of these functions to an untyped variable of your database, the compiler types it as
Real rather than as Integer. Remember to declare such variables with compiler directives
whenever you are sure that they will not be used in a different context.

Here is a simple example of a function that returns a random value with a given range:
$0:=Mod(Random;($2-$1+1))+$1

It will always return an integer. Written this way, the compiler will type $0 as Real rather
than Integer or Longint. It is preferable, therefore, to include a compiler directive in the
method:

C_LONGINT($0)
$0:=Mod(Random;($2-$1+1))+$1

The parameter returned by the method will take less space in memory and will be much
faster.

Here is another example. Suppose you typed two variables as Longint:
C_LONGINT($var1;$var2)

and a third non-typed variable receives the sum of the other two variables:
$var3:=$var1+$var2.

The compiler will type the third variable, $var3, as Real. You will have to explicitly declare
it as Longint if you want the result to be a long integer.

Note: Be careful with the computation mode in 4th Dimension. In compiled mode, it is
not the data type of the variable that receives the calculation which determines the
computation mode, but rather the data types of the operands.
• In the following example, the calculation is based on long integers:

C_REAL($var3)
C_LONGINT($var1;$var2)
$var1:=2147483647
$var2:=1
$var3:=$var1+$var2

$var3 is equal to –2147483648 in both compiled mode and interpreted mode.
• However, in this example:

C_REAL($var3)
C_LONGINT($var1)
$var1:=2147483647
$var3:=$var1+1

for optimization reasons, the compiler considers the value 1 as an integer. In compiled
mode, $var3 is equal to –2147483648 because the calculation is based on Longints. In
interpreted mode, $var3 is equal to 2147483648 because the calculation is based on Reals.

Buttons are a specific case of a Real that can be declared as Longint.

Strings
The default type assigned to alphanumeric variables is Text if the Preferences are not set
to anything else. For example, if you write:
MyString:="Hello", MyString would be typed as a Text variable by the compiler.

388 4th Dimension Language Reference

If this variable will be processed frequently, it is worthwhile to declare it using C_STRING.
Processing is much faster with String type variables, which have a defined maximum
length, than with Text variables. Keep in mind the rules governing the behavior of this
directive.

If you want to test the value of a character, make the comparison on its Ascii value rather
than on the character itself. The regular character comparison procedure considers all of
the character's alternatives, such as diacritical marks.

Various observations
__

Two-dimensional arrays
The processing of two-dimensional arrays is better managed if the second dimension is
larger than the first.

For example, an array declared as:
ARRAY INTEGER(Array;5;1000)

will be better managed than an array declared as:
ARRAY INTEGER(Array;1000;5)

Fields
Whenever you need to perform several calculations on a field, you can improve
performance by storing the value of that field in a variable and performing your
calculations on the variable rather than the field. Consider the following method:

Case of
: ([Client]Dest="New York City")

Transport:="Messenger"
: ([Client]Dest="Puerto Rico")

Transport:="Air mail"
: ([Client]Dest="Overseas")

Transport:="Express mail service"
Else

Transport:="Regular mail service"
End case

This method will take longer to execute than if it were written:
$Dest:=[Client]Dest
Case of

: ($Dest="New York City")
Transport:="Messenger"

: ($Dest="Puerto Rico")
Transport:="Air mail"

: ($Dest="Overseas")
Transport:="Express mail service"

Else
Transport:="Regular mail service"

End case

4th Dimension Language Reference 389

Pointers
As is the case with fields, it is faster to work with variables than with dereferenced
pointers. Whenever you need to perform several calculations on a variable referenced by a
pointer, you can save time by storing the dereferenced pointer in a variable.

For example, suppose you use a pointer, MyPtr, to refer to a field or to a variable. Then,
you want to perform a set of tests on the value referenced by MyPtr. You could write:

Case of
: (MyPtr-> = 1)

Sequence 1
: (MyPtr-> = 2)

Sequence 2
…

End case

The set of tests would be performed faster if it were written:
Temp:=MyPtr->
Case of

: (Temp = 1)
Sequence 1

: (Temp = 2)
Sequence 2

…
End case

Local variables
Use local variables wherever possible to structure you code. Using local variables has the
following advantages:
• Local variables take less space when used in a database. They are created when the
method in which they are used is entered, and they are destroyed when the method
finishes executing.
• The code generated is optimized for local variables, especially for those of the type
Longint. This is useful for counters in loops.

See also
Syntax Details, Typing Guide, Using Compiler Directives.

390 4th Dimension Language Reference

Error messages Compiler

version 2003 (Modified)
__

This section describes the different messages generated by the compiler. These messages
are of several different types:
• warnings, that help you avoid common pitfalls;
• errors, that it is up to you to correct;
• range checking messages, generated within 4th Dimension.

Warnings
__

These messages are generated throughout the compilation process. Each message is
accompanied here with an example of the problem and, when necessary, an additional
explanation.

Pointer in COPY ARRAY
COPY ARRAY(Pointer->;Array)

Pointer in SELECTION TO ARRAY
SELECTION TO ARRAY(Pointer->;MyArray)
SELECTION TO ARRAY([MyTable]MyField;Pointer->)

Pointer in ARRAY TO SELECTION
ARRAY TO SELECTION(Pointer->;[MyTable]MyField)

Pointer in LIST TO ARRAY
LIST TO ARRAY(List;Pointer->)

Pointer in ARRAY TO LIST
ARRAY TO LIST(Pointer->;List)

Pointer in an array declaration
ARRAY REAL(Pointer->;5)

The command ARRAY REAL(Array;Pointer->) does not generate this warning. The value of
the dimension of an array does not have any influence on its type. In this example, the
array referred to by the pointer must have been defined elsewhere.

Pointer in DISTINCT VALUES
DISTINCT VALUES(Pointer->;Array)

Using the function Undefined is not advised.
If(Undefined(Variable))

The Undefined function always returns FALSE in a compiled database.

4th Dimension Language Reference 391

This method is protected by a password.

An automatic action button does not have a name in the MyForm form on page X.
All of your buttons should have names to avoid conflicts.

Assumes that the pointer points to an alphanumeric expression.
Pointer->≤2≥:="a"

Assumes that the string index is numeric.
String≤Pointer->≥:="a"

Assumes that the array index is of type real.
ALERT(MyArray{Pointer->})

Missing parameter in the plug-in procedure call.
WR SET FONT(Area)

Error messages
__

These messages are generated throughout the compilation process. It is up to you to
correct these errors in order to for the compiler to be able to generate a compiled
database. Each message is accompanied here with an example of the problem and, when
necessary, an additional explanation.
The messages are grouped by the following topics: Typing, Syntax, Parameters, Operators,
Plug-in Commands and General Errors.

• Typing

The type of the variable is not compatible with the operator. Cannot make an assignment with
those types.

MyReal:=12.3
MyBoolean:=True
MyReal:=MyBoolean

Changing the maximum length of a string.
C_STRING(3;MyString)
C_STRING(5;MyString)

Changing the number of dimensions of an array.
ARRAY TEXT(MyArray;5;5)
ARRAY TEXT(MyArray;5)

Typing conflict on the MyArray variable in the form.
ARRAY INTEGER(MyArray)

392 4th Dimension Language Reference

Declaring an array without dimensions.
ARRAY INTEGER(MyArray)

Variable expected.
COPY ARRAY(MyArray;"")

Constant number expected.
C_STRING(Variable;MyString)

The type of Variable is unknown. This variable is used in the method M1.
The type of Variable cannot be determined. A compiler directive is necessary.

Invalid constant type
OK:="The weather is nice"

The method M1 is unknown.
The line contains a call to a method that does not exist or no longer exists.

Incorrect usage of a field.
MyDate:=Add to date(BooleanField;1;1;1)

The length of a string cannot be greater than 255 characters.
C_STRING(325;MyString)

The variable Variable is not a method.
Variable(1)

The variable Variable is not an array.
Variable{5}:=12

The result of the function is not compatible with the expression.
Text:="Number"+Num(i)

The types of the variables used in this expression are not compatible.
Integer:=MyDate*Text

Changing the type of the variable $i from type Fixed string to type Real.
$i:="3"
$($i):=5

The array index is not a number.
IntArray{"3"}:=4

Retyping the variable Variable from type Text to an array of type Text.
C_TEXT(Variable)
COPY ARRAY(TextArray;Variable)

4th Dimension Language Reference 393

Retyping of the variable Variable from type Text to type Real.
Variable:=Num(Variable)

Retyping the array MyBoolean from array of type Boolean to variable of type Real.
Variable:=MyBoolean

Retyping the array IntArray from array of type Integer to array of type Text.
ARRAY TEXT(IntArray;12)

if IntArray was declared elsewhere as an Integer array.

Trying to dereference a variable which is not of type Pointer.
Variable->:=5

if Variable is not of the type Pointer.

Retyping of the variable Var1 from type Text to type Number.
Var1:=3.5

Incorrect usage of a field.
Variable:=[MyTable]MyField

[MyTable]MyField is a Date field. Variable is of the type Number.

• Syntax

The result of the function is not a pointer.
Variable:=Num("The weather is nice")->

It is not possible to dereference this function.

Syntax error.
If(Boolean)
End for

Too many opening curly brackets ({) .
The line contains more opening brackets than closing brackets.

Too many closing curly brackets (})..
The line contains more closing brackets than opening brackets.

Closing parenthesis) expected.
The line contains more opening parentheses than closing parentheses.

Opening parenthesis (expected.
The line contains more closing parentheses than opening parentheses.

Field expected.
If(Modified(Variable))

Opening curly bracket expected.
C_INTEGER($

394 4th Dimension Language Reference

Variable expected.
C_INTEGER([MyTable]MyField)

Constant number expected.
C_INTEGER(${"3"})

Semicolon ; expected.
COPY ARRAY(Array1 Array2)

• Mac OS:
Too many opening character reference symbols.

MyString≤3:="a"
Too many closing character reference symbols.

MyString3≥:="a"

• Windows:
Too many opening character reference symbols.

MyString[[3:="a"
Too many closing character reference symbols.

MyString 3]]:="a"

Did not expect a subtable.
ARRAY TO SELECTION(Array;Subtable)

The argument of an IF statement must be a boolean.
If(Pointer)

Expression is too complex.
Divide your statement into several shorter statements.

Method is too complex.
Too many Case of...End case and/or If…End if structures.

Unknown field.
Your method, possibly copied from another database, contains •???• instead of a field
name.

Unknown table.
Your method, possibly copied from another database, contains •???• instead of a table
name.

Pointer to an incorrect expression.
Pointer:=->Variable+3

4th Dimension Language Reference 395

Incorrect usage of string index.
MyReal≤3≥ or MyReal [[3]]

or
MyString≤Variable≥ or MyString[[Variable]]

where Variable is not a Number variable.

• Parameters

The result of this function cannot be passed as a parameter to this method or command.
MyMethod(Num(MyString))

if MyMethod expects a Boolean expression.

Too many parameters have been passed to this method.
DEFAULT TABLE(Table;Form)

This value cannot be passed as a parameter to this method or command.
MyMethod(3+2)

if MyMethod expects a Boolean expression.

Function result type conflict.
C_INTEGER($0)
$0:=False

Generic parameter type conflict.
C_INTEGER(${3})
For($i;3;5)

${$i}:=String($i)
End for

This 4D command does not require any parameters.
SHOW TOOL BAR(MyVar)

This 4D command requires at least one parameter.
DEFAULT TABLE

 MyString cannot be passed as a parameter to that method.
MyMethod(MyString)

if MyMethod is expecting a Boolean parameter.

The type of the parameter $1 is different in the calling and in the called method.
Calculate("3+2")

with the directive C_INTEGER($1) in Calculate.

One of the parameters in COPY ARRAY is a variable.
COPY ARRAY(Variable;Array)

Retyping of the variable $1 from type Number to type Text.
$1:=String($1)

396 4th Dimension Language Reference

An array cannot be a parameter.
ReInit(MyArray)

To pass an array in a method, you need to pass a pointer to the array.

• Operators

The type of the variable is not compatible with the operator.
Bool2:=Bool1+True

Addition cannot be performed on Boolean fields.

Did not expect the operator >.
QUERY(MyTable;[MyTable]MyField=0;>)

Cannot compare two variables of those types.
If(Number=Picture2)

Cannot negate this type of variable.
Boolean:=-False

• Plug-in Commands

The plug-in command PExt does not seem to be correctly defined.

Not enough parameters were passed to this plug-in command.

Too many parameters were passed to this plug-in command.

The plug-in command Variable does not seem to be correctly defined.

• General Errors

Two methods have the same name : Name.
To compile your database, all of the project methods must have different names.

Internal error # xx.
If this message appears, call 4D Technical Support and report the error number.

The variable Variable could not be typed. This variable is used in the method M1.
The Variable type cannot be determined. A compiler directive is necessary.

The original method is damaged.
The method is damaged in the original structure. Delete it or replace it.

Unknown 4D command.
The method is damaged.

4th Dimension Language Reference 397

Retyping the variable Variable in the form Form.
This message appears if you give, for example, the name OK to a variable of the type
Graph in a form.

The name of the function Name is also the name of a variable in the form.
Rename either the function or the variable.

A method and a variable have the same name : Name.
Rename either the method or the variable.

A plug-in command and a variable have the same name : Name.
Rename either the plug-in command or the variable.

Range-checking messages
__

These messages are generated in 4th Dimension while the compiled database is running.
They are displayed in a specific error window.

The result is out of range.
If MyArray is a five-element array, this message appears if you try to access element 17 in
the array.

Division by zero.
Var1:=0
Var2:=2
Var3:=Var2 / Var1

Accessing a parameter that does not exist.
Using the $4 local variable when only three parameters have been passed to the current
method.

The pointer is not properly initialized.
MyPointer->:=5

if MyPointer has not yet been initialized.

The destination string is smaller than the source.
C_STRING(MyString1;5)
C_STRING(MyString2;10)
MyString2:="Flowers"
MyString1:= MyString2

Invalid character reference.
i:=-30

MyString≤i≥:= MyString2 or MyString[[i]]:=MyString2

398 4th Dimension Language Reference

The parameter is an empty string.
MyString≤1≥:= ""
MyString[[1]]:= ""

Modulo by zero.
Var1:=0
Var2:=2
Var3:=Var2 % Var1

Invalid parameters in an Execute command.
EXECUTE("MyMethod(MyAlpha)")

if MyMethod expects a parameter other than an Alphanumeric.

Pointer to an unknown variable.
MyPointer:= Get pointer ("Variable")
MyPointer:= "MyString"

if Variable does not appear explicitly in the database.

Attempting to retype by using a pointer.
Boolean:=Pointer->

if Pointer points to a field of type Integer.

Bad usage of a pointer or pointer to an unknown variable.
Character:=StringVar ≤Pointer->≥
Character:=StringVar[[Pointer]]

if Pointer does not point to a Number.

See also
Optimization Hints, Syntax Details, Typing Guide, Using Compiler Directives.

4th Dimension Language Reference 399

C_BLOB Compiler

version 6.0
__

C_BLOB ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
C_BLOB casts each specified variable as a BLOB variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BLOB(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BLOB(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

400 4th Dimension Language Reference

C_BOOLEAN Compiler

version 3
__

C_BOOLEAN ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_BOOLEAN command casts each specified variable as a Boolean variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BOOLEAN(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BOOLEAN(${5}) tells 4D and the compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 401

C_DATE Compiler

version 3
__

C_DATE ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_DATE command casts each specified variable as a Date variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_DATE(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_DATE(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

402 4th Dimension Language Reference

C_GRAPH Compiler

version 3
__

C_GRAPH ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method String → Name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_GRAPH command casts each specified variable as a Graph variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_GRAPH(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_GRAPH(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

4th Dimension Language Reference 403

C_INTEGER Compiler

version 3
__

C_INTEGER ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Note: This command is still present in 4th Dimension for compatibility with old
databases. In fact, 4D and the compiler retype Integers into Longints internally. For
example :
C_INTEGER($MyVar)
$TheType:=Type($MyVar) `$TheType = 9 (Is Longint)

Description
The C_INTEGER command casts each specified variable as an Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_INTEGER(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_INTEGER(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_LONGINT, C_REAL.

404 4th Dimension Language Reference

C_LONGINT Compiler

version 3
__

C_LONGINT ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_LONGINT command casts each specified variable as a Long Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_LONGINT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_LONGINT(${5}) tells 4D and the compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_REAL.

4th Dimension Language Reference 405

C_PICTURE Compiler

version 3
__

C_PICTURE ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_PICTURE command casts each specified variable as a Picture variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_PICTURE(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_PICTURE(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

406 4th Dimension Language Reference

C_POINTER Compiler

version 3
__

C_POINTER ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_POINTER command casts each specified variable as a Pointer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_POINTER(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_POINTER(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 407

C_REAL Compiler

version 3
__

C_REAL ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_REAL command casts each specified variable as a Real variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_REAL(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_REAL(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_LONGINT.

408 4th Dimension Language Reference

C_STRING Compiler

version 3
__

C_STRING ({method; }size; variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
size Number → Size of the string
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_STRING command casts each specified variable as a String variable.

The size parameter specifies the maximum length of the strings that the variable can
contain. Strings are limited to 255 characters. If speed is a concern, use string variables
rather than text variables wherever possible.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_STRING(...;${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_STRING(...;${5}) tells 4D and the compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_TEXT.

4th Dimension Language Reference 409

C_TEXT Compiler

version 3
__

C_TEXT ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_TEXT command casts each specified variable as a Text variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TEXT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TEXT(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_STRING.

410 4th Dimension Language Reference

C_TIME Compiler

version 3
__

C_TIME ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method → Optional name of method
variable Variable or ${...} → Name of variable(s) to declare

Description
The C_TIME command casts each specified variable as a Time variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare to the compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TIME(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TIME(${5}) tells 4D and the compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

4th Dimension Language Reference 411

IDLE Compiler

version 3
__

IDLE

Parameter Type Description
This command does not require any parameters

Description
The IDLE command is designed only for use with the compiler. This command is only
used in compiled databases in which user-defined methods are written so that no calls are
made back to the 4th Dimension engine. For example, if a method has a For loop in
which no 4th Dimension commands are executed, the loop could not be interrupted by a
process installed with ON EVENT CALL, nor could a user switch to another application. In
this case, you should insert IDLE to allow 4th Dimension to trap events. If you do not
want any interruptions, omit IDLE.

Example
In the following example, the loop would never terminate in a compiled database without
the call to IDLE:

` Do Something Project Method
ON EVENT CALL ("EVENT METHOD")
◊vbWeStop:=False
MESSAGE ("Processing..."+Char(13)+"Type any key to interrupt...")
Repeat

` Do some processing that doesn’t involve a 4D command
⇒ IDLE

Until (◊vbWeStop)
ON EVENT CALL ("")

with:

` EVENT METHOD Project Method
If (Undefined(KeyCode))

KeyCode:=0
End if
If (KeyCode#0)

CONFIRM ("Do you really want to stop this operation?")
If (OK=1)

◊vbWeStop:=True
End if

End if

See Also
Compiler commands, ON EVENT CALL.

412 4th Dimension Language Reference

11

Database Methods

4th Dimension Language Reference 413

414 4th Dimension Language Reference

Database Methods Database Methods

version 2004 (Modified)
__

Database methods are methods that are automatically executed by 4th Dimension when a
general session event occurs.

To create or open and edit a database method:
1. Open the Explorer window.
2. Select the Methods page.
3. Expand the Database Methods theme.
4. Double click on the method.
or:
1. Select the method.
2. Press Enter or Return.

You edit a database method in the same way as any other method.

4th Dimension Language Reference 415

You cannot call a database method from another method. Database methods are
automatically invoked by 4th Dimension at certain points in a working session. The
following table summarizes execution of database methods:

Database Method 4th Dimension 4D Server 4D Client
On Startup Yes, Once No Yes, Once
On Exit Yes, Once No Yes, Once
On Web Authentication Yes, Multiple Yes, Multiple No
On Web Connection Yes, Multiple Yes, Multiple No
On Backup Startup Yes, Multiple Yes, Multiple Yes, Multiple
On Backup Shutdown Yes, Multiple Yes, Multiple Yes, Multiple
On Server Startup No Yes, Once No
On Server Shutdown No Yes, Once No
On Server Open Connection No Yes, Multiple No
On Server Close Connection No Yes, Multiple No

For detailed information about each of the database methods, see the following sections:
• On Startup Database Method
• On Exit Database Method
• On Web Authentication Database Method
• On Web Connection Database Method
• On Backup Startup Database Method
• On Backup Shutdown Database Method
• On Server Startup Database Method (4D Server Reference manual)
• On Server Shutdown Database Method (4D Server Reference manual)
• On Server Open Connection Database Method (4D Server Reference manual)
• On Server Close Connection Database Method (4D Server Reference manual)

See Also
Methods.

416 4th Dimension Language Reference

On Startup Database Method Database Methods

version 6.0
__

The On Startup Database Method is called once when you open a database.

This occurs in the following 4D environments:
• 4th Dimension
• 4D Client (on the client side, after the connection has been accepted by 4D Server)
• 4D Runtime
• 4D application compiled and merged with 4D Runtime Volume License

Note: The On Startup Database Method is NOT invoked by 4D Server.

The On Startup Database Method is automatically invoked by 4D; unlike project methods,
you cannot call this database method yourself. To call and perform tasks from within the
On Startup Database Method, as well as from project methods later on, use subroutines.

The On Startup Database Method is the perfect place to:
• Initialize interprocess variables that you will use during the whole working session.
• Start processes automatically when a database is opened.
• Load Preferences or Settings saved for this purpose during the previous working session.
• Prevent the opening of the database if a condition is not met (i.e., missing system
resources) by explicitly calling QUIT 4D.
• Perform any other actions that you want to be performed automatically each time a
database is opened.

Compatibility with previous versions of 4D
Database methods are a new type of method introduced in version 6. In previous versions
of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you use a
converted version 5 database and if you want to take advantage of the new On Startup
Database Method capability, make sure that the Use Old Startup Method property in the
Preferences dialog box of the database is not checked. This property only affects the
STARTUP/On Startup Database Method alternative. If you do not deselect this property
and add, for instance, an On Exit Database Method, this latter will be invoked by 4D.

4th Dimension Language Reference 417

Example
See the example in the section On Exit Database Method.

See Also
Database Methods, Methods, On Exit Database Method, QUIT 4D.

418 4th Dimension Language Reference

On Exit Database Method Database Methods

version 6.0
__

The On Exit Database Method is called once when you quit a database.

This method is used in the following 4D environments:
• 4th Dimension
• 4D Client (on the client side)
• 4D Runtime
• 4D application compiled and merged with 4D Runtime Volume License

Note: The On Exit Database Method is NOT invoked by 4D Server.

The On Exit Database Method is automatically invoked by 4D; unlike project methods, you
cannot call this database method yourself. To call and perform tasks from within the On
Exit Database Method, as well as from project methods, use subroutines.

A database can be exited if any of the following occur:
• The user selects the menu command Quit from the User or Design Environment File
menu
• A call to the QUIT 4D command is issued
• A 4D Plug-in issues a call to the QUIT 4D entry point

No matter how the exit from the database was initiated, 4D performs the following
actions:
• If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction. If the user is performing data entry, the records will be cancelled and
not saved.

• If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. You can therefore use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop
executing. Note that 4D will eventually quit—the On Exit Database Method can perform
all the cleanup or closing operations you want, but it cannot refuse the quit, and will at
some point end.

The On Exit Database Method is the perfect place to:
• Stop processes automatically started when the database was opened
• Save (locally, on disk) Preferences or Settings to be reused at the beginning of the next
session in the On Startup Database Method
• Perform any other actions that you want to be done automatically each time a database
is exited

4th Dimension Language Reference 419

Note: Don’t forget that the On Exit Database Method is a local/client process, so it cannot
access the data file. Thus, if the On Exit Database Method performs a query or a sort, a 4D
Client that is about to quit will "freeze" and actually will not quit. If you need to access
data when a client quits the application, create a new global process from within the On
Exit Database Method, which will be able to access the data file. In this case, be sure that
the new process will terminate correctly before the end of the On Exit Database Method
execution (by using interprocess variables, by example).

Example
The following example covers all the methods used in a database that tracks the
significant events that occur during a working session and writes a description in a text
document called “Journal.”

• The On Startup Database Method initializes the interprocess variable ◊vbQuit4D, which
tells all the use processes whether or not the database is being exited. It also creates the
journal file, if it does not already exist.

` On Startup Database Method
C_TEXT(◊vtIPMessage)
C_BOOLEAN(◊vbQuit4D)
◊vbQuit4D:=False

If (Test path name("Journal") # Is a document)
$vhDocRef:=Create document("Journal")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
End if

End if
WRITE JOURNAL ("Opening Session")

• The project method WRITE JOURNAL, used as subroutine by the other methods, writes
the information it receives, in the journal file:

` WRITE JOURNAL Project Method
` WRITE JOURNAL (Text)
` WRITE JOURNAL (Event description)

C_TEXT($1)
C_TIME($vhDocRef)

420 4th Dimension Language Reference

While (Semaphore("$Journal"))
DELAY PROCESS(Current process;1)

End while
$vhDocRef:=Append document("Journal")
If (OK=1)

PROCESS PROPERTIES(Current process;$vsProcessName;$vlState;
$vlElapsedTime;$vbVisible)

SEND PACKET($vhDocRef;String(Current date)+Char(9)+String(Current time)
+Char(9)+String(Current process)+Char(9)+$vsProcessName

+Char(9)+$1+Char(13))
CLOSE DOCUMENT($vhDocRef)

End if
CLEAR SEMAPHORE("$Journal")

Note that the document is open and closed each time. Also note the use of a semaphore
as “access protection” to the document—we do not want two processes trying to access
the journal file at the same time.

• The M_ADD_RECORDS project method is executed when a menu item Add Record is
chosen in Custom menus:

` M_ADD_RECORDS Project Method
MENU BAR(1)
Repeat

ADD RECORD([Table1];*)
If (OK=1)

WRITE JOURNAL ("Adding record #"+String(Record number([Table1]))+
" in Table1")

End if
Until ((OK=0) | ◊vbQuit4D)

This method loops until the user cancels the last data entry or exits the database.

• The input form for [Table 1] includes the treatment of the On Outside Call events. So,
even if a process is in data entry, it can be exited smoothly, with the user either saving (or
not saving) the current data entry:

` [Table1];"Input" Form Method
Case of

: (Form event=On Outside Call)
If (◊vtIPMessage="QUIT")

CONFIRM("Do you want to save the changes made to this record?")
If (OK=1)

ACCEPT
Else

CANCEL
End if

End if
End case

4th Dimension Language Reference 421

• The M_QUIT project method is executed when Quit is chosen from the File menu in the
Custom Menus environment:

` M_QUIT Project Method
$vlProcessID:=New process("DO_QUIT";32*1024;"$DO_QUIT")

The method uses a trick. When QUIT 4D is called, the command has an immediate effect.
Therefore, the process from which the call is issued is in “stop mode” until the database is
actually exited. Since this process can be one of the processes in which data entry occurs,
the call to QUIT 4D is made in a local process that is started only for this purpose. Here is
the DO_QUIT method:

` DO_QUIT Project Method
CONFIRM("Are you sure you want to quit?")
If (OK=1)

WRITE JOURNAL ("Quitting Database")
QUIT 4D

` QUIT 4D has an immediate effect, any line of code below will never be executed
` ...

End if

• Finally, here is the On Exit Database Method which tells all open user processes “It's time
to get out of here!” It sets ◊vbQuit4D to True and sends interprocess messages to the user
processes that are performing data entry:

` On Exit Database Method
◊vbQuit4D:=True
Repeat

$vbDone:=True
For ($vlProcess;1;Count tasks)

PROCESS PROPERTIES($vlProcess;$vsProcessName;$vlState;$vlElapsedTime;
$vbVisible)

If (((($vsProcessName="ML_@") | ($vsProcessName="M_@"))) & ($vlState>=0))
$vbDone:=False
◊vtIPMessage:="QUIT"
BRING TO FRONT($vlProcess)
CALL PROCESS($vlProcess)
$vhStart:=Current time
Repeat

DELAY PROCESS(Current process;60)
Until ((Process state($vlProcess)<0) | ((Current time-$vhStart)

>=?00:01:00?))
End if

End for
Until ($vbDone)
WRITE JOURNAL ("Closing session")

422 4th Dimension Language Reference

Note: Processes that have names beginning with "ML_..." or "M_..." are started by menu
commands for which the Start a New Process property has been selected. In this
example, these are the processes started when the menu command Add record was
chosen.

The test (Current time-$vhStart)>=?00:01:00? allows the database method to get out of the
“waiting the other process” Repeat loop if the other process does not act immediately.

• The following is a typical example of the Journal file produced by the database:

2/6/03 15:47:25 1 User/Custom Menus process Opening Session
2/6/03 15:55:43 5 ML_1 Adding record #23 in Table1
2/6/03 15:55:46 5 ML_1 Adding record #24 in Table1
2/6/03 15:55:54 6 $DO_QUIT Quitting Database
2/6/03 15:55:58 7 $xx Closing session

Note: The name $xx is the name of the local process started by 4D in order to execute the
On Exit Database Method.

See Also
On Startup Database Method, QUIT 4D.

4th Dimension Language Reference 423

424 4th Dimension Language Reference

12

Data Entry

4th Dimension Language Reference 425

426 4th Dimension Language Reference

ADD RECORD Data Entry

version 3
__

ADD RECORD ({table}{; }{*})

Parameter Type Description
table Table → Table to use for data entry, or

Default table, if omitted
* → Hide scroll bars

Description
The command ADD RECORD lets the user add a new record to the database for the table
table or for the default table, if you omit the table parameter.

ADD RECORD creates a new record, makes the new record the current record for the
current process, and displays the current input form. In the Custom Menus environment,
after the user has accepted the new record, the new record is the only record in the
current selection.

The following figure shows a typical data entry form.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

ADD RECORD displays the form until the user accepts or cancels the record. If the user is
adding several records, the command must be executed once for each new record.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric keypad), or if the ACCEPT command is executed.

4th Dimension Language Reference 427

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD RECORD, OK is set to 1 if the record is accepted, to 0 if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

Examples
1. The following example is a loop commonly used to add new records to a database:

INPUT FORM ([Customers];"Std Input") ` Set input form for [Customers] table
Repeat ` Loop until the user cancels

⇒ ADD RECORD ([Customers];*) ` Add a record to the [Customers] table
Until (OK=0) ` Until the user cancels

2. The following example queries the database for a customer. Depending on the results of
the search, one of two things may happen. If no customer is found, then the user is
allowed to add a new customer with ADD RECORD. If at least one customer is found, the
user is presented with the first record found, which can be modified with MODIFY
RECORD:

READ WRITE([Customers])
INPUT FORM([Customers];"Input") ` Set the input form
vlCustNum:=Num(Request ("Enter Customer Number:")) ` Get the customer number
If (OK=1)

QUERY ([Customers];[Customers]CustNo=vlCustNum) ` Look for the customer
If (Records in selection([Customers])=0) ` If no customer is found…

⇒ ADD RECORD([Customers]) ` Add a new customer
Else

If(Not(Locked([Customers])))
MODIFY RECORD([Customers]) ` Modify the record
UNLOAD RECORD([Customers])

Else
ALERT("The record is currently being used.")

End if
End if

End if

See Also
ACCEPT, CANCEL, CREATE RECORD, MODIFY RECORD, SAVE RECORD.

System Variables or Sets
Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

428 4th Dimension Language Reference

MODIFY RECORD Data Entry

version 3
__

MODIFY RECORD ({table}{; }{*})

Parameter Type Description
table Table → Table to use for data entry, or

Default table, if omitted
* → Hide scroll bars

Description
The command MODIFY RECORD lets the user modifies the current record for the table
table or for the default table if you omit the table parameter. MODIFY RECORD loads the
record, if it is not already loaded for the current process, and displays the current input
form. If there is no current record, then MODIFY RECORD does nothing. MODIFY
RECORD does not affect the current selection.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

To use MODIFY RECORD, the current record must have read-write access and should not
be locked.
If the form contains buttons for moving within the selection of records, MODIFY
RECORD lets the user click the buttons to modify records and move to other records.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed. Even when canceled, the record remains in memory and
can be saved if SAVE RECORD is executed before the current record pointer is changed.

After a call to MODIFY RECORD, OK is set to 1 if the record is accepted, to 0 if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

If you are using MODIFY RECORD and the user does not change any of the data in the
record, the record is not considered to be modified, and accepting the record does not
cause it to be saved again. Actions such as changing variables, checking check boxes, and
selecting radio buttons do not qualify as modifications. Only changing data in a field,
either through data entry or through a method, causes the record to be saved.

4th Dimension Language Reference 429

Example
See example for the command ADD RECORD.

See Also
ADD RECORD, Locked, Modified record, READ WRITE, UNLOAD RECORD.

System Variables or Sets
Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

430 4th Dimension Language Reference

ADD SUBRECORD Data Entry

version 3
__

ADD SUBRECORD (subtable; form{; *})

Parameter Type Description
subtable Subtable → Subtable to use for data entry
form String → Form to use for data entry
* → Hide scroll bars

Description
The command ADD SUBRECORD lets the user add a new subrecord to subtable, using the
form form. ADD SUBRECORD creates a new subrecord in memory, makes it the current
subrecord, and displays form. A current record for the parent table must exist. If a current
parent record does not exist for the process, ADD SUBRECORD has no effect. The form
must belong to subtable.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been added, the parent record must be explicitly saved in order for the subrecord to be
saved.

The subrecord is not saved if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD SUBRECORD, OK is set to 1 if the subrecord is accepted, to 0 if
canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

4th Dimension Language Reference 431

Example
The following example is part of a method. It adds a subrecord for a new child to an
employee’s record. The data for the children is stored in a subtable named
[Employees]Children. Note that the [Employees] record must be saved in order for the new
subrecord to be saved:

⇒ ADD SUBRECORD([Employees]Children;"Add Child")
If (OK=1) ` If the user accepted the subrecord

SAVE RECORD ([Employees]) ` save the employee’s record
End if

See Also
ACCEPT, CANCEL, MODIFY SUBRECORD, SAVE RECORD.

System Variables or Sets
Accepting the subrecord sets the OK system variable to 1; canceling it sets the OK system
variable to 0.

432 4th Dimension Language Reference

MODIFY SUBRECORD Data Entry

version 3
__

MODIFY SUBRECORD (subtable; form{; *})

Parameter Type Description
subtable Subtable → Subtable to use for data entry
form → Form to use for data entry
* → Hide scroll bars

Description
The command MODIFY SUBRECORD displays the current subrecord of subtable for
modification using the form form. The form must belong to subtable.

A current record for the parent table must exist. If a current parent record does not exist
for the process, MODIFY SUBRECORD has no effect. In addition, if there is no current
subrecord, then MODIFY SUBRECORD does nothing.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been modified, the parent record must be explicitly saved in order for the subrecord
to be saved.

The subrecord is not modified if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to MODIFY SUBRECORD, OK is set to 1 if the subrecord modifications are
accepted, to 0 if canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

See Also
ACCEPT, ADD SUBRECORD, CANCEL, SAVE RECORD.

System Variables or Sets
Accepting the subrecord modifications sets the OK system variable to 1; canceling it sets
the OK system variable to 0.

4th Dimension Language Reference 433

DIALOG Data Entry

version 2004 (Modified)
__

DIALOG ({table; }form)

Parameter Type Description
table Table → Table owning the form or

Default table if omitted
form Form → Form to display as dialog

Description
The DIALOG command presents the form form to the user. This command is often used to
get information from the user through the use of variables, or to present information to
the user, such as options for performing an operation.

It is common to display the form inside a modal window created with the Open window
command.

Here is a typical example of a dialog:

Use DIALOG instead of ALERT, CONFIRM, or Request when the information that must be
presented or gathered is more complex than those commands can manage.

Note: It is possible to prohibit data entry in fields of dialog boxes (and thus limit data
entry to variables only) using an option in the Preferences of 4th Dimension
(Compatibility page). This restriction corresponds to the operation of former versions of
4th Dimension.

Unlike ADD RECORD or MODIFY RECORD, DIALOG does not use the current input form.
You must specify the form to be used in the form parameter. Also, the default button
panel is not used if buttons are omitted. In this case, only the Escape (Windows) or Esc
(Mac OS) key lets you exit the form.

434 4th Dimension Language Reference

The dialog is accepted if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The dialog is canceled if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

Example
The following example shows the use of DIALOG to specify search criteria. A custom form
containing the variables vName and vState is displayed so the user can enter the search
criteria.

Open window (10;40;370;220) ` Open a modal window
⇒ DIALOG([Company];"Search Dialog") ` Display a custom search dialog

CLOSE WINDOW ` No longer need the modal window
If (OK=1) ` If the dialog is accepted

QUERY ([Company];[Company]Name=vName;*)
QUERY ([Company];&;[Company]State=vState)

End if

See Also
ACCEPT, ADD RECORD, CANCEL, Open window.

System Variables or Sets
After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

4th Dimension Language Reference 435

Modified Data Entry

version 3
__

Modified (field) → Boolean

Parameter Type Description
field Field → Field to test

Function result Boolean ← True if the field has been assigned a new value,
otherwise False

Description
Modified returns True if field has been programmatically assigned a value or has been
edited during data entry. The command Modified must be used in a form method (or a
subroutine called by a form method) only.

During data entry, a field is considered modified if the user has edited the field (whether
or not the original value is changed) and then left it by going to another field or by
clicking on a control. Note that just tabbing out of a field does not set Modified to True.
The field must have been edited in order for Modified to be True.

When executing a method, a field is considered to be modified if it has been assigned a
value (different or not).

Note: Modified always returns True after the execution of the commands PUSH RECORD
and POP RECORD.

In any cases, use the Old command to detect if the field value has been actually changed.

Note: Although modified can be applied to any type of field, if you use it in combination
with the old command, be aware of the restrictions that apply to the old command. For
details, see the description of the Old command.

During data entry, it is usually easier to perform operations in object methods than to use
Modified in form methods. Since an object method is sent an On Data Change event
whenever a field is modified, the use of an object method is equivalent to using Modified
in a form method.

Note: To operate properly, the Modified command is to be used only in a form method or
in a method called by a form method.

436 4th Dimension Language Reference

Examples
1. The following example tests if either the [Orders]Quantity field or the [Orders]Price field
has changed. If either has been changed, then the [Orders]Total field is recalculated.

⇒ If ((Modified ([Orders]Quantity) | (Modified ([Orders]Price))
[Orders]Total :=[Orders]Quantity*[Orders]Price

End if

Note that the same thing could be accomplished by using the second line as a subroutine
called by the object methods for the [Orders]Quantity field and the [Orders]Price field.

2. You select a record for the table [anyTable], then you call multiple subroutines that may
modify the field [anyTable]Important field, but do not save the record. At the end of the
main method, you can use the Modified command to detect if you must save the record:

` Here the record has been selected as current record
` Then you perform actions using subroutines

DO SOMETHING
DO SOMETHING ELSE
DO NOT FORGET TO DO THAT

` ...
` At then you test the field to detect if the record has to be saved

⇒ If (Modified([anyTable]Important field))
SAVE RECORD([anyTable])

End if

See Also
Old.

4th Dimension Language Reference 437

Old Data Entry

version 3
__

Old (field) → Expression

Parameter Type Description
field Field → Field for which to return old value

Function result Expression ← Original field value

Description
The command Old returns the value held in field before the field was programmatically
assigned a value or modified in data entry.

Each time you change the current record for a table, 4D creates and maintains in memory
a duplicated “image” of the new current record when it is loaded in memory. (For
optimization, 4D disregards Text, Picture and BLOB fields.) When modifying a record, you
work with the actual image of the record, not this duplicated image. This image is then
discarded when you change the current record again.

Old returns the value from the duplicated image. In other words, for an existing record, it
returns the value of the field as it is stored on disk. If a record is new, Old returns the
default empty value for field according to its type. For example, if field is an Alpha field,
Old returns an empty string. If field is a numeric field, Old returns zero (0), and so on.

Old works on field whether the field has been modified by a method or by the user during
data entry.

Old cannot be applied to Text, Picture or BLOB fields. It can be applied to all other field
types, including subfields, but has no meaning when applied to a subtable field itself.

To restore the original value of a field, assign it the value returned by Old.

See Also
Modified.

438 4th Dimension Language Reference

13

Date and Time

4th Dimension Language Reference 439

440 4th Dimension Language Reference

Current date Date and Time

version 3
__

Current date {(*)} → Date

Parameter Type Description
* → Returns the current date from the server

Function result Date ← Current date

Description
The command Current date returns the current date as kept by the system clock.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current date from the server.

Examples
1. The following example displays an alert box containing the current date:

⇒ ALERT("The date is " + String(Current date)+".")

2. If you write an application for the international market, you may need to know if the
version of 4D that you run works with dates formatted as MM/DD/YYYY (US version) or
DD/MM/YYYY (French version). This is useful to know for customizing data entry fields.

The following project method allows you to do so:

` Sys date format global function
` Sys date format -> String
` Sys date format -> Default 4D data format

C_STRING(31;$0;$vsDate;$vsMDY;$vsMonth;$vsDay;$vsYear)
C_LONGINT($1;$vlPos)
C_DATE($vdDate)

` Get a Date value where the month, day and year values are all different

⇒ $vdDate:=Current date
Repeat

$vsMonth:=String(Month of($vdDate))
$vsDay:=String(Day of($vdDate))
$vsYear:=String(Year of($vdDate)%100)

4th Dimension Language Reference 441

If (($vsMonth=$vsDay) | ($vsMonth=$vsYear) | ($vsDay=$vsYear))
vOK:=0
$vdDate:=$vdDate+1

Else
vOK:=1

End if
Until (vOK=1)
$0:="" ` Initialize function result
$vsDate:=String($vdDate)
$vlPos:=Position("/";$vsDate) ` Find the first / separator in the string ../../..
$vsMDY:=Substring($vsDate;1;$vlPos-1) ` Extract the first digits from the date

` Eliminate the first digits as well as the first / separator
$vsDate:=Substring($vsDate;$vlPos+1)
Case of

: ($vsMDY=$vsMonth) ` The digits express the month
$0:="MM"

: ($vsMDY=$vsDay) ` The digits express the day
$0:="DD"

: ($vsMDY=$vsYear) ` The digits express the year
$0:="YYYY"

End case
$0:=$0+"/" ` Start building the function result
$vlPos:=Position("/";$vsDate) ` Find the second separator in the string ../..
$vsMDY:=Substring($vsDate;1;$vlPos-1) ` Extract the next digits from the date

` Reduce the string to the last digits from the date
$vsDate:=Substring($vsDate;$vlPos+1)
Case of

: ($vsMDY=$vsMonth) ` The digits express the month
$0:=$0+"MM"

: ($vsMDY=$vsDay) ` The digits express the day
$0:=$0+"DD"

: ($vsMDY=$vsYear) ` The digits express the year
$0:=$0+"YYYY"

End case
$0:=$0+"/" ` Pursue building the function result
Case of

: ($vsDate=$vsMonth) ` The digits express the month
$0:=$0+"MM"

: ($vsDate=$vsDay) ` The digits express the day
$0:=$0+"DD"

: ($vsDate=$vsYear) ` The digits express the year
$0:=$0+"YYYY"

End case
` At this point $0 is equal to MM/DD/YYYY or DD/MM/YYYY or...

See Also
Date Operators, Day of, Month of, Year of.

442 4th Dimension Language Reference

Day of Date and Time

version 3
__

Day of (date) → Number

Parameter Type Description
date Date → Date for which to return the day

Function result Number ← Day of the month of date

Description
The command Day of returns the day of the month of date.

Note: Day of returns a value between 1 and 31. To get the day of the week for a date, use
the command Day number.

Examples
1. The following example illustrates the use of Day of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

⇒ vResult := Day of (!12/25/92!) ` vResult gets 25
⇒ vResult := Day of (Current date) ` vResult gets day of current date

2. See the example for the command Current date.

See Also
Day number, Month of, Year of.

4th Dimension Language Reference 443

Month of Date and Time

version 3
__

Month of (date) → Number

Parameter Type Description
date Date → Date for which to return the month

Function result Number ← Number indicating the month of date

Description
The command Month of returns the month of date.

Note: Month of returns the number of the month, not the name (see Example 1).

4th Dimension provides the following predefined constants:

Constants Type Value
January Long Integer 1
February Long Integer 2
March Long Integer 3
April Long Integer 4
May Long Integer 5
June Long Integer 6
July Long Integer 7
August Long Integer 8
September Long Integer 9
October Long Integer 10
November Long Integer 11
December Long Integer 12

Examples
1. The following example illustrates the use of Month of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

⇒ vResult := Month of (!12/25/92!) ` vResult gets 12
⇒ vResult := Month of (Current date) ` vResult gets month of current date

2. See example for the command Current date.

444 4th Dimension Language Reference

3. 4th Dimension's 'STR#' ID=11 resource includes the names of the months localized for
the current country:

The following project method returns the name of the month for a date:

` Month name of project method
` Month name of (Date) -> String
` Month name of (Date) -> Name of the month

⇒ $0:=Get indexed string(11;12+Month of ($1))

The following project method returns the abbreviation of the month for a date:

` Month abbr of project method
` Month abbr of (Date) -> String
` Month abbr of (Date) -> Name of the month

⇒ $0:=Get indexed string(11;Month of ($1))

See Also
Day of, Year of.

4th Dimension Language Reference 445

Year of Date and Time

version 3
__

Year of (date) → Number

Parameter Type Description
date Date → Date for which to return the year

Function result Number ← Number indicating the year of date

Description
The command Year of returns the year of date.

Examples
1. The following example illustrates the use of Year of. The results are assigned to the
variable vResult.

⇒ vResult := Year of (!12/25/92!) ` vResult gets 1992
⇒ vResult := Year of (!12/25/1992!) ` vResult gets 1992
⇒ vResult := Year of (!12/25/1892!) ` vResult gets 1892
⇒ vResult := Year of (!12/25/2092!) ` vResult gets 2092
⇒ vResult := Year of (Current date) ` vResult gets year of current date

2. See example for the command Current date.

See Also
Day of, Month of.

446 4th Dimension Language Reference

Day number Date and Time

version 3
__

Day number (date) → Number

Parameter Type Description
date Date → Date for which to return the number

Function result Number ← Number representing the weekday on which
date falls

Description
The command Day number returns a number representing the weekday on which date
falls.

Note: Day number returns 2 for null dates.

4th Dimension provides the following predefined constants:

Constants Type Value
Monday Long Integer 2
Tuesday Long Integer 3
Wednesday Long Integer 4
Thursday Long Integer 5
Friday Long Integer 6
Saturday Long Integer 7
Sunday Long Integer 1

Note: Day number of returns a value between 1 and 7. To get the day number within the
month for a date, use the command Day of.

4th Dimension Language Reference 447

Example
The following example is a function that returns the current day as a string:

⇒ $viDay := Day number (Current date) ` $viDay gets the current day number
 Case of

: ($viDay = 1)
$0 := "Sunday"
: ($viDay = 2)
$0 := "Monday"
: ($viDay = 3)
$0 := "Tuesday"
: ($viDay = 4)
$0 := "Wednesday"
: ($viDay = 5)
$0 := "Thursday"
: ($viDay = 6)
$0 := "Friday"
: ($viDay = 7)
$0 := "Saturday"

End case

See Also
Day of.

448 4th Dimension Language Reference

Add to date Date and Time

version 6.0
__

Add to date (date; years; months; days) → Date

Parameter Type Description

date Date → Date to which to add days, months, and years
years Number → Number of years to add to the date
months Number → Number of months to add to the date
days Number → Number of days to add to the date

Function result Date ← Resulting date

Description

The command Add to date adds years, months, and days to the date you pass in date, then
returns the result.

Although you can use the Date Operators to add days to a date, Add to date allows you to
quickly add months and years without having to deal with the number of days per
month or leap years (as you would when using the + date operator).

Examples

` This line calculates the date in one year, same day
$vdInOneYear:=Add to date(Current date;1;0;0)

` This line calculates the date next month, same day
$vdNextMonth:=Add to date(Current date;0;1;0)

` This line does the same thing as $vdTomorrow:=Current date+1
$vdTomorrow:=Add to date(Current date;0;0;1)

See Also

Date Operators.

4th Dimension Language Reference 449

Date Date and Time

version 3
__

Date (dateString) → Date

Parameter Type Description
dateString String → String representing the date to be returned

Function result Date ← Date

Description
The Date command evaluates dateString and returns a date.

The dateString parameter must follow the normal rules for the date format.

In the US version of 4D, the date must be in the order MM/DD/YY (month, day, year).
The month and day can be one or two digits. The year can be two or four digits. If the
year is two digits, then Date adds 19 to the beginning of the year, unless you have
change this default using the command SET DEFAULT CENTURY. The following characters
are valid date separators: slash (/), space, period (.), and comma (,).

Date does not check whether or not dateString is a valid date. If an invalid date (such as
"13/35/94") is passed, Date will return the invalid date. However, if dateString could not
possibly be interpreted as a date (for example, "aa/12/94"), the null date value (!00/00/00!)
is returned.

It is your responsibility to verify that dateString is a valid date.

Examples
1. The following example uses a request box to prompt the user for a date. The string
entered by the user is converted to a date and stored in the reqDate variable:

⇒ vdRequestedDate:=Date(Request ("Please enter the date:";String(Current date)))
If (OK=1)

` Do something with the date now stored in vdRequestedDate
End if

2. The following example returns the string "12/12/94" as a date:

⇒ vdDate:=Date("12/12/94")

450 4th Dimension Language Reference

Current time Date and Time

version 3
__

Current time {(*)} → Time

Parameter Type Description
* → Returns the current time from the server

Function result Time ← Current time

Description
The command Current time returns the current time from the system clock.

The current time is always between 00:00:00 and 23:59:59. Use String or Time string to
obtain the string form of the time expression returned by Current time.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current time from the server.

Examples
1. The following example shows you how to time the length of an operation. Here,
LongOperation is a method that needs to be timed:

⇒ $vhStartTime:=Current time ` Save the start time
LongOperation ` Perform the operation

⇒ ALERT ("The operation took "+String(Current time–$vhStartTime)) ` Display how long
it took

2. The following example extracts the hours, minutes, and seconds from the current time:

⇒ $vhNow:=Current time
ALERT("Current hour is: "+String($vhNow\3600))
ALERT("Current minute is: "+String(($vhNow\60)%60))
ALERT("Current second is: "+String($vhNow%60))

See Also
Milliseconds, String, Tickcount, Time Operators.

4th Dimension Language Reference 451

Time string Date and Time

version 3
__

Time string (seconds) → String

Parameter Type Description
seconds Number → Seconds from midnight

Function result String ← Time as a string in 24-hour format

Description
The command Time string returns the string form of the time expression you pass in
seconds.

The string is in the HH:MM:SS format.

If you go beyond the number of seconds in a day (86,400), Time string continues to add
hours, minutes, and seconds. For example, Time string (86401) returns 24:00:01.

Note: If you need the string form of a time expression in a variety of formats, use String.

Example
The following example displays an alert box with the message, “46800 seconds is
13:00:00.”

⇒ ALERT("46800 seconds is "+Time string(46800))

See Also
String, Time.

452 4th Dimension Language Reference

Time Date and Time

version 3
__

Time (timeString) → Time

Parameter Type Description
timeString Time → Time for which to return number of seconds

Function result Time ← Time specified by timeString

Description
The Time command returns a time expression equivalent to the time specified as a string
by timeString.

The timeString parameter must contain a time expressed in one of the standard time
formats of 4D corresponding to the language of your system (for more information, refer
to the description of the String command).

Example
The following example displays an alert box with the message “1:00 P.M. = 13 hours 0
minute”:

⇒ ALERT ("1:00 P.M. = "+String(Time("13:00:00");Hour Min))

See Also
String, Time string.

4th Dimension Language Reference 453

Tickcount Date and Time

version 6.0
__

Tickcount → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Number of ticks (60th of a second) elapsed
since the machine was started

Description
Tickcount returns the number of ticks (60th of a second) elapsed since the machine was
started.

Note: Tickcount returns a value of type Long Integer.

Example
See example for the command Milliseconds.

See Also
Current time, Milliseconds.

454 4th Dimension Language Reference

Milliseconds Date and Time

version 6.0
__

Milliseconds → Longint

Parameter Type Description
This command does not require any parameters

Function result Longint ← Number of milliseconds elasped
since the machine was started

Description
Milliseconds returns the number of milliseconds (1000th of a second) elapsed since the
machine was started.

Example
The following code displays the “Chronometer” window for one minute:

Open window (100;100;300;200;0;"Chronometer")
$vhTimeStart:=Current time
$vlTicksStart:=Tickcount

⇒ $vrMillisecondsStart:=Milliseconds
Repeat

GOTO XY (2;1)
MESSAGE ("Time...........:"+String (Current time -$vhTimeStart))
GOTO XY (2;3)
MESSAGE ("Ticks..........:"+String (Tickcount -$vlTicksStart))
GOTO XY (2;5)

⇒ MESSAGE ("Milliseconds...:"+String (Milliseconds -$vrMillisecondsStart))
Until ((Current time -$vhTimeStart)>=†00:01:00†)
CLOSE WINDOW

See Also
Current time, Tickcount.

4th Dimension Language Reference 455

SET DEFAULT CENTURY Date and Time

version 6.7 (Modified)
__

SET DEFAULT CENTURY (century{; pivotYear})

Parameter Type Description
century Number → Default century (minus one)

for entry of date with two-digit year
pivotYear Number → Pivot year for entry of date with two-digit year

Description
The command SET DEFAULT CENTURY allows you to specify the default century and the
pivot year used by 4D when you enter a date with only two digits for the year.

The pivot year value defines the way 4D will interpret data entry of a date with a two-digit
year:
• If the year is greater than or equal to the pivot year, 4D uses the current default century.
• If the year is less than the pivot year, 4D uses the next century (relative to the current
default).

By default, 4D sets the century to be the 20th century and uses 30 as pivot year. For
example:
• 01/25/97 means January 25, 1997.
• 01/25/30 means January 25, 1930.
• 01/25/29 means January 25, 2029.
• 01/25/07 means January 25, 2007.

To change this default, execute the SET DEFAULT CENTURY command. The effect of the
command is immediate. You can pass a new default century only, or a new default
century and a pivot year.

If you pass only a new default century minus one in century, 4D will interpret data entry
of a date with a two-digit year as belonging to this century.
For example, after the call:

SET DEFAULT CENTURY(20) ` Switch to 21st century for default century

• 01/25/97 means January 25, 2097
• 01/25/07 means January 25, 2007

In addition, you can specify the optional pivotYear parameter.

456 4th Dimension Language Reference

For example, after this call, in which the pivot year is 1995:

` Switch to 21st century for default century if year is less than 95
SET DEFAULT CENTURY(19;95)

• 01/25/97 means January 25, 1997
• 01/25/07 means January 25, 2007

Note: This command only affects how 4D interprets dates entered with a two-digit year.
In all cases:
• 01/25/1997 means January 25, 1997
• 01/25/2097 means January 25, 2097
• 01/25/1907 means January 25, 1907
• 01/25/2007 means January 25, 2007

This command only affects data entry. It has no effect on date storage, computation, and
so on.

4th Dimension Language Reference 457

458 4th Dimension Language Reference

14

Debugging

4th Dimension Language Reference 459

460 4th Dimension Language Reference

Why a Debugger? Debugging

version 6.0
__

When developing and testing your methods, it is important that you find and fix the
errors they may contain.

There are several types of errors you can make when using the language: typing errors,
syntax errors, environmental errors, design or logic errors, and runtime errors.

Typing Errors
__

Typing errors are detected by the Method editor and are marked with bullets (•) and a
message is displayed in the information area at the top of the method window. The
following window shows a typing error:

Note: The comments have been manually inserted for the purpose of this manual. 4D
only inserts the (•) at the location of the error.

Such typing errors usually cause syntax errors (in this case, the name of the table is
unknown). The information area displays a description of the error when you validate the
line of code.

When this occurs, fix the typing error and type Enter (on the numeric pad) to validate
the fix. For more information about the Method editor, refer to the 4th Dimension Design
Reference.

4th Dimension Language Reference 461

Syntax Error
__

Some syntax errors can be caught only when you execute the method. The Syntax Error
window is displayed when a syntax error occurs. For example:

In this window, the error is that a table name is passed to the Uppercase command, which
expects a text expression. To learn about this window and its button, see the section
Syntax Error window.

Environmental Error
__

Occasionally, there there may not be enough memory to create an array or a BLOB.
When you access a document on disk, the document may not exist or may already open
by another application. In such cases, the Error window appears, describing the error and
the action that could not be performed. For example:

These errors do not directly occur because of your code or the way you wrote it; they
occur because sometimes “bad things just happen.” Most of the time, these errors are easy
to treat with an error catching method installed using the command ON ERR CALL. For
more information, see the description of ON ERR CALL.

462 4th Dimension Language Reference

Design or Logic Error
__

These are generally the most difficult type of error to find—use the Debugger to detect
them. Note that, other than typing errors, all the previous error types are to a certain
extent covered by the expression “Design or logic error.” For example:

• A syntax error may occur because you try to use a variable that has not yet been
initialized.
• An environmental error may occur because you try to open a document whose name is
received by a subroutine which does not get the right value in the parameter. Note that
in this example, the piece of code that actually “breaks” may be different than the code
that is actually the origin of the problem.

Design or logic errors also include such situations as:

• A record is not properly updated because, while calling SAVE RECORD, you forgot to first
test whether or not the record was locked.
• A method does not do exactly what you expect, because the presence of an optional
parameter is not tested.

Runtime Error
__

In compiled mode, you can obtain errors that you never saw in interpreted mode. Here is
an example:

This says “You are trying to access a character whose position is beyond the length of a
string.” To quickly find the origin of the problem, note the name of the method and the
line number, reopen the interpreted version of the structure file, and go to that method
at the indicated line.

4th Dimension Language Reference 463

What To Do When an Error Occurs?
__

Errors are common. It would be unusual to write a substantial number of lines of code
(let’s say several hundred) without generating any errors. Conversely, treating and/or
fixing errors is normal, too!

With its multi-tasking environment, 4D enables you to quickly edit/run methods by
simply switching windows. You will discover how quickly you can fix mistakes and errors
when you do not have to rerun the whole thing each time. You will also discover how
quickly you can track errors if you use the Debugger.

A common beginner mistake in dealing with error detection is to click Abort in the
Syntax Error Window, go back to the Method Editor, and try to figure out what's going
by looking at the code. Do not do that! You will save plenty of time and energy by
always using the Debugger.

• If an unexpecting syntax error occurs, use the Debugger.
• If an environmental error occurs, use the Debugger.
• If any other type of error occurs, use the Debugger.

In 99% of the cases, the Debugger displays the information you need in order to
understand why an error occurred. Once you have this information, you know how to fix
the error.

Tip: A few hours spent in learning and experimenting with the Debugger can save days
and weeks in the future when you have to track down errors.

Another reason to use the Debugger is for developing code. Sometimes you may write an
algorithm that is more complex than usual. Despite all feelings of accomplishment, you
are not totally sure that your coding is correct, even before trying it. Instead of running it
“blind,” use the TRACE command at the beginning of your code. Then, execute it step by
step to control what happens and to check whether your suspicion was correct or not. A
purist may dislike this method, but somethimes pragmatism pays off more quickly.
Anyway... use the Debugger.

General Conclusion
Use the Debugger.

See Also
Break List, Catching Commands, Debugger, Debugger Shortcuts, ON ERR CALL, Syntax Error
Window, Tracing a Process not visible or not executing code.

464 4th Dimension Language Reference

Syntax Error Window Debugging

version 6.0
__

The Syntax Error Window is displayed when method execution is halted. Method
execution can be halted for either of two reasons:

• 4th Dimension halts execution because there is a syntax error preventing further
method execution.
• You generate a user interrupt by pressing Alt+Click (Windows) or Option+Click
(Macintosh) while a method is executing.

The Syntax Error window is shown here:

The upper text area of the Syntax Error window displays a message describing the error.
The lower text area shows the line that was executing when the error occurred; the area
where the error occurred is highlighted.

There are four option buttons at the bottom of the window: Abort, Trace, Continue, and
Edit.

• Abort: The method is halted, and you return to where you were before you started
executing the method. If a form or object method is executing in response to an event, it
is stopped and you return to the form. If the method is executing from within the
Custom Menu environment, you return to the Custom Menu environment.

• Trace: You enter Trace/Debugger mode, and the Debugger window is displayed. If the
current line has been partially executed, you may have to click the Trace button several
times. Once the line finishes, you end up in the Debugger window.

4th Dimension Language Reference 465

• Continue: Execution continues. The line with the error may be partially executed,
depending on where the error was. Continue with caution—the error may prevent the
remainder of your method from executing properly. Usually, you do not want to
continue. You can click Continue if the error is in a trivial call, such as SET WINDOW
TITLE, which does not prevent executing and testing the rest of your code. You can thus
concentrate on more important code, and fix a minor error later.

• Edit: All method execution is halted. 4th Dimension switches to the Design
environment. The method in which the error occurred is opened in the Method editor,
allowing you to correct the error. Use this option when you immediately recognize the
mistake and can fix it without further investigation.

See Also
Debugger, ON ERR CALL, Why a Debugger?.

466 4th Dimension Language Reference

Debugger Debugging

version 6.5 (Modified)
__

The term Debugger comes from the term bug. A bug in a method is a mistake that you
want to eliminate. When an error has occurred, or when you need to monitor the
execution of your methods, you use the debugger. A debugger helps you find bugs by
allowing you to slowly step through your methods and examine method information.
This process of stepping through methods is called tracing.

You can cause the Debugger window to display and then trace the methods in the
following ways:

• Clicking the Trace button in the Syntax Error Window
• Using the TRACE command
• Clicking the Debug button in the Execute Method window (User environment).
• Pressing Alt+Shift+Right click (Windows) or Control+Option+Command+Click
(Macintosh) while a method is executing, then selecting the process to trace in the pop-
up menu:

• Clicking the Trace button when a process is selected in the Process page of the Runtime
Explorer.
• Creating or editing a break point in the Method Editor window, or in the Break and
Catch pages of the Runtime Explorer.

Note: If a password system exists for the database, only the designer and users belonging
to the group that has structure access privileges can trace methods.

The Debugger window is displayed here:

4th Dimension Language Reference 467

You can move the Debugger Window and/or resize any of its internal window panes as
necessary. Displaying a new debug window uses the same configuration (size and position
of the window, placing of the division lines and contents of the area that evaluates the
expressions) as the last window displayed in the same session.

4D is a multi-tasking environment. If you run several user processes, you can trace them
independently. You can have one debugger window open for each process.

Execution Control Tool Bar Buttons
__

Nine buttons are located in the Execution Control Tool Bar at the top of the Debugger
window:

No Trace Button
Tracing is halted and normal method execution resumes.
Note: Shift+F5 or Shift+click on the No Trace button resumes execution. It also disables
all the subsequent TRACE calls for the current process.

Abort Button
The method is halted, and you return to where you were before you started executing the
method. If you were tracing a form or object method executing in response to an event,
it is stopped and you return to the form. If you were tracing a method executing from
within the Custom Menu environment, you return to the Custom Menu environment.

468 4th Dimension Language Reference

Abort and Edit Button
The method is halted as if you clicked on Abort. Also, if necessary, 4th Dimension opens
and brings the Design environment process to the front, then opens a Method Editor
window for the method that was executing at the time the Abort and Edit button was
clicked.

Tip: Use this button when you know which changes are required in your code and when
these changes are required to pursue the testing of your methods. After you are finished
with the changes, rerun the method.

Edit Button
Clicking the Edit button does the same as Clicking Abort and Edit button, but does not
abort the current execution. The method execution is paused at that point. If necessary,
4th Dimension opens and brings the Design environment process to the front, then
opens a Method Editor window for the method that was executing at the time the Edit
button was clicked.

Important: You can modify this method; however, these modifications will not appear or
execute in the instance of the method currently being traced in the debugger window.
After the method has either aborted or completed successfully, the modifications will
appear on the next execution of this method. In other words, the method must be
reloaded so its modifications will be taken into account.

Tip: Use this button when you know which changes are required in your code and when
they do not interfere with the rest of the code to be executed or traced.

Tip: Object Methods are reloaded for each event. If you are tracing an object method (i.e.,
in response to a button click), you do not need to leave the form. You can edit the object
method, save the changes, then switch back to the form and retry. For tracing/changing
form methods, you must exit the form and reopen it in order to reload the form method.
When doing extensive debugging of a form, a trick is to put the code (that you are
debugging) into a project method that you use as subroutine from within a form method.
In doing so, you can stay in the form while you trace, edit, and retest your form, because
the subroutine is reloaded each time it is called by the form method.

Save Settings Button
Saves the current configuration of the debug window (size and position of the window,
placing of the division lines and contents of the area that evaluates the expressions), so
that it will be used by default each time the database is opened. These parameters are
stored in the database’s structure file.

4th Dimension Language Reference 469

Step Over Button
The current method line (the one indicated by the yellow arrow—called the program
counter) is executed, and the Debugger steps to the next line. The Step Over button does
not step into subroutines and functions; it stays at the level of the method you are
currently tracing. If you want to also trace subroutines and functions calls, use the Step
Into button.

Step Into Button
On execution of a line that calls another method (subroutine or function), this button
causes the Debugger window to display the method being called and allows you to step
through this method. The new method becomes the current (top) method in the Call
Chain pane of the Debugger window. On execution of a line that does not call another
method, this button acts in the same manner as the Step Over button.

Step Into Process Button
On execution of a line that creates a new process (i.e., calling the command New process),
this button opens a new Debugger window that allows you to trace the process method of
the newly created process. On execution of a line that does not creates a new process, this
button acts in the same manner as the Step Over button.

Step Out Button
If you are tracing subroutines and functions, clicking on this button allows you to
execute the entire method currently being traced and to step back to the caller method.
The Debugger window is brought back to the previous method in the call chain. If the
current method is the last method in the call chain, the Debugger window is closed.

Execution Control Tool Bar Information
__

On the right side of the execution control tool bar, the debugger provides the following
information:
• The name of the method you are currently tracing (displayed in black)
• The problem caused the appearance of the Debugger window (displayed in red)

Using the example window shown above, the following information is displayed:
• The method DE_DebugDemo is the method being traced.
• The debugger window appeared because it detected a call to the command C_DATE and
this command was one of the commands to be caught.

Here are the possible reasons for the debugger to appear and for the message (displayed in
red):
• TRACE Command: A call to TRACE has been issued.
• Break Point Reached: A temporary or persistent break point has been encountered.

470 4th Dimension Language Reference

• User Interrupt: You used Alt+Shift+Right click (Windows) or
Control+Option+Command+Click (Macintosh), or you clicked on the Trace button in
the Process page of the Design environment Runtime Explorer.
• Caught a call to: Name of the command: A call to a 4D command to be caught is on
the point of being performed.
• Stepping into a new process: You used the Step Into Process button and this message is
displayed by the Debugger window opened for the newly created process.

The Debugger Window’s Panes
__

The Debugger window consists of the previously described Execution Control Tool Bar
and four resizable panes:

• Watch Pane
• Call Chain Pane
• Custom Watch Pane
• Source Code Pane

The first three panes use easy-to-navigate hierarchical lists to display pertinent debugging
information. The fourth one, Source Code Pane, displays the source code of the method
being traced. Each pane has its own function to assist you in your debugging efforts. You
can use the mouse to vertically and horizontally resize the debugger window and also
each pane. In addition, the first three panes include a dotted separation line between the
two columns they display. Using the mouse, you can move this dotted line to
horizontally resize the columns, at your convenience.

See Also
Break List, Call Chain Pane, Catching Commands, Custom Watch Pane, Debugger Shortcuts,
ON ERR CALL, Source Code Pane, Syntax Error Window, TRACE, Watch Pane, Why a
Debugger?.

4th Dimension Language Reference 471

Watch Pane Debugging

version 6.5 (Modified)
__

The Watch pane is displayed in the top left corner of the Debugger window, below the
Execution Control Tool Bar. Here is an example:

The Watch pane displays useful general information about the system, the 4D
environment, and the execution environment.

The Expression column displays the names of the objects or expressions. The Value
column displays the current value of corresponding the object or expression.

Clicking on any value on the right side of the pane allows you to modify the value of the
object, if this is permitted for that object.

The multi-level hierarchical lists are organized by theme at the main level. The themes
are:
• Line Objects
• Variables
• Constants
• Fields
• Semaphores
• Sets
• Processes
• Named Selections
• Information
• Cache Statistics

472 4th Dimension Language Reference

Depending on the theme, each item may have one or several sublevels. Clicking the list
node next to a theme name expands or collapses the theme. If the theme is expanded,
the items in that theme are visible. If the theme has several levels of information, click
the list node next to each item for exploring all the information provided by the theme.

At any point, you can drag and drop themes, theme sublists (if any), and theme items to
the Custom Watch pane.

Cache Statistics: Displays statistics regarding the use of tables, index pages, and named
selections that are loaded in 4D’s cache. The expressions from this theme cannot be
modified.

Information: Displays general information, such the current Default Table (if any). The
expressions from this theme cannot be modified.

Named Selections: Lists the process named selections that are defined in the current
process (the one you’re currently tracing); it also lists the interprocess named selections.
For each named selection, the Value column displays the number of records and the table
name. This list may be empty if you do not use named selections. The expressions from
this theme cannot be modified.

Processes: Lists the processes started since the beginning of the working session. The
value column displays the time used and the current state for each process (i.e.,
Executing, Paused, and so on). The expressions from this theme cannot be modified.

Sets: Lists the sets defined in the current process (the one you're currently tracing); it also
lists the interprocess sets. For each set, the Value column displays the number of records
and the table name. This list may be empty if you do not use sets. The expressions from
this theme cannot be modified.

Semaphores: Lists the local semaphores currently being set. For each semaphore, the
Value column provides the name of the process that sets the semaphore. This list may be
empty if you do not use semaphores. The expressions from this theme cannot be
modified. Global semaphores are not displayed.

Tables & Fields: This theme lists the tables and fields in the database; it does not list
subfields. For each Table item, the Value column displays the size of the current selection
for the current process as well as (if the Table item is expanded) the number of locked
records. For each Field item, the Value column displays the value of the field (except
picture, subtable, and BLOB) for the current record, if any. In this theme, the field values
can be modified (there is no undo), but the table information cannot.

Constants: Displays predefined constants provided by 4D. like the Constants page of the
Explorer window. The expressions from this theme cannot be modified.

4th Dimension Language Reference 473

Variables: This theme is composed of the following subthemes:
• Interprocess: Displays the list of the interprocess variables being used at this moment.
This list can be empty if you do not use interprocess variables. The values of the
interprocess variables can be modified.
• Process: Displays the list of the process variables being used by the current process. This
list is rarely empty. The values of the process variables can be modified.
• Local: Displays the list of the local variables being used by the method being traced (the
one being shown in the source code pane). This list can be empty if no local variable is
used or has not yet been created. The values of the local variables can be modified.
• Parameters: Displays the list of parameters received by the method. This list can be
empty if no parameter were passed to the method being traced (the one being shown in
the source code pane). The values of the parameters can be modified.
• Self Pointer: Displays a pointer to the current object if you are tracing an Object
Method. This value cannot be modified

Note: You can modifiy String, Text, Numeric, Date, and Time variables; in other words,
you can modify the variables whose value can be entered with the keyboard.

Arrays, like other variables, appear in the Interprocess, Process, and Locals subthemes,
depending on their scope. The debugger displays each array with an additional
hierarchical level; this enables you to obtain or change the values of the array elements, if
any. The debugger displays the first 100 elements, including the element zero. The Value
column displays the size of the array in regard to its name. After you have deployed the
array, the first sub-item displays the current selected element number, then the element
zero, then the other elements (up to 100). You can modifiy String, Text, Numeric, and
Date arrays. You can modify the selected element number, the element zero, and the
other elements (up to 100). You cannot modify the size of the array.

Reminder: At any time, you can drag and drop an item from the Watch pane to the
Custom Watch pane, including an individual array element.

Line Objects
This theme displays the values of the objects or expressions that are:
• used in the line of code to be executed (the one marked with the program counter—the
yellow arrow in the Source Code pane), or
• used in the previous line of code.

Since the previous line of code is the one that was just executed before, the Line Objects
theme therefore shows the objects or expressions of the current line before and after that
the line was executed. Let's say you execute the following method:

TRACE
a:=1
b:=a+1
c:=a+b

` ...

474 4th Dimension Language Reference

1. You enter the Debugger window with the Source Code pane program counter set to the
line a:=1. At this point the Line Objects theme displays:

a: Undefined

The a variable is shown because it is used in the line to be executed (but has not yet been
initialized).

2. You step one line. The program counter is now set to the line b:=a+1. At this point, the
Line Objects theme displays:

a: 1
b: Undefined

The a variable is shown because it is used in the line that was just executed and was
assigned the numeric value 1. It is also shown because it is used in the line to be executed
as the expression to be assigned to the variable b. The b variable is shown because it is
used in the line to be executed (but has not yet been initialized).

3. Again, you step one line. The program counter is now set to the line c:=a+b. At this
point the Line Objects theme displays:

c: Undefined
a: 1
b: 2

The c variable is shown because it is used in the line to be executed (but has not yet been
initialized). The a and b variables are shown because there were used in the previous line
and are used in the line to be executed. And so on...

The Line Objects theme is a very convenient tool—each time you execute a line, you do
not need to enter an expression in the Custom Watch pane, just watch the values
displayed by the Line Objects theme.

Speed Menu
__

Addtional options are provided by the Speed Menu of the Watch pane. To display this
menu:
• On Windows, click anywhere in the Watch pane using the right mouse button.
• On Macintosh, Control-Click anywhere in the Watch pane.

4th Dimension Language Reference 475

The Speed Menu of the Watch pane is shown here:

• Collapse All: Collapses all levels of the Watch hierarchical list.

• Expand All: Expand all levels of the Watch hierarchical list.

• Show Types: Displays the object type for each object (when appropriate).

• Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field numbers, or with pointers using the commands such as
Table or Field, this option is very useful.

• Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

• Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

• Show Integers in Hexadecimal: Numbers are usually displayed in decimal notation. This
option displays them in hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type 0x (zero + "x"), followed by the hexadecimal digits.

476 4th Dimension Language Reference

The following is a view of the Watch pane with all options selected:

See Also
Call Chain Pane, Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane.

4th Dimension Language Reference 477

Call Chain Pane Debugging

version 6.0
__

One method may call other methods, which may call other methods. For this reason, it
is very helpful to see the chain of methods, or Call Chain, during the debugging process.
The Call Chain pane, which provides this useful function, is the top right pane of the
Debugger window. This pane is displayed using a hierarchical list. Here is an example of
the Call Chain pane:

• Each main level item is a name of a method. The top item is the method you are
currently tracing, the next main level item is the name of the caller method (the method
that called the method you are currently tracing), the next one is the caller's caller
method, and so on. In the example above, the method M_BitTestDemo is being traced; it
has been called by the method DE_LInitialize, which has been called by DE_DebugDemo.
• Double-clicking the name of a method in the Call Chain pane “transports” you back to
the caller method, displaying its source code in the Source code pane. In doing so, you
can quickly see “how” the caller method made its call to the called method. You can
examine any stage of the call chain this way.
• Clicking the node next to a Method name expands or collapses the parameter ($1, $2...)
and the optional function result ($0) list for the method. The values appear on the right
side of the pane. Clicking on any value on the right side allows you to change the value
of any parameter or function result. In the figure above:
1. M_BitTestDemo has not received any parameter.
2. M_BitTestDemo's $0 is currently undefined, as the method did not assign any value to
$0 (because it has not executed this assignment yet or because the method is a subroutine
and not a function).
3. DE_LInitialize has received three parameters from DE_DebugDemo. $1 is a pointer to the
table [Customers], $2 is a pointer to the field [Customers]Company, and $3 is an
alphanumeric parameter whose value is "Z".
• After you have deployed the parameter list for a method, you can also drag and drop
parameters and function results to the Custom Watch pane.

See Also
Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane, Watch Pane.

478 4th Dimension Language Reference

Custom Watch Pane Debugging

version 6.0
__

Directly below the Call Chain pane is the Custom Watch pane. This pane is used to
evaluate expressions. Any type of expression can be evaluated, including fields, variables,
pointers, calculations, built-in functions, your own functions, and anything else that
returns a value.

You can evaluate any expression that can be shown in text form. This does not cover
picture and BLOB fields or variables. On the other hand, the Debugger uses deployed
hierarchical lists to let you display arrays and pointers. To display BLOB contents, you can
use BLOB commands, such as BLOB to text.

In the following example, you can see several of these items: two variables, a field pointer
variable and the result of a built-in function, and a calculation.

Inserting a new expression
__

You can add an expression to be evaluated in the Custom Watch pane in the following
way:
• Drag and drop an object or expression from the Watch pane
• Drag and drop an object or expression from the Call Chain pane
• In the Source Code pane, click on an expression that can be evaluated

To create a blank expression, double-click somewhere in the empty space of the Custom
Watch pane. This adds an expression ` New expression and then goes into editing mode so
you can edit it. You can enter any 4D formula that returns a result.

After you have entered the formula, type Enter or Return (or click somewhere else in the
pane) to evaluate the expression.

To change the expression, click on it to select it, then click again (or press Enter
—numeric key pad) to go into editing mode.

4th Dimension Language Reference 479

If you no longer need an expression, click on it to select it, then press Backspace or
Delete.

Warning: Be careful when you evaluate a 4D expression modifying the value of one of the
system variables (for instance, the OK variable) because the execution of the rest of the
method may be altered.

Custom Watch Pane Speed Menu
__

To help you enter and edit an expression, the Custom Watch Pane’s Speed menu gives
you access the 4D formula editor. In fact, the speed menu also proposes additional
options.

To present this menu:
• On Windows, click anywhere in the Custom Watch pane using the right mouse button
• On Macintosh, Control-Click anywhere in the Custom Watch pane.

480 4th Dimension Language Reference

• New Expression: This inserts a new expression and displays the 4D Formula Editor (as
shown) so you can edit the new expression.

For more information about the Formula Editor, See the 4th Dimension User Reference
Manual.

• Insert Command: This hierarchical menu item is a shortcut for inserting a command as
a new expression, without using the Formula Editor.

• Delete All: Deletes all the expressions currently present.

• Collapse All/Expand All: Collapses or Expands all the expressions whose evaluation is
done by the means of a hierarchical list (i.e., pointers, arrays,...)

• Show Types: Displays the object type for each object (when appropriate).

• Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field number or pointers using the commands such as Table or
Field, this option is very useful.

• Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

4th Dimension Language Reference 481

• Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

• Show Integers in Hexadecimal: Numbers are displayed using the decimal notation. This
option displays them hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type 0x (zero + "x"), followed by the hexadecimal digits.

See Also
Call Chain Pane, Debugger, Debugger Shortcuts, Source Code Pane, Watch Pane.

482 4th Dimension Language Reference

Source Code Pane Debugging

version 6.0
__

The Source Code pane shows the source code of the method being traced.

• If the method is too long to fit in the text area, you can scroll to view other parts of the
method.
• Moving the mouse pointer over any expression that can be evaluated (field, variable,
pointer, array,...) will cause a Tool Tip to display the current value of the object or
expression and its declared type.
Here is an example of the Source Code pane:

A tool tip is displayed because the mouse pointer was over the variable pTable which,
according to the tool tip, is a pointer to the table [Customers].

• You can also select a portion of the text in the area displaying the code being executed.
In this case, when the cursor is placed above the selected text, a tip displays the selected
object’s value:

When you click on a variable name or field, it is automatically selected.

4th Dimension Language Reference 483

Tip: It is possible to copy any selected expression (that can be evaluated) from the Source
Code pane to the Custom Watch pane. You can use one of the following ways:
• by simply dragging and dropping (click on the selected text, drag it and drop it in the
evaluation area).
• by clicking on the selected text while holding down the Ctrl (Windows) or Command
(Mac OS) key.
• by using the Ctrl+D (Windows) or Command+D (Mac OS) key combinations.

Program Counter
__

A yellow arrow in the left margin of the Source Code pane (see the figure above) marks
the next line that will be executed. This arrow is called the program counter. The
program counter always indicates the line that is about to be executed.

For debugging purposes, you can change the program counter for the method being on
top of the call chain (the method actually being executed). To do so, click and drag the
yellow arrow vertically, to the line you want.

WARNING: Use this feature with caution!

Moving the program counter forward does NOT mean that the debugger is rapidly
executing the lines you skip. Similarily, moving the program counter backward does NOT
mean that the debugger is reversing the effect of the lines that has already been executed.

Moving the program counter simply tells the debugger to “pursue tracing or executing
from here.” All current settings, fields, variables, and so on are not affected by the move.

Here is an example of moving the program counter. Let’s say you are debugging the
following code:

` ...
If (This condition)

DO SOMETHING
Else

DO SOMETHING ELSE
End if

` ...

The program counter is set to the line If (This condition). You step once and you see that
the program counter moves to the line DO SOMETHING ELSE. This is unfortunate, because
you wanted to execute the other alternative of the branch. In this case, and provided that
the expression This condition does not perform operations affecting the next steps in your
testing, just move the program counter back to the line DO SOMETHING. You can now
continuing tracing the part of the code in which you are interested.

484 4th Dimension Language Reference

Setting Break Points in the Debugger
__

In the debugging process, you may need to skip the tracing of some parts of the code.
The debugger offers you several ways to execute code up to a certain point:

• While stepping, you can click on the Step Over button instead of Step Into button. This
is useful when you do not want to enter into possible subroutines or functions called in
the program counter line.
• If you mistakenly entered into a subroutine, you can execute it and directly go back to
the caller method by clicking on the Step Out button.
• If you have a TRACE call placed at some point, you can click the No Trace button, which
resumes the execution up to that TRACE call.

Now, let’s say you are executing the following code, with the program counter set to the
line ALL RECORDS([ThisTable]):

` ...
ALL RECORDS([ThisTable])
$vrResult:=0
For($vlRecord;1;Records in selection([ThisTable]))

$vrResult:=This Function([ThisTable]))
NEXT RECORD([ThisTable])

End for
If ($vrResult>=$vrLimitValue)

` ...

Your goal is to evaluate the value of $vrResult after the For loop has been completed. Since
it takes quite some execution time to reach this point in your code, you do not want to
abort the current execution, then edit the method in order to insert a TRACE call before
the line If ($vrResult....

One solution is to step through the loop, however, if the table [ThisTable] contains several
hundreds records, you are going to spend the entire day for this operation. In this type of
situation, the debugger offers you break points. You can insert break points by clicking in
the left margin of the Source Code pane.

For example:
You click in the left margin of the Source Code pane at the level of the line If ($vrResult...:

4th Dimension Language Reference 485

This inserts a break point for the line. The break point is indicated by a red bullet. Then
click the No Trace button.

This resumes the normal execution up to the line marked with the break point. That line
is not executed itself—you are back to the trace mode. In this example, the whole loop
has consequently been executed normally. Then, when reaching the break point, you just
need to move the mouse button over $vrResult to evaluate its value at the exit point of
the loop.

Setting a break point beyond the program counter and clicking the No Trace button
allows you to skip portions of the method being traced.

Note: You can also set break points directly in 4D's Method Editor. Please refer to the
section Break Points.

A red break point is a persistent break point. Once you created it, it “stays.” Even though
you quit the database, then reopen it later on, the break point will be there.

There are two ways to eliminate a persistent break point:
• If you are through with it, just remove it by clicking on the red bullet—the break point
disappears.
• If you are not totally through with it, you may want to keep the break point. You can
temporarily disable the break point by editing it. This explained in the section Break
Points.

See Also
Break Points, Call Chain Pane, Custom Watch Pane, Debugger, Watch Pane.

486 4th Dimension Language Reference

Break Points Debugging

version 6.0
__

As explained in the Source Code pane section, you set a break point by clicking in the left
margin of the Source Code pane or of the Method Editor window, at the same level as the
line of code on which you want to create the break.

Note: Since you can insert, modify or delete break points either in the debugger's Source
Code pane or directly in the Method Editor, there is a dynamic interaction between the
Method Editor and the debugger (as well as the Runtime Explorer) in regards to break
points. However, temporary break points can be defined in the debugger only (see below).

In the following figure, a break point has been set, in the debugger, on the line
If($vrResult>=$vrLimitValue):

If you click again on the red bullet, the break point is deleted.

Editing a Break Point
__

Pressing Alt-click (Windows) or Option-click (Macintosh) in the left margin of the Source
code pane or of the Method Editor window for a line of code, gives you access to the
Break Point Properties window.

• If you click on an existing break point, the window is displayed for that break point.
• If you click on a line where no break point was set, the debugger creates one and
displays the window for the newly created break point.

4th Dimension Language Reference 487

The Break Point Properties window is shown here:

Here are the properties:

Location: This tells you the name of the method and the line number where the break
point is set. You cannot change this information.

Type: By default, the debugger lets you create persistent break points, depicted by a red
bullet in the source code pane of the debugger window. To create a temporary break
point, select the Temporary option. A temporary break point is useful when you want to
break just once in a method. A temporary break point is identified by a green bullet in the
source code pane of the Debugger window. You can also set a temporary break point
directly in the source code pane by clicking in the left margin while pressing Alt+Shift
(Windows) or Option+Shift (Macintosh).

Note: Temporary break points can be set in the debugger only.

Break when following expression is true: You can create conditional break points by
entering a 4D formula that returns True or False. For example, if you want to break at a
line only when Records in selection([aTable])=0, enter this formula, and the break will
occur only if there no record selected for the table [aTable], when the debugger
encounters the line with this break point. If you are not sure about the syntax of your
formula, click the Check Syntax button.

Number of times to skip before breaking: You can set a break point to a line of code
located in a loop structure (While, Repeat, or For) or located in subroutine or function
called from within a loop. For example, you know that the “problem” you are tracking
does not occur before at least the 200th iteration of the loop. Enter 200, and the break
point will activate at the 201st iteration.

488 4th Dimension Language Reference

Break Point is disabled: If you currently do not need a persistent break point, but you
may need it later, you can temporarily disable the break point by editing it. A disabled
break point appears as a dash (-) instead of a bullet (•) in the source code pane of the
debugger window, in the Method Editor and in the Break page of the Runtime Explorer.

You create and edit break point from within the Debugger or the Method Editor window.
You can also edit existing break points using the Break page of the Runtime Explorer. For
more information, see the section Break List window.

See Also
Break List, Catching Commands, Debugger, Source Code Pane.

4th Dimension Language Reference 489

Break List Debugging

version 6.0
__

The Break List is a page of the Runtime Explorer that enables you to manage the
persistent Break Points created in the Debugger Window or in the Method Editor.

To open the Break List page:

1. Switch to the Design environment if you are not already there.

2. Choose Runtime Explorer from the Tools menu.
The Runtime Explorer can be displayed in a floating palette. In this case, the floating
palette always remains displayed in the front. To do this, hold down the Shift key while
selecting Runtime Explorer from the Tools menu, or press Ctrl+Shift+F9 on Windows or
Command+Shift+F9 on Mac OS.

The Runtime Explorer window appears.

3. Click on the Break tab control to display the Break List:

The Break List is composed of two columns:
• The left column displays the Enable/Disable status of the break point, followed by the
name of the method and the line number where the break point has been set (using the
Debugger window or the Method Editor).
• The right column displays the condition associated with the break point, if any.

Using this window, you can:
• Set a condifition for a break point,
• Enable, disable or delete each break point,
• Open a Method Editor window displaying the method in which a break point is defined,
by double-clicking on the break point.

490 4th Dimension Language Reference

However, you cannot add a new persistent break point from this window. Persistent break
points can only be created from within the Debugger window or the Method Editor.

Setting a Condition for a Break Point
To set a condifition for a break point, proceed as follows:

1. Click on the entry in the right column

2. Enter a 4D formula (expression or command call or project method) that returns a
Boolean value.

Note: To remove a condition, delete its formula.

Disabling/Enabling a Break Point
To disable or enable a break point:

1. Select the entry by clicking on it or by using the arrows to navigate through the list (if
the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch it to select mode.

3. Click on the Enable/Disable button or choose Disable from the speed menu.
Shortcut: Each entry in the list may be disabled/enabled by clicking directly on the bullet
(•). The bullet changes to a dash (–) when disabled.

Deleting a Break Point
To delete a break point:
1. Select the entry by clicking on it or by using the arrows to navigate through the list (if
the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch it to select mode.

3. Press the Delete key or click on the Delete button.

Note: To delete all the break points, click on the Delete All button or choose Delete All
in the speed menu.

Tips

• Adding conditions to break points slows the execution, because the condition has to be
evaluated each time an exception is met. On the other hand, adding conditions
accelerates the debugging process, because it automatically skips occurrences that do not
match the conditions.
• Disabling a break point has almost the same effect as deleting it. During execution, the
debugger spends almost no time on the entry. The advantage of disabling an entry is that
you do not have to recreate it when you need it again.

See Also
Break Points, Catching Commands, Debugger, Source Code Pane, Why a Debugger?.

4th Dimension Language Reference 491

Catching Commands Debugging

version 6.5
__

The Caught Commands List is a page of the Runtime Explorer that enables you to add
additional breaks to your code by catching calls to 4D commands.

Catching a command enables you to start tracing the execution of any process as soon as
a command is called by that process. Unlike a break point, which is located in a particular
project method (and therefore triggers a trace exception only when it is reached), the
scope of catching a command includes all the processes that execute 4D code and call that
command.

Catching a command is a convenient way to trace large portions of code without setting
break points at arbitrary locations. For example, if a record that should not be deleted is
deleted after you have executed one or several processes, you can try to reduce the field of
your investigation by catching commands such as DELETE RECORD and DELETE
SELECTION. Each time these commands are called, you can check if the record in
question has been deleted, and thus isolate the faulty part of the code.

With some experience, you can combine the use of Break points and command catching.

To open the Caught Commands page:

1. Switch to the Design environment if you are not already there.

2. Choose Runtime Explorer from the Tools menu.
The Runtime Explorer can be displayed in a floating palette. In this case, the floating
palette always remains displayed in the front. To do this, hold down the Shift key while
selecting Runtime Explorer from the Tools menu, or press Ctrl+Shift+F9 on Windows or
Command+Shift+F9 on Mac OS.

The Runtime Explorer window appears.

492 4th Dimension Language Reference

3. Click on the Catch tab control to display the Caught Commands List:

This page lists the commands to be caught during execution. It is composed of two
columns:
• The left column displays the Enable/Disable status of the caught command, followed by
the name of the command.
• The right column displays the condition associated with the caught command, if any.

Adding a New Command to be Caught
To add a new command:

1. Click on the Add New Catch button (first button above the list).
 OR
 Double-click the left mouse button in the Caught Commands list.
In both cases, a new entry is added to the list with the ALERT command as default.
The entry is set to the edit mode.

4th Dimension Language Reference 493

2. Enter the name of the command you want to catch.

3. Press Enter or Return to validate your choice.

OR

1. Press the right mouse button (Control+Click on Macintosh) to display the speed menu.

2. Select Add New Catch, then select the desired command from the command themes
and names submenus. A new entry is added with the command you selected.

Editing the Name of a Caught Command
To edit the name of a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. To toggle an entry between edit mode and select mode, press Enter or Return.

3. Enter or modify the name of the command.

4. To validate your changes, press Enter or Return. If name you entered does not
correspond to an existing 4D command, the entry is set to its previous value. If the entry
is a new one, it is reset to ALERT.

494 4th Dimension Language Reference

Disabling/Enabling a Caught Command
To disable or enable a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.

3. Click on the Enable/Disable button or choose Enable/Disable the speed menu.

Shortcut: Each entry in the list may be disabled/enabled by clicking on the bullet (•). The
bullet changes to a dash (–) when disabled.

Deleting a Caught Command
To delete a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.

3. Press the Delete key or click on the Delete button.

Note: To delete all the caught commands, click on the Delete All button or chosse Delete
All in the speed menu.

Setting a Condition for Catching a Command
To set a condition for catching a command:

1. Click on the entry in the right column.

2. Enter a 4D formula (expression, command call or project method) that returns a
Boolean value.

Note: To remove a condition, delete its formula.

Tips
• Adding conditions to caught commands slows the execution, because the condition has
to be evaluated each time an exception is met. On the other hand, adding conditions
accelerates the debugging process, because it automatically skips occurrences that do not
match the conditions.
• Disabling a caught command has almost the same effect as deleting it. During
execution, the debugger spends almost no time on the entry. The advantage of disabling
an entry is that you do not have to recreate it when you need it again.

See Also
Break List, Break Points, Debugger.

4th Dimension Language Reference 495

Debugger Shortcuts Debugging

version 2003 (Modified)
__

This section lists all the shortcuts provided by the Debugger window.

Execution Control Tool Bar
→ The following figure shows the shortcuts for the nine buttons located in the top left
corner of the Debugger Window:

→ Shift+F5 or Shift+click on the No Trace button resumes execution. Also, they disable
all the next TRACE calls for the current process.

Watch Pane
→ Right mouse button click (Windows) or Control-Click (Macintosh) in the Watch pane
pulls down the Watch Speed menu.
→ Double-click on an item of the Watch pane copies the item to the Custom Watch pane.

Call Chain Pane
→ Double-Click on a method name in the Call chain pane displays the method in the
Source Code pane at the line corresponding to the call in the call chain.

Custom Watch Pane
→ Right mouse button click (Windows) or Control-Click (Macintosh) in the Custom
Watch pane pulls down the Custom Watch Speed menu.
→ Double-Click in the Custom Watch pane creates a new watch.

496 4th Dimension Language Reference

Source Code Pane
→ Click in the left margin sets (persistent) or removes break points.
→ ALT-Shift-Click (Windows) or Option-Shift Click (Macintosh) sets a temporary break
point.
→ Alt-Click (Windows) or Option-Click displays the Edit Break window for a new or
existing break point.
 → A selected expression or object can be copied to the Custom Watch pane by simple
drag and drop.
→ Click on the selected text while holding down the Ctrl (Windows) or Command
(Mac OS) key copies it to the Custom Watch pane.
→ Ctrl+D (Windows) or Command+D (Mac OS) key combinations copy the selected text
to the Custom Watch pane.

All Panes
→ Ctrl+* (Windows) or Command+* (Mac OS) forces the updating of the Watch pane.
→ When no item is selected in any pane, typing Enter steps by one line.
→ When an item value is selected, use the arrows keys to navigate through the list.
→ When an item is being edited, use the arrow keys to move the cursor; use Ctrl-
A/X/C/V (Windows) or Command-A/X/C/V (Macintosh) as shortcuts to the Select
All/Cut/Copy/Paste menu commands of the Edit menu.

See Also
Call Chain Pane, Custom Watch Pane, Debugger, Source Code Pane, Watch Pane.

4th Dimension Language Reference 497

498 4th Dimension Language Reference

15

Drag and Drop

4th Dimension Language Reference 499

500 4th Dimension Language Reference

Drag and Drop Drag and Drop

version 2004.2 (Modified)
__

4th Dimension allows built-in drag and drop capability between objects in your forms.
You can drag and drop one object to another, in the same window or in another window.
In other words, drag and drop can be performed within a process or from one process to
another.

4th Dimension does not include built-in drag and drop to and from the desktop or
another application. However, this functionality is provided using plug-ins developed by
4D Partners or using the “system” drag and drop (for more information about this, refer
to the end of this section).

Note: As an introduction, we assume that a drag and drop action “transports” some data
from one point to another. Later, we will see that drag and drop can also be a metaphor
for any type of operation.

Draggable and Droppable Object Properties
__

To drag and drop an object to another object, you must select the Draggable property for
that object in the Property List window. In a drag-and-drop operation, the object that you
drag is the source object.

To make an object the destination of a drag and drop operation, you must select the
Droppable property for that object in the Property List window. In a drag-and-drop
operation, the object that receives data is the destination object.

By default, newly created objects can be neither dragged nor dropped. It is up to you to
set these properties.

All objects in an input or dialog form can be made to be dragged and dropped. Individual
elements of an array (i.e., scrollable area), items of a hierarchical list or rows in a list box
can be dragged and dropped. Conversely, you can drag and drop an object onto an
individual element of an array or an item of a hierarchical list or a list box row. However,
you cannot drag and drop objects from the detail area of an output form.

You can easily create a drag-and-drop user interface, because 4D allows you to use any type
of active object (field or variable) as source or destination objects. For example, you can
drag and drop a button.

Notes:
•To drag a button labeled "draggable," you must first press the Alt (Windows) or Option
(Mac OS) keys.
• When the “Draggable” and “Movable Rows” properties are both set for a List box object,
the “Movable Rows” property takes priority when a row is moved. Dragging is not
possible in this case.

4th Dimension Language Reference 501

An object that is capable of being both dragged and dropped can also be dropped onto
itself, unless you reject the operation. For details, see the discussion below.

The following figure shows the Property List window with the Droppable and Draggable
properties set for the selected object:

Drag-and-Drop User Interface Handling
__

4th Dimension ensures the user interface part of the drag-and-drop capability. If you click
on a draggable object and then drag the mouse, 4D drags the object; it reflects this
operation on the screen with a dotted rectangle that follows the movements of the
mouse. In the following figure, a hierarchical list item is being dragged over a text field:

Note the reverse gray frame highlight around the text field area. This highlight indicates
the destination object (in this case, the text field). If you release the mouse button at this
point, 4D assumes that you want to drop the dragged object onto the highlighted
destination object.

502 4th Dimension Language Reference

In the Preferences dialog box, you can set the drag and drop highlight of the destination
object to be a frame or a pattern (or both):

The default highlight is Frame. It is a rectangular, gray, reverse highlight around the
object. If you use colored background or object frames, using this highlight may be
confusing. You can alternatively use the Pattern highlight, which fills the destination
object with a diagonal lines pattern, as shown.

Here a hierarchical list item is dragged over a text field:

4th Dimension Language Reference 503

Here a list item is dragged inside the same list:

You can also choose both types of highlight.

Note: The highlight of the destination object “follows” elements or items when the
destination object is an array (scrollable area), a list box or a hierarchical list.

Drag-and-Drop Programmatical Handling
__

4th Dimension performs the user interface part of a drag and drop—it is up to you to
perform the programmatical part. To enable you to do so, 4D provides you with two form
events: On Drag Over and On Drop. Both events are sent to the destination object. During
a drag-and-drop operation, the object method of the source object is never involved.

In order to accept On Drag Over and On Drop, the destination object must have these two
events activated in their properties, as shown here:

• Property List:

504 4th Dimension Language Reference

On Drag Over
The On Drag Over event is repeatedly sent to the destination object when the mouse
pointer is moved over the object. In response to this event, you usually:

• Call the DRAG AND DROP PROPERTIES command, which informs you about the source
object.
• Depending on the nature and type of both the destination object (whose object method
is currently being executed) and the source object, you accept or reject the drag and
drop.

To accept the drag, the destination object method must return 0 (zero), so you write
$0:=0. To reject the drag, the object method must return -1 (minus one), so you write
$0:=-1. In this case, the object is not activated graphically. During an On Drag Over event,
4D treats the object method as a function. If no result is returned, 4D assumes that the
drag is accepted.

If you accept the drag, the destination object is highlighted. If you reject the drag, the
destination is not highlighted. Accepting the drag does not mean that the dragged data is
going to be inserted into the destination object. It only means that if the mouse button
was released at this point, the destination object would accept the dragged data.

If you do not process the On Drag Over event for a droppable object, that object will be
highlighted for all drag over operations, no matter what the nature and type of the
dragged data.

The On Drag Over event is the means by which you control the first phase of a drag-and-
drop operation. Not only can you test whether the dragged data is of a type compatible
with the destination object, and then accept or reject the drag; you can simultaneously
notify the user of this fact, because 4D highlights (or not) the destination object, based
on your decision.

The code handling an On Drag Over event should be short and execute quickly, because
that event is sent repeatedly to the current destination object, due to the movements of
the mouse.

WARNING: If the drag and drop is an interprocess drag and drop, which means the source
object is located in a process (window) other than that of the destination object, the
object method of the destination object for an On Drag Over event is executed within the
context of the source process (the source object's process), and not in the process of the
destination object. This is the only case in which such an execution occurs. The
advantages of this type of execution are described at the end of this section.

On Drop
The On Drop event is sent once to the destination object when the mouse pointer is
released over the object. This event is the second phase of the drag-and-drop operation, in
which you perform an operation in response to the user action.

4th Dimension Language Reference 505

This event is not sent to the object if the drag was not accepted during the On Drag Over
events. If you process the On Drag Over event for an object and reject a drag, the On Drop
event does not occur. Thus, if during the On Drag Over event you have tested the data
type compatibility between the source and destination objects and have accepted a
possible drop, you do not need to re-test the data during the On Drop. You already know
that the data is suitable for the destination object.

An interesting aspect of the 4D drag-and-drop implementation is that 4D lets you do
whatever you want. Examples:

• If a hierarchical list item is dropped over a text field, you can insert the text of the list
item at the beginning, at the end, or in the middle of the text field.
• Your form contains a two-state picture button, which could represent an empty or full
trash can. Dropping an object onto that button could mean (from the user interface
standpoint) “delete the object that has been dragged and dropped into the trash can.”
Here, the drag and drop does not transport data from one point to another; instead, it
performs an action.
• Dragging an array element from a floating window to an object in a form could mean
“in this window, show the Customer record whose name you just dragged and dropped
from the floating window listing the Customers stored in the database.”
• And so on.

So, the 4D drag-and-drop interface is a framework which enables you to implement any
user interface metaphor you may devise.

Drag-and-drop commands
__

The DRAG AND DROP PROPERTIES command returns:
• A pointer to the dragged object (field or variable)
• The element or item number, if the dragged object is an array element or a list item
• The process number of the source process.

The Drop position command returns the element number of the item position of the
target element or list item, if the destination object is an array (i.e., scrollable area) or a
hierarchical list, as well as the column number if the object is a list box.

Commands like RESOLVE POINTER and Type are useful for testing the nature and type of
the source object.

When the drag-and-drop operation is intended to copy the dragged data, the
functionality of these commands depend on how many processes are involved:
• If the drag and drop is limited to one process, use these commands to perform the
appropriate actions (i.e., simply assigning the source object to the destination object).

506 4th Dimension Language Reference

• If the drag and drop is an interprocess drag and drop, you need to be careful while
getting access to the dragged data; you must access the data instance from the source
process. If the dragged data comes from a variable, use GET PROCESS VARIABLE to get the
right value. If the dragged data comes from a field, remember that the current record for
a table is probably different for the two processes, so you need to access the right record.

In this last case, several solutions are available:
• If the On Drag Over event for the destination object method is executed in the context
of the source process, you can copy the field data or the record number to an interprocess
variable that will be reused during the On Drop event.
• You can get the required data by starting an interprocess communication during the On
Drop event.

If the drag and drop is not intended to move data, but is instead a user interface
metaphor for a particular operation, you can perform whatever you want.

“System” Drag and Drop

Text areas in native control (fields, variables and List boxes) allow the “system” drag and
drop, which is the movement or copy of a text selection from one area to another. It can
be used in the same 4D area, between two 4D areas, or between 4D and another
application, for example WordPad. This only works between two text areas that are both
in native control.

When system drag and drop is used, the 4th Dimension drag-and-drop management
mechanisms described above are NOT used.
Consequently, the On Drag Over and On Drop form events are NOT generated and the
drop area is not activated as defined in the Preferences.
If you wish to “force” the use of the internal 4th Dimension drag and drop with areas in
native control, hold down the Alt (Windows) or Option (Mac OS) key before performing
the drag and drop.

See Also
DRAG AND DROP PROPERTIES, Drop position, Form event, GET PROCESS VARIABLE, Is a list,
RESOLVE POINTER, Type.

4th Dimension Language Reference 507

Drop position Drag and Drop

version 2004.2 (Modified)
__

Drop position {(columnNumber)} → Number

Parameter Type Description
columnNumber Longint ← List box column number or

-1 if the drop occurs beyond the last column

Function result Number ← Destination element number (array or list box) or
item position (list), or -1 if drop occurred beyond the
last array element or list item

Description
The Drop position command can be used to find out the location, in a “complex”
destination object, where an object has been (dragged and) dropped.

Typically, you will use Drop position when handling a drag and drop event that occurred
over an array, a list box or a hierarchical list.

• If the destination object is an array, the command returns an element number.
• If the destination object is a list box, the command returns a row number. In this case,
the command also returns the column number where the drop took place in the optional
columnNumber parameter.
• If the destination object is a hierarchical list, the command returns an item position.
In all cases, the command may return -1 if the source object has been dropped beyond
the last element or the last item of the destination object.

If you call Drop position when handling an event that is not a drag-and-drop event and
that occurred over an array or a hierarchical list, the command returns -1.

Important: A form object accepts dropped data if its Droppable property has been
selected. Also, its object method must be activated for On Drag Over and/or On Drop, in
order to process these events.

Example
1. See the examples for the DRAG AND DROP PROPERTIES command.

508 4th Dimension Language Reference

2. In the following example, a list of amounts paid must be broken down per month and
per person. This is carried out by drag and drop from a scrollable area:

The list box object method contains the following code:

Case of
:(Form event=On Drag Over)

DRAG AND DROP PROPERTIES($source;$arrayrow;$processnum)
If ($source=Get pointer("SA1")) `If the drop does come from the scrollable area

$0:=0
Else

$0:=-1 `The drop is refused
End if

:(Form event=On Drop)
DRAG AND DROP PROPERTIES($source;$arrayrow;$processnum)

⇒ $rownum:=Drop position($colnum)
If ($colnum=1)

BEEP
Else

Case of `Adding of dropped values
: ($colnum=2)

John{$rownum}:=John{$rownum}+SA1{$arrayrow}
: ($colnum=3)

Mark{$rownum}:=Mark{$rownum}+SA1{$arrayrow}
: ($colnum=4)

Peter{$rownum}:=Peter{$rownum}+SA1{$arrayrow}
End case
DELETE ELEMENT(SA1;$arrayrow) `Updating of area

End if
End case

See Also
Drag and Drop, DRAG AND DROP PROPERTIES.

4th Dimension Language Reference 509

DRAG AND DROP PROPERTIES Drag and Drop

version 2004.2 (Modified)
__

DRAG AND DROP PROPERTIES (srcObject; srcElement; srcProcess)

Parameter Type Description
srcObject Pointer ← Pointer to drag-and-drop source object
srcElement Number ← Dragged array element number, or

Dragged list box row number, or
Dragged hierarchical list item, or
-1 if source object is neither an array
nor a list box nor a hierarchical list

srcProcess Number ← Source process number

Description
The DRAG AND DROP PROPERTIES command enables you to obtain information about
the source object when an On Drag Over or On Drop event occurs for a “complex” object
(array, list box or hierarchical list).

Typically, you use DRAG AND DROP PROPERTIES from within the object method of the
object (or from one of the subroutines it calls) for which the On Drag Over or On Drop
event occurs (the destination object).

Important: A form object accepts dropped data if its Droppable property has been
selected. Also, its object method must be activated for On Drag Over and/or On Drop, in
order to process these events.

After the call:
• The srcObject parameter is a pointer to the source object (the object that has been
dragged and dropped). Note that this object can be the destination object (the object for
which the On Drag Over or On Drop event occurs) or a different object. Dragging and
dropping data from and to the same object is useful for arrays and hierarchical lists—it is a
simple way of allowing the user to sort an array or a list manually.
• If the dragged and dropped data is an array element (the source object being an array),
the srcElement parameter returns the number of this element. If the dragged and dropped
data is a list box row, the srcElement parameter returns the number of this row. If the drag
and dropped data is a list item (the source object being a hierarchical list), the srcElement
parameter returns the position of this item. Otherwise, if the source object does not
belong to any of these categories, srcElement is equal to -1.
• Drag and drop operations can occur between processes. The srcProcess parameter is equal
to the number process to which the source object belongs. It is important to test the
value of this parameter. You can respond to a drag and drop within the same process by
simply copying the source data to the destination object.

510 4th Dimension Language Reference

On the other hand, when treating an interprocess drag and drop, you will use the GET
PROCESS VARIABLE command to get the source data from the source process object
instance. If the source object is a field, you must get the value from the source process via
interprocess communication or handle that particular case while responding to the
On Drag Over event (see below). However, you will usually implement drag and drop in
the user interface from source variables (i.e., arrays and lists) toward data entry areas
(fields or variables).

If you call DRAG AND DROP PROPERTIES when there is no drag and drop event, srcObject
returns a NIL pointer, srcElement returns -1 and srcProcess returns 0.

Tip: 4th Dimension automatically handles the graphical aspect of a drag and drop. You
must then respond to the event in the appropriate way. In the following examples, the
response is to copy the data that has been dragged. Alternatively, you can implement
sophisticated user interfaces where, for example, dragging and dropping an array element
from a floating window will fill in the destination window (the window where the
destination object is located) with structured data (i.e., several fields coming from a record
uniquely identified by the source array element).

You use DRAG AND DROP PROPERTIES during an On Drag Over event in order to decide
whether the destination object accepts the drag and drop operation, depending on the
type and/or the nature of the source object (or any other reason). If you accept the drag
and drop, the object method must return $0:=0. If you do not accept the drag and drop,
the object method must return $0:=-1. Accepting or refusing the drag and drop is
reflected on the screen—the object is or is not highlighted as the potential destination of
the drag-and-drop operation.

Tip: During an On Drag Over event, the object method of the destination object is
executed within the context of the source object’s process. If the source object of an
interprocess drag and drop is a field, you can use the opportunity of this event to copy
the source data into an interprocess variable. By doing so, later on, during the On Drop
event, you will not have to initiate an interprocess communication with the source
process in order to get the value of the field that was dragged. If an interprocess drag and
drop involves a variable as source object, you can use the GET PROCESS VARIABLE
command during the On Drop event.

Examples
1. In several of your database forms, there are scrollable areas in which you want to
manually reorder the elements by simple drag and drop from one part of the scrollable
area into another within it. Rather than writing specific code for each case, you may
implement a generic project method that will handle any one of these scrollable areas.

4th Dimension Language Reference 511

You could write something like:

` Handle self array drag and drop project method
` Handle self array drag and drop (Pointer) -> Boolean
` Handle self array drag and drop (-> Array) -> Is a self array drag and drop

Case of
: (Form event=On Drag Over)

⇒ DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
If ($vpSrcObj=$1)

` Accept the drag and drop if it is from the array to itself
$0:=0

Else
$0:=-1

End if
: (Form event=On Drop)

` Get the information about the drag and drop source object
⇒ DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)

` Get the destination element number
$vlDstElem:=Drop position

` If the element was not dropped over itself
If ($vlDstElem # $vlSrcElem)

` Save dragged element in element 0 of the array
$1->{0}:=$1->{$vlSrcElem}

` Delete the dragged element
DELETE ELEMENT($1->;$vlSrcElem)

` If the destination element was beyond the dragged element
If ($vlDstElem>$vlSrcElem)

` Decrement the destination element number
$vlDstElem:=$vlDstElem-1

End if
` If the drag and drop occurred beyond the last element

If ($vlDstElem=-1)
` Set the destination element number to a new element at the end of
`the array

$vlDstElem:=Size of array($1->)+1
End if

` Insert this new element
INSERT ELEMENT($1->;$vlDstElem)

` Set its value which was previously saved in the element zero of the array
$1->{$vlDstElem}:=$1->{0}

` The element becomes the new selected element of the array
$1->:=$vlDstElem

End if
End case

512 4th Dimension Language Reference

Once you have implemented this project method, you can use it in the following way:

` anArray Scrollable Area Object Method

Case of
`...

: (Form event=On Drag Over)
$0:=Handle self array drag and drop (Self)

: (Form event=On Drop)
Handle self array drag and drop (Self)

` ...
End case

2. In several of your database forms, you have text enterable areas in which you want to
drag and drop data from various sources. Rather than writing specific code for each case,
you may implement a generic project method that will handle any one of these text
enterable areas. You could write something like:

` Handle dropping to text area project method
` Handle dropping to text area (Pointer)
` Handle dropping to text area (-> Text or String variable)

Case of
` Use this event for accepting or rejecting the drag and drop

: (Form event=On Drag Over)
` Initialize $0 for rejecting

$0:=-1
` Get the information about the drag and drop source object

⇒ DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
` In this example, we do not allow drag and drop from an object to itself

If ($vpSrcObj # $1)
` Get the type of the data which is being dragged

$vlSrcType:=Type($vpSrcObj->)
Case of

: ($vlSrcType=Is Alpha Field)
` Alphanumeric Field is OK

$0:=0
` Copy the value now into an IP variable

◊vtDraggedData:=$vpSrcObj->
: ($vlSrcType=Is Text)

` Text Field or Variable is OK
$0:=0
RESOLVE POINTER($vpSrcObj;$vsVarName;$vlTableNum;$vlFieldNum)

` If it is a field
If (($vlTableNum>0) & ($vlFieldNum>0))

` Copy the value now into an IP variable
◊vtDraggedData:=$vpSrcObj->

End if

4th Dimension Language Reference 513

: ($vlSrcType=Is String Var)
` String Variable is OK

$0:=0
: (($vlSrcType=String array) | ($vlSrcType=Text array))

` String and Text Arrays are OK
$0:=0

: (($vlSrcType=Is LongInt) | ($vlSrcType=Is Real)
If (Is a list($vpSrcObj->))

` Hierarchical list is OK
$0:=0

End if
End case

End if

` Use this event for performing the actual drag and drop action
: (Form event=On Drop)

$vtDraggedData:=""
` Get the information about the drag and drop source object

⇒ DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
RESOLVE POINTER($vpSrcObj;$vsVarName;$vlTableNum;$vlFieldNum)

` If it is field
If (($vlTableNum>0) & ($vlFieldNum>0))

` Just grab the IP variable set during the On Drag Over event
$vtDraggedData:=◊vtDraggedData

Else
` Get the type of the variable which has been dragged

$vlSrcType:=Type($vpSrcObj->)
Case of

` If it is an array
: (($vlSrcType=String array) | ($vlSrcType=Text array))

If ($vlPID # Current process)
` Read the element from the source process instance of the
` variable

GET PROCESS VARIABLE($vlPID;$vpSrcObj->{$vlSrcElem};
$vtDraggedData)

Else
` Copy the array element

$vtDraggedData:=$vpSrcObj->{$vlSrcElem}
End if
` If it is a list

: (($vlSrcType=Is Real) | ($vlSrcType=Is LongInt))
` If it is a list from another process

If ($vlPID # Current process)
`Get the List Reference from the other process

GET PROCESS VARIABLE($vlPID;$vpSrcObj->;$vlList)
Else

$vlList:=$vpSrcObj->
End if

514 4th Dimension Language Reference

` If the list exists
If (Is a list($vpSrcObj->))

`Get the text of the item whose position was obtained
GET LIST ITEM($vlList;$vlSrcElem;$vlItemRef;$vsItemText)
$vtDraggedData:=$vsItemText

End if
Else

` It is a string or a text variable
If ($vlPID # Current process)

GET PROCESS VARIABLE($vlPID;$vpSrcObj->;$vtDraggedData)
Else

$vtDraggedData:=$vpSrcObj->
End if

End case
End if

` If there is actually something to drop (the source object may be empty)
If ($vtDraggedData # "")

` Check that the length of the text variable will not exceed 32,000
`characters

If ((Length($1->)+Length($vtDraggedData))<=32000)
$1->:=$1->+$vtDraggedData

Else
BEEP
ALERT("The drag and drop cannot be completed because the text would

become too long.")
End if

End if

End case

Once you have implemented this project method, you can use it in the following way:

` [anyTable]aTextField Object Method

Case of
 ` ...

: (Form event=On Drag Over)
$0:=Handle dropping to text area (Self)

: (Form event=On Drop)
Handle dropping to text area (Self)

 ` ...
End case

4th Dimension Language Reference 515

3. We want to fill a text area (for example, a label) with data dragged from a list box.

Here is the label1 object method:

Case of
:(Form event=On Drag Over)

DRAG AND DROP PROPERTIES($source;$arrayrow;$processnum)
If ($source=Get pointer("list box1"))

$0:=0 `The drop is accepted
Else

$0:=-1 `The drag is refused
End if

:(Form event=On Drop)
DRAG AND DROP PROPERTIES($source;$arrayrow;$processnum)
QUERY([Members];[Members]LastName=arrNames{$arrayrow})
If (Records in selection([Members])#0)

label1:=[Members]FirstName+" "+[Members]LastName+Char(Carriage return)+
[Members]Address+Char(Carriage return)+[Members]City+","+" "+[Members]State+

" "+[Members]ZipCode
End if

End case

It then becomes possible to carry out the following action:

See Also
Drag and Drop, Drop position, Form event, GET PROCESS VARIABLE, Is a list, RESOLVE
POINTER.

516 4th Dimension Language Reference

16

Entry Control

4th Dimension Language Reference 517

518 4th Dimension Language Reference

ACCEPT Entry Control

version 3
__

ACCEPT

Parameter Type Description
This command does not require any parameters

Description
The command ACCEPT is used in form or object methods (or in subroutines) to:
• accept a new or modified record or subrecord, for which data entry has been initiated
using ADD RECORD, MODIFY RECORD, ADD SUBRECORD, or MODIFY SUBRECORD.
• accept a form displayed with the DIALOG command.
• exit a form displaying a selection of records, using DISPLAY SELECTION or MODIFY
SELECTION.

ACCEPT performs the same action as if a user had pressed the Enter key. After the form is
accepted, the OK system variable is set to 1.

ACCEPT is commonly executed as a result of choosing a menu command. ACCEPT is also
commonly used in the object method of a “no action” button.

It is also often used in the optional close box method for the Open window command. If
there is a Control-menu box on a window, ACCEPT or CANCEL can be called, in the
method to be executed, when the Control-menu box is double-clicked or the Close menu
command is chosen.

ACCEPT cannot be queued up. In response to an event, executing two ACCEPT commands
in a row from within a method would have the same effect as executing one.

See Also
CANCEL.

4th Dimension Language Reference 519

CANCEL Entry Control

version 2003 (Modified)
__

CANCEL

Parameter Type Description
This command does not require any parameters

Description
The CANCEL command is used in form or object methods (or in a subroutine) to:
• cancel a new or modified record or subrecord, for which data entry has been initiated
using ADD RECORD, MODIFY RECORD, ADD SUBRECORD, or MODIFY SUBRECORD.
• cancel a form displayed with the DIALOG command.
• exit a form displaying a selection of records, using DISPLAY SELECTION or MODIFY
SELECTION.
• cancel the printing of a form that is about to be printed using the Print form command
(see below).

In the context of data entry, CANCEL performs the same action as if the user had pressed
the cancel key (Esc).

CANCEL is commonly executed as a result of a menu command being chosen. CANCEL is
also commonly used in the object method of a “no action” button.

It is also often used in the optional close box method for the Open window command. If
there is a Control-menu box on a window, ACCEPT or CANCEL can be called, in the
method to be executed, when the Control-menu box is double-clicked or the Close menu
command is chosen.

CANCEL cannot be queued up. Executing two CANCEL commands in a row from within a
method in response to an event would have the same effect as executing only one.

Finally, this command can be used in the On Printing Detail form event, when using the
Print form command. In this context, the CANCEL command suspends the printing of the
form that is about to be printed, then resumes it on the next page. This mechanism can
be used to manage form printing when there is a lack of space or if a page break is
required.

Note: This operation differs from that of the PAGE BREAK(*) command that cancels ALL
the forms waiting to be printed.

520 4th Dimension Language Reference

Example
Refer to the example of the SET PRINT MARKER.

See Also
ACCEPT, PAGE BREAK, Print form.

System Variables and Sets
When the CANCEL command is executed (form or printing cancelled), the system
variable OK is set to 0.

4th Dimension Language Reference 521

Keystroke Entry Control

version 6.0
__

Keystroke → String

Parameter Type Description
This command does not require any parameters

Function result String ← Character entered by user

Description
Keystroke returns the character entered by the user into a field or an enterable area.

Usually, you will call Keystroke within a form or object method while handling an On
Before Keystroke event form. To detect keystroke events, use the command Form event.

To replace the character actually entered by the user with another character, use the
command FILTER KEYSTROKE.

Note: The Keystroke function does not work in subforms.

IMPORTANT NOTE: If you want to perform some “on the fly” operations depending on
the current value of the enterable area being edited, as well as the new character to be
entered, remember that the text you see on screen is NOT YET the value of the data
source field or variable for the area being edited. The data source field or variable is
assigned the entered value after the data entry for the area is validated (e.g., tabulation to
another area, click on a button, and so on). It is therefore up to you to “shadow” the data
entry into a variable and then to work with this shadow value. You must do so if you
need to know the current text value for executing any particular actions. You can also use
the function Get edited text.

You will use the command Keystroke for:
• Filtering characters in a customized way
• Filtering data entry in a way that you cannot produce using data entry filters
• Implement dynamic lookup or type-ahead areas

Examples
1. See examples for the command FILTER KEYSTROKE.

522 4th Dimension Language Reference

2. When you process an On Before Keystroke event, you are dealing with the editing of
the current text area (the one where the cursor is), not with the “future value” of the data
source (field or variable) for this area. The Handle keystroke project method allows to
shadow any text area data entry into a second variable, which you can use to perform the
actions while entering characters into the area. You pass a pointer to the area’s data source
as the first parameter and a pointer to the shadow variable as second parameter. The
method returns the new value of the text area in the shadow variable, and returns True if
the value is different from it what was before the last entered character was inserted.

` Handle keystroke project method
` Handle keystroke (Pointer ; Pointer) -> Boolean
` Handle keystroke (-> srcArea ; -> curValue) -> Is new value

C_POINTER ($1;$2)
C_TEXT ($vtNewValue)

` Get the text selection range within the enterable area
GET HIGHLIGHT ($1->;$vlStart;$vlEnd)

` Start working with the current value
$vtNewValue:=$2->

` Depending on the key pressed or the character entered,
` Perform the appropriate actions

Case of

` The Backspace (Delete) key has been pressed
⇒ : (Ascii (Keystroke)=Backspace)

` Delete the selected characters or the character at the left of the text cursor
$vtNewValue:=Substring ($vtNewValue;1;$vlStart-1-Num($vlStart=$vlEnd))

+Substring($vtNewValue;$vlEnd)

` An acceptable character has been entered
⇒ : (Position (Keystroke;"abcdefghjiklmnopqrstuvwxyz -0123456789")>0)

If ($vlStart#$vlEnd)
` One or several characters are selected, the keystroke is going to
` override them

⇒ $vtNewValue:=Substring($vtNewValue;1;$vlStart-1)
+Keystroke+Substring($vtNewValue;$vlEnd)

Else
` The text selection is the text cursor

Case of
` The text cursor is currently at the begining of the text

: ($vlStart<=1)
` Insert the character at the begining of the text

⇒ $vtNewValue:=Keystroke+$vtNewValue
` The text cursor is currently at the end of the text

: ($vlStart>=Length($vtNewValue))
` Append the character at the end of the text

⇒ $vtNewValue:=$vtNewValue+Keystroke

4th Dimension Language Reference 523

Else
` The text cursor is somewhere in the text, insert the new character

⇒ $vtNewValue:=Substring($vtNewValue;1;$vlStart-1)+Keystroke
+Substring($vtNewValue;$vlStart)

End case
End if

` An Arrow key has been pressed
` Do nothing, but accept the keystroke

⇒ : (Ascii(Keystroke)=Left Arrow Key)
⇒ : (Ascii(Keystroke)=Right Arrow Key)
⇒ : (Ascii(Keystroke)=Up Arrow Key)
⇒ : (Ascii(Keystroke)=Down Arrow Key)

`
Else

` Do not accept characters other than letters, digits, space and dash
FILTER KEYSTROKE ("")

End case
` Is the value now different?

$0:=($vtNewValue#$2->)
` Return the value for the next keystroke handling

$2->:=$vtNewValue

After this project method is added to your application, you can use it as follows:
` myObject enterable area object method

Case of
: (Form event=On Load)

MyObject:=""
MyShadowObject:=""

: (Form event=On Before Keystroke)
If (Handle keystroke (->MyObject;->MyShadowObject))

` Perform appropriate actions using the value stored in MyShadowObject
End if

End case

524 4th Dimension Language Reference

Let’s examine the following part of a form:

It is composed of the following objects: an enterable area vsLookup, a non-enterable area
vsMessage, and a scrollable area asLookup. While entering characters in vsLookup, the
method for that object performs a query on a [US Zip Codes] table, allowing the user to
find US cities by typing only the first characters of the city names.

The vsLookup object method is listed here:
` vsLookup enterable area object method

Case of
: (Form event=On Load)

vsLookup:=""
vsResult:=""
vsMessage:="Enter the first characters of the city you are looking for."
CLEAR VARIABLE(asLookup)

: (Form event=On Before Keystroke)
If (Handle keystroke (->vsLookup;->vsResult))

If (vsResult#"")
QUERY([US Zip Codes];[US Zip Codes]City=vsResult+"@")
MESSAGES OFF
DISTINCT VALUES([US Zip Codes]City;asLookup)
MESSAGES ON
$vlResult:=Size of array(asLookup)
Case of

: ($vlResult=0)
vsMessage:="No city found."

: ($vlResult=1)
vsMessage:="One city found."

Else
vsMessage:=String($vlResult)+" cities found."

End case

4th Dimension Language Reference 525

Else
DELETE ELEMENT(asLookup;1;Size of array(asLookup))
vsMessage:="Enter the first characters of the city you are looking for."

End if
End if

End case

Here is the form in the User environment:

Using the interprocess communication capabilities of 4th Dimension, you can similarily
build user interfaces in which Lookup features are provided in floating windows that
communicate with processes in which records are listed or edited.

See Also
FILTER KEYSTROKE, Form event, Get edited text.

526 4th Dimension Language Reference

FILTER KEYSTROKE Entry Control

version 6.0
__

FILTER KEYSTROKE (filteredChar)

Parameter Type Description
filteredChar String → Filtered keystroke character or

Empty string to cancel the keystroke

Description
FILTER KEYSTROKE enables you to replace the character entered by the user into a field or
an enterable area with the first character of the string filteredChar you pass.

If you pass an empty string, the keystroke is cancelled and ignored.

Usually, you will call FILTER KEYSTROKE within a form or object method while handling
an On Before Keystroke form event. To detect keystroke events, use the command Form
event. To obtain the actual keystroke, use the command Keystroke.

IMPORTANT NOTE: The command FILTER KEYSTROKE allows you to cancel or replace the
character entered by the user with another character. On the other hand, if you want to
insert more than one character for a specific keystroke, remember that the text you see
on the screen is NOT YET the value of the data source field or variable for the area being
edited. The data source field or variable is assigned the entered value after the data entry
for the area is validated. It is therefore up to you to “shadow” the data entry into a
variable and then to work with this shadow value and reassign the enterable area (see the
example in this section).

You will use the command FILTER KEYSTROKE for:
• Filtering characters in a customized way
• Filtering data entry in a way that you cannot produce using data entry filters
• Implement dynamic lookup or type-ahead areas

WARNING: If you call the command Keystroke after calling FILTER KEYSTROKE, the
character you pass to this command is returned instead of the character actually entered.

4th Dimension Language Reference 527

Examples
1. Using the following code:

` myObject enterable area object method
Case of

: (Form event=On Load)
myObject:=""
: (Form event=On Before Keystroke)

If(Position(Keystroke;"0123456789")>0)
⇒ FILTER KEYSTROKE("*")

End if
End case

All the digits entered in the area myObject are transformed into star characters.

2. This code implements the behavior of a Password enterable area in which all the
entered characters are replaced (on the screen) by random characters:

` vsPassword enterable area object method
Case of

: (Form event=On Load)
vsPassword:=""
vsActualPassword:=""

: (Form event=On Before Keystroke)
Handle keystroke (->vsPassword;->vsActualPassword)
If (Position(Keystroke;Char(Backspace)+Char(Left Arrow Key)+

Char(Right Arrow Key)+Char(Up Arrow Key)+Char(Down Arrow Key))=0)
⇒ FILTER KEYSTROKE(Char(65+(Random%26)))

End if
End case

After the data entry is validated, you retrieve the actual password entered by the user in
the variable vsActualPassword. Note: The method Handle keystroke is listed in the Example
section for the command Keystroke.

3. In your application, you have some text areas into which you can enter a few
sentences. Your application also includes a dictionary table of terms commonly used
throughout your database. While editing your text areas, you would like to be able to
quickly retrieve and insert dictionary entries based on the selected characters in a text
area. You have two ways to do this:
 - Provide some buttons with associated keys, or
 - Intercept special keystrokes during the editing of the text area

This example implements the second solution, based on the Help key.

528 4th Dimension Language Reference

As explained above, during the editing of the text area, the data source for this area will
be assigned the entered value after you validate the data entry. In order to retrieve and
insert dictionary entries into the text area while this area is being edited, you therefore
need to shadow the data entry. You pass pointers to the enterable area and the shadow
variable as the first two parameters, and you pass a string of the “forbidden” characters as
the third parameter. No matter how the keystroke will be treated, the method returns the
original keystroke. The “forbidden” characters are those that you do not want to be
inserted into the enterable area and you want to treat as special characters.

` Shadow keystroke project method
` Shadow keystroke (Pointer ; Pointer ; String) -> String
` Shadow keystroke (-> srcArea ; -> curValue ; Filter) -> Old keystroke

C_STRING(1;$0)
C_POINTER($1;$2)
C_TEXT($vtNewValue)
C_STRING(255;$3)

` Return the original keystroke
$0:=Keystroke

` Get the text selection range within the enterable area
GET HIGHLIGHT($1->;$vlStart;$vlEnd)

` Start working with the current value
$vtNewValue:=$2->

` Depending on the key pressed or the character entered,
` Perform the appropriate actions

Case of
` The Backspace (Delete) key has been pressed

: (Ascii($0)=Backspace)
` Delete the selected characters or the character at the left of the text cursor

$vtNewValue:=Delete text ($vtNewValue;$vlStart;$vlEnd)
` An Arrow key has been pressed
` Do nothing, but accept the keystroke

: (Ascii($0)=Left Arrow Key)
: (Ascii($0)=Right Arrow Key)
: (Ascii($0)=Up Arrow Key)
: (Ascii($0)=Down Arrow Key)

` An acceptable character has been entered
: (Position($0;$3)=0)

$vtNewValue:=Insert text ($vtNewValue;$vlStart;$vlEnd;$0)
Else

` The character is not accepted
⇒ FILTER KEYSTROKE("")

End case
` Return the value for the next keystroke handling

$2->:=$vtNewValue

4th Dimension Language Reference 529

This method uses the two following submethods:
` Delete text project method
` Delete text (String ; Long ; Long) -> String
` Delete text (-> Text ; SelStart ; SelEnd) -> New text

C_TEXT($0;$1)
C_LONGINT($2;$3)
$0:=Substring($1;1;$2-1-Num($2=$3))+Substring($1;$3)

` Insert text project method
` Insert text (String ; Long ; Long ; String) -> String
` Insert text (-> srcText ; SelStart ; SelEnd ; Text to insert) -> New text

C_TEXT($0;$1;$4)
C_LONGINT($2;$3)
$0:=$1
If ($2#$3)

$0:=Substring($0;1;$2-1)+$4+Substring($0;$3)
Else

Case of
: ($2<=1)

$0:=$4+$0
: ($2>Length($0))

$0:=$0+$4
Else

$0:=Substring($0;1;$2-1)+$4+Substring($0;$2)
End case

End if

After you have added these project methods to your project, you can use them in this
way:

` vsDescription enterable area object method
Case of

: (Form event=On Load)
vsDescription:=""
vsShadowDescription:=""

` Establish the list of the “forbidden” characters to be treated as special keys
` (here, in this example, only the Help Key is filtered)

vsSpecialKeys:=Char(HelpKey)
: (Form event=On Before Keystroke)

$vsKey:=Shadow keystroke (->vsDescription;->vsShadowDescription;vsSpecialKeys)
Case of

: (Ascii($vsKey)=Help Key)
 ` Do something when the Help key is pressed

` Here, in this example, a Dictionary entry must be searched and inserted
 LOOKUP DICTIONARY (->vsDescription;->vsShadowDescription)

End case
End case

530 4th Dimension Language Reference

The LOOKUP DICTIONARY project method is listed below. Its purpose is to use the shadow
variable for reassigning the enterable area being edited:

` LOOKUP DICTIONARY project method
` LOOKUP DICTIONARY (Pointer ; Pointer)
` LOOKUP DICTIONARY (-> Enterable Area ; ->ShadowVariable)

C_POINTER($1;$2)
C_LONGINT($vlStart;$vlEnd)

` Get the text selection range within the enterable area
GET HIGHLIGHT($1->;$vlStart;$vlEnd)

` Get the selected text or the word on the left of the text cursor
$vtHighlightedText:=Get highlighted text ($2->;$vlStart;$vlEnd)

` Is there something to look for?
If ($vtHighlightedText#"")

` If the text selection was the text cursor,
` the selection now starts at the word preceeding the text cursor

If ($vlStart=$vlEnd)
$vlStart:=$vlStart-Length($vtHighlightedText)

End if
` Look for the first avaliable dictionary entry

QUERY([Dictionary];[Dictionary]Entry=$vtHighlightedText+"@")
` Is there one?

If (Records in selection([Dictionary])>0)
` If so, insert it in the shadow text

$2->:=Insert text ($2->;$vlStart;$vlEnd;[Dictionary]Entry)
` Copy the shadow text to the enterable being edited

$1->:=$2->
` Set the selection just after the insert dictionary entry

$vlEnd:=$vlStart+Length([Dictionary]Entry)
HIGHLIGHT TEXT(vsComments;$vlEnd;$vlEnd)

Else
` There is no corresponding entry in the Dictionary

BEEP
End if

Else
` There is no highlighted text

BEEP
End if

4th Dimension Language Reference 531

The Get highlighted text method is listed here:

` Get highlighted text project method
` Get highlighted text (String ; Long ; Long) -> String
` Get highlighted text (Text ; SelStart ; SelEnd) -> highlighted text

C_TEXT($0;$1)
C_LONGINT($2;$3)
If ($2<$3)

$0:=Substring($1;$2;$3-$2)
Else

$0:=""
$2:=$2-1
Repeat

If ($2>0)
If (Position($1[[$2]];" ,.!?:;()-_–—")=0)

$0:=$1[[$2]]+$0
$2:=$2-1

Else
$2:=0

End if
End if

Until ($2=0)
End if

See Also
Form event, Keystroke.

532 4th Dimension Language Reference

GOTO AREA Entry Control

version 3
__

GOTO AREA ({*; }object)

Parameter Type Description
* * → If specified = object is an object name (string)

If omitted = object is a field or a variable
object Field | Variable → Object name (if * specified) or

Field or Variable (if * omitted) to go to

Description
The command GOTO AREA is used to select the data entry object object as the active area
of the form. It is equivalent to the user’s clicking on or tabbing into the field or variable.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
specify a field or variable reference (field or variable objects only) instead of a string. For
more information about object names, see the section Object Properties.

Note: This command only functions in input forms. It has no effect on data entry areas
located in subform List forms.

Examples
(1) The GOTO AREA command can be used in both ways:

⇒ GOTO AREA ([People]Name) ` Field Reference
⇒ GOTO AREA (*;"AgeArea") ` Object Name

(2) See the example for the command REJECT.

See Also
REJECT.

4th Dimension Language Reference 533

REJECT Entry Control

version 3
__

REJECT {(field)}

Parameter Type Description
field Field → Field to reject

Description
REJECT has two forms. The first form has no parameters. It rejects the entire data entry
and forces the user to stay in the form. The second form rejects only the field and forces
the user to stay in the field.

Note: You should consider the built-in data validation tools before using this command.

The first form of REJECT prevents the user from accepting a record that is not complete.
You can achieve the same result without using REJECT—you associate the Enter key with a
No Action button and use the ACCEPT and CANCEL commands to accept or cancel the
record, after the fields have been entered correctly. It is recommended that you use this
second technique and do not use the first form of REJECT.

If you use the first form, you execute REJECT to prevent the user from accepting a record,
usually because the record is not complete or has inaccurate entries. If the user tries to
accept the record, executing REJECT prevents the record from being accepted; the record
remains displayed in the form. The user must continue with data entry until the record is
acceptable, or cancel the record.

The best place to put this form of REJECT is in the object method of an Accept button
associated with the Enter key. This way, validation occurs only when the record is
accepted, and the user cannot bypass the validation by pressing the Enter key.

The second form of REJECT is executed with the field parameter. The cursor stays in the
field area. This form of REJECT forces the user to enter a correct value. It must be used
immediately following a modification to the field. You can test for modification by using
the Modified function. You can also use REJECT in the object method for the data entry
area. This command has no effect on fields in subform areas.

You must put either form of the REJECT command in the form method or object method
for the form that is being modified. If you are using REJECT for the subform’s Detail Form
for a table, put it in the form method or object method for the Detail Form.

You can use HIGHLIGHT TEXT to select the data in the field that is being rejected.

534 4th Dimension Language Reference

Examples
1. The following example is for a bank transaction record. It shows the first form of
REJECT being used in an Accept button object method. The Enter key is set as an
equivalent for the button. This means that even if the user presses the Enter key to accept
the record, the button’s object method will be executed. If the transaction is a check,
then there must be a check number. If there is no check number, the validation is
rejected:

Case of
` If it is a check with no number...

: (([Operation]Transaction="Check") & ([Operation]Check Number = ""))
ALERT ("Please fill in the check number.") ` Alert the user

⇒ REJECT ` Reject the entry
GOTO AREA ([Operation]Check Number) ` Go to the check number field

End case

2. The following example is part of an object method for an [Employees]Salary field. The
object method tests the [Employees]Salary field and rejects the field if it is less than
$10,000. You could perform the same operation by specifying a minimum value for the
field in the form editor:

If ([Employees]Salary<10000)
ALERT ("Salary must be greater than $10,000")

⇒ REJECT ([Employees]Salary)
End if

See Also
ACCEPT, CANCEL, GOTO AREA.

4th Dimension Language Reference 535

EDIT ITEM Entry Control

version 2004
__

EDIT ITEM ({*; }object{; item})

Parameter Type Description
* * → If set, object is an object name (string)

If omitted, object is a table or variable
object Form object → Object name (if * set) or

Table or variable (if * omitted)
item Number → Item number

Description
The EDIT ITEM command allows you to edit the current item or the item number item in
the array or the list set in the object parameter.
This means that the selected item can be modified; entering a character entirely replaces
the item content.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (in this case, pass a string in object). If you do not pass the parameter, you indicate
that the object parameter is a table or a variable. In this case, you do not pass a string but
a table or a variable reference.

This command applies to the following enterable objects:
• Hierarchical lists
• List boxes
• Subforms (in this case, only an object name — the subform — can be passed in object),
• List forms displayed using the MODIFY SELECTION or DISPLAY SELECTION commands.

If the command is used with an enterable object that is not a list, it then acts the same as
the GOTO AREA command.
The command does nothing if the list or the array is empty or invisible. Also, if the list or
the array is not enterable, the command only selects the specified item without changing
to editing mode. Regarding list boxes, if the column does not allow text entry (entry by
check boxes or drop-down lists only), the specified element gets the focus.

The optional item parameter allows you to set the position of the item (hierarchical list) or
the row number (list box, list forms and subform in “multiple selection” mode) to change
to editing mode. If you do not pass this parameter, the command is applied to the current
item for object. If there is no current item, the first item of object changes to editing
mode.

Notes:
• In hierarchical lists, the EDIT ITEM command automatically causes the list to be
redrawn. As a result, you should not call the REDRAW LIST command when the EDIT ITEM
command is used.

536 4th Dimension Language Reference

Examples
(1) This command can be particularly useful when creating a new item in a hierarchical
list. When the command is called, the last item added or inserted in the list automatically
becomes editable without the user having to do anything.
The following code may be the method of a button that allows you to insert a new item
in an existing list. The default text “New_item” is automatically ready to be changed:

vlUniqueRef:=vlUniqueRef+1
INSERT LIST ITEM(hList;*;"New_item";vlUniqueRef)

⇒ EDIT ITEM(*;"MyList")

(2) Given two columns in a list box whose variable names are “Array1” and “Array2”
respectively. The following example inserts a new item in the two arrays and passes the
new item of Array2 into editing mode:

$vlRowNum:=Size of array(Array1)+1
INSERT LISTBOX ROW(*;"MyListBox";$vlRowNum)
Array1{$vlRowNum}:="New value 1"
Array2{$vlRowNum}:="New value 2"

⇒ EDIT ITEM(Array2;$vlRowNum)

(3) The following example allows changing the first field of the last subrecord in the
subselection to editing mode:

LAST SUBRECORD([Children])
⇒ EDIT ITEM(*;"Subform")

See also
GOTO AREA, INSERT LIST ITEM, SET LIST ITEM.

4th Dimension Language Reference 537

538 4th Dimension Language Reference

17

External Data Source

4th Dimension Language Reference 539

540 4th Dimension Language Reference

ODBC LOGIN External Data Source

version 2004
__

ODBC LOGIN ({dataEntry{; userName{; password}}})

Parameter Type Description
dataEntry String → Name of the data source entry in the ODBC
Manager
userName String → Name of the user registered in the data source
password String → Password of the user registered in the data
source

Description
The ODBC LOGIN command allows you to connect to an external ODBC data source.

Note: The ODBC (Open DataBaseConnectivity) standard defines a library of standard
functions. These functions allow an application like 4th Dimension to accesss any ODBC-
compatible data source (databases, spreadsheets, etc.) using SQL.

The dataEntry parameter contains the name of the data source as entered in the ODBC
driver manager.

userName contains the name of the user authorized to connect to the external data
source. For example, with Oracle®, the user name can be “Scott”.

password contains the password of the user authorized to connect to the external data
source. For example, with Oracle®, the password can be “tiger”.

These parameters are optional; if no parameters are passed, the command will bring up
the ODBC Manager dialog box that allows you to select the external data source:

4th Dimension Language Reference 541

The scope of this command is per process; in other words, if you want to execute two
distinct connections, you must create two processes and execute each connection in each
process.

Examples
(1) This statement will bring up the ODBC Manager dialog box:

⇒ ODBC LOGIN

(2) This statement will connect to the ODBC data source named “MyOracle” using
Scott/tiger as the name/password :

⇒ ODBC LOGIN("MyOracle";"Scott";"tiger")

See also
ODBC LOGOUT.

System Variables or Sets
If the connection is successful, the system variable OK is set to 1; otherwise, it is set to 0.

542 4th Dimension Language Reference

ODBC LOGOUT External Data Source

version 2004
__

ODBC LOGOUT

Parameter Type Description
This command does not require any parameters

Description
The ODBC LOGOUT command closes the connection of the current process (if applicable).
If there is no connection, the command does nothing.

See also
ODBC LOGIN.

System Variables or Sets
If the logout is performed properly, the system variable OK is set to 1; otherwise, it is set
to 0. You can intercept this error with an error-handling method installed by the ON ERR
CALL command.

4th Dimension Language Reference 543

ODBC SET OPTION External Data Source

version 2004
__

ODBC SET OPTION (option; value)

Parameter Type Description
option Longint → Number of option to set
value Longint → New value of option

Description
The ODBC SET OPTION command is used to modify the value of the option passed in
option.

option can have one of the following values, located in the “External Data Source” theme:
Constant Description and possible values
OBDC Asynchronous (1) 0 = Synchronous connection (default value),

1 (or value other than 0) = Asynchronous connection
ODBC Max RowS (2) Maximum number of rows in resulting group

(used for previews)
ODBC Max Data Length (3) Maximum length of data returned
ODBC Query Time Out (4) Maximum timeout awaiting response when executing

the ODBC EXECUTE command.
Values: time in seconds
By default: no timeout

ODBC Connection Time Out (5) Maximum timeout awaiting response when executing
the ODBC LOGIN command.
This value must be set before opening the connection
in order to be taken into account
Possible values: time in seconds
By default: no timeout

See also
ODBC GET OPTION.

System Variables or Sets
If the command was properly executed, the system variable OK returns 1. Otherwise, it
returns 0.

544 4th Dimension Language Reference

ODBC GET OPTION External Data Source

version 2004
__

ODBC GET OPTION (option; value)

Parameter Type Description
option Longint → Option number
value Longint ← Option value

Description
The ODBC GET OPTION command returns the current value of the option passed in
option.

For more information on the different options and their associated values, refer to the
description of the ODBC SET OPTION command.

See also
ODBC SET OPTION.

System Variables or Sets
If the command was properly executed, the system variable OK is set to 1. Otherwise, it is
set to 0.

4th Dimension Language Reference 545

ODBC EXECUTE External Data Source

version 2004
__

ODBC EXECUTE (sqlStatement{; boundObj}{; boundObj2; ...; boundObjN})

Parameter Type Description
sqlStatement Text → SQL command to execute
boundObj Variable | Field ← Receives result (if necessary)

Description
The ODBC EXECUTE command is used to execute an SQL command and to bind the result
to 4D objects (arrays, variables or fields).

A valid connection is required in the current process in order to execute this command.

The sqlStatement parameter contains the SQL command to execute. boundObj receives the
results. Variables are bound in the column sequence order, which means that any
remaining remote columns are discarded.

If 4D fields are passed as parameters in boundObj, the command will create records and
save them automatically. 4D fields must come from the same table (a field from table 1
and a field from table 2 cannot be passed in the same call). If fields from more than one
table are passed, an error is generated.

If you pass 4D arrays in the boundObj parameter(s), it is advisable to declare them before
calling the command in order to check the type of data processed. Arrays are
automatically resized when necessary.

With a 4D variable, one record is fetched at a time. The other results are ignored.

Examples
(1) In this example, we will get the ename column of the emp table of the external data
source. The result is stored in the [Employee]Name 4D field. 4D records will be created
automatically:

SQLStmt:="SELECT ename FROM emp"
⇒ ODBC EXECUTE(SQLStmt;[Employee]Name)

ODBC LOAD RECORD(ODBC All Records)

546 4th Dimension Language Reference

(2) To check the creation of records, it is possible to include code within a transaction and
to validate it only if the operation proves to be satisfactory:

ODBC LOGIN("mysql";"root";"")
SQLStmt:="SELECT alpha_field FROM app_testTable"
START TRANSACTION

⇒ ODBC EXECUTE(SQLStmt;[Table 2]Field1)
While(Not(ODBC End Selection))

ODBC LOAD RECORD
... `Place the data validation code here

End while
VALIDATE TRANSACTION `Validation of the transaction

(3) In this example, we want to get the ename column of the emp table of the external
data source. The result will be stored in an aName array. We fetch records 10 at a time.

ARRAY STRING(30;aName;20)
SQLStmt:="SELECT ename FROM emp"

⇒ ODBC EXECUTE(SQLStmt;aName)
While(Not(ODBC End Selection))

ODBC LOAD RECORD(10)
End while

(4) In this example, we want to get the ename and job of the emp table for a specific ID
(WHERE clause) of the external data source. The result will be stored in the vName and
vJob 4D variables. Only the first record is fetched.

SQLStmt:="SELECT ename, job FROM emp WHERE id = 3"
⇒ ODBC EXECUTE(SQLStmt;vName;vJob)

ODBC LOAD RECORD

See also
ODBC LOAD RECORD.

System Variables or Sets
If the command has been executed correctly, the system variable OK returns 1.
Otherwise, it returns 0.

4th Dimension Language Reference 547

ODBC End selection External Data Source

version 2004
__

ODBC End selection → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← Result set boundaries reached

Description
The ODBC End selection command is used to determine if the boundaries of the result set
have been reached.

Example
The code below connects to an external data source (Oracle) using the following
parameters:

C_TEXT(vName)

ODBC LOGIN("TestOracle";"scott";"tiger")
If (OK=1)

ODBC EXECUTE("SELECT ename FROM emp";vName)
⇒ While(Not(ODBC End selection))

ODBC LOAD RECORD
End while
ODBC LOGOUT

End if

This code will return in the 4D vName variable the emp names (ename) stored in the table
named emp.

548 4th Dimension Language Reference

ODBC LOAD RECORD External Data Source

version 2004
__

ODBC LOAD RECORD {(numRecords)}

Parameter Type Description
numRecords Integer → Number of records to load

Description
The ODBC LOAD RECORD command retrieves one or more record(s) in 4th Dimension
coming from the ODBC source open in the current connection.

The optional numRecords parameter is used to set the number of records to retrieve:
• If you omit this parameter, the command will retrieve the current record from the data
source. This principle corresponds to the retrieval of data in a loop where one record is
received at a time.
• If you pass an integer value in numRecords, the command will retrieve numRecords
records.
• If you pass the ODBC All Records constant (value -1), the command will retrieve all the
records of the table.

Note: These last two parameters are only meaningful if the data retrieved are associated
with arrays or with 4D fields.

See also
ODBC CANCEL LOAD, ODBC EXECUTE.

System Variables or Sets
If the command has been executed correctly, the system variable OK returns 1.
Otherwise, it returns 0.

4th Dimension Language Reference 549

ODBC CANCEL LOAD External Data Source

version 2004
__

ODBC CANCEL LOAD

Parameter Type Description
This command does not require any parameters

Description
The ODBC CANCEL LOAD command ends the current SELECT request and initializes the
parameters.

This command is used to execute several SELECT requests within the same connection
(i.e. the same cursor) initiated by the ODBC LOGIN command.

Example
In this example, two requests are executed in the same connection:

C_BLOB(Myblob)
C_TEXT(MyText)
ODBC LOGIN("mysql";"root";"")

SQLStmt:="SELECT blob_field FROM app_testTable"
ODBC EXECUTE(SQLStmt;Myblob)
While(Not(ODBC End selection))

ODBC LOAD RECORD
End while

`Resetting of cursor
⇒ ODBC CANCEL LOAD

SQLStmt:="SELECT Name FROM Employee"
ODBC EXECUTE(SQLStmt;MyText)
While(Not(ODBC End selection))

ODBC LOAD RECORD
End while

See also
ODBC LOAD RECORD, ODBC LOGIN.

System Variables or Sets
If the command has been correctly executed, the system variable OK returns 1.
Otherwise, it returns 0.

550 4th Dimension Language Reference

ODBC SET PARAMETER External Data Source

version 2004
__

ODBC SET PARAMETER (object; paramType)

Parameter Type Description
object 4D object → 4D object to be used (variable, array or field)
paramType Longint → Type of parameter

Description
The ODBC SET PARAMETER command allows the use of a 4D variable, array or field value
in ODBC requests.

Using 4th Dimension objects in ODBC requests
4th Dimension offers two ways of inserting 4D objects into ODBC requests: direction
association and the definition of parameters using ODBC SET PARAMETER.

• Direct association: In this mode, you just need to insert the name of the 4D object to be
used (variable, array or field) between the << and >> characters in the text of the request.
For example: INSERT INTO emp (empno,ename) VALUES (<<vEmpno>>,<<vEname>>).
In this example, the values of the 4D variables vEmpno and vEname will replace the
parameters during execution of the request. This solution also works with 4D fields and
arrays.
This easy-to-use syntax has one drawback in that it does not conform to the SQL standard
and does not allow the use of exit parameters. You can use the ODBC SET PARAMETER
command (second mode) in order to remedy this problem.

• Definition of parameters: In this mode, you use the ODBC SET PARAMETER command
to specify the 4D objects that you want to use in the ODBC request.
- In the object parameter, pass the 4D object (variable, array or field) to be used in the
request.
- In the paramType parameter, pass the SQL type of the parameter. You can pass a value or
use one of the following constants, located in the “External Data Source” theme:
Constant Type Value
OBDC Param In Longint 1
OBDC Param In Out Longint 2
OBDC Param Out Longint 4

The value of the 4D object replaces the ? character in the SQL request (standard syntax).
If the request contains more than one ? character, several calls to ODBC SET PARAMETER
will be necessary. The values of the 4D objects will be assigned sequentially in the request,
in accordance with the execution order of the commands.

4th Dimension Language Reference 551

Examples
1. This example is used to execute an ODBC request which calls the associated 4D variables
directly:

C_TEXT(MyText)
C_LONGINT(MyLongint)

ODBC LOGIN("mysql";"root";"")
SQLStmt:="insert into app_testTable (alpha_field, longint_field) VALUES (<<MyText>>,

<<MyLongint>>)"
For (vCounter;1;10)

MyText:="Text"+String(vCounter)
MyLongint:=vCounter
ODBC EXECUTE(SQLStmt)

End for

2. Same example as the previous one, but using the ODBC SET PARAMETER command:

C_TEXT(MyText)
C_LONGINT(MyLongint)

ODBC LOGIN("mysql";"root";"")
SQLStmt:="insert into app_testTable (alpha_field, longint_field) VALUES (?,?)"
For (vCounter;1;10)

MyText:="Text"+String(vCounter)
MyLongint:=vCounter

⇒ ODBC SET PARAMETER(MyText;ODBC Param In)
⇒ ODBC SET PARAMETER(MyLongint;ODBC Param In)

ODBC EXECUTE(SQLStmt)
End for

3. This example is used to execute an ODBC request which uses the associated 4D arrays
directly:

ARRAY TEXT(MyTextArray;10)
ARRAY LONGINT(MyLongintArray;10)

For (vCounter;1;Size of array(MyTextArray))
MyTextArray{vCounter}:="Text"+String(vCounter)
MyLongintArray{vCounter}:=vCounter

End for
ODBC LOGIN("mysql";"root";"")
SQLStmt:="insert into app_testTable (alpha_field, longint_field) VALUES

(<<MyTextArray>>, <<MyLongintArray>>)"
ODBC EXECUTE(SQLStmt)

552 4th Dimension Language Reference

4. This example is used to execute an ODBC request which uses the associated 4D fields
directly:

ALL RECORDS([Table 2])
ODBC LOGIN("mysql";"root";"")
SQLStmt:="insert into app_testTable (alpha_field, longint_field) VALUES

(<<[Table 2]Field1>"+">, <<[Table 2]Field2>>)"
ODBC EXECUTE(SQLStmt)

System Variables or Sets
If the command has been executed correctly, the system variable OK returns 1.
Otherwise, it returns 0.

4th Dimension Language Reference 553

ODBC GET LAST ERROR External Data Source

version 2004
__

ODBC GET LAST ERROR (errCode; errText; errODBC; errSQLServer)

Parameter Type Description
errCode Longint ← Error code
errText Text ← Error text
errODBC Text ← ODBC error code
errSQLServer Text ← SQL server native error code

Description
The ODBC GET LAST ERROR command returns information related to the last error
encountered during the execution of an ODBC command. The error may come from the
4th Dimension application, the network, the ODBC source, etc.

This command must generally be called in the context of an error-handling method
installed using the ON ERR CALL command.

• The errCode parameter returns the error code.
• The errText parameter returns the error text.

The last two parameters are only filled when the error comes from the ODBC source;
otherwise, they are returned empty.
• The errODBC parameter returns the ODBC error code (SQL state).
• The errSQLServer parameter returns the SQL server native error code.

See also
ON ERR CALL.

554 4th Dimension Language Reference

ODBC IMPORT External Data Source

version 2004
__

ODBC IMPORT (sourceTable{; project{; *}})

Parameter Type Description
sourceTable String → Name of table in ODBC data source
project BLOB → Contents of import project

← New contents of import project (if * is passed)
* * → Display of import dialog box and project update

Description
The ODBC IMPORT command is used to import data from the sourceTable table of an
external ODBC source. The connection parameters (source name, user and password) are
included in the project BLOB.

Notes:
• The project contains all the import parameters, in particular the data source and target
tables and fields. You set these parameters in the ODBC import dialog box, then you can
save them in a file on disk if necessary. For more information, refer to the User Reference
manual.
• The projects generated in the ODBC import dialog box are not compatible with the
commands or the standard import dialog box of 4th Dimension.

If you do not pass the optional project parameter, ODBC IMPORT displays a dialog box for
selecting the ODBC data source:
Windows

4th Dimension Language Reference 555

Mac OS

Once you have selected the source, the 4th Dimension ODBC import dialog box appears,
allowing the user to configure the operation. If the user clicks Cancel in either of the two
dialog boxes, execution is stopped and the system variable OK is set to 0.

If you pass a BLOB containing a valid ODBC import project in the project parameter, the
import will be carried out directly, without any user intervention. To do this, you simply
need to load a project that has been saved on disk beforehand into the field or the BLOB
variable that you pass in the project parameter, using the DOCUMENT TO BLOB
command.
You can also use the ODBC IMPORT command with an empty project parameter and the
optional * parameter, then store the project parameter in a BLOB field (see below). On the
one hand, this solution lets you store the project with the data file and, on the other, to
avoid the phase of loading it from the disk into a BLOB.

Note: Refer to the EXPORT DATA command for an example concerning the definition of
an empty project.

The optional * parameter, if it is set, displays the ODBC data import dialog box with the
settings defined in project (if any). This allows you to use a predefined project while still
being able to modify one or more parameters. Moreover, in this case, the project
parameter contains the parameters of the “new” project after the dialog box is closed. You
can then store it in a BLOB field, in a file on disk, etc.

See also
ODBC EXPORT.

System Variables or Sets
If the user clicks Cancel in either of the two dialog boxes (for selecting the data source or
the import settings), the system variable OK is set to 0. If the import is carried out
correctly, the system variable OK is set to 1.

556 4th Dimension Language Reference

ODBC EXPORT External Data Source

version 2004
__

ODBC EXPORT (sourceTable{; project{; *}})

Parameter Type Description
sourceTable String → Name of table in ODBC data source
project BLOB → Contents of export project

← New contents of export project (if * is passed)
* * → Display of export dialog box and project update

Description
The ODBC EXPORT command is used to export data in the sourceTable table of an external
ODBC source. The connection parameters (source name, user and password) are included
in the project BLOB.

Notes:
• The project contains all the export parameters, in particular the data source and the
exported tables and fields. You set these parameters in the ODBC export dialog box, then
you can save them in a file on disk if necessary. For more information, refer to the User
Reference manual.
• The projects generated in the ODBC export dialog box are not compatible with the
commands or the standard export dialog box of 4th Dimension.

If you do not pass the optional project parameter, ODBC EXPORT displays a dialog box for
selecting the ODBC data source:
Windows

4th Dimension Language Reference 557

Mac OS

Once you have selected the source, the 4th Dimension ODBC export dialog box appears,
allowing the user to configure the operation. If the user clicks Cancel in either of the two
dialog boxes, execution is stopped and the system variable OK is set to 0.

If you pass a BLOB containing a valid ODBC export project in the project parameter, the
export will be carried out directly, without any user intervention. To do this, you simply
need to load a project that has been saved on disk beforehand into the field or the BLOB
variable that you pass in the project parameter, using the DOCUMENT TO BLOB
command.
You can also use the ODBC EXPORT command with an empty project parameter and the
optional * parameter, then store the project parameter in a BLOB field (see below). On the
one hand, this solution lets you store the project with the data file and, on the other, to
avoid the phase of loading it from the disk into a BLOB.

Note: Refer to the EXPORT DATA command for an example concerning the definition of
an empty project.

The optional * parameter, if it is set, displays the ODBC data export dialog box with the
settings defined in project (if any). This allows you to use a predefined project while still
being able to modify one or more parameters. Moreover, in this case, the project
parameter contains the parameters of the “new” project after the dialog box is closed. You
can then store it in a BLOB field, in a file on disk, etc.

See also
ODBC IMPORT.

System Variables or Sets
If the user clicks Cancel in either of the two dialog boxes (for selecting the data source or
the export settings), the system variable OK is set to 0. If the export is carried out
correctly, the system variable OK is set to 1.

558 4th Dimension Language Reference

18

Form Events

4th Dimension Language Reference 559

560 4th Dimension Language Reference

Form event Form Events

version 2004.2 (Modified)
__

Form event → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Form event number

Description
Form event returns a numeric value identifying the type of form event that has just
occurred. Usually, you will use Form event from within a form or object method.

4th Dimension provides predefined constants (found in the “Form Events” theme) in
order to compare the values returned by the Form event command.

Certain events are generic (generated for any type of object) and others are specific to a
particular type of object.

Generic events
The following events can be generated for any form or object:

Constant Value Description
On Load 1 The form is about to be displayed or printed
On Unload 24 The form is about to be exited and released
On Validate 3 The record data entry has been validated
On Clicked 4 A click occurred on an object
On Double Clicked 13 A double click occurred on an object
On Before Keystroke 17 A character is about to be entered in the object that has the

focus
Get edited text returns the object's text without this
character

On After Keystroke 28 A character is about to be entered in the object that has the
focus
Get edited text returns the object's text including this
character

On After Edit 45 The contents of the enterable object that has the focus has
just been modified

On Getting Focus 15 A form object is getting the focus
On Losing Focus 14 A form object is losing the focus
On Activate 11 The form’s window becomes the frontmost window
On Deactivate 12 The form’s window ceases to be the frontmost window
On Outside Call 10 The form received a CALL PROCESS call
On Drop 16 Data has been dropped onto an object

4th Dimension Language Reference 561

On Drag Over 21 Data could be dropped onto an object
On Mouse Enter 35 The mouse cursor enters the graphic area of an object
On Mouse Move 37 The mouse cursor moves (at least one pixel) within the

graphic area of an object
On Mouse Leave 36 The mouse cursor leaves the graphic area of an object
On Menu Selected 18 A menu item has been chosen
On Data Change 20 Object data has been modified
On Plug in Area 19 An external object requested its object method to be

executed
On Header 5 The form’s header area is about to be printed or displayed
On Printing Detail 23 The form’s detail area is about to be printed
On Printing Break 6 One of the form’s break areas is about to be printed
On Printing Footer 7 The form’s footer area is about to be printed
On Close Box 22 The window’s close box has been clicked
On Display Detail 8 A record is about to be displayed in a list
On Open Detail 25 A record is double clicked and you are going to the input

form
On Close Detail 26 You left the input form and are going back to the output

form
On Selection Change 31 • List box: the current selection of rows or columns is

modified
• Records in list: the current record or the current selection
of rows is modified in a list form or subform
• Hierarchical list: the selection in the list is modified
following a click or a keystroke

On Load Record 40 During entry in list, a record is loaded during modification
(the user clicks on a record line and a field changes to
editing mode)

On Timer 27 The number of ticks defined by the SET TIMER command
has passed

On Resize 29 The form window is resized

List box
The following events are only generated for List boxes:
Constant Value Description
On Before Data Entry 41 A list box cell is about to change to editing mode
On Column Moved 32 A list box column is moved by the user via drag and drop
On Row Moved 34 A list box row is moved by the user via drag and drop
On Column Resize 33 The width of a list box column is modified
On Header Click 42 A click occurs in a column header of the list box
On After Sort 30 A standard sort has just been carried out in a list box

column

562 4th Dimension Language Reference

3D buttons
The following events are only generated for 3D buttons:
Constant Value Description
On Long Click 39 A 3D button is clicked and the mouse button remains

pushed for a certain lapse of time
On Arrow Click 38 The “arrow” area of a 3D button is clicked

Hierarchical lists
The following events are only generated for hierarchical lists:
Constant Value Description
On Expand 43 An element of the hierarchical list has been expanded using

a click or a keystroke
On Collapse 44 An element of the hierarchical list has been collapsed using

a click or a keystroke

Events and Methods
__

When a form event occurs, 4th Dimension performs the following actions:
• First, it browses the objects of the form and calls the object method for any object
(involved in the event) whose corresponding object event property has been selected.
• Second, it calls the form method if the corresponding form event property has been
selected.

Do not assume that the object methods, if any, will be called in a particular order. The
rule of thumb is that the object methods are always called before the form method. If an
object is a subform, the object methods of the subform’s list form are called, then the
form method of the list form is called. 4D then continues to call the object methods of
the parent form. In other words, when an object is a subform, 4D uses the same rule of
thumb for the object and form methods within the subform object.

Except for the On Load and On Unload events, if the form event property is not selected
for a given event, this does not prevent calls to object methods for the objects whose
same event property is selected. In other words, enabling or disabling an event at the
form level has no effect on the object event properties.

The number of objects involved in an event depends on the nature of the event:
• On Load event - All the objects of the form (from any page) whose On Load object event
property is selected will have their object method called. Then, if the On Load form event
property is selected, the form will have its form method called.
• On Activate or On Resize event - No object method will be called, because this event
applies to the form as a whole and not to a particular object. Consequently, if the On
Activate form event property is selected, only the form will have its form method called.
• On Drag Over event - Only the droppable object involved in the event will have its
object method called if its On Drag Over object event property is selected. The form
method will not be called.

4th Dimension Language Reference 563

• On Timer event - This event is generated only if the form method contains a previous
call to the SET TIMER command. If the On Timer form event property is selected, only the
form method will receive the event, no object method will be called.

WARNING: Unlike all other events, during an On Drag over event, the object method for
an object is executed in the context of the process of the drag and drop source object, not
in the context of the process of the drag and drop destination object. For more
information, see the DRAG AND DROP PROPERTIES and Drag and drop position
commands.
• If the On Mouse Enter, On Mouse Move and On Mouse Leave events have been checked
for the form, they are generated for each form object. If they are checked for an object,
they are generated only for that object. When there are superimposed objects, the event
is generated by the first object capable of managing it that is found going in order from
top level to bottom. Objects that are made invisible using the SET VISIBLE command do
not generate these events. During object entry, other objects may receive these type of
events depending on the position of the mouse.
• Records in list: The sequence of calls to methods and form events in the list forms
displayed via MODIFY SELECTION / DISPLAY SELECTION and the subforms is as follows:

For each object in the header area:
Object method with On Header event

Form method with On Header event
For each record:

For each object in the detail area:
Object method with On Display Detail event

Form method with On Display Detail event
Calling a 4D command that displays a dialog box from the On Display Detail and On
Header events is not allowed and will cause a syntax error to occur.
More particularly, the commands concerned are: ALERT, DIALOG, CONFIRM, Request, ADD
RECORD, MODIFY RECORD, DISPLAY SELECTION and MODIFY SELECTION.

The following table summarizes how object and form methods are called for each event
type:

Event Object Methods Form Method Which Objects
On Load Yes Yes All objects
On Unload Yes Yes All objects
On Validate Yes Yes All objects
On Clicked Yes (if clickable) (*) Yes Involved object only
On Double Clicked Yes (if clickable) (*) Yes Involved object only
On Before Keystroke Yes (if keyboard enterable) (*) Yes Involved object only
On After Keystroke Yes (if keyboard enterable) (*) Yes Involved object only
On After Edit Yes (if enterable) (*) Yes Involved object only
On Getting Focus Yes (if tabbable) (*) Yes Involved object only
On Losing Focus Yes (if tabbable) (*) Yes Involved object only
On Activate Never Yes None
On Deactivate Never Yes None
On Outside Call Never Yes None

564 4th Dimension Language Reference

On Drop Yes (if droppable) (*) Yes Involved object only
On Drag Over Yes (if droppable) (*) Never Involved object only
On Mouse Enter Yes Yes All objects
On Mouse Move Yes Yes All objects
On Mouse Leave Yes Yes All objects
On Menu Selected Never Yes None
On Data Change Yes (if modifiable) (*) Yes Involved object only
On Plug in Area Yes Yes Involved object only
On Header Yes Yes All objects
On Printing Detail Yes Yes All objects
On Printing Break Yes Yes All objects
On Printing Footer Yes Yes All objects
On Close Box Never Yes None
On Display Detail Yes Yes All objects
On Open Detail Never Yes None
On Close Detail Never Yes None
On Resize Never Yes None
On Selection Change Yes (**) Yes Involved object only
On Load Record Never Yes None
On Timer Never Yes None
On Before Data Entry Yes (List box) Never Involved object only
On Column Moved Yes (List box) Never Involved object only
On Row Moved Yes (List box) Never Involved object only
On Column Resize Yes (List box) Never Involved object only
On Header Click Yes (List box) Never Involved object only
On After Sort Yes (List box) Never Involved object only
On Long Click Yes (3D button) Yes Involved object only
On Arrow Click Yes (3D button) Yes Involved object only
On Expand Yes (Hier. list) Never Involved object only
On Collapse Yes (Hier. list) Never Involved object only

 (*) For more infomation, see the "Events, Objects and Properties" section below.
(**) Only list box, hierarchical list and subform type objects support this event.

IMPORTANT: Always keep in mind that, for any event, the method of a form or an object
is called if the corresponding event property is selected for the form or objects. The
benefit of disabling events in the Design environment (using the Property List of the
Form editor) is that you can greatly reduce the number of calls to methods and therefore
significantly optimize the execution speed of your forms.

WARNING: The On Load and On Unload events are generated for objects if they are
enabled for both the objects and the form to which the objects belong. If the events are
enabled for objects only, they will not occur; these two events must also be enabled at the
form level.

4th Dimension Language Reference 565

Events, Objects and Properties
__

An object method is called if the event can actually occur for the object, depending on its
nature and properties. The following section details the events you will generally use to
handle the various types of objects.
Keep in mind that the Property List of the Form editor only displays the events
compatible with the selected object or the form.

Clickable Objects
Clickable objects are mainly handled using the mouse. They include:
• Boolean enterable fields or variables
• Buttons, default buttons, radio buttons, check boxes, button grids
• 3D Buttons, 3D radio buttons, 3D check boxes
• Pop-up menus, hierarchical pop-up menus, picture menus
• Drop-down lists, menus/drop-down lists
• Scrollable areas, hierarchical lists, list boxes
• Invisible buttons, highlight buttons, radio pictures
• Thermometers, rulers, dials (also known as slider objects)
• Tab controls
• Splitters.

After the On Clicked or On Double Clicked object event property is selected for one of these
objects, you can detect and handle the clicks within or on the object, using the Form
event command that returns On Clicked or On Double Clicked, depending on the case.
If both events are selected for an object, the On Clicked and then the On Double Clicked
events will be generated when the user double-clicks the object.

For all these objects, the On Clicked event occurs once the mouse button is released.
However, there are several exceptions:
• Invisible buttons - The On Clicked event occurs as soon as the click is made and does not
wait for the mouse button to be released.
• Slider objects (thermometers, rulers, and dials) - If the display format indicates that the
object method must be called while you are sliding the control, the On Clicked event
occurs as soon as the click is made.

Note: Some of these objects can be activated with the keyboard. For example, once a
check box gets the focus, it can be entered using the space bar. In such a case, an On
Clicked event is still generated.

WARNING: Combo boxes are not considered to be clickable objects. A combo box must be
treated as an enterable text area whose associated drop-down list provides default values.
Consequently, you handle data entry within a combo box through the On Before
Keystroke, On After Keystroke and On Data Change events.

566 4th Dimension Language Reference

Keyboard Enterable Objects
Keyboard enterable objects are objects into which you enter data using the keyboard and
for which you may filter the data entry at the lowest level by detecting On After Edit, On
Before Keystroke and On After Keystroke events. You can take advantage of these events
using the Get edited text command.
Keyboard enterable objects and data types include:
• All enterable field objects of the alpha, text, date, time, number or (On After Edit only)
picture type
• All enterable variables of the alpha, text, date, time, number or (On After Edit only)
picture type
• Combo boxes
• List boxes.

Note: Even though they are “enterable” objects, hierarchical lists do not manage the On
After Edit, On Before Keystroke and On After Keystroke form events (see also the
“Hierarchical lists” paragraph below).

• On Before Keystroke and On After Keystroke
Note: Beginning with version 2004.2 of 4th Dimension, the On After Keystroke event can
generally be replaced by the On After Edit event (see below).

After the On Before Keystroke and On After Keystroke event properties are selected for an
object, you can detect and handle the keystrokes within the object, using the Form event
command that will return On Before Keystroke and then On After Keystroke (for more
information, please refer to the description of the Get edited text command). These
events are also activated by language commands that simulate a user action like POST KEY.
Keep in mind that user modifications that are not carried out using the keyboard (paste,
drag-drop, etc.) are not taken into account. To process these events, you must use On After
Edit.

• On After Edit
When it is used, this event is generated after each change made to the contents of an
enterable object, regardless of the action that caused the change, i.e.:
- Standard editing actions which modify content like paste, cut, delete or cancel;
- Dropping a value (action similar to paste);
- Any keyboard entry made by the user; in this case, the On After Edit event is generated
after the On Before Keystroke and On After Keystroke events, if they are used.
- Any modification made using a language command that simulates a user action (i.e.,
POST KEY).
Be aware that the following actions do NOT trigger this event:
- Editing actions that do not modify the contents of the area like copy or select all;
- Dragging a value (action similar to copy);
- Any modifications made to the contents by programming, except for the commands
simulating a user action.
This event can be used to control user actions in order, for example, to prevent the
pasting in of text that is too long, to block certain characters or to prevent a password
field from being cut.

4th Dimension Language Reference 567

Modifiable Objects
Modifiable objects have a data source whose value can be changed using the mouse or the
keyboard; they are not truly considered as user interface controls handled through the On
Clicked event. They include:
• All enterable field objects (except subtables and BLOBs)
• All enterable variables (except BLOBs, pointers, and arrays)
• Combo boxes
• External objects (for which full data entry is accepted by the plug-in)
• Hierarchical lists
• List boxes.

These objects receive On Data Change events. After the On Data Change object event
property is selected for one of these objects, you can detect and handle the change of the
data source value, using the Form event command that will return On Data Change. The
event is generated as soon as the variable associated with the object is updated internally
by 4D (i.e., in general, when the entry area of the object loses the focus).

Tabbable Objects
Tabbable objects get the focus when you use the Tab key to reach them and/or click on
them. The object having the focus receives the characters (typed on the keyboard) that
are not accelerators (Windows) or shortcuts (Mac OS) to a menu item or to an object such
as a button.

All objects are tabbable, EXCEPT the following:
• Non-enterable fields or variables
• Button grids
• 3D buttons, 3D radio buttons, 3D check boxes
• Pop-up menus, hierarchical pop-up menus
• Menus/drop-down lists
• Picture menus
• Scrollable areas
• Invisible buttons, highlight buttons, radio picture buttons
• Graphs
• External objects (for which full data entry is accepted by the 4D plug-in)
• Tab controls
• Splitters.

After the On Getting Focus and/or On losing Focus object event properties are selected for a
tabbable object, you can detect and handle the change of focus, using the Form event
command that will return On Getting Focus or On losing Focus, depending on the case.

568 4th Dimension Language Reference

3D buttons
3D buttons let you set up advanced graphic interfaces (for a description of 3D buttons,
refer to the Design Reference manual). In addition to generic events, two specific events
can be used to manage these buttons:
• On Long Click: This event is generated when a 3D button receives a click and the mouse
button is held for a certain length of time. In theory, the length of time for which this
event is generated is equal to the maximum length of time separating a double-click, as
defined in the system preferences.
This event can be generated for all styles of 3D buttons, 3D radio buttons and 3D check
boxes, with the exception of “previous generation” 3D buttons (i.e. background offset
style) and arrow areas of 3D buttons with a pop-up menu (see below).
This event is generally used to display pop-up menus in case of long button clicks. The On
Clicked event, if enabled, is generated if the user releases the mouse button before the
“long click” time limit.
• On Arrow Click: Some 3D button styles can be linked to a pop-up menu and display an
arrow. Clicking on this arrow causes a selection pop-up to appear that provides a set of
additional actions in relation to the primary button action.
4th Dimension allows you to manage this type of button using the On Arrow Click event.
This event is generated when the user clicks on the “arrow” (as soon as the mouse button
is held down):
- If the pop-up menu is “separated,” the event is only generated when a click occurs on
the portion of the button with the arrow.
- If the pop-up menu is “linked,” the event is generated when a click occurs on any part
of the button. Please note that the On Long Click event cannot be generated with this
type of button.

The following 3D button, 3D radio button and 3D check box styles accept the “With pop-
up menu” property: None, Toolbar button, Bevel, Rounded bevel and Office XP.

List boxes
Seven form events can be used to manage various specific features of list boxes:
• On Before Data Entry: This event is generated just before a cell in the list box is edited
(before the entry cursor is displayed). This event allows the developer, for example, to
display a different text depending on whether the user is in the display or edit mode.

4th Dimension Language Reference 569

• On Selection Change: This event is generated each time the current selection of rows or
columns of the list box is modified. This event is also generated for lists of records and
hierarchical lists.
• On Column Moved: This event is generated when a column of the list box is moved by
the user using drag and drop. It is not generated if the column is dragged and then
dropped in its initial location. The MOVED LISTBOX COLUMN NUMBER command returns
the new position of the column.
• On Row Moved: This event is generated when a row of the list box is moved by the user
using drag and drop. It is not generated if the row is dragged and then dropped in its
initial location.
• On Column Resize: This event is generated when the width of a column in the list box is
modified (using the mouse or by programming using the SET LISTBOX COLUMN WIDTH
command).
• On Header Click: This event is generated when a click occurs on the header of a column
in the list box. In this case, the Self command lets you find out the header of the column
that was clicked. The On Clicked event is generated when a right click (Windows) or
Ctrl+click (Mac OS) occurs on a column or column header.
If the Sortable property was checked in the list box, you can decide whether or not to
authorize a standard sort of the column by passing the value 0 or -1 in the $0 variable:
- If $0 equals 0, a standard sort is performed.
- If $0 equals -1, a standard sort is not performed and the header does not display the sort
arrow. The developer can still generate a column sort based on customized sort criteria
using the 4th Dimension array management commands.
If the Sortable property is not selected for the list box, the $0 variable is not used.
• On After Sort: This event is generated just after a standard sort is performed (however, it
is not generated if $0 returns -1 in the On Header Click event). This mechanism is useful
for storing the directions of the last sort performed by the user. In this event, the Self
command returns a pointer to the variable of the column that was sorted.

Hierarchical lists
In addition to generic events, three specific events can be used to handle user actions
performed on hierarchical lists:
• On Selection Change: This event is generated every time the selection in the hierarchical
list is modified after a mouse click or keystroke.
This event is also generated in list box objects and record lists.
• On Expand: This event is generated every time an element of the hierarchical list is
expanded with a mouse click or keystroke.
• On Collapse: This event is generated every time an element of the hierarchical list is
collapsed with a mouse click or keystroke.

570 4th Dimension Language Reference

These events are not mutually exclusive. They can be generated one after another for a
hierarchical list:
- Following a keystroke (in order):

Event Context
On Data Change Element was edited
On Expand/On Collapse Opening/Closing of a sublist using the -> or <-

arrow keys
On Selection Change Selection of a new element
On Clicked Activation of the list using keyboard

- Following a mouse click (in order):
Event Context
On Data Change Element was edited
On Expand/On Collapse Opening/Closing of a sublist using the expand/collapse

icons
or
Double-click on non-editable sublist

On Selection Change Selection of a new element
On Clicked / On Double Clicked Activation of the list using click or double-click

Examples
In all the examples discussed here, it is assumed that the event properties of the forms
and objects have been selected appropriately.

1. This example sorts a selection of subrecords for the subtable [Parents]Children before a
form for the [Parents] table is displayed on the screen:

` Method of a form for the [Parents] table
Case of

⇒ : (Form event=On Load)
ORDER SUBRECORDS BY([Parents]Children;[Parents]Children'First name;>)
` ...

End case

2. This example shows the On Validate event being used to automatically assign (to a field)
the date that the record is modified:

` Method of a form
Case of

` ...
⇒ : (Form event=On Validate)

[aTable]Last Modified On:=Current date
End case

4th Dimension Language Reference 571

3. In this example, the complete handling of a drop-down list (initialization, user clicks,
and object release) is encapsulated in the method of the object:

` asBurgerSize Drop-down list Object Method
Case of

⇒ : (Form event=On Load)
ARRAY STRING(31;asBurgerSize;3)
asBurgerSize{1}:="Small"
asBurgerSize{1}:="Medium"
asBurgerSize{1}:="Large"

⇒ : (Form event=On Clicked)
If (asBurgerSize#0)

ALERT("You chose a "+asBurgerSize{asBurgerSize}+" burger.")
End if

⇒ : (Form event=On Unload)
CLEAR VARIABLE(asBurgerSize)

End case

4. This example shows how, in an object method, to accept and later handle a drag and
drop operation for a field object that only accepts picture values.

` [aTable]aPicture enterable picture field object method
Case of

⇒ : (Form event=On Drag Over)
` A drag-and-drop operation has started and the mouse is currently over
`the field
` Get the information about the source object

DRAG AND DROP PROPERTIES ($vpSrcObject;$vlSrcElement;$lSrcProcess)
` Note that we do not need to test the source process ID number
` for the object method executed since it is in the same process

$vlDataType:=Type ($vpSrcObject->)
` Is the source data a picture (field, variable or array)?

If (($vlDataType=Is Picture) | ($vlDataType=Picture Array))
` If so, accept the drag.
` Note that the mouse button is still pressed, the only effect while
` accepting the drag is to let 4D highlight the object so the user
` knows the source data could be dropped onto it

$0:=0
Else

` If so, refuse the drag
$0:=-1

` In this case, the object is not highlighted
End if

572 4th Dimension Language Reference

⇒ : (Form event=On Drop)
` The source data has been dropped on the object, we therefore need to copy
` it into the object
` Get the information about the source object

DRAG AND DROP PROPERTIES ($vpSrcObject;$vlSrcElement;$lSrcProcess)
$vlDataType:=Type ($vpSrcObject->)
Case of

` The source object is Picture field or variable
: ($vlDataType=Is Picture)

` Is the source object from the same process (thus from the same
` window and form)?

If ($lSrcProcess=Current process)
` If so, just copy the source value

[aTable]aPicture:=$vpSrcObject->
Else

` If not, is the source object a variable?
If (Is a variable ($vpSrcObject))

 ` If so, get the value from the source process
GET PROCESS VARIABLE ($lSrcProcess;$vpSrcObject->;

$vgDraggedPict)
[aTable]aPicture:=$vgDraggedPict

Else
` If not, use CALL PROCESS to get the field value from the source
`process

End if
End if
` The source object is an array of pictures

: ($vlDataType=Picture Array)
` Is the source object from the same process (thus from the same
`window and form)?

If ($lSrcProcess=Current process)
` If so, just copy the source value

[aTable]aPicture:=$vpSrcObject->{$vlSrcElement}
Else

` If not, get the value from the source process
GET PROCESS VARIABLE ($lSrcProcess;$vpSrcObject

->{$vlSrcElement};$vgDraggedPict)
[aTable]aPicture:=$vgDraggedPict

End if
End case

End case

Note: For other examples showing how to handle On Drag Over and On Drop events, see
the examples of the DRAG AND DROP PROPERTIES command.

4th Dimension Language Reference 573

5. This example is a template for a form method. It shows each of the possible events that
can occur when a summary report uses a form as an output form:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
⇒ : (Form event=On Header)

` A header area is about to be printed
Case of

: (Before selection($vpFormTable->))
` Code for the first break header goes here

: (Level = 1)
` Code for a break header level 1 goes here

: (Level = 2)
` Code for a break header level 2 goes here
` ...

End case
⇒ : (Form event=On Printing Detail)

` A record is about to be printed
` Code for each record goes here

⇒ : (Form event=On Printing Break)
` A break area is about to be printed

Case of
: (Level = 0)

` Code for a break level 0 goes here
: (Level = 1)

` Code for a break level 1 goes here
` ...

End case
⇒ : (Form event=On Printing Footer)

If(End selection($vpFormTable->))
` Code for the last footer goes here

Else
` Code for a footer goes here

End if
End case

6. This example shows the template of a form method that handles the events that can
occur for a form displayed using the DISPLAY SELECTION or MODIFY SELECTION
commands. For didactic purposes, it displays the nature of the event in the title bar of the
form window.

` A form method
Case of

⇒ : (Form event=On Load)
$vsTheEvent:="The form is about to be displayed"

574 4th Dimension Language Reference

⇒ : (Form event=On Unload)
$vsTheEvent:="The output form has been exited and is about to disappear from

 the screen"
⇒ : (Form event=On Display Detail)

$vsTheEvent:="Displaying record #"+
String(Selected record number([TheTable]))

⇒ : (Form event=On Menu Selected)
$vsTheEvent:="A menu item has been selected"

⇒ : (Form event=On Header")
$vsTheEvent:="The header area is about to be drawn"

⇒ : (Form event=On Clicked")
$vsTheEvent:="A record has been clicked"

⇒ : (Form event=On Double Clicked")
$vsTheEvent:="A record has been double clicked"

⇒ : (Form event=On Open Detail)
$vsTheEvent:="The record #"+String(Selected record number([TheTable]))+

" is double-clicked"
⇒ : (Form event=On Close Detail)

$vsTheEvent:="Going back to the output form"
⇒ : (Form event=On Activate)

$vsTheEvent:="The form's window has just become the frontmost window"
⇒ : (Form event=On Deactivate)

$vsTheEvent:="The form's window is no longer the frontmost window"
⇒ : (Form event=On Menu Selected)

$vsTheEvent:="A menu item has been chosen"
⇒ : (Form event=On Outside call)

$vsTheEvent:="A call from another has been received"
Else

⇒ $vsTheEvent:="What's going on? Event #"+String(Form event)
End case
SET WINDOW TITLE ($vsTheEvent)

7. For examples on how to handle On Before Keystroke and On After Keystroke events, see
examples for the Get edited text, Keystroke and FILTER KEYSTROKE commands.

8. This example shows how to treat clicks and double clicks in the same way in a scrollable
area:

` asChoices scrollable area object method
Case of

⇒ : (Form event=On Load)
ARRAY STRING (...;asChoices;...)

` ...
asChoices:=0

4th Dimension Language Reference 575

⇒ : ((Form event=On Clicked) | (Form event=On Double Clicked))
If (asChoices#0)

` An item has been clicked, do something here
` ...

End if
` ...

End case

9. This example shows how to treat clicks and double clicks using a different response.
Note the use of the element zero for keeping track of the selected element:

` asChoices scrollable area object method
Case of

⇒ : (Form event=On Load)
ARRAY STRING (...;asChoices;...)

` ...
asChoices:=0
asChoices{0}:="0"

⇒ : (Form event=On Clicked)
If (asChoices#0)

If (asChoices#Num(asChoices))
` A new item has been clicked, do something here
` ...
` Save the new selected element for the next time

asChoices{0}:=String (asChoices)
End if

Else
asChoices:=Num(asChoices{0})

End if
⇒ : (Form event=On Double Clicked)

If (asChoices#0)
` An item has been double clicked, do something different here

End if
` ...

End case

10. This example shows how to maintain a status text information area from within a
form method, using the On Getting Focus and On losing Focus events:

` [Contacts];"Data Entry" form method
Case of

⇒ : (Form Event=On Load)
C_TEXT(vtStatusArea)
vtStatusArea:=""

576 4th Dimension Language Reference

⇒ : (Form Event=On Getting Focus)
RESOLVE POINTER (Focus object;$vsVarName;$vlTableNum;$vlFieldNum)
If (($vlTableNum#0) & ($vlFieldNum#0))

Case of
: ($vlFieldNum=1) ` Last name field

vtStatusArea:="Enter the Last name of the Contact; it will be capitalized
automatically"

` ...
: ($vlFieldNum=10) ` Zip Code field

vtStatusArea:="Enter a 5-digit zip code; it will be checked and validated
automatically"

` ...
End case

End if
⇒ : (Form Event=On Losing Focus)

vtStatusArea:=""
` ...

End case

11. This example shows how to respond to a close window event with a form used for
record data entry:

` Method for an input form
$vpFormTable:=Current form table
Case of

` ...
⇒ : (Form Event=On Close Box)

If (Modified record($vpFormTable->))
CONFIRM ("This record has been modified. Save Changes?")
If (OK=1)

ACCEPT
Else

CANCEL
End if

Else
CANCEL

End if
` ...

End case

4th Dimension Language Reference 577

12. This example shows how to capitalize a text or alphanumeric field each time its data
source value is modified:

` [Contacts]First Name Object method
Case of

` ...
: (Form event=On Data Change)

[Contacts]First Name:= Uppercase(Substring([Contacts]First Name;1;1))
+Lowercase(Substring([Contacts]First Name;2))

` ...
End case

See Also
CALL PROCESS, Current form table, DRAG AND DROP PROPERTIES, FILTER KEYSTROKE, Get
edited text, Keystroke, SET TIMER.

578 4th Dimension Language Reference

Before Form Events

version 3
Compatibility Note
This command has been kept in 4D for compatibility reasons. Starting with version 6,
you should consider using the command Form event and checking if it returns an On
Load event.

__

Before → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the Before execution cycle to be generated, make sure that the On Load event
property for the form and/or the objecs has been selected in the Design environment.

See Also
Form event.

4th Dimension Language Reference 579

During Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an event such
as On Clicked.

__

During → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the During execution cycle to be generated, make sure that the appropriate
event properties, such as On Clicked, for the form and/or the objects have been selected in
the Design environment.

See Also
Form event.

580 4th Dimension Language Reference

After Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Validate
event.

__

After → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the After execution cycle to be generated, make sure that the On Validate
event property for the form and/or the objects has been selected in the Design
environment.

See Also
Form event.

4th Dimension Language Reference 581

In header Form Events

version 3
Compatibility Note

This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Header
event.

__

In header → Boolean

Parameter Type Description

This command does not require any parameters

Description

In order for the In header execution cycle to be generated, make sure that the On Header
event property for the form and/or the objects has been selected in the Design
environment.

See Also

During, In break, In footer.

582 4th Dimension Language Reference

In break Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Printing
Break event.

__

In break → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the In break execution cycle to be generated, make sure that the On Printing
Break event property for the form and/or the objects has been selected in the Design
environment.

See Also
During, In footer, In header.

4th Dimension Language Reference 583

In footer Form Events

version 3
Compatibility Note
This command has been kept for compatibility reason. Starting with version 6, you may
want to start using the command Form event and check if it returns an On Printing Footer
event.

__

In footer → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the In footer execution cycle to be generated, make sure that the On Printing
footer event property for the form and/or the objects has been selected in the Design
environment.

See Also
During, In break, In header.

584 4th Dimension Language Reference

Activated Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Activate
event.

__

Activated → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← Returns TRUE if the execution cycle is an activation

Description
The Activated command returns TRUE in a form method when the window containing
the form becomes the frontmost window of the frontmost process.

WARNING: Do not place a command such as TRACE or ALERT in the Activated phase of the
form, as this will cause an endless loop.

Note: In order for the Activated execution cycle to be generated (for compatibility with
V3 databases), make sure that the On Activate event property of the form has been
selected in the Design environment. This is done automatically when a database is
converted.

See Also
Deactivated, Form event.

4th Dimension Language Reference 585

Deactivated Form Events

version 3

Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On
Deactivate event.

__

Deactivated → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← Returns TRUE if the execution cycle is a deactivation

Description
The Deactivated command returns TRUE in a form or object method when the frontmost
window of the frontmost process, containing the form, moves to the back.

In order for the Deactivated execution cycle to be generated, make sure that the On
Deactivate event property of the form and/or the objects has been selected in Design
environment.

See Also
Activated, Form event.

586 4th Dimension Language Reference

Outside call Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Outside
call event.

__

Outside call → Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the Outside call execution cycle to be generated, make sure that the On
Outside call event property for the form and/or the objects has been selected in the Design
environment.

See Also
CALL PROCESS, Form event.

4th Dimension Language Reference 587

Get edited text Form Events

version 6.5
__

Get edited text → Text

Parameter Type Description
This command does not require any parameters

Function result Text ← Text being entered

Description
The Get edited text command is mainly to be used with the form event On After Keystroke
to retrieve the text as it is being entered. It can also be used with the On Before Keystroke
form event. For more information about those form events, please refer to the description
of the command Form event.

Note: To be in accordance with the new form event On After Keystroke (introduced in
version 6.5 of 4D), the existing event On Keystroke has been renamed, and is now called
On Before Keystroke.

When used in a context other than text entry in a form object, this function returns an
empty string.

Examples
(1) The following method automatically puts the characters being entered in capitals:

If (Form event=On After Keystroke)
⇒ [Trips]Agencies:=Uppercase(Get edited text)

End if

(2) Here is an example of how to process on the fly characters entered in a text field. The
idea consists of placing in another text field (called “Words”) all the words of the
sentence being entered. To do so, write the following code in the object method of the
field:

If (Form event=On After Keystroke)
⇒ $RealTimeEntry:=Get edited text

PLATFORM PROPERTIES($platform)
If ($platform#3) ` Mac OS

Repeat
$DecomposedSentence:=Replace string($RealTimeEntry;Char(32);Char(13))

Until (Position(" ";$DecomposedSentence)=0)
Else ` Windows

588 4th Dimension Language Reference

Repeat
$DecomposedSentence:=Replace string($RealTimeEntry;Char(32);Char(13)+

Char(10))
Until (Position(" ";$DecomposedSentence)=0)

End if
[Example]Words:=$DecomposedSentence

End if

Note: This example is not comprehensive because we have assumed that words are
separated uniquely by spaces (Char (32)). For a complete solution you will need to add
other filters to extract all the words (delimited by commas, semi-colons, apostrophes,
etc.).

See Also
Form event.

4th Dimension Language Reference 589

SET TIMER Form Events

version 6.5
__

SET TIMER (tickCount)

Parameter Type Description
tickCount Longint → Tickcount

Description
The command SET TIMER allows you to activate the On Timer form event and to set, for
the current process, the number of ticks elapsed between each On Timer form event.

Note: For more information about this new form event, please refer to the description of
the command Form event.

If this command is called in a context in which it is not displaying a form, it will have no
effect.
4D’s Web server can take advantage of this command as well as the On Timer form event
to resend 4D forms. This feature allows you to obtain HTML pages updated in “real time”
while saving bandwidth. Actually, updating a form in this case is not automatic; you must
call the REDRAW command. You can then optimize the system by calling REDRAW only
when the data has been modified.
Only browsers that interpret JavaScript allow you to automatically redraw pages. The laps
defined by SET TIMER will be used by the browser and by the timeout of the Web process.
The laps must be a few seconds (5 being a practical value). For more information, please
refer to the second example shown below.

To procedurally disable the triggering of the On Timer form event, call SET TIMER again
and pass 0 in tickCount.

Examples
(1) Let’s imagine that you want, when a form is displayed on screen, the computer to
beep every three seconds. To do so, write the following form method:

If (Form event=On Load)
⇒ SET TIMER(60*3)

End if

If (Form event=On Timer)
BEEP

End if

590 4th Dimension Language Reference

(2) Let us imagine that you want your Web server to update a 4D form displayed on the
Web browser every five seconds. To do so, write the following form method:

If (Form event=On Load)
⇒ SET TIMER(60*5)

End if

If (Form event=On Timer)
... `You can place a test here to see if the data is being modified and to

`execute the following line only if this is true.
REDRAW([MyTable];"MyForm")

End if

See Also
Form event, REDRAW.

4th Dimension Language Reference 591

Right click Form Events

version 6.8.1
__

Right click → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True if a right click was detected,
otherwise False

Description
The Right click command returns True if the right button of the mouse has been clicked.

This command should be used only in the context of the On clicked form event. It is
therefore necessary to verify in Structure mode that the event has been properly selected
in the Form properties and/or in the specific object.

Note: This command only operates under Windows and Mac OS X. It will always return
the value False under Mac OS 9.

See Also
Contextual click, Form event.

592 4th Dimension Language Reference

Contextual click Form Events

version 6.8.1
__

Contextual click → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True if a contextual click was detected,
otherwise False

Description
The Contextual click command returns True if a contextual click has been made:
• Under Windows and Mac OS, contextual clicks are made using the right button of the
mouse.
• Under Mac OS, contextual clicks can also be made using a Control+click combination.

This command should be used only in the context of the On clicked form event. It is
therefore necessary to verify in Structure mode that the event has been properly selected
in the Form properties and/or in the specific object.

Example
This method, combined with a scrollable area, enables you to change the value of an array
element using a contextual menu:

⇒ If(Contextual click)
If (Pop up menu("True;False")=1)

myArray{myArray}:="True"
Else

myArray{myArray}:="False"
End if

End if

See Also
Form event, Right click.

4th Dimension Language Reference 593

594 4th Dimension Language Reference

19

Forms

4th Dimension Language Reference 595

596 4th Dimension Language Reference

GET FORM PROPERTIES Forms

version 6.5
__

GET FORM PROPERTIES ({table; }formName; width; height{; numPages{; fixedWidth{;
fixedHeight{; title}}}})

Parameter Type Description
table Table → Table of the form or Default table, if omitted
formName String → Name of the form
width Longint ← Width of the form (in pixels)
height Longint ← Height of the form (in pixels)
numPages Longint ← Number of pages in the form
fixedWidth Boolean ← True = Fixed width, False = Variable width
fixedHeight Boolean ← True = Fixed height, False = Variable height
title Text ← Title of the form’s window

Description
The GET FORM PROPERTIES command returns the properties of the form formName.

The width and height parameters return the form’s width and height in pixels. These
values are determined from the form’s Default window size properties:
• If the form’s size is automatic, its width and height are calculated so that all the form’s
objects are visible, by taking into consideration the horizontal and vertical margins that
were defined.
• If the form’s size is set, its width and height are those manually entered in the
corresponding areas.
• If the form’s size is based on an object, its width and height are calculated in relation to
this object’s position.

The numPages parameter returns the number of pages in the form, excluding page 0
(zero).

The fixedWidth and fixedHeight parameters indicate if the length and width of the form
are resizable (the parameter returns False) or set (the parameter returns True).

The title parameter returns the title of the form's window as it was defined. If no name
was defined, the title parameter returns an empty string.

See Also
GET FORM OBJECTS, Open form window, SET FORM SIZE.

4th Dimension Language Reference 597

SET FORM SIZE Forms

version 2004
__

SET FORM SIZE ({object; }horizontal; vertical{; *})

Parameter Type Description
object String → Object name indicating form limits
horizontal Longint → If * passed: horizontal margin (pixels)

If * omitted: width (pixels)
vertical Longint → If * passed: vertical margin (pixels)

If * omitted: height (pixels
* * → • If passed: add margins defined by horizontal and

vertical parameters (automatic size or size based
on object, if object is passed)
• If omitted: use horizontal and vertical as width and
 height of the form

Description
The SET FORM SIZE command allows you to change the size of the current form by
programming. The new size is defined for the current process; it is not saved with the
form.

As in the Design environment, you can use this command to set the form size in three
ways:
• Automatically — 4th Dimension determines the size of the form based on the notion
that all objects must be visible — and possibly adding a horizontal and vertical margin,
• On the place where a form object is found, where a horizontal and vertical margin may
be added,
• By entering “fixed” sizes (width and height).
For more information on resizing forms, refer to the 4th Dimension Design Reference
manual.

• Automatic size
If you want the size of the form to be set automatically, you must use the following
syntax:

SET FORM SIZE(horizontal; vertical;*)

In this case, you must pass the margins (in pixels) that you want to add to the right and
bottom of the form in horizontal and vertical.

• Object-based size
If you want the form size to be based on an object, you must use the following syntax:

SET FORM SIZE(object; horizontal; vertical;*)

598 4th Dimension Language Reference

• Fixed size
In you want to have a fixed form size, you must use the following syntax:

SET FORM SIZE(horizontal; vertical)

In this case, you must pass the width and height (in pixels) of the form in horizontal and
vertical.

The SET FORM SIZE command changes the size of the form, but also takes into account
the resizing properties. For example, if the minimum width of a form is 500 pixels and if
the command sets a width of 400 pixels, the new form width will be 500 pixels.
Also note that this command does not change the size of the form window (you can
resize a form without changing the size of the window and vice versa). To change the size
of the form window, refer to the RESIZE FORM WINDOW command.

Example
The following example shows how an Explorer type window is set up. The following form
is created in the Design environment :

The size of the form is “automatic”.

The window is displayed using the following code:

$ref:=Open form window([Table 1];"Form1";Standard form window;
 Horizontally centered;Vertically centered;*)

DIALOG([Table 1];"Form1")
CLOSE WINDOW

4th Dimension Language Reference 599

The right part of the window can be displayed or hidden by clicking on the
increase/decrease option:

The object method associated with this button is as follows:

Case of
: (Form event=On load)

C_BOOLEAN(b1;<>collapsed)
C_LONGINT(margin)
margin:=15
b1:=<>collapsed
If (<>collapsed)

SET FORM HORIZONTAL RESIZING(False)
⇒ SET FORM SIZE("b1";margin;margin)

Else
SET FORM HORIZONTAL RESIZING(True)

⇒ SET FORM SIZE("tab";margin;margin)
End if

: (Form event=On click)
<>collapsed:=b1
If (b1)

`collapsed
GET OBJECT RECT(*;"b1";$l;$t;$r;$b)
GET WINDOW RECT($lf;$tf;$rf;$bf;Current form window)
SET WINDOW RECT($lf;$tf;$lf+$r+margin;$tf+$b+margin;

Current form window)
SET FORM HORIZONTAL RESIZING(False)

⇒ SET FORM SIZE("b1";margin;margin)

600 4th Dimension Language Reference

Else
`expanded

GET OBJECT RECT(*;"tab";$l;$t;$r;$b)
GET WINDOW RECT($lf;$tf;$rf;$bf;Current form window)
SET WINDOW RECT($lf;$tf;$lf+$r+margin;$tf+$b+margin;

Current form window)
SET FORM HORIZONTAL RESIZING(True)

⇒ SET FORM SIZE("tab";margin;margin)
End if

End case

See also
SET FORM HORIZONTAL RESIZING, SET FORM VERTICAL RESIZING.

4th Dimension Language Reference 601

SET FORM HORIZONTAL RESIZING Forms

version 2004
__

SET FORM HORIZONTAL RESIZING (resize{; minWidth{; maxWidth}})

Parameter Type Description
resize Boolean → True: The form can be resized horizontally

False: The form cannot be resized horizontally
minWidth Longint → Smallest form width allowed (pixels)
maxWidth Longint → Largest form width allowed (pixels)

Description
The SET FORM HORIZONTAL RESIZING command allows you to change the horizontal
resizing properties of the current form through programming. By default, these properties
are set in the Design environment.Form editor. New properties are set for the current
process; they are not stored with the form.

The resize parameter lets you set whether the form can be resized horizontally; in other
words, if the width can be changed (manually by the user or through programming).
If you pass True, the form width can be modified by the user; 4th Dimension uses values
passed in minWidth and maxWidth as markers.
If you pass False, the current form width cannot be changed; in this case, there is no need
to pass values in the minWidth and maxWidth parameters.

If you passed True in the first parameter, you can pass new minimum and maximum
widths (in pixels) in the optional minWidth and maxWidth parameters. If you leave these
parameters out, the values set in the Design environment (if any) are used.

Example
Refer to the example of the SET FORM SIZE command.

See also
SET FORM SIZE, SET FORM VERTICAL RESIZING.

602 4th Dimension Language Reference

SET FORM VERTICAL RESIZING Forms

version 2004
__

SET FORM VERTICAL RESIZING (resize{; minHeight{; maxHeight}})

Parameter Type Description
resize Boolean → True: The form can be resized vertically

False: The form cannot be resized vertically
minHeight Longint → Smallest form height allowed (pixels)
maxHeight Longint → Largest form height allowed (pixels)

Description
The SET FORM VERTICAL RESIZING command allows you to change the vertical resizing
properties of the current form through programming. By default, these properties are set
in the Design environment Form editor. New properties are set for the current process;
they are not stored with the form.

The resize parameter lets you set whether the form can be resized vertically; in other
words, if the height can be changed (manually by the user or through programming).
If you pass True, the form height can be modified by the user; 4th Dimension uses values
passed in minHeight and maxHeight as markers.
If you pass False, the current form height cannot be changed; in this case, there is no
need to pass values in the minHeight and maxHeight parameters.

If you passed True in the first parameter, you can pass new minimum and maximum
heights (in pixels) in the optional minHeight and maxHeight parameters. If you leave these
parameters out, the values set in the Design environment (if any) are used.

Example
Refer to the example of the SET FORM SIZE command.

See also
SET FORM HORIZONTAL RESIZING, SET FORM SIZE.

4th Dimension Language Reference 603

GET FORM OBJECTS Forms

version 2004
__

GET FORM OBJECTS (objectsArray{; variablesArray{; pagesArray}}{; *})

Parameter Type Description
objectsArray Array string ← Name of form objects
variablesArray Array pointer ← Pointers to variables or fields

associated with objects
pagesArray Array integer ← Page number of each object
* * → If passed = reduce to the current page

Description
The GET FORM OBJECTS command returns the list of all objects present in the current
form of the current table in the form of (an) array(s). This list can be restricted to the
current form page. The command can be used with both input and output forms.

If an array passed as a parameter is not previously declared, the command creates it and
automatically sets its size. However, in the interest of compiling the application, we
recommend that you explicitly declare each array.

Pass the name of the string array that will contain object names (each object name is
unique within a form) in objectsArray. The order in which objects appear in the array is
not significant.

The other arrays optionally filled by the command are synchronized with the first array.

Pass the name of the pointer array that already contains pointers to variables or fields
associated with objects in the optional variablesArray parameter. If an object does not have
an associated variable, the pointer Nil is returned. If there is a “subform” type object, a
pointer to the table of the subform is returned.

The third array (optional), pagesArray, is filled with the form page numbers. Each line of
this array contains the page number of the corresponding object.
Objects coming from an inherited form are considered as belonging to page 0 of the
current page.

The optional * parameter allows you to reduce the list of objects returned to the current
page of the form. When this parameter is passed, only objects of the current page, page 0
and inherited pages are returned by the command. In other words, all the objects present
in the current page of the form (visible or not) are processed by the command.

See also
GET FORM PROPERTIES.

604 4th Dimension Language Reference

GOTO PAGE Forms

version 2004.3 (Modified)
__

GOTO PAGE (pageNumber)

Parameter Type Description
pageNumber Number → Form page to display

Description
GOTO PAGE changes the currently displayed form page to the form page specified by
pageNumber.

If no form is displayed or if pageNumber corresponds to the current page of the form,
GOTO PAGE does nothing. If pageNumber is greater than the number of pages, the last
page is displayed. If pageNumber is less than one, the first page is displayed.

About form page management commands
Automatic action buttons perform the same tasks as the FIRST PAGE, LAST PAGE, NEXT
PAGE, PREVIOUS PAGE and GOTO PAGE commands that you can apply to objects such as
tab controls, drop-down list boxes, and so on. Whenever appropriate, use automatic
action buttons instead of commands.

Page commands can be used with input forms or with forms displayed in dialogs. Output
forms use only the first page. A form always has at least one page—the first page.
Remember that regardless of the number of pages a form has, only one form method
exists for each form.

Use the Current form page command to find out which page is being displayed.

Note: When designing a form, you can work with pages 1 through X, as well as with page
0, in which you put objects that will appear in all of the pages. When using a form, and
therefore when calling page commands, you work with pages 1 through X; page 0 is
automatically combined with the page being displayed.

Examples
The following example is an object method for a button. It displays a specific page, page
3:

⇒ GOTO PAGE (3)

See Also
Current form page, FIRST PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

4th Dimension Language Reference 605

FIRST PAGE Forms

version 3
__

FIRST PAGE

Parameter Type Description
This command does not require any parameters

Description
FIRST PAGE changes the currently displayed form page to the first form page. If a form is
not being displayed, or if the first form page is already displayed, FIRST PAGE does
nothing.

Example
The following example is a one-line method called from a menu command. It displays the
first form page:

⇒ FIRST PAGE

See Also
Current form page, GOTO PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

606 4th Dimension Language Reference

LAST PAGE Forms

version 3
__

LAST PAGE

Parameter Type Description
This command does not require any parameters

Description
LAST PAGE changes the currently displayed form page to the last form page. If a form is
not being displayed, or if the last form page is already displayed, LAST PAGE does nothing.

Example
The following example is a one-line method called from a menu command. It displays the
last form page:

⇒ LAST PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, NEXT PAGE, PREVIOUS PAGE.

4th Dimension Language Reference 607

NEXT PAGE Forms

version 3
__

NEXT PAGE

Parameter Type Description
This command does not require any parameters

Description
NEXT PAGE changes the currently displayed form page to the next form page. If a form is
not being displayed, or if the last form page is already displayed, NEXT PAGE does
nothing.

Example
The following example is a one-line method called from a menu command. It displays the
form page that follows the one currently displayed:

⇒ NEXT PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, LAST PAGE, PREVIOUS PAGE.

608 4th Dimension Language Reference

PREVIOUS PAGE Forms

version 3
__

PREVIOUS PAGE

Parameter Type Description
This command does not require any parameters

Description
PREVIOUS PAGE changes the currently displayed form page to the previous form page. If a
form is not being displayed, or if the first form page is already displayed, PREVIOUS PAGE
does nothing.

Example
The following example is a one-line method called from a menu command. It displays the
form page that precedes the one currently displayed:

⇒ PREVIOUS PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, LAST PAGE, NEXT PAGE.

4th Dimension Language Reference 609

Current form page Forms

version 3
__

Current form page → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Number of currently displayed form page

Description
The Current form page command returns the number of the currently displayed form
page.

Example
In a form, when you select a menu item from the menu bar or when the form receives a
call from another process, you can perform different actions depending on the form page
currently displayed. In this example, you write:

` [myTable];"myForm" Form Method
Case of

: (Form event=On Load)
` ...

: (Form event=On Unload)
` ...

: (Form event=On Menu selected)
$vlMenuNumber:=Menu Selected >> 16
$vlItemNumber:=Menu Selected & 0xFFFF
Case of

: ($vlMenuNumber=...)
Case of

: ($vlItemNumber=...)
⇒ : (Current form page=1)

` Do appropriate action for page 1
⇒ : (Current form page=2)

` Do appropriate action for page 2
` ...

: ($vlItemNumber=...)
` ...

End case
: ($vlMenuNumber=...)

` ...
End case

610 4th Dimension Language Reference

: (Form event=On Outside call)
Case of

⇒ : (Current form page=1)
` Do appropriate reply for page 1

⇒ : (Current form page=2)
` Do appropriate reply for page 2

End case
` ...

End case

See Also
FIRST PAGE, GOTO PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

4th Dimension Language Reference 611

INPUT FORM Forms

version 2004 (Modified)
__

INPUT FORM ({table; }form{; userForm}{; *})

Parameter Type Description
table Table → Table for which to set the input form, or

Default table, if omitted
form String → Name of the form to set as input form
userForm String → Name of user form to use
* → Automatic window size

Description
The INPUT FORM command sets the current input form for table to form or userForm. The
form must belong to table.

The scope of this command is the current process. Each table has its own input form in
each process.

INPUT FORM does not display the form; it just designates which form is used for data
entry, import, or operation by another command. For information about creating forms,
see the 4th Dimension Design Reference..

The default input form is defined in the Design environment Explorer window for each
table. This default input form is used if the INPUT FORM command is not used to specify
an input form, or if you specify a form that does not exist.

The optional userForm parameter lets you specify a user form (coming from form) as the
default input form. If you pass a valid user form name, this form will be used by default
instead of the input form in the current process. This allows you to have several different
custom user forms simultaneously (generated using the CREATE USER FORM command)
and to use the one that suits according to the context.
For more information about user forms, refer to the Overview of user forms section.

Input forms are displayed by a number of commands, which are generally used to allow
the user to enter new data or modify old data. The following commands display an input
form for data entry or query purposes:
• ADD RECORD
• DISPLAY RECORD
• MODIFY RECORD
• QUERY BY EXAMPLE

The DISPLAY SELECTION and MODIFY SELECTION commands display a list of records
using the output form. The user can double-click on a record in the list, which displays
the input form.

612 4th Dimension Language Reference

The import commands IMPORT TEXT, IMPORT SYLK and IMPORT DIF use the current
input form for importing records.

The optional * parameter is used in conjunction with the form properties you set in the
Design environment Form Properties window and the command Open window.
Specifying the * parameter tells 4D to use the form properties to automatically resize the
window for the next use of the form (as an input form or as a dialog box). See Open
window for more information.

Note: Whether or not you pass the optional * parameter, INPUT FORM changes the input
form for the table.

Examples
(1) The following example shows a typical use of INPUT FORM:

⇒ INPUT FORM ([Companies]; "New Comp") ` Form for adding new companies
ADD RECORD ([Companies]) ` Add a new company

(2) In an invoicing database managing several companies, the creation of an invoice
must be carried out using the corresponding user form:

Case of
: (company="4D SA")

⇒ INPUT FORM([Invoices];"Input";"4D_SA")
: (company="4D Inc")

⇒ INPUT FORM([Invoices];"Input";"4D_Inc")
: (company="Acme")

⇒ INPUT FORM([Invoices];"Input";"ACME")
End case
ADD RECORD([Factures])

See Also
ADD RECORD, CREATE USER FORM, DISPLAY RECORD, DISPLAY SELECTION, IMPORT DIF,
IMPORT SYLK, IMPORT TEXT, MODIFY RECORD, MODIFY SELECTION, Open window,
OUTPUT FORM, QUERY BY EXAMPLE.

4th Dimension Language Reference 613

OUTPUT FORM Forms

version 2004 (Modified)
__

OUTPUT FORM ({table; }form{; userForm})

Parameter Type Description
table Table → Table for which to set the output form, or

Default table, if omitted
form String → Form name
userForm String → Name of user form to use

Description
The OUTPUT FORM command sets the current output form for table to form or userForm.
The form must belong to table.

The scope of this command is the current process. Each table has its own output form in
each process.

OUTPUT FORM does not display the form; it just designates which form is printed,
displayed, or used by another command. For information about creating forms, see the
4th Dimension Design Reference.

The default output form is defined in the Design environment Explorer window for each
table. This default output form is used if the OUTPUT FORM command is not used to
specify an output form, or if you specify a form that does not exist.

The optional userForm parameter lets you specify a user form (coming from form) as the
default output form. If you pass a valid user form name, this form will be used by default
instead of the output form in the current process. This allows you to have several
different custom user forms simultaneously (generated using the CREATE USER FORM
command) and to use the one that suits according to the context.
For more information about user forms, refer to the Overview of user forms section.

Output forms are used by three groups of commands. One group displays a list of records
on screen, another group generates reports, and the third group exports data. The
DISPLAY SELECTION and MODIFY SELECTION commands display a list of records using an
output form. You use the output form when creating reports with the PRINT LABEL and
PRINT SELECTION commands. Each of the export commands (EXPORT DIF, EXPORT SYLK
and EXPORT TEXT) also uses the output form.

614 4th Dimension Language Reference

Example
The following example shows a typical use of OUTPUT FORM. Note that although the
OUTPUT FORM command appears immediately before the output form is used, this is not
required. In fact, the command may be executed in a completely different method, as
long as it is executed prior to this method:

INPUT FORM ([Parts]; "Parts In") ` Select the input form
⇒ OUTPUT FORM ([Parts]; "Parts List") ` Select the output form

MODIFY SELECTION ([Parts]) ` This command uses both forms

See Also
CREATE USER FORM, DISPLAY SELECTION, EXPORT DIF, EXPORT SYLK, EXPORT TEXT, INPUT
FORM, MODIFY SELECTION, PRINT LABEL, PRINT SELECTION.

4th Dimension Language Reference 615

616 4th Dimension Language Reference

20

Graphs

4th Dimension Language Reference 617

618 4th Dimension Language Reference

GRAPH Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. In addition, to use the additional
4D Chart commands for customizing a Graph Area located in a form, use the graphArea
parameter (described in this command) as an external area reference for the 4D Chart
commands. For detailed information about the 4D Chart commands, refer to the 4D
Chart Reference manual.
The GRAPH command is designed to be used with a graph area created in a 4D form. It
must be used in a form method or in an object method of one of the form's objects. It
can also be used in a method called by one of these methods.

__

GRAPH (graphArea; graphNumber; xLabels; yElements{; yElements2; ...; yElementsN})

Parameter Type Description
graphArea Variable → Graph area in the form
graphNumber Number → Graph type number
xLabels Array or Subfields → Labels for the x-axis
yElements Array or Subfields → Data to graph (up to eight allowed)

Description
GRAPH draws a graph for a Graph area located in a form. The data can come from either
arrays or subfields.

The graphArea parameter is the name of the Graph area that displays the graph. The
Graph area is created in the Form editor, using the graph object type. The graph name is
the name entered for the variable name. For information about creating a Graph area, see
the 4th Dimension Design Reference.

The graphNum parameter defines the type of graph that will be drawn. It must be a
number from 1 to 8. The graph types are described in Example 1. After a graph has been
drawn, you can change the type by changing graphNum and executing the GRAPH
command again.

The xLabels parameter defines the labels that will be used to label the x-axis (the bottom of
the graph). This data can be of string, date, time, or numeric type. There should be the
same number of subrecords or array elements in xLabels as there are subrecords or array
elements in each of the yElements.

4th Dimension Language Reference 619

The data specified by yElements is the data to graph. The data must be numeric. Up to
eight data sets can be graphed. Pie charts graph only the first yElements.

Examples
1. The following example shows how to use arrays to create a graph. The code would be
inserted in a form method or object method. It is not intended to be realistic, since the
data is constant:

ARRAY STRING (4; X; 2) ` Create an array for the x-axis
X{1}:="1995" ` X Label #1
X{2}:="1996" ` X Label #2
ARRAY REAL (A; 2) ` Create an array for the y-axis
A{1}:=30 ` Insert some data
A{2}:=40
ARRAY REAL (B; 2) ` Create an array for the y-axis
B{1}:=50 ` Insert some data
B{2}:=80

⇒ GRAPH (vGraph;vType; X; A; B) ` Draw the graph
GRAPH SETTINGS (vGraph;0;0;0;0;False;False;True;"France";"USA")

` Set the legends for the graph

The following figure shows the resulting graph.

• With vType equal to 1, you obtain a Column graph:

620 4th Dimension Language Reference

• With vType equal to 2, you obtain a Proportional Column graph:

• With vType equal to 3, you obtain a Stacked Column graph:

• With vType equal to 4, you obtain a Line graph:

4th Dimension Language Reference 621

• With vType equal to 5, you obtain a Area graph:

• With vType equal to 6, you obtain a Scatter graph:

• With vType equal to 7, you obtain a Pie graph:

622 4th Dimension Language Reference

• With vType equal to 8, you obtain a Picture graph:

2. The following example graphs the sales in dollars for sales people in a subtable. The
subtable has three fields: Name, LastYearTot, and ThisYearTot. The graph will show the
sales for each of the sales people for the last two years:

⇒ GRAPH (vGraph;1;[Employees]Sales'Name;[Employees]Sales'LastYearTot;
[Employees]Sales'ThisYearTot)

See Also
GRAPH SETTINGS, GRAPH TABLE.

4th Dimension Language Reference 623

GRAPH SETTINGS Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. In addition, to use the additional
4D Chart commands for customizing a Graph Area located in a form, use the graph
parameter (described in this command) as an external area reference for the 4D Chart
commands. For detailed information about the 4D Chart commands, refer to the 4D
Chart Reference manual.
The GRAPH command is designed to be used with a graph area created in a 4D form. It
must be used in a form method or in an object method of one of the form's objects. It
can also be used in a method called by one of these methods.

__

GRAPH SETTINGS (graph; xmin; xmax; ymin; ymax; xprop; xgrid; ygrid; title{; title2; ...;
titleN})

Parameter Type Description
graph Variable → Name of the Graph area
xmin Number or date or time → Minimum x-axis value for proportional

graph (line or scatter plot only)
xmax Number or date or time → Maximum x-axis value for proportional

graph (line or scatter plot only)
ymin Number → Minimum y-axis value
ymax Number → Maximum y-axis value
xprop Boolean → TRUE for proportional x-axis; FALSE for

normal x-axis (line or scatter plot only)
xgrid Boolean → TRUE for x-axis grid; FALSE for no x-axis grid

(only if xprop is TRUE)
ygrid Boolean → TRUE for y-axis grid; FALSE for no y-axis grid
title String → Title(s) for graph legend(s)

Description
GRAPH SETTINGS changes the graph settings for graph displayed in a form. The graph
must have already been displayed with the GRAPH command. GRAPH SETTINGS has no
effect on a pie chart.

The xmin, xmax, ymin, and ymax parameters all set the minimum and maximum values for
their respective axes of the graph. If the value of any pair of these parameters is a null
value (0, ?00:00:00?, or !00/00/00!, depending on the data type), the default graph values
will be used.

624 4th Dimension Language Reference

The xprop parameter turns on proportional plotting for line graphs (type 4) and scatter
graphs (type 6). When TRUE, it will plot each point on the x-axis according to the point’s
value, and then only if the values are numeric, time, or date.

The xgrid and ygrid parameters display or hide grid lines. A grid for the x-axis will be
displayed only when the plot is a proportional scatter or line graph.

The title parameter(s) labels the legend.

Example
See example for the command GRAPH.

See Also
GRAPH, GRAPH TABLE.

4th Dimension Language Reference 625

GRAPH TABLE Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. For detailed information about the
4D Chart commands, refer to the 4D Chart Reference manual.

__

GRAPH TABLE {(table)}

or:

GRAPH TABLE ({table; }graphType; x field; y field{; y field2; ...; y fieldN})

Parameter Type Description
table Table → Table to graph, or

Default table, if omitted
graphType Number → Graph type number
x field Field → Labels for the x-axis
y field Field → Fields to graph (up to eight allowed)

Description
GRAPH TABLE has two forms. The first form displays the Chart Wizard and allows the user
to select the fields to be graphed. The second form specifies the fields to be graphed and
does not display the Chart Wizard.

GRAPH TABLE graphs data from a table’s fields. Only data from the current selection of the
current process is graphed.

Using the first form is equivalent to choosing Graph from the Report menu in the User
environment.

626 4th Dimension Language Reference

The following figure shows the Chart Wizard, which allows the user to define the graph.

The second form of the command graphs the fields specified for table.

The graphType parameter defines the type of graph that will be drawn. It must be a
number from 1 to 8. See the graph types listed in the example for the command Graph.

The x field defines the labels that will be used to label the x-axis (the bottom of the graph).
The field type can be Alpha, Integer, Long integer, Real or Date.

The y field is the data to graph. The field type must be Integer, Long integer or Real. Up to
eight y fields can be graphed, each set off by a semicolon.

In either form, GRAPH TABLE opens a Chart window for working with the newly created
graph. For more information about using the Chart window, see the 4th Dimension User
Reference manual.

Note: You can also use the Quick Report editor to generate graphs from field data, by
using the Print Destination menu.

4th Dimension Language Reference 627

Examples
1. The following example illustrates the use of the first form of GRAPH TABLE. It presents
the Chart Wizard window and allows users to select the fields to graph. The code queries
records in the [People] table, sorts them, and then displays the Chart Wizard:

QUERY ([People])
If (OK=1)

ORDER BY ([People])
If (OK=1)

⇒ GRAPH TABLE([People])
End if

End if

2. The following example illustrates the use of the second form of GRAPH TABLE. It first
queries and orders records from the [People] table. It then graphs the salaries of the
people:

QUERY([People];[People]Title="Manager")
ORDER BY([People];[People]Salary;>)

⇒ GRAPH TABLE([People];1;[People]Last Name;[People]Salary)

See Also
Graph.

628 4th Dimension Language Reference

21

Formulas

4th Dimension Language Reference 629

630 4th Dimension Language Reference

SET ALLOWED METHODS Formulas

version 2004
__

SET ALLOWED METHODS (methodsArray)

Parameter Type Description
methodsArray Array string → Array of method names

Description
The SET ALLOWED METHODS command allows you to define methods that are displayed
in the Formula editor for the current session. The designated methods will appear at the
end of the list of commands and can be used in formulas. By default (if this command is
not used), no methods are visible in the Formula editor. If a formula uses an unauthorized
method name, a syntax error is generated and the formula cannot be validated.

Pass the name of an array containing the list of methods to offer in the Formula editor in
the methodsArray parameter. The array must have been set previously.
You can use the wildcard character (@) in method names to define one or more
authorized method groups.

Note: If you would like the user to be able to call 4D commands that are unauthorized by
default or plug-in commands, you must use specific methods that handle these
commands.

Example
This example authorizes all methods starting with “formula” and the “Total_general”
method in the Formula editor:

ARRAY STRING(15;methodsArray;2)
methodsArray{1}:="formula@"
methodsArray{2}:="Total_general"

⇒ SET ALLOWED METHODS(methodsArray)

See also
EDIT FORMULA, GET ALLOWED METHODS.

4th Dimension Language Reference 631

GET ALLOWED METHODS Formulas

version 2004
__

GET ALLOWED METHODS (methodsArray)

Parameter Type Description
methodsArray Array string ← Array of method names

Description
The GET ALLOWED METHODS command returns, in methodsArray, the names of methods
that can be used to write formulas. These methods are listed at the end of the list of
commands in the editor.

By default, methods cannot be used in the Formula editor. Methods must be explicitly
authorized using the SET ALLOWED METHODS command. If this command has not been
executed, GET ALLOWED METHODS returns an empty array.

GET ALLOWED METHODS returns exactly what was passed to the SET ALLOWED METHODS
command, i.e. a string array (the command creates and sizes the array). Also, if the
wildcard (@) character is used to set a group of methods, the string containing the @
character is returned (and not the names of the methods of the group).

This command is useful for storing the settings of the current set of authorized methods
before the execution of a formula in a specific context (for instance, a quick report).

Example
This example authorizes a set of specific methods to create a report:

`Store current parameters
⇒ GET ALLOWED METHODS(methodsArray)

`Define methods for quick report
methodsarr_Reports{1}:="Reports_@"
SET ALLOWED METHODS(methodsarr_Reports)
QR REPORT([People];"MyReport")

`Re-establish current parameters
SET ALLOWED METHODS(methodsArray)

See also
SET ALLOWED METHODS.

632 4th Dimension Language Reference

EDIT FORMULA Formulas

version 2004
__

EDIT FORMULA (table; formula)

Parameter Type Description
table Table → Table to display by default in the Formula editor
formula String variable → Variable containing the formula to display in the

Formula editor or "" to display editor only
← Formula validated by the user

Description
The EDIT FORMULA command displays the Formula editor in order to let the user write or
modify a formula. The editor contains the following on opening:
• in the left list, the fields of the table passed in the table parameter,
• in the formula area, the formula contained in the formula variable. If you passed an
empty string in formula, the Formula editor is displayed without a formula.

The user can modify the formula displayed and save it. It is also possible to write or load a
new formula. Regardless, if the user validates the dialog box, the system variable OK is set
to 1 and the formula variable contains the formula defined by the user. If the user cancels
the formula, the system variable OK is set to 0 and the formula variable is left untouched.

Note: If formula calls methods that were not first “authorized” in the Formula editor using
the SET ALLOWED METHODS command, a syntax error is generated and you will not be
able to validate the dialog box.

Keep in mind that when the dialog box is validated, the command does not execute the
formula; it only validates and updates the contents of the variable. If you want to execute
the formula, you must use the EXECUTE command.

Example
Displaying the Formula editor with the [Employees] table and without a pre-entered
formula:

$myFormula:=""
⇒ EDIT FORMULA([Employees];$myFormula)

If (OK=1)
APPLY TO SELECTION([Employees];EXECUTE($myFormula))

End if
See also
SET ALLOWED METHODS.

System Variables or Sets
If the user validates the dialog box, the system variable OK is set to 1. If the user cancels
the dialog box, the system variable OK is set to 0.

4th Dimension Language Reference 633

634 4th Dimension Language Reference

22

Hierarchical Lists

4th Dimension Language Reference 635

636 4th Dimension Language Reference

Load list Hierarchical Lists

version 6.0
__

Load list (listName) → ListRef

Parameter Type Description
listName String → Name of a list created in the

Design environment List Editor

Function result ListRef ← List reference number of newly created list

Description
Load list creates a new hierarchical list whose contents are copied from the list and whose
name you pass in listName. It then returns the list reference number to the newly created
list.

To make sure that the list specified by listName exists, use the Is a list function.

Note that the new list is a copy of the list defined in the Design environment.
Consequently, any modifications made to the new list will not affect the list defined in
the Design environment. Conversely, any subsequent modifications made to the list
defined in the Design environment will not affect the list that you just created.

If you modify the newly created list and want to permanently save the changes, call SAVE
LIST.

Remember to call CLEAR LIST in order to delete the newly created list when you have
finished with it. Otherwise, it will stay in memory until the end of the working session or
until the process in which it was created ends or is aborted.

Tip: If you associate a list with a form object (hierarchical list, tab control, or hierarchical
pop-up menu) using the Choice List property in the Property List window, you do not
need to call Load list or CLEAR LIST from the method of the object. 4th Dimension loads
and clears the list automatically for you.

Example
You create a database for the international market and you need to switch to different
languages while using the database. In a form, you present a hierarchical list, named
hlList, that proposes a list of standard options. In the Design environment, you have
prepared various lists, such as “Std Options US” for the English version, “Std Options FR”
for the French version, “Std Options SP” for the Spanish version, and so on. In addition,
you maintain an interprocess variable, named ◊gsCurrentLanguage, where you store a 2-
character language code, such as “US” for the English version, “FR” for the French
version, “SP” for the Spanish version, and so on.

4th Dimension Language Reference 637

To make sure that your list will always be loaded using the current selected language, you
can write:

` hlList Hierarchical List Object Method
Case of

: (Form event = On Load)
C_LONGINT (hlList)

⇒ hlList:=Load list("Std Options"+◊gsCurrentLanguage)
: (Form event = On Unload)

CLEAR LIST(hlList;*)
End case

See Also
CLEAR LIST, Is a list, SAVE LIST.

638 4th Dimension Language Reference

SAVE LIST Hierarchical Lists

version 6.0
__

SAVE LIST (list; listName)

Parameter Type Description
list ListRef → List reference number
listName String → Name of the list as it will appear

in the Design environment List Editor

Description
The command SAVE LIST saves the list whose reference number you pass in list, within the
Design environment List Editor, under the name you pass in listName.

If there is already a list with this name, its contents are replaced.

See Also
Load list.

4th Dimension Language Reference 639

New list Hierarchical Lists

version 6.0
__

New list → ListRef

Parameter Type Description
This command does not require any parameters

Function result ListRef ← List reference number

Description
New list creates a new, empty hierarchical list in memory and returns its unique list
reference number.

WARNING: Hierarchical lists are held in memory. When you are finished with a
hierarchical list, it is important to dispose of it and free the memory, using the command
CLEAR LIST.

Several other commands allow you to create hierarchical lists:
• Copy list duplicates a list from an existing list.
• Load list creates a list by loading a Choice List created (manually or programmatically) in
the Design enviornment List Editor.
• BLOB to list creates a list from the contents of a BLOB in which a list was previously
saved.

After you have created a hierarchical list using New list, you can:
• Add items to that list, using the command APPEND TO LIST or INSERT LIST ITEM.
• Delete items from that list, using the command DELETE LIST ITEM.

Example
See example for the command APPEND TO LIST.

See Also
APPEND TO LIST, BLOB to list, CLEAR LIST, Copy list, DELETE LIST ITEM, INSERT LIST ITEM,
Load list.

640 4th Dimension Language Reference

Copy list Hierarchical Lists

version 6.0
__

Copy list (list) → ListRef

Parameter Type Description
list ListRef → Reference to list to be copied

Function result ListRef ← List reference number to duplicated list

Description
The command Copy list duplicates the list whose reference number you pass in list, and
returns the list reference number of the new list.

After you have finished with the new list, call CLEAR LIST to delete it.

See Also
CLEAR LIST, Load list, New list.

4th Dimension Language Reference 641

CLEAR LIST Hierarchical Lists

version 6.0
__

CLEAR LIST (list{; *})

Parameter Type Description
list ListRef → List reference number
* → If specified, clear sublists from memory, if any

If omitted, sublists, if any, are not cleared

Description
The CLEAR LIST command deletes the hierarchical list whose list reference number you
pass in list.

Usually you will pass the optional * parameter, so all the sublists, if any, attached to items
or subitems of the list will be deleted as well.

You do not need to clear a list attached to a form object via the Property List window. 4D
loads and clears the list for you. On the other hand, each time you load, copy, extract
from a BLOB, or create a list programmatically, call CLEAR LIST when you are through
with the list.

To clear a sublist attached to an item (on any level) of another list currently displayed in a
form, proceed as follows:
1. Call GET LIST ITEM on the parent item to get the list reference of the sublist.
2. Call SET LIST ITEM on the parent item to detach the sublist from the list item before
clearing it.
3. Call CLEAR LIST to clear the sublist whose reference number you obtained with GET LIST
ITEM.
4. Call REDRAW LIST for the list displayed in the form, to recalculate its items and sublists.

Examples
1. Within a clean-up routine that clears all objects and data that you no longer need (i.e.,
when a window is closed and a form unloaded), you may end up clearing a hierarchical
list that may have already been cleared, depending on the user actions within the form.
Use Is a list to clear the list only if necessary:

` Extract of clean-up routine
If (Is a list(hlList))

⇒ CLEAR LIST(hlList;*)
End if

642 4th Dimension Language Reference

2. See example for the Load list command.
3. See example for the BLOB to list command.

See Also
BLOB to list, Load list, New list.

4th Dimension Language Reference 643

Count list items Hierarchical Lists

version 2004 (Modified)
__

Count list items (list{; *}) → Longint

Parameter Type Description
list ListRef → List reference number
* * → If omitted (default): Return visible list items (expanded)

If specified: Return all list items

Function result Longint ← Number of visible (expanded) list items (if * omitted)
or Total number of list items (if * present)

Description
The Count list items command returns either the number of items currently “visible” or
the total number of items in the list whose reference number you pass in list.

Use the * parameter to determine which type of information will be returned. When this
parameter is passed, the command returns the total number of items present in the list,
regardless of whether it is expanded or collapsed.
When this parameter is omitted, the command returns the number of items that are
visible, depending on the current expanded/collapsed state of the list and its sublists.

You apply this command to a list displayed in a form.

Examples
Here a list named hList shown in the User environment:

⇒ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 8
⇒ $vlNbTItems:=Count list items(hList;*) `$vlNbTItems also gets 8

644 4th Dimension Language Reference

⇒ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 2
⇒ $vlNbTItems:=Count list items(hList;*) `$vlNbTItems still gets 8

⇒ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 5
⇒ $vlNbTItems:=Count list items(hList;*) `$vlNbTItems still gets 8

See Also
List item position, Selected list items.

4th Dimension Language Reference 645

Is a list Hierarchical Lists

version 6.0
__

Is a list (list) → Boolean

Parameter Type Description
list ListRef → ListRef value to be tested

Function result Boolean ← TRUE if list is a hierarchical list
FALSE if list is not a hierarchical list

Description
The command Is a list returns TRUE if the value you pass in list is a valid reference to a
hierarchical list. Otherwise, it returns FALSE.

Examples
1. See example for the command CLEAR LIST.
2. See examples for the command DRAG AND DROP PROPERTIES.

See Also
DRAG AND DROP PROPERTIES.

646 4th Dimension Language Reference

REDRAW LIST Hierarchical Lists

version 6.0
__

REDRAW LIST (list)

Parameter Type Description
list ListRef → List reference number

Description
The command REDRAW LIST recalculates the positions of all the items and sublists (if any)
of the list whose reference number you pass in list.

You MUST call this command at least once when you modify one or several aspects of a
list or one of its sublists in a form.

Warning: Pass the actual variable instance of the list, not an expression or variable. For
example, if you have a list named hList in a form:

` Recalculate the list after changes were made
REDRAW LIST (hList) ` GOOD

` ...

$vlList:=hList
` ...
` Recalculate the list after changes were made

REDRAW LIST ($vlList) ` WRONG
` ...

4th Dimension Language Reference 647

SET LIST PROPERTIES Hierarchical Lists

version 2004 (Modified)
__

SET LIST PROPERTIES (list; appearance{; icon{; lineHeight{; doubleClick{; multiSelections{;
editable}}}}})

Parameter Type Description
list ListRef → List reference number
appearance Number → Graphical style of the list

1 Hierarchical list a la Macintosh
2 Hierarchical list a la Windows

icon Number → ‘cicn’ Mac OS-based resource ID or
0 for default platform node icon

lineHeight Number → Minimal line height expressed in pixels
doubleClick Longint → Expand/Collapse sublist on double-click

0 = Yes, 1= No
multiSelections Longint → Multiple selections: 0 = No (default), 1 = Yes
editable Longint → 0 = List is not editable by user,

1 = List is editable by user (default)

Description
The SET LIST PROPERTIES command sets the appearance of the hierarchical list whose list
reference you pass in list.

The parameter appearance can be one of the following predefined constants provided by
4th Dimension in the Hierarchical Lists theme:

Constant Type Value
ala Macintosh Long Integer 1
ala Windows Long Integer 2

In the Windows appearance, the list has connecting dotted lines between the nodes and
branches. One icon (+) denotes the collapsed nodes, a second one (–) the expanded nodes.
Nodes without child items have no icon.

648 4th Dimension Language Reference

Here is a default hierarchical list in Windows appearance:

In the Macintosh appearance, the list has no connecting dotted lines. One icon denotes
the collapsed nodes, a second one the expanded nodes. Nodes without child items have
no icon. Here is a default hierachical list in Macintosh appearance:

4th Dimension Language Reference 649

If you display a hierarchical list object without calling SET LIST PROPERTIES or pass 0 in
the appearence parameter, the list appears with the default Windows or Macintosh
appearances, depending on the Platform Interface property choosen for the object in the
Design environment's Form Editor.

The parameter icon indicates the icons that will be displayed for each node. The value
passed in icon sets the icon for collapsed nodes and icon+1 sets the icon for expanded
nodes.

For example, if you pass 15000, the color icon 'cicn' ID=15000 will be displayed for each
collapsed node and the color icon 'cicn' ID=15001 will be displayed for each expanded
node.

It is therefore important to have these 'cicn' color icon resources present in your database
structure file. If a color icon resource is missing, the corresponding nodes are displayed
with no icons. (You can actually take advantage of this to display a list with no icons.)

WARNING: When creating 'cicn' color icon resources, use resource IDs greater than or
equal to 15000. Resource IDs less than 15000 are reserved for 4th Dimension.

The resource IDs of the default Macintosh and Windows nodes are expressed by the
following predefined constants provided by 4th Dimension:

Constant Type Value
Macintosh node Long Integer 860
Windows node Long Integer 138

In other words, 4th Dimension provides the following 'cicn' resources:

ID Number Description
860 Collapsed node a la Macintosh
861 Expanded node a la Macintosh
138 Collapsed node a la Windows
139 Expanded node a la Windows

If you do not pass the parameter icon or pass 0, the nodes are displayed with the default
icons of the chosen appearance type.

Color icon resources can be of various sizes. For example, you can create 16x16 or 32x32
color icons.

If you do not pass the parameter lineHeight, the line height of a hierarchical list is
determined by the font and font size used for the object. If you use a color icons that is
too tall or too wide, it will be displayed truncated and/or will be overidden by the
connecting dotted lines (if appearance is Windows), as well as by the text of the nodes
above or below it.

650 4th Dimension Language Reference

Choose color icon size, font, and font size accordingly, otherwise pass in the parameter
lineHeight the minimal line height of the hierarchical list. If the value you pass is greater
than the line height derived from the font and font size used, the line height of the
hierarchical list will be forced to the value you pass.

Note: SET LIST PROPERTIES affects the way nodes are displayed in the hierarchical list. If
you would rather customize the icon of each item in the list, use the command SET LIST
ITEM PROPERTIES.

The optional parameter doubleClick allows you to define that a double-click on a parent list
item will not provoke the sublist to expand or to collapse. By default, a double-click on a
parent list item provokes its child list to expand or to collapse. However, some user
interfaces may need to deactivate this behavior. To do this, the doubleClick parameter
should be set to 1.
Only double-click will be deactivated. Users will still be able to expand or collapse sublists
by clicking on the list node.
If you omit the doubleClick parameter or pass 0, default behavior will be applied.

The optional multiSelections parameter lets you indicate whether the list must accept
multiple selections.
By default, as in previous versions of 4th Dimension, you cannot simultaneously select
several items of a hierarchical list. If you would like this function to be available for the
list, pass the value 1 in the multiSelections parameter. In that case, multiple selections can
be used:
- manually, using the Shift+click key combination for a continuous selection or Ctrl+click
(Windows) / Command+click (Mac OS) for a discontinuous selection,
- by programming, using the SELECT LIST ITEMS BY POSITION and SELECT LIST ITEMS BY
REFERENCE commands.
If you pass 0 or omit the multiSelections parameter, the default behavior will be applied.

The optional editable parameter lets you indicate whether the list must be editable by the
user when it is displayed as a choice list associated with a field or a variable during data
entry. When the list is editable, a Modify button is added in the choice list window and
the user can add, delete and sort the values through a specific editor.
If you pass 1 or omit the editable parameter, the list will be editable; if you pass 0, it will
not be editable.

4th Dimension Language Reference 651

Examples
The following hierarchical list has been defined in the Design environment List Editor:

Within a form, the hierarchical list object hlCities reuses that list with this object method:

Case of
: (Form event=On Load)

hlCities:=Load list("Cities")
⇒ SET LIST PROPERTIES(hlCities;vlAppearance;vlIcon)

: (Form event=On Unload)
CLEAR LIST(hlCities;*)

End case

652 4th Dimension Language Reference

In addition, the structure file of the database has been edited so it contains the following
'cicn' color icon resources:

1. With the following line:

⇒ SET LIST PROPERTIES(hlCities;Ala Macintosh;Macintosh node)

4th Dimension Language Reference 653

The hierarchical list will look like this:

2. With the following line:

⇒ SET LIST PROPERTIES(hlCities;Ala Windows;Windows node)

The hierarchical list will look like this:

654 4th Dimension Language Reference

3. With the following line:

⇒ SET LIST PROPERTIES(hlCities;Ala Windows;20000)

The hierarchical list will look like this:

4. With the following line:

⇒ SET LIST PROPERTIES(hlCities;Ala Macintosh;20010)

The hierarchical list will look like this:

4th Dimension Language Reference 655

The 'cicn' color icon resources shown are then added to the structure file of the database:

5. With the following line:

⇒ SET LIST PROPERTIES(hlCities;Ala Windows;20020;32)

The hierarchical list will look like this:

See Also
GET LIST ITEM PROPERTIES, GET LIST PROPERTIES, SET LIST ITEM PROPERTIES.

656 4th Dimension Language Reference

GET LIST PROPERTIES Hierarchical Lists

version 2004 (Modified)
__

GET LIST PROPERTIES (list; appearance{; icon{; lineHeight{; doubleClick{; multiSelections{;
editable}}}}})

Parameter Type Description
list ListRef → List reference number
appearance Number ← Graphical style of the list

1 Hierarchical list a la Macintosh
2 Hierarchical list a la Windows

icon Number ← ‘cicn’ Mac OS-based resource ID
lineHeight Number ← Minimal line height expressed in pixels
doubleClick Longint ← Expand/Collapse sublist on double-click?

0 = Yes, 1= No
multiSelections Longint ← Multiple selections: 0 = No, 1 = Yes
editable Longint ← List editable by user: 0 = No, 1 = Yes

Description
The GET LIST PROPERTIES command returns information about the list whose reference
number you pass in list.

The parameter appearance returns the graphical style of the list.
The parameter icon returns the resource IDs of the node icons displayed in the list.
The parameter lineHeight returns the minimal line height.
If doubleClick is set to 1, double-clicking on a parent list item does not provoke its child
list to expand or to collapse. If doubleClick is set to 0, this behavior is active (defaut value).
If the multiSelections parameter is set to 0, multiple selections of items (manually or by
programming) are not possible in the list. If it is set to 1, multiple selections are allowed.
If the editable parameter is set to 1, the list is editable when it is displayed as a list in the
User environment. If it is set to 0, the list is not editable.

These properties can be set using the command SET LIST PROPERTIES and/or in the Design
environment List Editor, if the list was created there or saved using the command SAVE
LIST.

For a complete description of the appearance, node icons, minimal line height and
double-click management of a list, see the command SET LIST PROPERTIES.

4th Dimension Language Reference 657

Example
Given the list named hList, shown here in the User environment:

The object method for a button:

` bMacOrWin button Object Method
GET LIST PROPERTIES(hList;$vlAppearance;$vlIcon;$vlLH;$vlClick;$vlSelect;$vlModif)
If ($vlAppearance=Ala Macintosh)

$vlAppearance:=Ala Windows
$vlIcon:=Windows node
$vlModif:=1

Else
$vlAppearance:=A la Macintosh
$vlIcon:=Macintosh node

 $vlModif:=1
End if
SET LIST PROPERTIES(hList;$vlAppearance;$vlIcon;$vlLH;$vlClick;$vlSelect;$vlModif)

` Do NOT forget to call REDRAW LIST; otherwise the list won't be updated
REDRAW LIST(hList)

658 4th Dimension Language Reference

This method lets you display the list as follows:

See Also
SET LIST PROPERTIES.

4th Dimension Language Reference 659

SORT LIST Hierarchical Lists

version 6.0
__

SORT LIST (list{; > or <})

Parameter Type Description
list ListRef → List reference number
> or < → Sorting order:

> to sort in ascending order, or
< to sort in descending order

Description
The SORT LIST command sorts the list whose reference number is passed in list.

To sort in ascending order, pass >. To sort in descending order, pass <. If you omit the
sorting order parameter, SORT LIST sorts in ascending order by default.

SORT LIST sorts all levels of the list; it first sorts the items of the list, then it sorts the
items in each sublist (if any), and so on, through all the levels of the list. This is why you
will usually apply SORT LIST to a list in a form. Sorting a sublist is of little interest because
the order will be changed by a call to a higher level.

SORT LIST does not change the current list item nor the current expanded/collapsed state
of the list and sublists. However, because the current item can be moved by the sorting
operation, Selected list items may return a different position before and after the sort.

Example
Given the list named hList, shown here in the User environment (in Macintosh
appearance):

660 4th Dimension Language Reference

After the execution of this code:

` Sort the list and it sublists in ascending order
⇒ SORT LIST(hList;>)

` Do NOT forget to call REDRAW LIST otherwise the list won't be updated
REDRAW LIST(hList)

The list looks like:

After the execution of this code:

` Sort the list and it sublists in ascending order
⇒ SORT LIST(hList;<)

` Do NOT forget to call REDRAW LIST otherwise the list won't be updated
REDRAW LIST(hList)

4th Dimension Language Reference 661

The list looks like:

See Also
Selected list items.

662 4th Dimension Language Reference

APPEND TO LIST Hierarchical Lists

version 2003 (Modified)
__

APPEND TO LIST (list; itemText; itemRef{; sublist{; expanded}})

Parameter Type Description
list ListRef → List reference number
itemText String → Text of the new list item (max. 255 characters)
itemRef Longint → Unique reference number for the new list item
sublist ListRef → Optional sublist to attach to the new list item
expanded Boolean → Indicates if the optional sublist will be expanded or

collapsed

Description
The APPEND TO LIST command appends a new item to the hierarchical list whose list
reference number you pass in list.

You pass the text of the item in itemText. You can pass a string or text expression of up to
255 characters. If you pass a longer value, it will be truncated.

You pass the unique reference number of the item in itemRef. Although we qualify this
item reference number as unique, you can actually pass the value you want. See the "Item
Reference Numbers" section below.

If you also want an item to have child items, pass a valid list reference to the child
hierarchical list in sublist. To expand or collapse the child list, pass TRUE or FALSE in
expanded.

The list reference you pass in sublist must refer to an existing list. The existing list may be
empty, a one-level list, or a list with sublists. If you do not want to attach a child list to
the new item, omit the parameter or pass 0. Even though they are both optional, the
sublist and expanded parameters must be passed jointly.

Tips
• To insert a new item in a list, use INSERT LIST ITEM. To change the text of an existing
item or modify its child list as well as its expanded state, use SET LIST ITEM.
• To change the appearance of the new appended item use SET LIST ITEM PROPERTIES.

WARNING: If you append an item to a list currently displayed in a form or to a list that is
attached to an item (through one or several levels) whose list is currently displayed in a
form, you MUST call REDRAW LIST; 4D recalculates the list and displays it reflecting your
changes. The rule is simple: whatever the level of the list you act on, apply REDRAW LIST
to the main list, which is the list referenced by the object in the form.

4th Dimension Language Reference 663

Item Reference Numbers: What to do with them?
Each item of a hierarchical list has a Long Integer item reference number. This value is for
your exclusive use: 4th Dimension only maintains them.

Warning: You can use any longint value as a reference number except for 0. For most of
the commands in this theme, the value 0 is used to designate the last item added to the
list.

Here are some tips for using unique reference numbers:

1. You do not need to uniquely identify each item (beginner level).

• First example: You programmatically build a Tab Control, for example, an address book.
Since the Tab Control will return the number of the selected tab, you will probably not
need more information. In this case, do not even bother about item reference numbers,
pass any value (except for 0) in the itemRef parameter. Note that for an address book Tab
Control, you can predefine an A, B,..., Z list in the Design environment. However, you
may want to create it programmatically in order to eliminate the letters for which there
are no records (e.g., no records whose key field starts with Q).

• Second example: When working with a database, you progressively build a list of
keywords. You can save the list at the end of each session, using the SAVE LIST or LIST TO
BLOB commands, and reload it at the beginning of each session, using Load list or BLOB to
list. You display this list in a palette window. When you click on an item, you insert the
clicked keyword in the current enterable area of the frontmost process. You can also use
drag and drop. Anyway, what is important is that you will deal with the selected item (the
one you clicked or dragged), because the Selected list items (click) and DRAG AND DROP
PROPERTIES commands give you the position of the item you need to get. Using this
position, you can obtain the text of the item using GET LIST ITEM. That’s it. So you do
not need to uniquely identify each item; you can pass any value (except for 0) in the
itemRef parameter.

2. You need to partially identify the list items (intermediate level).

You use the item reference number for storing information required when you have to
act on an item; this is explained in the next example. In this example, we use the item
reference numbers for storing record numbers. However, we must be able to distinguish
items corresponding the [Departments] records from those corresponding to the
[Employees] records. Refer to the example for this command to see how this is done.

3. You need to uniquely identify the list items (advanced level).

You are programming an advanced handling of hierarchical lists, for which you
absolutely need to uniquely identify each item at every level of the list. A simple way to
do this is to maintain a private counter. Suppose you create a list hlList using New list. At
this point, you initialize a counter vlhCounter to 1. Each time you call APPEND TO LIST or
INSERT LIST ITEM, you increment this counter (vlhCounter:=vlhCounter+1), and you pass
that counter as the item reference number. The trick is to not decrement the counter
when you delete items—the counter can only grow.

664 4th Dimension Language Reference

In doing so, you guarantee the uniqueness of the item reference numbers. Since item
reference numbers are Long Integer values, you can add or insert an item many times in a
list that has been reinitialized. (Remember, however, if you work with thousands of
items, you should use a table, not a list.)

Note: If you use the Bitwise Operators, you can also use item reference numbers for
storing information that fit into a Long Integer value. This means: 2 Integer values, 4-byte
values or 32 Booleans values.

Why Do You Need Unique Reference Numbers?
In most cases, when using hierarchical lists for user interface purposes and when only
dealing with the selected item (the one that was clicked or dragged), you will not need to
use item reference numbers at all. Using Selected list items and GET LIST ITEM you have all
you need to deal with the currently selected item. In addition, commands such as INSERT
LIST ITEM and DELETE LIST ITEM allow you to manipulate the list “relatively” to the
selected item.

Basically, you need to deal with item reference numbers when you want direct access to
any item of the list programmatically and not necessarily the one currently selected in
the list.

Example
Here is a partial view of a database structure:

4th Dimension Language Reference 665

The [Departments] and [Employees] tables contain the following records:

666 4th Dimension Language Reference

You want to display a hierarchical list, named hlList, that shows the Departments, and for
each Department, a child list that shows the Employees working in that Department. The
object method of hlList is:

` hlList Hierarchical List Object Method

Case of

: (Form event=On Load)
C_LONGINT(hlList;$hSubList;$vlDepartment;$vlEmployee)

` Create a new empty hierarchical list
hlList:=New list

` Select all the records from the [Departments] table
ALL RECORDS([Departments])

` For each Department
For ($vlDepartment;1;Records in selection([Departments]))

` Select the Employees from this Department
RELATE MANY([Departments]Name)

` How many are they?
$vlNbEmployees:=Records in selection([Employees])

` Is there at least one Employee in this Department?
If ($vlNbEmployees>0)

` Create a child list for the Department item
$hSubList:=New list

` For each Employee
For ($vlEmployee;1;Records in selection([Employees]))

` Add the Employee item to the sublist
` Note that the record number of the [Employees] record
` is passed as item reference number

⇒ APPEND TO LIST($hSubList;[Employees]Last Name+", "+
[Employees]First Name;Record number([Employees]))

` Go the next [Employees] record
NEXT RECORD([Employees])

End for
Else

` No Employees, no child list for the Department item
$hSubList:=0

End if
` Add the Department item to the main list
` Note that the record number of the [Departments] record
` is passed as item reference number. The bit #31
` of the item reference number is forced to one so we'll be able
` to distinguish Department and Employee items. See note further
` below on why we can use this bit as supplementary information about
` the item.

4th Dimension Language Reference 667

⇒ APPEND TO LIST(hlList;[Departments]Name;
0x80000000 | Record number([Departments]);$hSublist;

$hSubList # 0)
` Set the Department item in Bold to emphasize the hierarchy of the list

SET LIST ITEM PROPERTIES(hlList;0;False;Bold;0)
` Go to the next Department

NEXT RECORD([Departments])
End for

` Sort the whole list in ascending order
SORT LIST(hlList;>)

` Display the list using the Windows style
` and force the minimal line height to 14 Pts

SET LIST PROPERTIES(hlList;ala Windows;Windows node;14)

: (Form event=On Unload)
` The list is no longer needed; do not forget to get rid of it!

CLEAR LIST(hlList;*)

: (Form event=On Double Clicked)
` A double-click occurred
` Get the position of the selected item

$vlItemPos:=Selected list items(hlList)
` Just in case, check the position

If ($vlItemPos # 0)
` Get the list item information

GET LIST ITEM(hlList;$vlItemPos;$vlItemRef;$vsItemText;$vlItemSubList;
$vbItemSubExpanded)

` Is the item a Department item?
If ($vlItemRef ?? 31)

` If so, it is a double-click on a Department Item
ALERT("You double-clicked on the Department item "+Char(34)+

$vsItemText+Char(34)+".")
Else

` If not, it is a double-click on an Employee item
` Using the parent item reference number find the [Departments] record

GOTO RECORD([Departments];List item parent(hlList;$vlItemRef)?-31)
` Tell where the Employee is working and to whom he or she is reporting

ALERT("You double-clicked on the Employee item "+Char(34)+
$vsItemText+Char(34)+" who is working in the Department "+Char(34)

+[Departments]Name+Char(34)+" whose manager is "+Char(34)+
[Departments]Manager+Char(34)+".")

End if
End if

End case

` Note: 4th Dimension can store up to 16 million records per table
` (precisely 16,777,215). This value is 2^24 minus one. The record number
` fits on 24 bits. In our example, we use bit #31 of the unused high byte for
` distinguishing Employees and Departments items.

668 4th Dimension Language Reference

In this example, there is only one reason to distinguish [Departments] items and
[Employees] items:
1. We store record numbers in the item reference numbers; therefore, we will probably
end up with [Departments] items whose item reference numbers are the same as
[Employees] items.

2. We use the List parent item command to retrieve the parent of the selected item. If we
click on an [Employees] item whose associated record number is #10, and if there is also a
[Departments] item #10, the [Departments] item will be found first by List parent item
when it browses the lists to locate the item with the item reference number we pass. The
command will return the parent of the [Departments] item and not the parent of the
[Employees] item.

Therefore, we made the item reference numbers unique, not because we wanted unique
numbers, but because we needed to distinguish [Departments] and [Employees] records.

In the User or Custom Menus environments, the list will look like this:

Note: This example is useful for user interface purposes if you deal with a reasonably small
number of records. Remember that lists are held in memory—do not build user interfaces
with hierarchical lists containing thousands of items.

See Also
INSERT LIST ITEM, SET LIST ITEM, SET LIST ITEM PROPERTIES.

4th Dimension Language Reference 669

INSERT LIST ITEM Hierarchical Lists

version 2003 (Modified)
__

INSERT LIST ITEM (list; beforeItemRef | *; itemText; itemRef{; sublist{; expanded}})

Parameter Type Description
list ListRef → List reference number
beforeItemRef | * Longint | * → Item reference number or

0 for the last item added to the list or
* for the currently selected list item

itemText String → Text for the new list item (max. 255 characters)
itemRef Longint → Unique reference number for the new list item
sublist ListRef → Optional sublist to attach to the new list item
expanded Boolean → Indicates if the sublist will be expanded or collapsed

Description
The INSERT LIST ITEM command inserts the item designated by the itemRef parameter in
the list whose reference number you pass in list.

The beforeItemRef parameter can be used to designate the item before which you wish to
insert the new item:
• You can pass the value 0 in order to designate the last item added to the list. The newly
inserted item will then become the selected item.
• You can pass * in order for the new item to be inserted before the currently selected
item in the list. In this case, the newly inserted item will also become the selected item.
• Otherwise, if you want to insert an item before a specific item, you pass the item
reference number of that item. In this case, the newly inserted item is not automatically
selected. If there is no item with that item reference number, the command does
nothing.

You pass the text and the item reference number of the new item in itemText and itemRef.

Note: Even if they both are optional, the sublist and expanded parameters must be passed
jointly.

Example
The following code inserts an item (with no attached sublist) just before the item
currently selected in the list hList:

vlUniqueRef:=vlUniqueRef+1
⇒ INSERT LIST ITEM(hList;*;"New Item";vlUniqueRef)

REDRAW LIST(hList)

See Also
APPEND TO LIST.

670 4th Dimension Language Reference

SET LIST ITEM PROPERTIES Hierarchical Lists

version 2004 (Modified)
__

SET LIST ITEM PROPERTIES (list; itemRef | *; enterable; styles; icon{; color})

Parameter Type Description
list ListRef → List reference number
itemRef | * Longint | * → Item reference number, or

0 for last item appended to the list, or
* for the current list item

enterable Boolean → TRUE = Enterable, FALSE = Non-enterable
styles Number → Font style for the item
icon Number → ‘cicn’ Mac OS-based resource ID, or

65536 + ‘PICT’ Mac OS-based resource ID, or
131072 + Picture Reference Number

color Longint → RGB color value or
-1 = reset to original color

Description
The SET LIST ITEM PROPERTIES command modifies the item designated by the itemRef
parameter within the list whose reference number is passed in list.

You can pass a reference number in itemRef. If there is no item with the item reference
number that is passed, the command does nothing. You can optionally pass 0 in itemRef
to modify the last item added to the list using APPEND TO LIST.
Lastly, you can pass * in itemRef: in this case, the command will apply to the current item
of the list. If several items are selected manually, the current item is the one that was
selected last. If no item is selected, the command does nothing.

If you work with item reference numbers, build a list in which items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, refer to the description of thecommand APPEND TO LIST.

Note: To change the text of the item or its sublist, use the command SET LIST ITEM.

To make an item enterable, pass TRUE in enterable; otherwise, pass FALSE.

Important: In order for an item to be enterable, it must belong to a list that is enterable.
To make a whole list enterable, use the SET ENTERABLE command. To make an individual
list item enterable, use SET LIST ITEM PROPERTIES. Changing the enterable property at the
list level does not affect the enterable properties of the items. However, an item can be
enterable only if its list is enterable.

4th Dimension Language Reference 671

You specify the font style of the item in the styles parameter. You pass a combination
(one or a sum) of the following predefined constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available. Moreover, the Condensed and Shadow styles are no longer supported and are
kept only for compatibility reasons.

To associate an icon to the item, pass one of the following numeric values:
• N, where N is the resource ID of Mac OS-based ‘cicn’ resource
• Use PICT resource+N, where N is the the resource ID of a Mac OS-based ‘PICT’ resource
• Use PicRef+N, where N is the reference number of a Picture from the Design
environment Picture Library

Pass zero (0), if you do not want any graphic for the item.

Note: Use PICT resource and Use PicRef are predefined constants located in the Hierarchical
Lists theme.

The color parameter (optional) lets you modify the color of the item text. The color must
be specified in the form of an RGB color, i.e. a 4-byte longint in the 0x00RRGGBB
format. For more information about this format, refer to the description of the SET RGB
COLORS command. Pass -1 in the color parameter to reset the original color of the item.

Examples
1. See the example for the command APPEND TO LIST.

2. The following example changes the text of the current item of list to bold and bright
red:

⇒ SET LIST ITEM PROPERTIES(list;*;True;Bold;0;0x00FF0000)
REDRAW LIST(list)

See Also
GET LIST ITEM PROPERTIES, SET LIST ITEM.

672 4th Dimension Language Reference

GET LIST ITEM PROPERTIES Hierarchical Lists

version 2004 (Modified)
__

GET LIST ITEM PROPERTIES (list; itemRef | *; enterable{; styles{; icon{; color}}})

Parameter Type Description
list ListRef → List reference number
itemRef | * Longint | * → Item reference number, or

0 for last list item added, or
* for the current list item

enterable Boolean ← TRUE = Enterable, FALSE = Non-enterable
styles Number ← Font style for the item
icon Number ← ‘cicn’ Mac OS-based resource ID, or

65536 + ‘PICT’ Mac OS-based resource ID, or
131072 + Picture Reference Number

color Longint ← RGB color value

Description
The GET LIST ITEM PROPERTIES command returns the properties of the item designated by
the itemRef parameter within the list whose list reference number is passed in list.

In itemRef, you can pass either a reference number, or the value 0 in order to designate
the last item added to the list, or * in order to designate the current item of the list. If
several items are selected, the current item is the last one selected.
If you pass * and no item is selected or if there is no item with the item reference number
that is passed, the command leaves the parameters unchanged.

If you work with item reference numbers, build a list in which items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, refer to the description of the command APPEND TO LIST.

After the call:
• enterable returns TRUE if the item is enterable.
• styles returns the font style of the item.
• icon returns the icon or picture assigned to the item, 0 if none.
• color returns the color of the text of the item specified.

For details about these properties, see the description of the command SET LIST ITEM
PROPERTIES.

See Also
GET LIST ITEM, SET LIST ITEM, SET LIST ITEM PROPERTIES.

4th Dimension Language Reference 673

List item position Hierarchical Lists

version 2003 (Modified)
__

List item position (list; itemRef) → Number

Parameter Type Description
list ListRef → List reference number
itemRef Longint → Item reference number

Function result Number ← Item position in expanded lists

Description
The List item position command returns the position of the item whose item reference
number is passed in itemRef, within the list whose list reference number is passed in list.

Note: Unlike the other commands of this theme, with this command it is not possible to
pass the value 0 in itemRef to designate the last item added.

The position is expressed relative to the top item of the main list, using the current
expanded/collapsed state of the list and its sublist.

The result is therefore a number between 1 and the value returned by Count list items.

If the item is not visible because it is located in a collapsed list, List item position expands
the appropriate list to make the item visible.

If the item does not exist, List item position returns 0.

See Also
Count list items, SELECT LIST ITEMS BY REFERENCE.

674 4th Dimension Language Reference

List item parent Hierarchical Lists

version 2004 (Modified)
__

List item parent (list; itemRef | *) → Longint

Parameter Type Description
list ListRef → List reference number
itemRef | * Longint | * → Item reference number or

0 for the last item added to the list or
* for the current item in the list

Function result Longint ← Item reference number of parent item or
0 if none

Description
The List item parent command returns the item reference number of a parent item.

You pass a list reference number in list; you pass the item reference number of an item in
the list or 0 or yet again *, in itemRef. If you pass 0, the command applies to the last item
added to the list. If you pass *, the command applies to the current item of the list. If
several items have been selected manually, the current item is the last one selected.

In return, if the corresponding item exists in the list and if this item is in a sublist (and
therefore has a parent item), you obtain the item reference number of the parent item.

If there is no item with the item reference number you passed, or if you have passed * and
no item is selected, or if the item has no parent, List item parent returns 0 (zero).

If you work with item reference numbers, be sure to build a list in which the items have
unique reference numbers; otherwise you will not be able to distinguish the items. For
more information, see the description of the APPEND TO LIST command.

4th Dimension Language Reference 675

Examples
Given the list named hList shown here in the User environment:

The item reference numbers are set as follows:

Item Item Reference Number
a 100
a - 1 101
a - 2 102
b 200
b - 1 201
b - 2 202
b - 3 203

• In the following code, if the item “b - 3” is selected, the variable $vlParentItemRef gets
200, the item reference number of the item “b”:

$vlItemPos:=Selected list items(hList)
GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText)

⇒ $vlParentItemRef:=List item parent(hList;$vlItemRef) ` $vlParentItemRef gets 200

• If the item “a - 1” is selected, the variable $vlParentItemRef gets 100, the item reference
number of the item “a”.

• If the item “a” or “b” is selected, the variable $vlParentItemRef gets 0, because these
items have no parent item.

See Also
GET LIST ITEM, List item position, SELECT LIST ITEMS BY REFERENCE, SET LIST ITEM.

676 4th Dimension Language Reference

DELETE LIST ITEM Hierarchical Lists

version 2003 (Modified)
__

DELETE LIST ITEM (list; itemRef | *{; *})

Parameter Type Description
list ListRef → List reference number
itemRef | * Longint | * → Item reference number, or

0 for the last item added to the list or
* for the currently selected list item

* → If specified, erases sublists (if any) from memory
If omitted, sublists (if any) are not erased

Description
The DELETE LIST ITEM command deletes the item designated by the itemRef parameter of
the list whose reference number is passed in list.

If you pass * in itemRef, you delete the currently selected item in the list. You can also pass
0 in this parameter in order to request the deletion of the last item added to the list.

Otherwise, you specify the item reference number of the item you want to delete. If there
is no item with the item reference number you passed, the command does nothing.

If you work with item reference numbers, build a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the APPEND TO LIST command.

No matter which item you delete, you should specify the optional * parameter to let 4D
automatically delete the sublist attached to the item, if any. If you do not specify the *
parameter, it is a good idea to have previously obtained the list reference number of the
sublist (if any) attached to the item, so that you can delete it, if necessary, using the
CLEAR LIST command.

Example
The following code deletes the currently selected item of the list hList. If the item has an
attached sublist, the sublist (as well as any sub-sublist) is deleted:

⇒ DELETE LIST ITEM(hList;*;*)
 ` Do NOT forget to call REDRAW LIST; otherwise the list won't be updated

REDRAW LIST(hList)

See Also
CLEAR LIST, GET LIST ITEM.

4th Dimension Language Reference 677

GET LIST ITEM Hierarchical Lists

version 2004 (Modified)
__

GET LIST ITEM (list; itemPos | *; itemRef; itemText{; sublist{; expanded}})

Parameter Type Description
list ListRef → List reference number
itemPos | * Number | * → Position of item in expanded list(s)

or * for the current item in the list
itemRef Longint ← Item reference number
itemText String ← Text of the list item
sublist ListRef ← Sublist list reference number (if any)
expanded Boolean ← If a sublist is attached:

TRUE = sublist is currently expanded
FALSE = sublist is currently collapsed

Description
The GET LIST ITEM command returns information about the item specified by itemPos of
the list whose reference number is passed in list.

The position must be expressed relatively, using the current expanded/collaped state of
the list and its sublist. You pass a position value between 1 and the value returned by
Count list items. If you pass a value outside this range, GET LIST ITEM returns empty values
(0, "", etc.).

After the call, you retrieve:
• The item reference number of the item in itemRef.
• The text of the item in itemText.

If you passed the optional parameters sublist and expanded:
• subList returns the list reference number of the sublist attached to the item. If the item
has no sublist, subList returns zero (0).
• If the item has a sublist, expanded returns TRUE if the sublist is currently expanded, and
FALSE if it is collapsed.

678 4th Dimension Language Reference

Examples
1. hList is a list whose items have unique reference numbers. The following code
programmatically toggles the expanded/collapsed state of the sublist, if any, attached to
the current selected item:

$vlItemPos:=Selected list items(hList)
If ($vlItemPos>0)

⇒ GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText;$hSublist;$vbExpanded)
If (Is a list($hSublist))

SET LIST ITEM(hList;$vlItemRef;$vsItemText;$vlItemRef;$hSublist;
Not($vbExpanded))

REDRAW LIST(hList)
End if

End if

2. Refer to the example of the APPEND TO LIST command.

See Also
GET LIST ITEM PROPERTIES, List item parent, List item position, Selected list items, SET LIST
ITEM, SET LIST ITEM PROPERTIES.

4th Dimension Language Reference 679

SET LIST ITEM Hierarchical Lists

version 2004 (Modified)
__

SET LIST ITEM (list; itemRef | *; newItemText; newItemRef{; sublist; expanded})

Parameter Type Description
list ListRef → List reference number
itemRef | * Longint | * → Item reference number,

or 0 for last item appended to the list,
or * for the current item in the list

newItemText String → New item text
newItemRef Longint → New item reference number
sublist ListRef → New sublist attached to item, or

0 for no sublist (detaching current one, if any), or
-1 for no change

expanded Boolean → Indicates if the optional sublist will be expanded or
collapsed

Description
The SET LIST ITEM command modifies the item designated by the itemRef parameter
within the list whose reference number is passed in list.

You can pass a reference number in itemRef. If there is no item with the item reference
number you passed, the command does nothing. You can optionally pass 0 in itemRef to
designate the last item added to the list using APPEND TO LIST.
Lastly, you can pass * in itemRef: in this case, the command will apply to the current item
of the list. If several items are selected manually, the current item is the one that was
selected last. If no item is selected, the command does nothing.

If you work with item reference numbers, build a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the command APPEND TO LIST.

You pass the new text for the item in newItemText. To change the item reference
number, pass the new value in newItemRef; otherwise, pass the same value as itemRef.

To attach a list to the item, pass the list reference number in subList. In this case, you also
specify if the newly sublist is expanded by passing TRUE in expanded; otherwise, pass
FALSE.

To detach a sublist already attached to the item, pass 0 (zero) in sublist. In this case, it is a
good idea to have previously obtained the reference number of that list using GET LIST
ITEM, so you can later delete the sublist using CLEAR LIST, if you no longer need it.

680 4th Dimension Language Reference

If you do not want to change the sublist property of the item, pass -1 in sublist.

Note: Even if they are optional, both the sublist and expanded parameters must be passed
jointly.

Example
1. hList is a list whose items have unique reference numbers. The following object method
for a button adds a child item to the current selected list item.

$vlItemPos:=Selected list items(hList)
If ($vlItemPos>0)

GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText;$hSublist;$vbExpanded)
$vbNewSubList:=Not(Is a list($hSublist))
If ($vbNewSubList)

$hSublist:=New list
End if
vlUniqueRef:=vlUniqueRef+1
APPEND TO LIST($hSubList;"New Item";vlUniqueRef)
If ($vbNewSubList)

⇒ SET LIST ITEM(hList;$vlItemRef;$vsItemText;$vlItemRef;$hSublist;True)
End if
SELECT LIST ITEMS BY REFERENCE(hList;vlUniqueRef)
REDRAW LIST(hList)

End if

2. See example for the command GET LIST ITEM.
3. See example for the command APPEND TO LIST.

See Also
GET LIST ITEM, GET LIST ITEM PROPERTIES, SET LIST ITEM PROPERTIES.

4th Dimension Language Reference 681

Selected list items Hierarchical Lists

version 2004 (Modified)
__

Selected list items (list{; itemsArray}{; *}) → Longint

Parameter Type Description
list ListRef → List reference number
itemsArray Longint array ← If * omitted: Array contains the positions

of selected items in the expanded list(s)
If * passed: Array contains the selected
item references

* * → If omitted: Item position(s)
If passed: Item reference(s)

Function result Longint ← If * omitted: Position of current selected
list item in expanded list(s)
If * passed: Reference of the selected item

Description
The Selected list items command returns the position or reference of the selected item in
the list whose reference number you pass in list. In the case of multiple selection, the
command can also return in the itemsArray array, the position or reference of each item
selected. You apply this command to a list displayed in a form to detect which item(s) the
user has selected.

The * parameter lets you indicate whether you want to work with current item positions
(in this case, the * parameter should be omitted) or with fixed item references (in this
case, the * parameter must be used).

You can pass a longint array in the itemsArray parameter. If necessary, the array will be
created and resized by the command. Once the command has been executed, itemsArray
will contain:
• the position of each item selected in the expanded list(s) if the * parameter is omitted.
• the fixed reference of each item selected if the * parameter is passed.
If no items have been selected, the array is returned empty.

Note: In the event of multiple selections, the command returns the position or reference
of the current item of list. The current item is the last item clicked by the user (manual
selections) or the item set by the SELECT LIST ITEMS BY POSITION or SELECT LIST ITEMS BY
REFERENCE commands (programmed selection).

If the list has sublists, you apply the command to the main list (the one actually defined
in the form), not one of its sublists. The positions are expressed relative to the top item of
the main list, using the current expanded/collapsed state of the list and its sublist.

682 4th Dimension Language Reference

In any case, if no items are selected, the function returns 0.

Examples
Here a list named hList, shown in User environment:

⇒ $vlItemPos:=Selected list items(hList) ` at this point $vlItemPos gets 2

⇒ $vlItemPos:=Selected list items(hList) ` at this point $vlItemPos gets 4
⇒ $vlItemRef:=Selected list items(hList;*) ` $vlItemRef gets 200 (for instance)

4th Dimension Language Reference 683

⇒ $vlItemPos:=Selected list items(hList) ` at this point $vlItemPos gets 8
⇒ $vlItemRef:=Selected list items(hList;*) ` $vlItemRef gets 203 (for instance)

⇒ $vlItemPos:=Selected list items(hList;$arrPos) ` at this point, $vlItemPos gets 3
` $arrPos{1} gets 3, $arrPos{2} gets 4 and $arrPos{3} gets 5

684 4th Dimension Language Reference

⇒ $vlItemRef:=Selected list items(hList;$arrRefs;*) ` $vlItemRef gets 203 (for instance)
` $arrRefs{1} gets 101, $arrRefs{2} gets 203 (for instance)

See Also
SELECT LIST ITEMS BY POSITION, SELECT LIST ITEMS BY REFERENCE.

4th Dimension Language Reference 685

SELECT LIST ITEMS BY POSITION Hierarchical Lists

version 2004 (Modified)
__

SELECT LIST ITEMS BY POSITION (list; itemPos{; positionsArray})

Parameter Type Description
list ListRef → List reference number
itemPos Number → Position of item in expanded list(s)
positionsArray Number array → Array of the positions in the expanded list(s)

Description
The SELECT LIST ITEMS BY POSITION command selects the item(s) whose position is passed
in itemPos and, optionally, in positionsArray within the list whose reference number is
passed in list.

The position of items is alwaysexpressed using the current expanded/collapsed state of the
list and its sublists. You pass a position value between 1 and the value returned by Count
list items. If you pass a value outside this range, no item is selected.

If you do not pass the positionsArray parameter, the itemPos parameter represents the
position of the item to be selected.

The optional positionsArray parameter lets you select several items simultaneously within
the list. In positionsArray, you must pass an array where each line indicates the position of
an item to be selected.
When you pass this parameter, the item designated by the itemPos parameter sets the new
current item of the list among the resulting selection. It may or may not belong to the
set of items defined by the array. The current item is, more particularly, the one that is
edited if the EDIT ITEM command is used.

Note: In order for several items to be selected simultaneously in a hierarchical list
(manually or by programming), the multiSelections property must have been enabled for
this list. This property is set using the SET LIST PROPERTIES command.

686 4th Dimension Language Reference

Examples
Given the hierarchical list named hList, shown here in the User environment:

1. After the execution of this code:

⇒ SELECT LIST ITEMS BY POSITION(hList;Count list items(hList))
` Do NOT forget to call REDRAW LIST otherwise the list won't be updated

REDRAW LIST(hList)
The last visible list item is selected:

4th Dimension Language Reference 687

2. After execution of the following lines of code:

SET LIST PROPERTIES(hList;0;0;18;0;1)
`It is imperative to pass 1 as the last parameter in order to allow multiple selections

ARRAY LONGINT($arr;3)
$arr{1}:=2
$arr{2}:=3
$arr{3}:=5

⇒ SELECT LIST ITEMS BY POSITION(hList;3;$arr)
`The 3rd item is designated as the current item

REDRAW LIST(hList)

... the 2nd, 3rd and 5th items of the hierarchical list are selected:

See Also
SELECT LIST ITEMS BY REFERENCE, Selected list items.

688 4th Dimension Language Reference

SELECT LIST ITEMS BY REFERENCE Hierarchical Lists

version 2004 (Modified)
__

SELECT LIST ITEMS BY REFERENCE (list; itemRef{; refArray})

Parameter Type Description
list ListRef → List reference number
itemRef Longint → Item reference number or

0 for the last item added to the list
refArray Longint array → Array of item reference numbers

Description
The SELECT LIST ITEMS BY REFERENCE command selects the item(s) whose item reference
number is passed in itemRef and, optionally, in refArray, within the list whose reference
number is passed in list.

If there is no item with the item reference number you passed, the command does
nothing.

If an item is not currently visible (i.e., it is located in a collapsed sublist), the command
expands the required sublist(s) so that it becomes visible.

If you do not pass the refArray parameter, the itemRef parameter represents the reference
of the item to be selected. If the item number does not correspond to an item in the list,
the command does nothing. You can also pass the value 0 in this parameter in order to
designate the last item added to the list.

The optional refArray parameter lets you select several items simultaneously within the
list. In refArray, you must pass an array where each line indicates the fixed reference of an
item to be selected.
In this case, the item designated by the itemRef parameter sets the new current item of
the list among the resulting selection. It may or may not belong to the set of items
defined by the array. The current item is, more particularly, the one that is edited if the
EDIT ITEM command is used.

Note: In order for several items to be selected simultaneously in a hierarchical list
(manually or by programming), the multiSelections property must have been enabled for
this list. This property is set using the SET LIST PROPERTIES command.

If you work with item reference numbers, be sure to build a list in which the items have
unique reference numbers; otherwise you will not be able to distinguish them. For more
information, see the description of the APPEND TO LIST command.

4th Dimension Language Reference 689

Example
hList is a list whose items have unique reference numbers. The following object method
for a button selects the parent item (if any) of the currently selected item:

$vlItemPos:=Selected list items(hList) ` Get position of selected item
 ` Get item ref number of selected item

GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText)
 ` Get item ref. number of parent item (if any)

$vlParentItemRef:=List item parent(hList;$vlItemRef)
If ($vlParentItemRef>0)

 ` Select the parent item
⇒ SELECT LIST ITEM BY REFERENCE(hList;List item parent(hList;$vlItemRef))

 ` Do NOT forget to call REDRAW LIST; otherwise the list won't be updated
REDRAW LIST(hList)

End if

See Also
SELECT LIST ITEMS BY POSITION, Selected list items.

690 4th Dimension Language Reference

23

Import and Export

4th Dimension Language Reference 691

692 4th Dimension Language Reference

IMPORT TEXT Import and Export

version 3
__

IMPORT TEXT ({table; }document)

Parameter Type Description
table Table → Table into which to import data, or

Default table, if omitted
document String → Text document from which to import data

Description
The command IMPORT TEXT reads data from document, a Windows or Macintosh text
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move fields and variables to the front in order, making sure that you have one field or
variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. If you
use variables in the import form, use this event to copy data from variables to fields, .

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during import. The user can cancel the operation by
clicking a button labeled Stop. Records that have already been imported will not be
removed if the user presses the Stop button. If the import is successfully completed, the
OK system variable is set to 1. If an error occurs or the operation was interrupted, the OK
variable is set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 693

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from other platforms
that have a different ASCII table.

Using IMPORT TEXT, the default field delimiter is the tab character (ASCII 9). The default
record delimiter is the carriage return character (ASCII 13). You can change these defaults
by assigning values to the two delimiter system variables: FldDelimit and RecDelimit. The
user can change the
defaults in the User environment’s Import Data dialog box. Text fields may contain
carriage returns, therefore, be careful when using a carriage return as a delimiter if you are
importing text fields.

Example
The following example imports data from a text document. The method first sets the
input form so that the data will be imported through the correct form, changes the 4D
delimiter variables, then performs the import:

INPUT FORM([People]; "Import")
FldDelimit:=27 ` Set field delimiter to Escape character
RecDelimit:=10 ` Set record delimiter to Line Feed character

⇒ IMPORT TEXT([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT TEXT, IMPORT DIF, IMPORT SYLK, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully completed; otherwise, it is set to 0.

694 4th Dimension Language Reference

EXPORT TEXT Import and Export

version 3
__

EXPORT TEXT ({table; }document)

Parameter Type Description
table Table → Table from which to export data, or

Default table, if omitted
document String → Text document to receive the data

Description
The EXPORT TEXT command writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh text
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, use an output form that contains only the fields or enterable objects that you
wish to export. Do not place buttons or other extraneous objects on the export form.
Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on other platforms that
have a different ASCII table.

4th Dimension Language Reference 695

Using EXPORT TEXT, the default field delimiter is the tab character (ASCII 9). The default
record delimiter is the carriage return character (ASCII 13). You can change these defaults
by assigning values to the two delimiter system variables: FldDelimit and RecDelimit. The
user can change the defaults in the User environment Export Data dialog box. Text fields
may contain carriage returns, so be careful when using a carriage return as a delimiter if
you are exporting text fields.

Example
This example exports data to a text document. The method first sets the output form so
that the data will be exported through the correct form, changes the 4D delimiter
variables, then performs the export:

OUTPUT FORM([People];"Export")
FldDelimit:=27 ` Set field delimiter to Escape character
RecDelimit:=10 ` Set record delimiter to Line Feed character

⇒ EXPORT TEXT([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT DIF, EXPORT SYLK, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

696 4th Dimension Language Reference

IMPORT SYLK Import and Export

version 3
__

IMPORT SYLK ({table; }document)

Parameter Type Description
table Table → Table into which to import data, or

Default table, if omitted
document String → SYLK document from which to import data

Description
The command IMPORT SYLK reads data from document, a Windows or Macintosh SYLK
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move the fields and variables to the front, in order, making sure that you have one field
or variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. If you
use variables in the import form, use this event to copy data from variables to fields, .

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during the import. The user can cancel the operation
by clicking a Stop button. Records that have already been imported will not be removed if
the user presses the Stop button. If the import is successfully completed, the OK system
variable is set to 1. If an error occurs or the operation was interrupted, the OK variable is
set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 697

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from platforms that
have a different ASCII table.

Example
The following example imports data from a SYLK document. The method first sets the
input form so the data will be imported through the correct form, then performs the
import:

INPUT FORM([People]; "Import")
⇒ IMPORT SYLK([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT SYLK, IMPORT DIF, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully complete; otherwise, it is set to 0.

698 4th Dimension Language Reference

EXPORT SYLK Import and Export

version 3
__

EXPORT SYLK ({table; }document)

Parameter Type Description
table Table → Table from which to export data, or

Default table, if omitted
document String → SYLK document to receive the data

Description
The command EXPORT SYLK writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh Sylk
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, you should use an output form that contains only the fields or enterable objects
that you wish to export. Do not place buttons or other extraneous objects on the export
form. Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on platforms that have
a different ASCII table.

4th Dimension Language Reference 699

Example
The following example exports data to a SYLK document. The method first sets the
output form so that the data will be exported through the correct form, then performs
the export:

OUTPUT FORM([People];"Export")
⇒ EXPORT SYLK([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT DIF, EXPORT TEXT, IMPORT SYLK, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

700 4th Dimension Language Reference

IMPORT DIF Import and Export

version 3
__

IMPORT DIF ({table; }document)

Parameter Type Description
table Table → Table into which to import data, or

Default table, if omitted
document String → DIF document from which to import data

Description
The command IMPORT DIF reads data from document, a Windows or Macintosh DIF
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move the fields and variables to the front, in order, making sure that you have one field
or variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. Use this
event to copy data from variables to fields, if you use variables in the import form.

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during import. The user can cancel the operation by
clicking a Stop button. Records that have already been imported will not be removed if
the user presses the Stop button. If the import is successfully completed, the OK system
variable is set to 1. If an error occurs or the operation was interrupted, the OK variable is
set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 701

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from platforms that
have a different ASCII table.

Example
The following example imports data from a DIF document. The method first sets the
input form so that the data will be imported through the correct form, then performs the
import:

INPUT FORM([People]; "Import")
⇒ IMPORT DIF([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT DIF, IMPORT SYLK, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully completed; otherwise, it is set to 0.

702 4th Dimension Language Reference

EXPORT DIF Import and Export

version 3
__

EXPORT DIF ({table; }document)

Parameter Type Description
table Table → Table from which to export data,or

Default table, if omitted
document String → DIF document to receive the data

Description
The command EXPORT DIF writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh DIF
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, you should use an output form that contains only the fields or enterable objects
that you wish to export. Do not place buttons or other extraneous objects on the export
form. Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on platforms that have
a different ASCII table.

4th Dimension Language Reference 703

Example
The following example exports data to a DIF document. The method first sets the output
form so that the data will be exported through the correct form, then performs the
export:

OUTPUT FORM([People];"Export")
⇒ EXPORT DIF([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT SYLK, EXPORT TEXT, IMPORT DIF, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

704 4th Dimension Language Reference

IMPORT DATA Import and Export

version 2003 (Modified)
__

IMPORT DATA (fileName{; project{; *}})

Parameter Type Description
fileName String → Access path and name of the import file
project BLOB → Contents of the import project

← New contents of the import project (if the *
parameter has been passed)

* * → Displays the import dialog box and
updates the project

Description
The IMPORT DATA command allows you to import the data located in the fileName file.
4D can import the data in the following formats: Text, Fixed length text, XML, SYLK,
DIF, DBF (dBase), and 4th Dimension.

If you pass an empty string to fileName, IMPORT DATA displays the standard save file
dialog box, allowing the user to define the name, type, and location of the import file.
Once the dialog box has been accepted, the Document system variable contains the access
path and the name of the file. If the user clicks Cancel, the execution of the command is
stopped and the OK system variable is set to 0.

• If you do not pass the optional parameter project, the import dialog box is displayed.
The user can define then import parameters or load an existing import project.

Note: An import project contains all the import parameters such as the tables and fields in
which to import, the delimiters to use, and so on. Those parameters are defined in the
import dialog box. An import project can be saved to disk to be loaded and used later. For
more information about the import dialog box, please refer to the 4DUser Mode manual.

• If you pass a BLOB containing a valid import project in the project parameter, the
import will be directly performed and will not require the user's intervention. The project
must already be predefined in the import dialog box, then saved. To do so, you have two
possible solutions:
- Save the project to disk, then load it, using the DOCUMENT TO BLOB command, in a
BLOB field or a BLOB variable that you pass in project.
- Use the IMPORT DATA command with an empty project parameter and the optional
parameter *, then store the project parameter in a BLOB field (see below). This solution
allows you to save the project with the datafile without having to load it from a BLOB
located on the disk.

Note: Refer to the EXPORT DATA command for an example concerning the definition of
an empty project.

4th Dimension Language Reference 705

The optional parameter *, if it is specified, forces the display of the import dialog box with
the import parameters set as they were defined in project. This feature allows you to use a
predefined project, while still having the possibility to modify one or more of the
parameters. Furthermore, the project parameter contains, after closing the import dialog
box, the parameters of the “new” project. You can then store the new project in a BLOB
field, on disk, and so on.

If the import was successful, the OK system variable is set to 1.

See Also
EXPORT DATA, IMPORT DIF, IMPORT SYLK, IMPORT TEXT.

System Variables and Sets
If the user clicks Cancel in the standard save file dialog box or in the import dialog box,
the OK system variable is set to 0. If the import was successful, the OK system variable is
set to 1.

706 4th Dimension Language Reference

EXPORT DATA Import and Export

version 2003 (Modified)
__

EXPORT DATA (fileName{; project{; *}})

Parameter Type Description
fileName String → Full path name of the export file
project BLOB → Contents of the export project

← New contents of the export project (if the *
parameter has been passed)

* * → Displays the export dialog box and updates
the project

Description
The EXPORT DATA command allows you to export data in the fileName file. 4D can export
data in the following formats: Text, Fixed length text, XML, SYLK, DIF, DBF (dBase), and
4th Dimension.

If you pass an empty string in fileName, EXPORT DATA displays the standard save file
dialog box, allowing the user to define the name, type, and location of the export file.
Once the dialog box has been accepted, the Document system variable contains the access
path and the name of the file. If the user clicks Cancel, the execution of the command is
stopped and the OK system variable is equal to 0.

• If you don’t pass the optional parameter project, the export dialog box is displayed. The
user can define the export parameters or load an existing export project.

Note: An export project contains all the export parameters such as the tables and fields to
export, delimiters, etc. You define these parameters in the export dialog box. A project
can be saved to disk and then loaded. For more information about the export dialog box,
please refer to the 4D User Mode manual.

• If you pass a BLOB containing a valid export project to the project parameter, the export
will be directly performed, without the user intervening. The project must already be
predefined in the export dialog box, then saved. To do so, you have two possible
solutions:
- Save the project to disk, then load it by using the DOCUMENT TO BLOB command, in a
field or a variable of type BLOB that you pass to the project parameter.
- Use the EXPORT DATA command with an empty project parameter and the optional
parameter *, then store the project parameter in a field of type BLOB (see below). This
solution allows you to save the project with the datafile without having to load it from a
BLOB on disk.

4th Dimension Language Reference 707

The optional parameter *, if it is specified, forces the display of the export dialog box with
the parameters defined in project. This feature allows you to use a predefined project,
while still having the possibility to modify one or more of the parameters. Furthermore,
the project parameter contains, after closing the export dialog box, the parameters of the
“new” project. You can then store the new project in a BLOB field, on disk, etc.

If the export was successful, the OK system variable is equal to 1.

Example
This example creates an empty project and stores the parameters set by the user in the
export dialog box there:

C_BLOB($exportParams)
SET BLOB SIZE($exportParams;0) `Initialization of BLOB

⇒ EXPORT DATA("DocExport.txt";$exportParams;*) ` Display of the export dialog box

See Also
EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DATA.

System Variables and Sets
If the user clicks Cancel in the standard open file dialog box or in the export dialog box,
the OK system variable is equal to 0. If the export was successful, the OK system variable is
equal to 1.

708 4th Dimension Language Reference

24

Interruptions

4th Dimension Language Reference 709

710 4th Dimension Language Reference

ON EVENT CALL Interruptions

version 3
__

ON EVENT CALL (eventMethod{; processName})

Parameter Type Description
eventMethod String → Event method to be invoked, or

Empty string to stop intercepting events
processName String → Process name

Description
The ON EVENT CALL command installs the method, whose name you pass in
eventMethod, as the method for catching (trapping) events. This method is called the
event-handling method or event-catching method.

Tip: This command requires advanced programming knowledge. Usually, you do not need
to use ON EVENT CALL for working with events. While using forms, 4th Dimension
handles the events and sends them to the appropriate forms and objects.

Tip: Version 6 introduces new commands, such as GET MOUSE, Shift down, etc., for
getting information about events. These commands can be called from within object
methods to get the information you need about an event involving an object. Using
them spares you the writing of an algorithm based on the ON EVENT CALL scheme.

The scope of this command is the current working session. By default, the method is run
in a separate local process. You can have only one event-handling method at a time. To
stop catching events with a method, call ON EVENT CALL again and pass an empty string
in eventMethod.

Since the event-handling method is run in a separate process, it is constantly active, even
if no 4th Dimension method is running. After installation, 4th Dimension calls the
event-handling method each time an event occurs. An event can be a mouse click or a
keystroke.

The optional processName parameter names the process created by the ON EVENT CALL
command. If processName is prefixed with a dollar sign ($), a local process is started,
which is usually what you want. If you omit the processName parameter, 4D creates, by
default, a local process named $Event Manager.

WARNING: Be very careful in what you do within an event-handling method. Do NOT
call commands that generate events, otherwise it will be extremely difficult to get out of
the event-handling method execution. The key combination Ctrl+Shift+Backspace (on
Windows) or Command-Shift-Option-Control-Backspace (on Macintosh) converts the
Event Manager process into a normal process. This means that the method will no longer
be automatically passed all the events that occur. You may want to use this technique to
recover an event-handling gone wrong (i.e., one that has bugs triggering events).

4th Dimension Language Reference 711

In the event-handling method, you can read the following system
variables—MouseDown, KeyCode, Modifiers, MouseX, MouseY, and MouseProc. Note that
these variables are process variables. Their scope is therefore the event-handling process.
Copy them into interprocess variables if you want their values available in another
process.

• The MouseDown system variable is set to 1 if the event is a mouse click, and to 0 if it is
not.
• The KeyCode system variable is set to the ASCII code for a keystroke. This variable may
return an ASCII code or a function key code. These codes are listed in the sections ASCII
Codes (and its subsections) and Function Key Codes. 4D provides predefined constants for
the major ASCII Codes and for Function Key Codes. In the Explorer window, look for the
themes of these constants.
• The Modifiers system variable contains the modifier value. It indicates whether any of
the following modifier keys were down when the event occurred:

Platform Modifiers
Windows Shift key, Caps Lock, Alt key, Ctrl key, Right mouse button
Macintosh Shift key, Caps Lock, Option key, Command key, Control key

Notes
- The Windows ALT key is equivalent to the Macintosh Option key.
- The Windows Ctrl key is equivalent to the Macintosh Command key.
- The Macintosh Control key has no equivalent on Windows. However, a right mouse
button click on Windows is equivalent to a Control-Click on Macintosh.

The modifier keys do not generate an event; another key or the mouse button must also
be pressed. The Modifiers variable is a 4-byte Long Integer variable that should be seen as
an array of 32 bits. 4D provides predefined constants expressing bit positions or bit masks
for testing the bit corresponding to each modifier key. For example, to detect if the Shift
key was pressed for the event, you can write:

If (Modifiers ?? Shift key bit) ` If the Shift key was down
or:

If ((Modifiers & Shift key mask)#0)` If the Shift key was down

Note: Under Windows, the value 128 is added to the Modifiers variable if the (left) button
of the mouse is released at the time of the event.

• The system variables MouseX and MouseY contain the horizontal and vertical positions
of the mouse click, expressed in the local coordinate system of the window where the
click occurred. The upper left corner of the window is position 0,0. These are meaningful
only when there is a mouse click.

712 4th Dimension Language Reference

• The MouseProc system variable contains the process reference number of the process in
which the event occurred (mouse click).

Important: The system variables MouseDown, KeyCode, Modifiers, MouseX, MouseY, and
MouseProc contain significant values only within an event-handling method installed
with ON EVENT CALL.

Example
This example will cancel printing if the user presses Ctrl+period. First, the event-handling
method is installed. Then a message is displayed, announcing that the user can cancel
printing. If the interprocess variable ◊vbWeStop is set to True in the event-handling
method, the user is alerted to the number of records that have already been printed. Then
the event-handling method is deinstalled:

PAGE SETUP
If (OK=1)

◊vbWeStop:=False
⇒ ON EVENT CALL("EVENT HANDLER") ` Installs the event-handling method

ALL RECORDS([People])
MESSAGE("To interrupt printing press Ctrl+Period")
$vlNbRecords:=Records in selection([People])
For ($vlRecord;1;$vlNbRecords)

If (◊vbWeStop)
ALERT("Printing cancelled at record "+String($vlRecord)+" of "

+String($vlNbRecords))
$vlRecord:=$vlNbRecords+1

Else
Print form([People];"Special Report")

End if
End for
PAGE BREAK

⇒ ON EVENT CALL("") ` Deinstalls the event-handling method
End if

If Ctrl+period has been pressed, the event-handling method sets ◊vbWeStop to True:

` EVENT HANDLER project method
If ((Modifiers ?? Command key bit) & (KeyCode = Period))

CONFIRM("Are you sure?")
If (OK=1)

◊vbWeStop:=True
FILTER EVENT ` Do NOT forget this call; otherwise 4D will also get this event

End if
End if

4th Dimension Language Reference 713

Note that this example uses ON EVENT CALL because it performs a special printing report
using the PAGE SETUP, Print form and PAGE BREAK commands with a For...End for loop.

If you print a report using PRINT SELECTION, you do NOT need to handle events that let
the user interrupt the printing; PRINT SELECTION does that for you.

See Also
FILTER EVENT, GET MOUSE, Method called on event, Shift down.

714 4th Dimension Language Reference

Method called on event Interruptions

version 6.8.1
__

Method called on event → String

Parameter Type Description
This command does not require any parameters

Function result String ← Name of method called on event

Description
The command Method called on event returns the name of the method installed by the
ON EVENT CALL command.

If no such method has been installed, an empty string ("") is returned.

See Also
ON EVENT CALL.

4th Dimension Language Reference 715

FILTER EVENT Interruptions

version 3
__

FILTER EVENT

Parameter Type Description
This command does not require any parameters

Description
You call the FILTER EVENT command from within an event-handling project method
installed using the ON EVENT CALL command.

If an event-handling method calls FILTER EVENT, the current event is not passed to 4D.

This command allows you to remove the current event (i.e., click, keystroke) from the
event queue, so 4D will not perform any additional treatment to the one you made in the
event-handling project method.

WARNING: Avoid creating an event-handling method that only calls the FILTER EVENT
command, because all the events are going to be ignored by 4D. In case you have an
event-handling method with only the FILTER EVENT command, type
Ctrl+Shift+Backspace (on Windows) or Command-Option-Shift-Control-Backspace (on
Macintosh). This converts the On Event Call process into a normal process that does not
get any events at all.

Special case: The FILTER EVENT command can also be used within a standard output form
method when the form is displayed using the DISPLAY SELECTION or MODIFY SELECTION
commands. In this specific case, the FILTER EVENT command allows you to filter double-
clicks on the records (and in this way execute actions other than the opening of records
in page mode).
To do this, place the following lines in the output form method:

If(Form event=On Double Clicked)
FILTER EVENT
... `Process the double-click

End if

Example
See example for the command ON EVENT CALL.

See Also
ON EVENT CALL.

716 4th Dimension Language Reference

ON ERR CALL Interruptions

version 3
__

ON ERR CALL (errorMethod)

Parameter Type Description
errorMethod String → Error method to be invoked, or

Empty string to stop trapping errors

Description
The command ON ERR CALL installs the project method, whose name you pass in
errorMethod, as the method for catching (trapping) errors. This project method is called
the error-handling method or error-catching method.

The scope of this command is the current process. You can have only one error-handling
method per process at a time, but you can have different error-handling methods for
several processes.

To stop the trapping of errors, call ON ERR CALL again and pass the empty string in
errorMethod.

Once an error-handling project is installed, 4th Dimension calls the method each time an
error occurs.

You can identify errors by reading the Error system variable, which contains the code
number of the error. Error codes are listed in the theme Error codes. For more
information, see the section Syntax Errors or Database Engine Errors. The Error variable
value is significant only within the error-handling method; if you need the error code
within the method that provoked the error, copy the Error variable to your own process
variable.

The error-handling method should manage the error in an appropriate way or present an
error message to the user. Errors can be generated by:
• The 4th Dimension database engine; for example, when saving a record tries to
duplicate a unique index key.
• The 4th Dimension environment; for example, when you do not have enough memory
for allocating an array.
• The operating system on which the database is runs; for example, disk full or I/O errors.

The ABORT command can be used to terminate processing. If you don’t call ABORT in the
error-handling method, 4th Dimension returns to the interrupted method and continues
to execute the method. Use the ABORT command when an error cannot be recovered.

4th Dimension Language Reference 717

If an error occurs in the error-handling method itself, 4th Dimension takes over error
handling. Therefore, you should make sure that the error-handling method cannot
generate an error. Also, you cannot use ON ERR CALL inside the error-handling method.

When an ON ERR CALL error-handling method is installed, it is not possible to trace a
method by using Alt+Click (on Windows) or Option-Click (on Macintosh). This is
because Alt+Click and Option-Click) generate an error (error code 1006) that immediately
activates the ON ERR CALL error-handling method. However, you can test this error code
by calling TRACE.

Examples
1. The following project method tries to create a document whose name is received as
parameter. If the document cannot be created, the project metod returns 0 (zero) or the
error code:

` Create doc project method
` Create doc (String ; Pointer) -> LongInt
` Create doc (DocName ; ->DocRef) -> Error code result

gError:=0
⇒ ON ERR CALL("IO ERROR HANDLER")

$2->:=Create document($1)
⇒ ON ERR CALL("")

$0:=gError

The IO ERROR HANDLER project method is listed here:

` IO ERROR HANDLER project method
gError:=Error ` just copy the error code to the process variable gError

Note the use of the gError process variable to get the error code result within the current
executing method. Once these methods are present in your database, you can write:

` ...
C_TIME(vhDocRef)
$vlErrCode:=Create doc($vsDocumentName;->vhDocRef)
If ($vlErrCode=0)

`...
CLOSE DOCUMENT($vlErrCode)

Else
ALERT ("The document could not be created, I/O error "+String($vlErrCode))

End if

2. See example in the section Arrays and Memory.

718 4th Dimension Language Reference

3. While implementing a complex set of operations, you may end up with various
subroutines that require different error-handling methods. You can have only one error-
handling method per process at a time, so you have two choices:
 - Keep track of the current one each time you call ON ERR CALL, or
- Use a process array variable (in this case, asErrorMethod) to “pile up” the error-handling
methods and a project method (in this case, ON ERROR CALL) to install and deinstall the
error-handling methods.

You must initialize the array at the very beginning of the process execution:

` Do NOT forget to initialize the array at the beginning
` of the process method (the project method that runs the process)

ARRAY STRING(63;asErrorMethod;0)

Here is the custom ON ERROR CALL method:

` ON ERROR CALL project method
` ON ERROR CALL { (String) }
` ON ERROR CALL { (Method Name) }

C_STRING(63;$1;$ErrorMethod)
C_LONGINT($vlElem)

If (Count parameters>0)
$ErrorMethod:=$1

Else
$ErrorMethod:=""

End if

If ($ErrorMethod#"")
C_LONGINT(gError)
gError:=0
$vlElem:=1+Size of array(asErrorMethod)
INSERT ELEMENT(asErrorMethod;$vlElem)
asErrorMethod{$vlElem}:=$1
ON ERR CALL($1)

Else
ON ERR CALL("")
$vlElem:=Size of array(asErrorMethod)
If ($vlElem>0)

DELETE ELEMENT(asErrorMethod;$vlElem)
If ($vlElem>1)

ON ERR CALL(asErrorMethod{$vlElem-1})
End if

End if
End if

4th Dimension Language Reference 719

Then, you can call it this way:

gError:=0
ON ERROR CALL("IO ERRORS") ` Installs the IO ERRORS error-handling method

` ...
ON ERROR CALL("ALL ERRORS") ` Installs the ALL ERRORS error-handling method

` ...
` Deinstalls the ALL ERRORS error-handling method and reinstalls IO ERRORS

ON ERROR CALL
` ...

ON ERROR CALL ` Deinstalls the IO ERRORS error-handling method
` ...

4. The following error-handling method ignores the user interruptions:

` SHOW ONLY ERRORS project method
If (Error#1006)

ALERT ("The error "+String(Error)+" occurred.")
End if

See Also
ABORT, Method called on error.

720 4th Dimension Language Reference

Method called on error Interruptions

version 6.8.1
__

Method called on error → String

Parameter Type Description
This command does not require any parameters

Function result String ← Name of method called on error

Description
The command Method called on error returns the name of the method installed by the
ON ERR CALL command for the current process.

If no such method has been installed, an empty string ("") is returned.

Example
This command is particularly useful in the context of components because it enables you
to temporarily change and then restore the error-catching methods:

⇒ $methCurrent:=Method called on error
ON ERR CALL("NewMethod")

` If the document cannot be opened, an error is generated
$ref:=Open document("MyDocument")

` Reinstallation of previous method
ON ERR CALL($methCurrent)

See Also
ON ERR CALL.

4th Dimension Language Reference 721

ABORT Interruptions

version 3

Note: You will rarely call this command.

__

ABORT

Parameter Type Description
This command does not require any parameters

Description
The command ABORT is to be used from within an error-handling project method
installed using the command ON ERR CALL.

If you do not have an error-handling project method, when an error occurs (for example,
a database engine error) 4D displays its standard error dialog box and then interrupts the
execution of your code. If the code being executed is:
• An object method, form method (or a project method called by a form or object
method), the control returns to the form currently being displayed.
• A method called from a menu, the control returns to the menu bar or to the form
currently being displayed.
• The master method of a process, the process then ends.
• A method called directly or indirectly by an import or export operation, the operation is
stopped. The same is true for sequential queries or order by operations.
• And so on...

If you use an error-handling project method to catch errors, 4D neither displays its
standard error dialog box nor interrupts the execution of your code. Instead, 4D calls your
error-handling project method (that you can see as an exception handler), and resumes
the execution to the next line of code in the method that triggered the error.

There are errors you can treat programmatically; for example, during an import operation,
if you catch a database engine duplicated value error, you can “cover” the error and
pursue the import. However, there are errors that you cannot process and errors that you
should not “cover.” In these cases, you need to stop the execution by calling ABORT from
within the error-handling project method.

Historical Note
Although the ABORT command is intended to be used only from within a error-handling
project method, some members of the 4D community also use it to interrupt execution in
other project methods. The fact that it works is only a side effect. We do not recommend
the use of this command in methods other than error-handling methods.

722 4th Dimension Language Reference

25

Language

4th Dimension Language Reference 723

724 4th Dimension Language Reference

Count parameters Language

version 3
__

Count parameters → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Number of parameters actually passed

Description
The command Count parameters returns the number of parameters passed to a project
method.

WARNING: Count parameters is meaningful only in a project method that has been called
by another method (project method or other). If the project method calling Count
parameters is associated with a menu, Count parameters returns 0.

Examples
1. 4th Dimension project methods accept optional parameters, starting from the right.
For example, you can call the method MyMethod(a;b;c;d) in the following ways:

MyMethod (a ; b ; c ; d) ` All parameters are passed
MyMethod (a ; b ; c) ` The last parameter is not passed
MyMethod (a ; b) ` The last two parameters are not passed
MyMethod (a) ` Only the first parameter is passed
MyMethod ` No Parameter is passed at all

Using Count parameters from within MyMethod, you can detect the actual number of
parameters and perform different operations depending on what you have received. The
following example displays a text message and can insert the text into a 4D Write area or
send the text into a document on disk:

` APPEND TEXT Project Method
` APPEND TEXT (Text { ; Long { ; Time } })
` APPEND TEXT (Text { ; 4D Write Area { ; DocRef } })

C_TEXT ($1)
C_TIME ($2)
C_LONGINT ($3)

MESSAGE ($1)
⇒ If (Count parameters>=3)

SEND PACKET ($3;$1)
Else

4th Dimension Language Reference 725

⇒ If (Count parameters>=2)
WR INSERT TEXT ($2;$1)

End if
End if

After this project method has been added to your application, you can write:

APPEND TEXT (vtSomeText) ` Will only display the text message
APPEND TEXT (vtSomeText;$wrArea) ` Will display the text message and append it to

$wrArea
APPEND TEXT (vtSomeText;0;$vhDocRef) ` Will display the text message and write it to

$vhDocRef

2. 4th Dimension project methods accept a variable number of parameters of the same
type, starting from the right. To declare these parameters, you use a compiler directive to
which you pass ${N} as a variable, where N specifies the first parameter. Using Count
parameters you can address those parameters with a For loop and the parameter
indirection syntax. This example is a function that returns the greatest number received
as parameter:

` Max of Project Method
` Max of (Real { ; Real2... ; RealN }) -> Real
` Max of (Value { ; Value2... ; ValueN }) -> Greatest value

C_REAL ($0;${1}) ` All parameters will be of type REAL as well as the function result
$0:=${1}

⇒ For ($vlParam;2;Count parameters)
If (${$vlParam}>$0)

$0:=${$vlParam}
End if

End for

After this project method has been added to your application, you can write:
vrResult:=Max of (Records in set("Operation A");Records in set("Operation B"))

or:
vrResult:=Max of (r1;r2;r3;r4;r5;r6)

See Also
Compiler commands, C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT,
C_PICTURE, C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME.

726 4th Dimension Language Reference

Type Language

version 6.0 (Modified)
__

Type (fieldVar) → Number

Parameter Type Description
fieldVar Field | Variable → Field or Variable to be tested

Function result Number ← Data type number

Description
The command Type returns a numeric value that denotes the type of the field or variable
you pass as fieldVar.

4th Dimension provides the following predefined constants:

Constant Type Value
Is Alpha Field Long Integer 0
Is String Var Long Integer 24
Is Text Long Integer 2
Is Real Long Integer 1
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Date Long Integer 4
Is Time Long Integer 11
Is Boolean Long Integer 6
Is Picture Long Integer 3
Is Subtable Long Integer 7
Is BLOB Long Integer 30
Is Undefined Long Integer 5
Is Pointer Long Integer 23
String array Long Integer 21
Text array Long Integer 18
Real array Long Integer 14
Integer array Long Integer 15
LongInt array Long Integer 16
Date array Long Integer 17
Boolean array Long Integer 22
Picture array Long Integer 19
Pointer array Long Integer 20
Array 2D Long Integer 13

4th Dimension Language Reference 727

Compatibility Note: In previous versions of 4D, Type returned 3 (Is Picture) when applied
to a Graph variable declared using the command C_GRAPH. Starting with version 6, Type
returns 9 (Is LongInt) when applied to a Graph variable.

You can apply Type to fields, interprocess variables, process variables, local variables, and
dereferenced pointers referring to these types of objects.

Version 6 Note: Starting with version 6, you can apply Type to parameters ($1,$2...,
${...}), or to project method or function results ($0).

Examples
1. See example for the APPEND TO CLIPBOARD command.

2. See example for DRAG AND DROP PROPERTIES command.

3. The following project method empties some or all of the fields for the current record of
the table whose a pointer is passed as parameter. It does this without deleting or changing
the current record:

` EMPTY RECORD Project Method
` EMPTY RECORD (Pointer {; Long })
` EMPTY RECORD (-> [Table] { ; Type Flags })

C_POINTER ($1)
C_LONGINT ($2;$vlTypeFlags)

If (Count parameters>=2)
$vlTypeFlags:=$2

Else
$vlTypeFlags:=0xFFFFFFFF

End if
For ($vlField;1;Count fields($1))

$vpField:=Field(Table($1);$vlField)
$vlFieldType:=Type($vpField->)
If ($vlTypeFlags ?? $vlFieldType)

Case of
: (($vlFieldType=Is Alpha Field)|($vlFieldType=Is Text))

$vpField->:=""
: (($vlFieldType=Is Real)|($vlFieldType=Is Integer)|($vlFieldType=Is LongInt))

$vpField->:=0
: ($vlFieldType=Is Date)

$vpField->:=!00/00/00!
: ($vlFieldType=Is Time)

$vpField->:=?00:00:00?
: ($vlFieldType=Is Boolean)

$vpField->:=False

728 4th Dimension Language Reference

: ($vlFieldType=Is Picture)
C_PICTURE($vgEmptyPicture)
$vpField->:=$vgEmptyPicture

: ($vlFieldType=Is Subtable)
Repeat

ALL SUBRECORDS($vpField->)
DELETE SUBRECORD($vpField->)

Until(Records in subselection($vpField->)=0)
: ($vlFieldType=Is BLOB)

SET BLOB SIZE($vpField->;0)
End case

End if
End for

After this project method is implemented in your database, you can write:

` Empty the whole current record of the table [Things To Do]
EMPTY RECORD (->[Things To Do])

` Empty Text, BLOB and Picture fields for the current record
` of the table [Things To Do]

EMPTY RECORD (->[Things To Do]; 0 ?+ Is Text ?+ Is BLOB ?+ Is Picture)

` Empty the whole current record of the table [Things To Do]
` except Alphanumeric fields

EMPTY RECORD (->[Things To Do]; -1 ?- Is Alpha Field)

See Also
Is a variable, Undefined.

4th Dimension Language Reference 729

Self Language

version 3
__

Self → Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ← Pointer to form object (if any)
whose method is currently being executed.
Otherwise Nil (->[]) if outside of context

Description
The command Self returns a pointer to the object whose object method is currently being
executed.

Self is used to reference a variable within its own object method. It returns a valid pointer
only when it is called from within an object method. It cannot be used in a project
method, even when called from an object method. If Self is called out of context, it
returns a Nil pointer (->[]).

Tip: Self is useful when several objects on a form need to perform the same task, yet
operate on themselves.

Example
 See the example for the RESOLVE POINTER command.

See Also
RESOLVE POINTER.

730 4th Dimension Language Reference

RESOLVE POINTER Language

version 6.0
__

RESOLVE POINTER (pointer; varName; tableNum; fieldNum)

Parameter Type Description
pointer Pointer → Pointer for which to retrieve the referenced
object
varName String ← Name of referenced variable or empty string
tableNum Number ← Number of referenced table or array element

or 0 or -1
fieldNum Number ← Number of referenced field or 0

Description
The command RESOLVE POINTER retrieves the information of the object referenced by
the pointer expression pointer and returns it into the parameters varName, tableNum, and
fieldNum.

Depending on the nature of the referenced object, RESOLVE POINTER returns the
following values:

Referenced object Parameters
varName tableNum fieldNum

None (NIL pointer) "" (empty string) 0 0
Variable Name of the variable -1 0
Array Name of the array -1 0
Array element Name of the array Element number 0
Table "" (empty string) Table number 0
Field "" (empty string) Table number Field number

Notes:
• If the value you pass in pointer is not a pointer expression, a syntax error occurs.
• The RESOLVE POINTER command does not work with pointers to local variables. In fact,
by definition several local variables with the same name could exist in different locations,
so it is not possible for the command to find the correct variable.

Examples
1. Within a form, you create a group of 100 enterable variables called v1, v2... v100. To
do so, you perform the following steps:
a. Create one enterable variable that you name v.
b. Set the properties of the object.
c. Attach the following method to that object:

DoSomething (Self) ` DoSomething being a project method in your database

4th Dimension Language Reference 731

d. At this point, you can either duplicate the variable as many times as you need, or use
the Objects on Grid feature in the Form Editor.
e. Within the DoSomething method, if you need to know the index of the variable for
which the method is called, you write:

⇒ RESOLVE POINTER($1;$vsVarName;$vlTableNum;$vlFieldNum)
$vlVarNum:=Num(Substring($vsVarName;2))

Note that by constructing your form in this way, you write the methods for the 100
variables only once; you do not need to write DoSomething (1), DoSomething
(2)...,DoSomething (100).

2. For debugging purposes, you need to verify that the second parameter ($2) to a
method is a pointer to a table. At the beginning of this method, you write:

` ...
If (◊DebugOn)

⇒ RESOLVE POINTER($2;$vsVarName;$vlTableNum;$vlFieldNum)
If (Not(($vlTableNum>0)&($vlFieldNum=0)&($vsVarName="")))
` WARNING: The pointer is not a reference to a table

TRACE
End

End if
` ...

3. See example for the DRAG AND DROP PROPERTIES command.

See Also
DRAG AND DROP PROPERTIES, Field, Get pointer, Is a variable, Nil, Table.

732 4th Dimension Language Reference

Nil Language

version 3
__

Nil (aPointer) → Boolean

Parameter Type Description
aPointer Pointer → Pointer to be tested

Function result Boolean ← TRUE = Nil pointer (->[])
FALSE = Valid pointer to an existing object

Description
The command Nil returns True if the pointer you pass in aPointer is Nil (->[]). It returns
False in all other cases (pointer to field, table or variable).

Starting with version 6, instead of using Nil, it will be more convenient to use RESOLVE
POINTER, which tells you about the nature of the referenced object, no matter what the
object is (including Nil pointers).

See Also
Is a variable, RESOLVE POINTER.

4th Dimension Language Reference 733

Is a variable Language

version 3
__

Is a variable (aPointer) → Boolean

Parameter Type Description
aPointer Pointer → Pointer to be tested

Function result Boolean ← TRUE = Pointer points to a variable
FALSE = Pointer does not point to a variable

Description
The command Is a variable returns True if the pointer you pass in aPointer references a
defined variable. It returns False in all other cases (pointer to field or table, Nil pointer,
and so on).

Starting with version 6, instead of using Is a variable, it will be more convenient to use
RESOLVE POINTER, which tells you about the nature of the referenced object, no matter
what the object is (including the case of Nil pointers).

See Also
Nil, RESOLVE POINTER.

734 4th Dimension Language Reference

Get pointer Language

version 2004 (Modified)
__

Get pointer (varName) → Pointer

Parameter Type Description
varName String → Name of a process or interprocess variable

Function result Pointer ← Pointer to process or interprocess variable

Description
The Get pointer command returns a pointer to the process or interprocess variable whose
name you pass in varName.

To get a pointer to a field, use Field. To get a pointer to a table, use Table.

Note: You can pass expressions such as, for example, $ArrName+"{3}" to Get pointer.
However, you cannot use 2D array elements ($ArrName+"{3}{5}") or variable elements
($ArrName+"{myVar}").

Example
In a form, you build a 5 x 10 grid of enterable variables named v1, v2... v50. To initialize
all of these variables, you write:

` ...
For ($vlVar;1;50)

⇒ $vpVar:=Get pointer("v"+String($vlVar))
$vpVar->:=""

End for

See Also
Field, Table.

4th Dimension Language Reference 735

EXECUTE Language

version 3

Note: You will rarely need to use this command.

__

EXECUTE (statement)

Parameter Type Description
statement String → Code to be executed

Description
EXECUTE executes statement as a line of code. The statement string must be one line. If
statement is an empty string, EXECUTE does nothing.

The rule of thumb is that if the statement can be executed as a one line method, then it
will execute properly.

In a compiled database, the line of code is not compiled. This means that statement will
be executed, but it will not have been checked by the compiler at compilation time.

Use EXECUTE sparingly, as it slows down execution speed.

The statement can be in the following:
• a Call to a project method
• a Call to a 4D command
• an Assignment

The statement can include process variables and interprocess variables. The statement
cannot contain control of flow statements, because it must be in one line of code.

Example
See examples for the Command Name command.

See Also
Command name.

736 4th Dimension Language Reference

Command name Language

version 6.0
__

Command name (command) → String

Parameter Type Description
command Number → Command number

Function result String ← Localized command name

Description
The command Command name returns the literal name of the command whose
command number you pass in command.

4th Dimension integrates a dynamic translation of the keywords, constants, and
command names used in your methods. For example, if you use the English version of
4D, you write:

DEFAULT TABLE ([MyTable])
ALL RECORDS ([MyTable])

This same code, reopened with the French version of 4D, will read:
TABLE PAR DEFAUT ([MyTable])
TOUT SELECTIONNER ([MyTable])

However, 4th Dimension also includes a unique feature, the EXECUTE command, which
allows you to build code on the fly and then execute this code, even though the database
is compiled.

The example code, written with EXECUTE statements in English, looks like:
EXECUTE ("DEFAULT TABLE([MyTable])")
EXECUTE ("ALL RECORDS([MyTable])")

This same code, reopened with the French version of 4D, will then read:
EXECUTER ("DEFAULT TABLE([MyTable])")
EXECUTER ("ALL RECORDS([MyTable])")

4D automatically translates EXECUTE (English) to EXECUTER (French), but cannot
translate the text statement you passed to the command.

4th Dimension Language Reference 737

If you use the EXECUTE command in your application, you can use Command name to
eliminate international localization issues for statements you execute in this way, and
thus make your statements independent of language. The example code becomes:

⇒ EXECUTE (Command name (46)+"([MyTable])")
⇒ EXECUTE (Command name (47)+"([MyTable])")

With a French version of 4D, this code will read:

⇒ EXECUTER (Nom commande (46)+"([MyTable])")
⇒ EXECUTER (Nom commande (47)+"([MyTable])")

Note: To know the number of a command, refer to the Command Syntax by Name
section.

Examples
1. For all the tables of your database, you have a form called “INPUT FORM” used for
standard data entry in each table. Then, you want to add a generic project method that
will set this form as the current input form for the table whose pointer or name you pass.
You write:

` STANDARD INPUT FORM project method
` STANDARD INPUT FORM (Pointer {; String })
` STANDARD INPUT FORM (->Table {; TableName })

C_POINTER ($1)
C_STRING (31;$2)

If (Count parameters>=2)
⇒ EXECUTE (Command name (55)+"(["+$2+"];"INPUT FORM")")

Else
If (Count parameters>=1)

INPUT FORM ($1->;"INPUT FORM")
End if

End if

After this project method has been added to your database, you write:
STANDARD INPUT FORM (->[Employees])
STANDARD INPUT FORM ("Employees")

Note: Usually, it is better to use pointers when writing generic routines. First, the code
will run compiled if the database is compiled. Second, 4D Insider will retrieve the
references to the object whose pointer you pass. Third, as in the previous example, your
code can cease to work correctly if you rename the table. However, in certain cases, using
EXECUTE will solve the problem.

738 4th Dimension Language Reference

2. In a form, you want a drop-down list populated with the basic summary report
commands. In the object method for that drop-down list, you write:

Case of
: (Form event =On Before)

ARRAY TEXT (asCommand;4)
⇒ asCommand{1}:=Command name (1) ` Sum
⇒ asCommand{2}:=Command name (2) ` Average
⇒ asCommand{3}:=Command name (4) ` Min
⇒ asCommand{4}:=Command name (3) ` Max

` ...
End case

In the English version of 4D, the drop-down list will read: Sum, Average, Min, and Max.
In the French version, the drop-down list will read: Somme, Moyenne, Min, and Max.

See Also
Command Syntax by Name, EXECUTE.

4th Dimension Language Reference 739

Current method name Language

version 6.7
__

Current method name → String

Parameter Type Description
This command does not require any parameters

Function result String ← Calling method name

Description
The Current method name command returns the method name where it has been
invoked. This command is useful for debugging generic methods.

According to the calling method type, the returned string can be as follows:

Calling Method Returned string
Database Method MethodName
Trigger Trigger on [TableName]
Project Method MethodName
Form Method [TableName]FormName
Object Method [TableName]FormName.ObjectName

This command cannot be called from within a 4D formula.

Note: For this command to be able to operate in compiled mode, the database must have
been compiled with the Range Checking option (located in the application Preferences)
selected.
In order to deactivate range checking in a method (or a part of a method) locally, you
can use the following special comments:

`%R- to deactivate range checking
`%R+ to activate range checking
`%R* to restore the initial state of range checking (defined in the Preferences).

740 4th Dimension Language Reference

TRACE Language

version 3
__

TRACE

Parameter Type Description
This command does not require any parameters

Description
You use TRACE to trace methods during the development of a database.

The TRACE command turns on the 4th Dimension Debugger for the current process. The
debugger window is displayed before the next line of code is executed, and continues to
be displayed for each line of code that is executed. You can also turn on the debugger by
pressing Alt+Shift+right-click (Windows) or Control+Option+Command+click
(Macintosh) while code is executing.

In compiled databases, the TRACE command is ignored.

4D Server: If you call TRACE from a project method executed within the context of a
Stored Procedure, the debugger window appears on the Server machine.

Tips

1. Do not place TRACE calls when using a form whose On Activate and On Deactivate
events have been enabled. Each time the debugger window appears, these events will be
invoked; you will then loop infinitely between these events and the debugger window. If
you end up in this situation, Shift+click on the No Trace button of the debugger in order
to get out of it. Any subsequent calls to TRACE within the process will be ignored.

Example
The following code expects the process variable BUILD_LANG to be equal to “US” or “FR”.
If this is not the case, it calls the project method DEBUG:

` ...
Case of

: (BUILD_LANG="US")
vsBHCmdName:=[Commands]CM US Name

: (BUILD_LANG="FR")
vsBHCmdName:=[Commands]CM FR Name

Else
DEBUG ("Unexpected BUILD_LANG value")

End case

4th Dimension Language Reference 741

The DEBUG project method is listed here:

` DEBUG Project Method
` DEBUG (Text)
` DEBUG (Optional Debug Information)

C_TEXT ($1)

If (◊vbDebugOn) ` Interprocess variable set in the On Startup Method
If (Compiled Application)

If (Count parameters>=1)
ALERT ($1+Char(13)+"Call Designer at x911")

End if
Else

⇒ TRACE
End if

End if

See Also
NO TRACE.

742 4th Dimension Language Reference

NO TRACE Language

version 3
__

NO TRACE

Parameter Type Description
This command does not require any parameters

Description
You use NO TRACE to trace methods during development of a database.

NO TRACE turns off the debugger engaged by TRACE, by an error, or by the user. Using
NO TRACE has the same effect as clicking the No Trace button in the debugger.

In compiled databases, the NO TRACE command is ignored.

See Also
TRACE.

4th Dimension Language Reference 743

744 4th Dimension Language Reference

26

List Box

4th Dimension Language Reference 745

746 4th Dimension Language Reference

Management of List box objects List Box

version 2004.2 (Modified)
__

The commands of this theme are dedicated to handling form objects of the List box type.
List boxes are comparable to Grouped Scrollable Areas. A list box provides all the functions
of grouped scrollable areas, notably the ability to represent data in the form of columns
and selectable rows. However, the list box does even more than that, including the ability
to enter values, sort columns, define alternating colors, etc.

You can set up a List box completely in the 4th Dimension Form editor and can also
manage it through programming. For more information on creating and setting List
boxes in the Form editor as well as on their use, refer to the Design Reference manual of the
4th Dimension documentation.
Programming List box objects is done in the same way as other 4th Dimension list form
objects. However, specific rules must be followed, as detailed in this section.

Note: List box objects are designed for screen interfaces only. They cannot be printed.

Creating and managing values
__

A list box can contain one or more columns. Each column must be associated with a one-
dimensional 4th Dimension array; all array types can be used, with the exception of
pointer arrays. The display format for each column can be defined in the Form editor or
by using the SET FORMAT command.

4th Dimension Language Reference 747

Using the language, the values of columns (data entry and display) are managed using
high-level List box commands (such as INSERT LISTBOX ROW or DELETE LISTBOX ROW) as
well as array manipulation commands.
For example, to initialize the contents of a column, you can use the following instruction:

ARRAY TEXT(ColumnName; size)

You can also use a list:
LIST TO ARRAY("ListName"; ColumnName)

Note: When a List box object contains several columns, each related array must have the
same size (same number of items) as the others, otherwise only the number of items of
the smallest array will be displayed.

Warning : When a list box contains several columns of different sizes, only the number of
items of the smallest array (column) will be displayed. You should make sure that each
array has the same number of elements as the others. Also, if a list box column is empty
(this occurs when the associated array was not correctly declared or sized using the
language), the list box displays nothing.

Object, column and header
__

A List box object is composed of three separate items:
• the object itself,
• the columns,
• and the column headers.
These items can be selected individually in the Form editor. Each one has its own object
and variable name and can be handled separately.

748 4th Dimension Language Reference

By default, columns are named Column1 to X and headers are named Header1 to X in the
form, independently of the list box objects.
Each item type contains individual and shared characteristics with other items. For
example, character fonts can be globally assigned to the list box object or separately to
columns and headers. On the other hand, entry properties can only be defined for
columns.
These rules apply to the “Object properties” theme commands that can be used with list
boxes. Depending on its functionality, each command can be used with the list box,
columns and/or column headers. To set the type of item on which you want to work,
simply pass the name or the variable associated with it.
The following table details the scope of each command of the “Object properties” theme
that can be used with list boxes:
Object Properties commands Object Columns Column headers
MOVE OBJECT X
GET OBJECT RECT X
SET FILTER X
SET FORMAT X
SET ENTERABLE X
SET CHOICE LIST X
BUTTON TEXT X
SET COLOR X X
SET RGB COLORS X X
FONT X X X
FONT SIZE X X X
FONT STYLE X X X
SET ALIGNMENT X X X
Get alignment X X X
SET VISIBLE X X X
SET SCROLLBAR VISIBLE X
BEST OBJECT SIZE X X X

Note: All the commands of the “List Box” theme apply only to List box objects, except
for the SET LISTBOX COLUMN WIDTH command (applies to object, column and header)
and Get listbox column width command (applies to column and header only).

List box and Language
__

Object methods
It is possible to add an object method to the list box object and/or to each column of the
list box. Object methods are called in the following order:
1. Object method of each column
2. Object method of the list box
The column object method gets events that occur in its header.

4th Dimension Language Reference 749

SET VISIBLE and headers
When the SET VISIBLE command is used with a header, it is used on all List box object
headers, regardless of the header set in the command. For example, the SET
VISIBLE(*;"header3";False) instruction will hide all headers in the List box object to which
header3 belongs and not simply this header.

Self and On Clicked
The Self function (“Language” theme) can be used in the object method of a list box or a
list box column. In both cases, it returns a pointer to the column variable or the header
variable depending on where the click occurred.

Focus object
The Focus object function (“User Interface” theme) returns a pointer to the column of the
list box with the focus (i.e. to an array). The 4th Dimension pointer mechanism allows
you to see the item number of the modified array. For example, supposing a user modified
the 5th line of the column col2:

$Column:=Focus object
` $Column contains a pointer to col2

$Row:= $Column-> `$Row equals 5

SCROLL LINES
The SCROLL LINES command (“User Interface” theme) can be used with a list box. It
scrolls the list box rows so that the first selected row or a specified row is displayed.

EDIT ITEM
The EDIT ITEM command (“Entry Control” theme) allows you to pass a cell of a list box
object into edit mode.

Form events
Specific form events are intended to facilitate list box management, in particular
concerning drag and drop and sort operations. For more information, refer to the
description of the Form event command.

Managing sorts
__

By default, the list box automatically handles standard column sorts when the header is
clicked. A standard sort is an alphanumeric sort of column values, alternately
ascending/descending with each successive click. All columns are always synchronized
automatically.
You can forbid standard user sorts by deselecting the “Sortable” property of the list box.

The developer can set up custom sorts using the SORT LISTBOX COLUMNS command
and/or combining the On Header Click and On After Sort form events (see the Form event
command) and array management 4D commands.

Note: The “Sortable” column property only affects the standard user sorts; the SORT
LISTBOX COLUMNS command does not take this property into account.

750 4th Dimension Language Reference

The value of the variable related to the column header allows you to manage additional
information: the current sort of the column (read) and the display of the sort arrow.
• If the variable is set to 0, the column is not sorted and the sort arrow is not displayed;

• If the variable is set to 1, the column is sorted in ascending order and the sort arrow is
displayed;

• If the variable is set to 2, the column is sorted in descending order and the sort arrow is
displayed.

You can set the value of the variable (for example, Header2:=2) in order to “force” the sort
arrow display. The column sort itself is not modified in this case; it is up to the developer
to handle it.

Managing selections
__

The SELECT LISTBOX ROW command can be used to select one or more rows of the list
box by programming.

The variable linked to the List box object is used to get, set or store selections of object
rows.
This variable corresponds to a Boolean array that is automatically created and maintained
by 4th Dimension. The size of this array is determined by the size of the list box: it
contains the same number of elements as the smallest array linked to the columns.
Each element of this array contains True if the corresponding line is selected and False
otherwise. 4th Dimension updates the contents of this array depending on user actions.
Inversely, you can change the value of array elements to change the selection in the list
box.
On the other hand, you can neither insert nor delete rows in this array; you cannot
retype rows either.

Note: The Count in array command can be used to find out the number of selected lines.

For example, this method allows inverting the selection of the first row of the list box:

ARRAY BOOLEAN(tBListBox;10)
` tBListBox is the name of the list box variable in the form

If (tBListBox{1} = True)
tBListBox{1}:= False

Else
tBListBox{1}:= True

End if

4th Dimension Language Reference 751

INSERT LISTBOX COLUMN List Box

version 2004
__

INSERT LISTBOX COLUMN ({*; }object; colPosition; colName; colVariable; headerName;
headerVar)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is set) or

Variable (if * is omitted)
colPosition Number → Location of column to insert
colName String → Name of the column object
colVariable Array → Name of the column variable
headerName String → Name of the column header object
headerVar Integer variable → Column header variable

Description
The INSERT LISTBOX COLUMN command inserts a column in the list box set by the object
and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

The new column is inserted just in front of the column set using the colPosition
parameter. If the colPosition parameter is greater than the total number of columns, the
column is added after the last column.

Pass the name of the object and the variable of the inserted column in the colName and
colVariable parameters. The name of the variable must match the name of the array whose
contents will be displayed in the column.

Pass the object name and the variable of the inserted column header in the headerName
and headerVar parameters.

Note: Object names must be unique in a form. You must be sure that the names passed in
the colName and headerName parameters are not already used. Otherwise, the column is
not created and an error is generated.

752 4th Dimension Language Reference

Example
We would like to add a column at the end of the list box:

C_LONGINT(HeaderVarName;$Last;RecNum)
ALL RECORDS([Table 1])
$RecNum:=Records in table([Table 1])
ARRAY PICTURE(Picture;$RecNum)

$Last:=Get number of listbox columns(*;"ListBox1")+1
⇒ INSERT LISTBOX
COLUMN(*;"ListBox1";$Last;"ColumnPicture";Picture;"HeaderPicture";HeaderVarName)

See also
DELETE LISTBOX COLUMN.

4th Dimension Language Reference 753

DELETE LISTBOX COLUMN List Box

version 2004
__

DELETE LISTBOX COLUMN ({*; }object; colPosition{; number})

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
colPosition Number → Column number to remove
number Number → Number of columns to be removed

Description
The DELETE LISTBOX COLUMN command removes one or more columns (visible or
invisible) in the list box set in the object et * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

If you do not pass the optional number parameter, the command simply removes the
column set in the colPosition parameter.
Otherwise, the number parameter indicates the number of columns to remove to the
right starting from the column colPosition (this one included).

If the colPosition parameter is greater than the number of columns in the list box, the
command does nothing.

See also
Get number of listbox columns, INSERT LISTBOX COLUMN.

754 4th Dimension Language Reference

Get number of listbox columns List Box

version 2004
__

Get number of listbox columns ({*; }object) → Longint

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)

Function result Longint ← Number of columns

Description
The Get number of listbox columns command returns the total number of columns (visible
or invisible) present in the list box set in the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information on object names, refer to the Object Properties section.

See also
DELETE LISTBOX COLUMN.

4th Dimension Language Reference 755

SORT LISTBOX COLUMNS List Box

version 2004
__

SORT LISTBOX COLUMNS ({*; }object; colNum; order{; colNum2; order2; ...; colNumN;
orderN})

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
colNum Longint → Number(s) of column(s) to sort
order > or < → > to sort in ascending order or

< to sort in descending order

Description
The SORT LISTBOX COLUMNS command sorts the rows of the list box set in the object
and * parameters on the basis of one or more column value(s).

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

In colNum, pass the number of the column whose values you want to use as the sort
criteria. You can use any type of array data, except pictures and pointers.

In order, pass the symbol > or < to indicate the sort order. If order contains the “greater
than” symbol (>), the sort order is ascending. If order contains the “less than” symbol
(<), the sort oder is descending.

You can define multi-level sorts: to do so, pass as many pairs (colNum;order) as necessary.
The sorting level is defined by the position of the parameter in the call.

In conformity with the principle of list box operation, the columns are synchronized
which means that the sorting of a column is automatically passed on to all the other
columns of the object.

756 4th Dimension Language Reference

SET LISTBOX COLUMN WIDTH List Box

version 2004
__

SET LISTBOX COLUMN WIDTH ({*; }object; width)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
width Integer → Column width (in pixels)

Description
The SET LISTBOX COLUMN WIDTH command allows you to modify through
programming the width of one or all column(s) of the object (list box, column or header)
set using the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (a string). If you do not pass this paraemter, you indicate that the object parameter
is a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Pass the new width (in pixels) of the object in the width parameter.
• If object sets the list box object, all columns of the list box are resized.
• If object sets a column or a column header, only the column set is resized.

See also
Get listbox column width.

4th Dimension Language Reference 757

Get listbox column width List Box

version 2004
__

Get listbox column width ({*; }object) → Integer

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)

Function result Integer ← Column width (in pixels)

Description
The Get listbox column width command returns the width (in pixels) of the column set in
the object and * parameters. You can pass either a list box column or a column header in
the object parameter.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

See also
SET LISTBOX COLUMN WIDTH.

758 4th Dimension Language Reference

MOVED LISTBOX COLUMN NUMBER List Box

version 2004
__

MOVED LISTBOX COLUMN NUMBER ({*; }object; oldPosition; newPosition)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
oldPosition Number ← Previous position of the moved column
newPosition Number ← New position of the moved column

Description
The MOVED LISTBOX COLUMN NUMBER command returns two numbers in oldPosition
and newPosition indicating respectively the previous position and the new position of the
column moved in the list box, specified by the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

This command must be used with the form event On column moved (see the Form event
command).

Note: This command takes invisible columns into account.

See also
Form event, MOVED LISTBOX ROW NUMBER.

4th Dimension Language Reference 759

SELECT LISTBOX ROW List Box

version 2004
__

SELECT LISTBOX ROW ({*; }object; position{; action})

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
position Longint → Number of the row to select
action Longint → Selection action

Description
The SELECT LISTBOX ROW command selects the row whose number is passed in position in
the list box set in the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

The optional Parameter action parameter, if used, is used to define the selection action to
execute when a selection of rows already exists in the list box. You can pass a value or one
of the following constants (located in the “List box” theme):
• Replace listbox selection (0): The selected row becomes the new selection and replaces the
existing selection. The command has the same effect as a user click on a row. This action
is done by default (if the action parameter is omitted).
• Add to listbox selection (1): The selected row is added to the existing selection. If the
specified row already belongs to the existing selection, the command does nothing.
• Remove from listbox selection (2): The selected row is removed from the existing
selection. If the specified row does not belong to the existing selection, the command
does nothing.

Notes:
• If you want the list box to scroll automatically in order to display the selected row, use
the SCROLL LINES command.
• To switch a row into editing mode (to allow data entry), use the EDIT ITEM command.

See also
DELETE LISTBOX ROW, EDIT ITEM, INSERT LISTBOX ROW, SCROLL LINES.

760 4th Dimension Language Reference

INSERT LISTBOX ROW List Box

version 2004
__

INSERT LISTBOX ROW ({*; }object; position)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
position Longint → Position of the row to insert

Description
The INSERT LISTBOX ROW command inserts a new row in the list box set in the object and
* parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

The row is inserted at the position set by the position parameter. A new row is
automatically added at this position in all the arrays used by the list box columns,
whatever their type and their visibility.

If the position value is higher than the total number of rows in the list box, the row is
added at the end of each array.

See also
DELETE LISTBOX ROW.

4th Dimension Language Reference 761

DELETE LISTBOX ROW List Box

version 2004
__

DELETE LISTBOX ROW ({*; }object; position)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
position Longint → Position of the row to delete

Description
The DELETE LISTBOX ROW command deletes the row number position (visible or not)
from the list box set in the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Keep in mind that after command execution, there will no longer be any element
selected in the list box.

The position row is automatically removed from all the arrays used by the list box
columns.
If the position value is higher than the total number of rows in the list box, the command
does nothing.

See also
Get number of listbox rows, INSERT LISTBOX ROW.

762 4th Dimension Language Reference

Get number of listbox rows List Box

version 2004
__

Get number of listbox rows ({*; }object) → Longint

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)

Function result Longint ← Number of rows

Description
The Get number of listbox rows command returns the number of rows in the list box set in
the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Note: If the arrays associated with the columns of a List box do not all have the same size,
only the number of items corresponding to the smallest array will appear in the list box
and thus be returned by this command.

See also
DELETE LISTBOX ROW, INSERT LISTBOX ROW.

4th Dimension Language Reference 763

SET LISTBOX ROWS HEIGHT List Box

version 2004
__

SET LISTBOX ROWS HEIGHT (*; object; height)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
height Integer → Row height (in pixels)

Description
The SET LISTBOX ROWS HEIGHT command allows you to modify by programming the row
height in the list box object set using the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

See also
Get listbox rows height.

764 4th Dimension Language Reference

Get listbox rows height List Box

version 2004
__

Get listbox rows height ({*; }object) → Integer

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)

Function result Integer ← Row height (in pixels)

Description
The Get listbox rows height command returns the current row height (in pixels) in the list
box object set using the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

See also
SET LISTBOX ROWS HEIGHT.

4th Dimension Language Reference 765

MOVED LISTBOX ROW NUMBER List Box

version 2004
__

MOVED LISTBOX ROW NUMBER ({*; }object; oldPosition; newPosition)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
oldPosition Number ← Previous position of the moved row
newPosition Number ← New position of the moved row

Description
The MOVED LISTBOX ROW NUMBER command returns two numbers in oldPosition and
newPosition indicating respectively the previous position and the new position of the row
moved in list box, specified by the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

This command must be used with the form event On row moved (see the Form event
command).

See also
Form event, MOVED LISTBOX COLUMN NUMBER.

766 4th Dimension Language Reference

GET LISTBOX ARRAYS List Box

version 2004
__

GET LISTBOX ARRAYS ({*; }object; arrColNames; arrHeaderNames; arrColVars; arrHeaderVars;
arrVisible; arrStyles)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
arrColNames Array string ← Column object names
arrHeaderNames Array string ← Header object names
arrColVars Array pointer ← Pointers to column variables
arrHeaderVars Array pointer ← Pointers to header variables
arrVisible Array Boolean ← Visibility of each column
arrStyles Array pointer ← Pointers to style and color arrays

Description
The GET LISTBOX ARRAYS command returns a set of synchronized arrays providing
information on each column (visible or invisible) in the list box set in the object and *
parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Once the command is executed:
• The arrColNames array contains the list of object names for each column in the list box.
• The arrHeaderNames array contains the list of object names for each column header in
the list box.
• The arrColVars array contains pointers toward variables (arrays) associated with each
column of the list box.
• The arrHeaderVars array contains pointers toward variables associated with each column
header of the list box.
• The arrVisible array contains a Boolean value for each column, indicating whether the
column is visible (True) or hidden (False) in the list box.
• The arrStyles array contains three pointers to three arrays that allow the applying of a
specific style, font color and background color to each row of the list box. These arrays are
associated with the list box in the Property List of the Design environment. If an array is
not specified for the list box, the corresponding item in arrStyles will contain a Nil pointer.

See also
Get listbox information.

4th Dimension Language Reference 767

Get listbox information List Box

version 2004.1 (Modified)
__

Get listbox information ({*; }object; info) → Longint

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
info Longint → Information to get

Function result Longint ← Current value

Description
The Get listbox information command returns various information regarding the current
visibility and size of headers and scrollbars in the list box object set using the object and *
parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

In the dans info parameter, pass a value indicating the type of information that you want
to get. You can use a value or one of the following constants from the “List box” theme:
Constant Type Value Returned value(s)
Display listbox header Longint 0 0=hidden, 1=shown
Listbox header height Longint 1 Height in pixels
Display listbox hor scrollbar Longint 2 0=hidden, 1=shown
Listbox hor scrollbar height Longint 3 Height in pixels
Display listbox ver scrollbar Longint 4 0=hidden, 1=shown
Listbox ver scrollbar width Longint 5 Width in pixels
Position listbox hor scrollbar Longint 6 Position of the cursor in pixels
Position listbox ver scrollbar Longint 7 Position of the cursor in pixels

• The first six constants are useful for calculating the actual size of a list box area in a
form.
• When you use the constants Position listbox hor scrollbar or Position listbox ver
scrollbar, the Get listbox information command returns the position of the scrolling cursor
in relation to its original position, i.e. the size of the hidden part of the window,
expressed in pixels. By default, this position corresponds to 0. Combined, for example,
with information concerning the row height, this value lets you find out the contents
displayed in the listbox.

768 4th Dimension Language Reference

Example
Given a list box containing rows with a height of 20 pixels each. You execute the
following statement:

⇒ $scroll:=Get listbox information(*;"Listbox";Position listbox ver scrollbar)

If, for instance, $scroll returns 200, you can conclude that the 11th row is currently the
first one displayed in the list box (200/20=10, thus 10 rows are hidden).

See also
SHOW LISTBOX GRID, SHOW LISTBOX SCROLLBAR.

4th Dimension Language Reference 769

SHOW LISTBOX GRID List Box

version 2004
__

SHOW LISTBOX GRID ({*; }object; horizontal; vertical)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
horizontal Boolean → True = show, False = hide
vertical Boolean → True = show, False = hide

Description
The SHOW LISTBOX GRID command allows you to display or hide the horizontal and/or
vertical grid lines that make up the grid in the list box object set using the object and *
parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Pass the Boolean values in horizontal and vertical that indicate if the corresponding grid
lines should be displayed valeurs (True) or hidden (False). The grid is displayed by default.

See also
Get listbox information, SET LISTBOX GRID COLOR.

770 4th Dimension Language Reference

SET LISTBOX GRID COLOR List Box

version 2004
__

SET LISTBOX GRID COLOR ({*; }object; color; horizontal; vertical)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
color Number → RGB color value
horizontal Boolean → Use color for horizontal grid lines
vertical Boolean → Use color for vertical grid lines

Description
The SET LISTBOX GRID COLOR command allows you to modify the color of the grid in
the list box object set using the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

Pass the RGB color value in color. For more information on RGB colors, refer to the
description of the SET RGB COLORS command.

The horizontal and vertical parameters allow you to set the grid lines to which you will
apply a color:
• If you pass True in horizontal, the color will be applied to horizontal grid lines. If you
pass False, their color is not changed.
• If you pass True in vertical, the color will be applied to vertical grid lines. If you pass
False, their color is not changed.

See also
SET RGB COLORS, SHOW LISTBOX GRID.

4th Dimension Language Reference 771

772 4th Dimension Language Reference

27

Math

4th Dimension Language Reference 773

774 4th Dimension Language Reference

Abs Math

version 3
__

Abs (number) → Number

Parameter Type Description
number Number → Number for which to return the absolute value

Function result Number ← Absolute value of number

Description
Abs returns the absolute (unsigned, positive) value of number. If number is negative, it is
returned as positive. If number is positive, it is returned unchanged.

Example
The following example returns the absolute value of –10.3, which is 10.3:

⇒ vlVector:=Abs(–10.3)

4th Dimension Language Reference 775

Int Math

version 3
__

Int (number) → Number

Parameter Type Description
number Number → Number whose integer portion is returned

Function result Number ← Integer portion of number

Description
Int returns the integer portion of number. Int truncates a negative number away from
zero.

Examples
The following example illustrates how Int works for both positive and negative numbers.
Note that the decimal portion of the number is removed:

⇒ vlResult:=Int (123.4) ` vlResult gets 123
⇒ vlResult:=Int(–123.4) ` vlResult gets –124

See Also
Dec.

776 4th Dimension Language Reference

Dec Math

version 3
__

Dec (number) → Number

Parameter Type Description
number Number → Number whose decimal portion is returned

Function result Number ← Decimal part of number

Description
Dec returns the decimal (fractional) portion of number. The value returned is always
positive or zero.

Examples
The following example takes a monetary value expressed as a real number, and extracts
the dollar part and the cents part. If vrAmount is 7.31, then vlDollars is set to 7 and vlCents
is set to 31:

vlDollars:=Int (vrAmount) ` Get the dollars
⇒ vlCents:=Dec(vrAmount) * 100 ` Get the fractional part

See Also
Int.

4th Dimension Language Reference 777

Round Math

version 3
__

Round (round; places) → Number

Parameter Type Description
round Number → Number to be rounded
places Number → Number of decimal places used for rounding

Function result Number ← Number rounded to the number of
decimal places specified by Places

Description
Round returns number rounded to the number of decimal places specified by places.

If places is positive, number is rounded to places decimal places. If places is negative,
number is rounded on the left of the decimal point.

If the digit following places is 5 though 9, Round rounds toward positive infinity for a
positive number, and toward negative infinity for a negative number. If the digit
following places is 0 through 4, Round rounds toward zero.

Examples
The following example illustrates how Round works with different arguments. Each line
assigns a number to the vlResult variable. The comments describe the results:

⇒ vlResult:=Round (16.857; 2) ` vlResult gets 16.86
⇒ vlResult:=Round (32345.67; –3) ` vlResult gets 32000
⇒ vlResult:=Round (29.8725; 3) ` vlResult gets 29.873
⇒ vlResult:=Round (–1.5; 0) ` vlResult gets –2

See Also
Trunc.

778 4th Dimension Language Reference

Trunc Math

version 3
__

Trunc (number; places) → Number

Parameter Type Description
number Number → Number to be truncated
places Number → Number of decimal places used for truncating

Function result Number ← Number with its decimal part truncated to the
number of decimal places specified by Places

Description
Trunc returns number with its decimal part truncated to the number of decimal places
specified by places. Trunc always truncates toward negative infinity.

If places is positive, number is truncated to places decimal places. If places is negative,
number is truncated on the left of the decimal point.

Examples
The following example illustrates how Trunc works with different arguments. Each line
assigns a number to the vlResult variable. The comments describe the results:

⇒ vlResult := Trunc (216.897; 1) ` vlResult gets 216.8
⇒ vlResult := Trunc (216.897; –1) ` vlResult gets 210
⇒ vlResult := Trunc (–216.897; 1) ` vlResult gets –216.9
⇒ vlResult := Trunc (–216.897; –1) ` vlResult gets –220

See Also
Round.

4th Dimension Language Reference 779

Random Math

version 3
__

Random → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Random number

Description
Random returns a random integer value between 0 and 32,767 (inclusive).

To define a range of integers, use this formula:

(Random%(End–Start+1))+Start

The value start is the first number in the range, and the value end is the last.

Example
The following example assigns a random integer between 10 and 30 to the vlResult
variable:

⇒ vlResult:=(Random%21)+10

780 4th Dimension Language Reference

Mod Math

version 3
__

Mod (number1; number2) → Number

Parameter Type Description
number1 Number → Number to divide
number2 Number → Number to divide by

Function result Number ← Returns the remainder

Description
The Mod command returns the remainder of the Integer division of number1 by
number2.

Notes:
• Mod accepts Integer, Long Integer, and Real expressions. However, if number1 or
number2 are real numbers, the numbers are first rounded and then Mod is calculated.
• Be careful when using Mod with real numbers of a large size (above 2^31) since, in this
case, its operation may reach the limits of the calculation capacities of standard
processors.

You can also use the % operator to calculate the remainder (see Numeric Operators).

WARNING: The % operator returns valid results with Integer and Long Integer
expressions. To calculate the modulo of real values, you must use the Mod command.

Example
The following example illustrates how the Mod function works with different arguments.
Each line assigns a number to the vlResult variable. The comments describe the results:

⇒ vlResult:=Mod(3;2) ` vlResult gets 1
⇒ vlResult:=Mod(4;2) ` vlResult gets 0
⇒ vlResult:=Mod(3.5;2) ` vlResult gets 0

See Also
Numeric Operators.

4th Dimension Language Reference 781

Square root Math

version 6.0
__

Square root (number) → Number

Parameter Type Description
number Number → Number whose square root is calculated

Function result Number ← Square root of the number

Description
Square root returns the square root of number.

Examples
1. The line:

⇒ $vrSquareRootOfTwo := Square root (2)

assigns the value 1.414213562373 to the variable $vrSquareRootOfTwo.

2. The following method returns the hypotenuse of the right triangle whose two legs are
passed as parameters:

` Hypotenuse method
` Hypotenuse (real ; real) -> real
` Hypotenuse (legA ; legB) -> Hypotenuse

C_REAL($0;$1;$2)
⇒ $0 := Square root(($1^2)+($2^2))

For instance, Hypotenuse (4;3) returns 5.

See Also
Numeric Operators.

782 4th Dimension Language Reference

Log Math

version 3
__

Log (number) → Number

Parameter Type Description
number Number → Number for which to return the log

Function result Number ← Log of number

Description
Log returns the natural (Napierian) log of number. Log is the inverse function of Exp.

Note: 4D provides the predefined constant e number (2.71828...).

Example
The following line displays 1:

⇒ ALERT(String(Log(Exp(1)))

See Also
Exp.

4th Dimension Language Reference 783

Exp Math

version 3
__

Exp (number) → Number

Parameter Type Description
number Number → Number to evaluate

Function result Number ← Natural log base by the power of number

Description
Exp raises the natural log base (e = 2.71828...) by the power of number. Exp is the inverse
function of Log.

Note: 4D provides the predefined constant e number (2.71828...).

Example
The following example assigns the exponential of 1 to vrE (the log of vrE is 1):

⇒ vrE := Exp (1) ` vrE gets 2.17828...

See Also
Log.

784 4th Dimension Language Reference

Sin Math

version 3
__

Sin (number) → Number

Parameter Type Description
number Number → Number, in radians, whose sine is returned

Function result Number ← Sine of number

Description
Sin returns the sine of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Cos, Tan.

4th Dimension Language Reference 785

Cos Math

version 3
__

Cos (number) → Number

Parameter Type Description
number Number → Number, in radians, whose cosine is returned

Function result Number ← Cosine of number

Description
Cos returns the cosine of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Sin, Tan.

786 4th Dimension Language Reference

Tan Math

version 3
__

Tan (number) → Number

Parameter Type Description
number Number → Number, in radians, whose tangent is returned

Function result Number ← Tangent of number

Description
Tan returns the tangent of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Cos, Sin.

4th Dimension Language Reference 787

Arctan Math

version 3
__

Arctan (number) → Number

Parameter Type Description
number Number → Tangent for which to calculate the angle

Function result Number ← Angle in radians

Description
Arctan returns the angle, expressed in radians, of the tangent number.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

Examples
The following example shows the value of Pi:

⇒ ALERT("Pi is equal to: "+String(Arctan(1)*4))

See Also
Cos, Sin, Tan.

788 4th Dimension Language Reference

SET REAL COMPARISON LEVEL Math

version 6.0
__

SET REAL COMPARISON LEVEL (epsilon)

Parameter Type Description
epsilon Number → Epsilon value for real equality comparisons

Description
The command SET REAL COMPARISON LEVEL sets the epsilon value used by 4th Dimension
to compare real values and expressions for equality.

A computer always performs approximative real computations; therefore, testing real
numbers for equality should take this approximation into account. 4th Dimension does
this when comparing real numbers by testing whether or not the difference between the
two numbers exceeds a certain value. This value is called the epsilon and works this way:

Given two real numbers a and b, if Abs(a-b) is greater than the epsilon, the numbers are
considered not equal; otherwise, the numbers are considered equal.

By default, 4th Dimension, sets the epsilon value to 10 power minus 6 (10^-6). Please
note that the epsilon value should always be positive. Examples:

• 0.00001=0.00002 returns False, because the difference 0.00001 is greater than 10^-6.
• 0.000001=0.000002 returns True, because the difference 0.000001 is not greater than
10^-6.
• 0.000001=0.000003 returns False, because the difference 0.000002 is greater than 10^-6.

Using SET REAL COMPARISON LEVEL, you can increase or decrease the epsilon value as you
require.

Note: If you want to execute a query or an "Order by" on a numeric indexed field whose
values are lower than 10^-6, make sure that the SET REAL COMPARISON LEVEL command is
executed before construction of the index.

WARNING: Typically, you will not need to use this command to change the default
epsilon value.

IMPORTANT: Changing the epsilon only affects real comparison for equality. It has no
effect on other real computations nor on the display of real values.

See Also
Comparison Operators.

4th Dimension Language Reference 789

Display of Real Numbers Math

version 2004.2 (Modified)
__

Preliminary Note
If you do not deal with cross-platform development, you can skip this section.

On computers, floating point arithmetic is more a technology than a mathematical
science. For example, you learned in school that one-third (1/3) can be written as an
infinite number of threes after the decimal point. A computer, on the other hand, does
not know this and must calculate the expression. In the same way, you know
conceptually that three times one third is equal to one; a computer calculates the
expression to get the result. Depending on the type of computer you use, one-third is
calculated as a limited number of threes after the decimal point. This number is called the
“precision” of the machine.

On older 68K-based Macintosh, the precision number is 19; this means that 1/3 is
calculated with 19 significant digits. On Windows and Power Macintosh, this number is
15; so 1/3 is displayed with 15 significant digits. If you display the expression 1/3 in the
Debugger window of 4th Dimension, you will get 0.3333333333333333333 on 68K-based
Macintosh and something like 0.3333333333333333148 on Windows or Power
Macintosh. Note that the last three digits are different because the precision on Windows
and Power Macintosh is less than on the 68K-based Macintosh. Yet, if you display the
expression (1/3)*3, the result is 1 on both machines.

If your floating point arithmetic computations deal with the number of square feet in
your backyard, you will say “Fine with me!” because you do not care about the digits after
the decimal point. On the other hand, if you are filling out an IRS form, you may, in
certain circumstances, care about the accuracy of your computer. However, remember
that 19 or 15 digits after the decimal point are quite sufficient even if you manage
billions of dollars of revenue.

Why does the value 1/3 seem different on 68K Macintosh and onWindows or Power
Macintosh?

On 68K-based Macintosh, the operating system stores real numbers on 10 bytes (80 bits),
while on Windows and Power Macintosh, it stores them on 8 bytes (64 bits). This is why
real numbers have up to 19 significant digits on 68K-based Macintosh and up to 15
significant digits on Windows and Power Macintosh.

So, why does the expression (1/3)*3 return 1 on both machines?

790 4th Dimension Language Reference

A computer can only make approximate computations. Therefore, while comparing or
computing numbers, a computer does not treat real numbers as mathematical objects but
as approximate values. In our example, 0.3333... multiplied by 3 gives 0.9999...; the
difference between 0.9999... and 1 is so small that the machine considers the result equal
to 1, and consequently returns 1. For details on this subject, see the discussion for the
command SET REAL COMPARISON LEVEL.

There is dual behavior of real numbers, so we must make the distinction between:
• How they are calculated and compared
• How they are displayed on the screen or printer

Originally, 4th Dimension handled real numbers using the standard 10-byte data type
provided by the operating system of the 68K-based Macintosh. Consequently, real values
stored in the data file on disk are saved using this format. In order to maintain
compatibility between the 68K, Power Macintosh, and Windows versions of 4th
Dimension, the 4th Dimension data files still hold the real values using the 10-byte data
type. Because floating point arithmetic is performed on Windows or Power Macintosh
using the 8 byte format, 4th Dimension converts the values from 10 bytes to 8 bytes, and
vice versa. Therefore, if you load a record containing real values, which have been saved
on 68K-based Macintosh, onto Windows or Power Macintosh, it is possible to lose some
precision (from 19 to 15 significant digits). Yet, if you load a record containing real
values, which have been saved on Windows or Power Macintosh, on a 68K-based
Macintosh, there will be no loss of precision. Basically, if you use a database on 68K or
Power Macintosh and Windows, count on floating point arithmetic with 15 significant
digits, not 19.

Using the SET DATABASE PARAMETER command, you can set the number of digits to be
skipped (4 by default) when simplifying the display of real numbers.

4th Dimension Language Reference 791

Euro converter Math

version 6.7 (Modified)
__

Euro converter (value; fromCurrency; toCurrency) → Real

Parameter Type Description
value Real → Value to convert
fromCurrency String → Code of the currency in which the value is expressed
toCurrency String → Code of the currency into which the value must be

converted

Function result Real ← Converted value

Description
The command Euro converter allows you to convert any value from and to the different
currencies belonging to the “Euroland” and the Euro currency itself.

You can convert:
• a national currency into Euros,
• Euros into a national currency,
• a national currency into another national currency. In this case, the conversion is
calculated by the intermediary of the Euro, as specified in the European reglementation.
For example, to convert Belgian francs to Deutschemarks, 4D will perform the following
calculations: Belgian francs -> Euros -> Deutchemarks.

Pass the value to convert in the first parameter.
The second parameter indicates the Currency code in which value is expressed.
The third parameter indicates the Currency code into which value must be converted.

To specify a Currency code, 4th Dimension proposes the following predefined constants,
placed in the “Euro Currencies” theme:

Constant Type Value
Austrian Schilling String ATS
Belgian Franc String BEF
Deutschemark String DEM
Euro String EUR
Finnish Markka String FIM
French Franc String FRF
Greek drachma String GRD
Irish Pound String IEP
Italian Lire String ITL
Luxembourg Franc String LUF
Netherlands Guilder String NLG
Portuguese Escudo String PTE
Spanish Peseta String ESP

792 4th Dimension Language Reference

If necessary, 4th Dimension performs rounding automatically on conversion results and
keeps 2 decimals —except for conversions to Italian Lires, Belgian Francs, Luxembourg
Francs and Spanish Pesetas, for which 4D keeps 0 decimal (the result is an integer
number).

The conversion rates between the Euro and the currencies of the 11 participating Member
States are fixed:

Currency Value for 1 Euro
Austrian Schilling 13.7603
Belgian Franc 40.3399
Deutschemark 1.95583
Finnish Markka 5.94573
French Franc 6.55957
Greek drachma 340.750
Irish Pound 0.787564
Italian Lire 1936.27
Luxembourg Franc 40.3399
Netherlands Guilder 2.20371
Portuguese Escudo 200.482
Spanish Peseta 166.386

Example
Here are some examples of conversions that can be done with this command:

$value:=10000 `Value expressed in French Francs
`Convert the value into Euros

⇒ $InEuros:=Euro converter($value;French Franc; Euro)
`Convert the value into Italian Lire

⇒ $InLires:=Euro converter ($value;French Franc; Italian Lire)

4th Dimension Language Reference 793

794 4th Dimension Language Reference

28

Menus

4th Dimension Language Reference 795

796 4th Dimension Language Reference

Managing Menus Menus

version 2003 (Modified)
__

Terminology
The documentation of Menus commands uses the terms menu command and menu item
interchangeably when describing a line in a menu.

Menu Bars
__

Each menu bar is identified by a number and by a name. The first menu bar (created
automatically by 4th Dimension) has the number 1 and is named Menu Bar #1 by
default. In order to rename a menu bar, Ctrl+click (Windows) or Command+click
(Mac OS) on its name in the Menu editor. The name of a menu bar may contain up to 31
characters and must be unique.

Menu Bar #1 is also the menu bar used by default. To open an application with a menu
bar other than Menu Bar #1, you must use the MENU BAR command in the On Startup
database method.

Each menu command can have a project method or a standard action attached to it. If
you do not assign a method or a standard action to a menu command, choosing that
menu command causes 4th Dimension to exit the Custom Menus environment and go
to the User environment. If the user is working with the 4th Dimension Custom Menus
version or does not have access to the User environment, this means quitting to the
Desktop.
Standard actions can be used to carry out various current operations linked to system
functions (copy, quit, etc.) or to those of the 4D database (add record, select all, etc.).
You can assign both a standard action and a project method to a menu command. In this
case, the standard action is never executed; however, 4th Dimension uses this action to
activate/deactivate the menu command according to the current context. When a menu
command is deactivated, the associated project method cannot be executed.

Every menu bar comes equipped with three menus—the File, Edit and Mode menus.

• The File menu has only one menu command—Quit. The Quit standard action is
assigned to it. This action displays an "Are you sure?" confirmation dialog box then quits
the 4D application if this dialog box is validated. Otherwise, the operation is cancelled.

Note: Under Mac OS X, the created menu command associated with the Quit action is
automatically placed in the application menu when the database is executed on this
system.

You can rename the File menu, add menu commands to it or keep it as is. It is
recommended that you always keep Quit as the last menu command in the File menu.

4th Dimension Language Reference 797

• The Edit menu contains the standard editing menu commands. A standard action
(Cancel, Cut, Copy, etc.) is assigned to each command of this menu. You can add
commands to this menu or use your own methods for managing editing actions.

• The Mode menu contains the Design, User and Custom Menus commands by default.
These commands are used to access the different environments of 4D from the Custom
Menus mode.

Note: 4th Dimension automatically manages the Help, Apple (Mac OS) and application
(Mac OS X) system menus. These menus cannot be modified, except for the About 4th
Dimension command, which can be managed using the SET ABOUT command.

Warning: Menu bars are "interprocess." Any modification carried out on a menu bar will
be reflected in all the processes where the menu bar is used.

Menu Numbers and Menu Command Numbers
__

Like menu bars, menus are numbered. The File menu is menu 1. Thereafter, menus are
numbered sequentially from left to right (2, 3, 4, and so on). Menu numbering is
important when you are working, for example, with the Menu selected function. When a
menu is associated with a form, the menu numbering scheme is different. The first
appended menu begins with the number 2049. To refer to an appended menu, add 2048
to the normal menu number.

The menu commands within each menu are numbered sequentially from the top of the
menu to the bottom. The topmost menu command is item 1.

Associated Menu Bars
__

You can associate a menu bar with a form in the Form properties (General page). Such a
menu bar is called a “form menu bar” in this document.

The menus on a form menu bar are appended to the current menu bar when the form is
displayed. The menus are appended for input forms in both the User and Custom Menus
environments and for output forms in the Custom Menus environment.

Form menu bars are specified by a menu bar number and a name. If the number or name
of the menu bar displayed with the current form is the same as that of the menu bar
appended to the form, the menu bar is not appended.

By default, when a form is displayed with a custom menu bar, the commands of the
current menu bar are deactivated, i.e. selecting them has no effect. You can modify this
operation by checking the Active Menu Bar option in the Form properties: in this case,
the commands of the current menu bar will remain usable.

798 4th Dimension Language Reference

In every case, the selection of a menu command causes an On Menu Selected event to be
sent to the form method; you can then use the Menu selected command to test the
selected menu.

Modifying Menu Items Programmatically
__

4th Dimension provides the following commands for adding, deleting, inserting or
modifying menu items in a menu of the menu bar currently displayed or installed in a
process:

• ENABLE MENU ITEM
• DISABLE MENU ITEM
• SET MENU ITEM
• SET MENU ITEM STYLE
• SET MENU ITEM MARK
• SET MENU ITEM KEY
• APPEND MENU ITEM
• INSERT MENU ITEM
• DELETE MENU ITEM

The scope of each of these commands is the current use of the menu bar. As soon as you
call MENU BAR again, all the menus and menu items will return to their original state as
defined in the Design environment Menu Bar editor.

Each of these commands expects a menu and a menu item number.

As explained, menus are numbered 1 to X from left to right. For example, File is usually
the first menu. The Apple (Mac OS) and Application (Mac OS X) menus are excluded from
this numbering. The Help menu is also excluded no matter what the platform.

Note that the Count menus command does not take these menus into account. For
example, if you have a menu bar composed of the File, Edit, Customers, Invoices and
Help menus, Count menus will return 4, ignoring the system menus maintained by 4D.

Menu items are numbered 1 to X, from top to bottom, including separator lines.

Menus that are inserted in the menu bar by means of a menu bar associated with a form,
and therefore appended to the current menu bar, are numbered from left to right starting
with the number 2049 (2048 + 1 to X).

The Menu selected command returns menu and menu item numbers using that
convention.

Warning: These commands cannot access the system menus.

Connected Menus: Menus can be connected to menu bars. If a connected menu is
modified using one of these commands, every other instance of the menu will reflect
these changes. For more information about connecting menus, refer to the 4th Dimension
Design Reference Manual.

4th Dimension Language Reference 799

MENU BAR Menus

version 2003 (Modified)
__

MENU BAR (menuBar{; process{; *}})

Parameter Type Description
menuBar Number → Number or name of the menu bar
process Number → Process reference number
* → Save menu bar state

Description
MENU BAR replaces the current menu bar with the one specified by menuBar for the
current process only. In the menuBar parameter, you can pass either the number or name
of the new menu bar.

Note: The name of a menu bar may contain up to 31 characters and must be unique.

The optional process parameter changes the menu bar of the specified process to menuBar.
The optional * parameter allows you to save the state of the menu bar. If this parameter is
omitted, MENU BAR reinitializes the menu bar when the command is executed.

For example, suppose that MENU BAR(1) is executed. Next, several menu commands are
disabled using the DISABLE MENU ITEM command.

If MENU BAR(1) is executed a second time, either from the same process or from a
different process, all menu commands will revert to their initial enabled state.

If MENU BAR(1;*) is executed, the menu bar will retain the same state as before, and the
menu commands that were disabled will remain disabled.

Note: If you do not use the optional process parameter, * can be the second parameter. In
other words, MENU BAR(1;2;*) and MENU BAR(1;*) are both valid statements.

When a user enters the Custom Menus environment, the first menu bar is displayed
(Menu Bar #1). You can change this menu bar when opening a database by specifying the
desired menu bar in the On Startup database method or in the startup method for an
individual user.

800 4th Dimension Language Reference

Examples
1. The following example changes the current menu bar to menu bar #3 and resets the
states of the menu commands to their original states:

⇒ MENU BAR (3)

2. The following example changes the current menu bar to the menu bar named
“FormMenuBar1” and saves the states of the menu commands. Menu commands that
were previously disabled will appear disabled.

⇒ MENU BAR ("FormMenuBar1";*)

3. The following example sets the current menu bar to menu bar #3 while records are
being modified. After the records have been modified, the menu bar is reset to menu bar
#2, with the menu state saved:

⇒ MENU BAR(3)
ALL RECORDS([Customers])
MODIFY SELECTION([Customers])

⇒ MENU BAR(2;*)

See Also
Managing Menus.

4th Dimension Language Reference 801

HIDE MENU BAR Menus

version 6.0
__

HIDE MENU BAR

Parameter Type Description
This command does not require any parameters

Description
The command HIDE MENU BAR makes the menu bar invisible.

If the menu bar was already hidden, the command does nothing.

Example
The following method displays a record in full-screen display (Macintosh) until you click
the mouse button:

HIDE TOOL BAR
⇒ HIDE MENU BAR

Open window(-1;-1;1+Screen width;1+Screen height;Alternate dialog box)
INPUT FORM([Paintings];"Full Screen 800")
DISPLAY RECORD([Paintings])
Repeat

GET MOUSE($vlX;$vlY;$vlButton)
Until($vlButton#0)
CLOSE WINDOW
SHOW MENU BAR
SHOW TOOL BAR

Note: On Windows, the window will be limited to the bounds of the application window.

See Also
HIDE TOOL BAR, SHOW MENU BAR, SHOW TOOL BAR.

802 4th Dimension Language Reference

SHOW MENU BAR Menus

version 6.0
__

SHOW MENU BAR

Parameter Type Description
This command does not require any parameters

Description
The command SHOW MENU BAR makes the menu bar visible.

If the menu bar was already visible, the command does nothing.

Example
See example for the command HIDE MENU BAR.

See Also
HIDE MENU BAR, HIDE TOOL BAR, SHOW TOOL BAR.

4th Dimension Language Reference 803

SET ABOUT Menus

version 2003 (Modified)
__

SET ABOUT (itemText; method)

Parameter Type Description
itemText String → New About menu item text
method String → Method to execute when menu item is chosen

Description
The SET ABOUT command changes the About 4th Dimension menu command in the
Help (Windows) or Apple (Mac OS) menu or in the Application (Mac OS X) menu to
itemText.

After the call, when a user selects this menu command, method will be called. Typically,
this method can open a dialog box to give version information about your database.

The 4th Dimension icon and version number, as well as a single-line copyright notice will
be appended across the top of the dialog box.

Examples
1. The following example replaces the About 4th Dimension menu command with the
About Scheduler menu command. The ABOUT method displays a custom About box:

⇒ SET ABOUT(“About Scheduler…”; “ABOUT”)

2. The following example resets the About 4th Dimension menu command back to the
original About box:

⇒ SET ABOUT("About 4th Dimension®";"")

804 4th Dimension Language Reference

Menu selected Menus

version 3
__

Menu selected → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Menu command selected
Menu number in high word
Menu item number in low word

Description
Menu selected is used only when forms are displayed. It detects which menu command
has been chosen from a menu.

Tip: Whenever possible, use methods associated with menu commands in an associated
menu bar (with a negative menu bar number) instead of using Menu selected. Associated
menu bars are easier to manage, since it is not necessary to test for their selection.
However, if you use the commands APPEND MENU ITEM or INSERT MENU ITEM, you have
to use Menu selected because the menu items added by these commands do not have
associated methods.

Menu selected returns the menu-selected number, a long integer. To find the menu
number, divide Menu selected by 65,536 and convert the result to an integer. To find the
menu command number, calculate the modulo of Menu selected with the modulus
65,536. Use the following formulas to calculate the menu number and menu command
number:

⇒ Menu := Menu selected \ 65536
⇒ menu command := Menu selected % 65536

Starting with version 6, you can also extract these values using the bitwise operators as
follows:

⇒ Menu := (Menu selected & 0xFFFF0000) >> 16
⇒ menu command := Menu selected & 0xFFFF

If no menu commands are selected, Menu selected returns 0.

4th Dimension Language Reference 805

Example
The following form method uses Menu selected to supply the menu and menu command
arguments to SET MENU ITEM MARK:

Case of
: (Form event=On Menu Selected)

⇒ If (Menu selected # 0)
⇒ SET MENU ITEM MARK (Menu selected\65536;Menu selected%65536;

Char(18))
End if

End case

See Also
Managing Menus.

806 4th Dimension Language Reference

Count menus Menus

version 6.0
__

Count menus {(process)} → Number

Parameter Type Description
process Number → Process reference number

Function result Number ← Number of menus in the current menu bar

Description
The command Count menus returns the number of menus present in the menu bar.

If you omit the process parameter, Count menus applies to the menu bar for the current
process. Otherwise, Count menus applies to the menu bar for the process whose reference
number is passed in process.

See Also
Count menu items.

4th Dimension Language Reference 807

Count menu items Menus

version 6.0
__

Count menu items (menu{; process}) → Number

Parameter Type Description
menu Number → Menu number
process Number → Process reference number

Function result Number ← Number of menu items in the menu

Description
The command Count menu items returns the number of menu items present in the menu
whose number is passed in menu.

If you omit the process parameter, Count menu items applies to the menu bar for the
current process. Otherwise, Count menu items applies to the menu bar for the process
whose reference number is passed in process.

See Also
Count menus.

808 4th Dimension Language Reference

Get menu title Menus

version 6.0
__

Get menu title (menu{; process}) → String

Parameter Type Description
menu Number → Menu number
process Number → Process reference number

Function result String ← Title of the menu

Description
The command Get menu title returns the title of the menu whose number is passed in
menu.

If you omit the process parameter, Get menu title applies to the menu bar for the current
process. Otherwise, Get menu title applies to the menu bar for the process whose reference
number is passed in process.

See Also
Count menus.

4th Dimension Language Reference 809

Get menu item Menus

version 6.0
__

Get menu item (menu; menuItem{; process}) → String

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Process reference number

Function result String ← Text of the menu item

Description
The command Get menu item returns the text of the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item applies to the menu bar for the current
process. Otherwise, Get menu item applies to the menu bar for the process whose reference
number is passed in process.

See Also
Get menu item key, SET MENU ITEM.

810 4th Dimension Language Reference

SET MENU ITEM Menus

version 3
__

SET MENU ITEM (menu; menuItem; itemText{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
itemText String → New text for the menu item
process Number → Process reference number

Description
The command SET MENU ITEM changes the text of the menu item whose menu and item
numbers are passed in menu and menuItem, to the text passed in itemText.

If you omit the process parameter, SET MENU ITEM applies to the menu bar for the
current process. Otherwise, SET MENU ITEM applies to the menu bar for the process whose
reference number is passed in process.

See Also
Get menu item, SET MENU ITEM KEY.

4th Dimension Language Reference 811

Get menu item style Menus

version 6.0
__

Get menu item style (menu; menuItem{; process}) → Number

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Process reference number

Function result Number ← Current menu item style

Description
The command Get menu item style returns the font style of the menu item whose menu
and item numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item style applies to the menu bar for the
current process. Otherwise, Get menu item style applies to the menu bar for the process
whose reference number is passed in process.

Get menu item style returns a combination (one or a sum) of the following predefined
constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available.

Example
To test if a menu item is displayed in bold, you write:

⇒ If ((Get menu item style($vlMenu;$vlItem) & Bold)#0)
`...

End if

See Also
SET MENU ITEM STYLE.

812 4th Dimension Language Reference

SET MENU ITEM STYLE Menus

version 6.0
__

SET MENU ITEM STYLE (menu; menuItem; itemStyle{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
itemStyle Number → New menu item style
process Number → Process reference number

Description
The command SET MENU ITEM STYLE changes the font style of the menu item whose
menu and item numbers are passed in menu and menuItem according to the font style
passed in itemStyle.

If you omit the process parameter, SET MENU ITEM STYLE applies to the menu bar for the
current process. Otherwise, SET MENU ITEM STYLE applies to the menu bar for the process
whose reference number is passed in process.

You specify the font style of the item in the itemStyle parameter. You pass a combination
(one or a sum) of the following predefined constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available.

See Also
Get menu item style.

4th Dimension Language Reference 813

Get menu item mark Menus

version 6.0
__

Get menu item mark (menu; menuItem{; process}) → String

Parameter Type Description

menu Number → Menu number
menuItem Number → Menu item number
process Number → Process reference number

Function result String ← Current menu item mark

Description

The command Get menu item mark returns the check mark of the menu item whose
menu and item numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item mark applies to the menu bar for the
current process. Otherwise, Get menu item mark applies to the menu bar for the process
whose reference number is passed in process.

If the menu item has no mark, Get menu item mark returns an empty string.

Note: See discussion of check marks on Macintosh and Windows in the description of the
command SET MENU ITEM MARK.

Example
The following example toggles the check mark of a menu item:

⇒ SET MENU ITEM MARK($vlMenu;$vlItem;Char(18)*Num(Get menu item
mark($vlMenu;$vlItem)=""))

See Also

SET MENU ITEM MARK.

814 4th Dimension Language Reference

SET MENU ITEM MARK Menus

version 3
__

SET MENU ITEM MARK (menu; item; mark{; process})

Parameter Type Description
menu Number → Menu number
item Number → Item number
mark String → New menu item mark
process Number → Process reference number

Description
The command SET MENU ITEM MARK changes the check mark of the menu item whose
menu and item numbers are passed in menu and menuItem to the first character of the
string passed in mark.

If you omit the process parameter, SET MENU ITEM MARK applies to the menu bar for the
current process. Otherwise, SET MENU ITEM MARK applies to the menu bar for the process
whose reference number is passed in process.

If you pass an empty string, any mark is removed from the menu item. Otherwise:
• On Macintosh, the first character of the string becomes the mark of the menu item.
Usually, you will pass Char (18), which is the check mark character for Macintosh menus.
• On Windows, the menu item is assigned the standard check mark.

Example
See example for the command Get menu item mark.

See Also
Get menu item mark.

4th Dimension Language Reference 815

Get menu item key Menus

version 6.0
__

Get menu item key (menu; menuItem{; process}) → Number

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Process reference number

Function result Number ← ASCII code of menu item key

Description
The command Get menu item key returns the ASCII code of the Ctrl (Windows) or
Command (Macintosh) shortcut for the menu item whose menu and item numbers are
passed in menu and menuItem.

If you omit the process parameter, Get menu item key applies to the menu bar for the
current process. Otherwise, Get menu item key applies to the menu bar for the process
whose reference number is passed in process.

If the menu item has no shortcut, Get menu item key returns 0 (zero).

See Also
SET MENU ITEM KEY.

816 4th Dimension Language Reference

SET MENU ITEM KEY Menus

version 6.0
__

SET MENU ITEM KEY (menu; menuItem; itemKey{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
itemKey Number → ASCII code of new menu item key
process Number → Process reference number

Description
The command SET MENU ITEM KEY changes the Ctrl (Windows) or Command
(Macintosh) shortcut for the the menu item whose menu and item numbers are passed in
menu and menuItem, to the character whose ASCII code is passed in itemKey.

If you omit the process parameter, SET MENU ITEM KEY applies to the menu bar for the
current process. Otherwise, SET MENU ITEM KEY applies to the menu bar for the process
whose reference number is passed in process.

If you pass 0 (zero) in itemKey, any shortcut is removed from the menu item.

Note: For consistency in the user interface, use uppercase characters, digits or symbols
that are available on the keyboard, without using any modifier key other than the Ctrl
(Windows) or Command (Macintosh) key.

See Also
Get menu item key.

4th Dimension Language Reference 817

DISABLE MENU ITEM Menus

version 3
__

DISABLE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Proces reference number

Description
The command DISABLE MENU ITEM disables the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, DISABLE MENU ITEM applies to the menu bar for the
current process. Otherwise, DISABLE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Tip: To enable/disable all items of a menu at once, pass 0 (zero) in menuItem.

See Also
ENABLE MENU ITEM.

818 4th Dimension Language Reference

ENABLE MENU ITEM Menus

version 3
__

ENABLE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Proces reference number

Description
The command ENABLE MENU ITEM enables the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, ENABLE MENU ITEM applies to the menu bar for the
current process. Otherwise, ENABLE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Tip: To enable/disable all items of a menu at once, pass 0 (zero) in menuItem.

See Also
DISABLE MENU ITEM.

4th Dimension Language Reference 819

APPEND MENU ITEM Menus

version 6.0
__

APPEND MENU ITEM (menu; itemText{; process})

Parameter Type Description
menu Number → Menu number
itemText String → Text for the new menu items
process Number → Process reference number

Description
The APPEND MENU ITEM command appends new menu items to the menu whose
number is passed in menu.

If you omit the process parameter, APPEND MENU ITEM applies to the menu bar for the
current process. Otherwise, APPEND MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

APPEND MENU ITEM allows you to append one or several menu items in one call.

You define the items to be appended with the parameter itemText as follows:
• Separate each item from the next one with a semi-colon (;). For example,
 "ItemText1;ItemText2;ItemText3".
• To disable an item: Place an opening parenthesis (() in the item text.
• To specify a separation line: Pass "(-" as item text.
• To specify a font style for a line: In the item text, place a less than sign (<) followed by
one of these characters:

<B Bold
<I Italic
<U Underline
<O Outline (Macintosh only)
<S Shadow (Macintosh only)

• To add a check mark to an item: In the item text, place an exclamation mark (!)
followed by the character you want as a check mark. On Macintosh, the character is
displayed; on Windows, a check mark is displayed no matter what character you passed.
• To add an icon to an item: In the item text, place a circumflex accent (^) followed by a
character whose ASCII code plus 208 is the resource ID of a Mac OS-based icon resource.
• To add a shortcut to an item: In the item text, place a slash (/) followed by the shortcut
character for the item.

Note: Use menus that have a reasonable number of items. If you want to display more
than 50 items, think about a using scrollable area in a form instead of a menu.

820 4th Dimension Language Reference

Note: APPEND MENU ITEM accepts up to 32,000 characters, while INSERT MENU ITEM
accepts up to 255 characters.

Important: The new items do not have any associated method. Therefore, they must be
managed from within a form method using the Menu selected command.

Example
This example appends the names of the available fonts to the Font menu, which in this
example is the sixth menu of the current menu bar:

` In the On Startup database method
` The font list is loaded and menu item text is built

FONT LIST(◊asAvailableFont)
◊atFontMenuItems:=""
For ($vlFont;1;Size of array(◊asAvailableFont))

◊atFontMenuItems:=◊atFontMenuItems+";"+◊asAvailableFont{$vlFont}
End for

Then, in any form or project method, you can write:

⇒ APPEND MENU ITEM(6;◊atFontMenuItems)

See Also
DELETE MENU ITEM, INSERT MENU ITEM.

4th Dimension Language Reference 821

INSERT MENU ITEM Menus

version 6.0
__

INSERT MENU ITEM (menu; afterItem; itemText{; process})

Parameter Type Description
menu Number → Menu number
afterItem Number → Menu item number
itemText String → Text for the menu item to be inserted
process Number → Process reference number

Description
The INSERT MENU ITEM command inserts new menu items into the menu whose number
is passed in menu after the existing menu item whose number is passed in afterItem.

If you omit the process parameter, INSERT MENU ITEM applies to the menu bar for the
current process. Otherwise, INSERT MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

INSERT MENU ITEM allows to you insert one or several menu items in one call.

INSERT MENU ITEM works like APPEND MENU ITEM, except for the following differences:
• INSERT MENU ITEM enables you to insert items anywhere in the menu, while APPEND
MENU ITEM always adds them at the end of the menu.
• With INSERT MENU ITEM, the item definition passed in itemText is limited to 255
characters, while with APPEND MENU ITEM, itemText is limited to 32,000 characters.

See the description of the APPEND MENU ITEM command for details about the the item
definition passed in itemText.

Important: The new items do not have any associated method. Therefore, they must be
managed from within a form method using the Menu selected command.

See Also
APPEND MENU ITEM.

822 4th Dimension Language Reference

DELETE MENU ITEM Menus

version 6.0
__

DELETE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number → Menu number
menuItem Number → Menu item number
process Number → Process reference number

Description
The command DELETE MENU ITEM deletes the menu item whose menu and item numbers
are passed in menu and menuItem.

If you omit the process parameter, DELETE MENU ITEM applies to the menu bar for the
current process. Otherwise, DELETE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Note: For consistency in the user interface, do not keep a menu with no items.

See Also
APPEND MENU ITEM, INSERT MENU ITEM.

4th Dimension Language Reference 823

824 4th Dimension Language Reference

29

Messages

4th Dimension Language Reference 825

826 4th Dimension Language Reference

MESSAGES OFF Messages

version 3
__

MESSAGES OFF

Parameter Type Description
This command does not require any parameters

Description
The commands MESSAGES ON and MESSAGES OFF turn on and off the progress meters
displayed by 4th Dimension while executing time-consuming operations. By default,
messages are on.

The following table shows User environment operations that display the progress meter:
Apply Formula Quick Report Order by
Export Data Import Data Graph
Query by Form Query by Formula Query Editor

The following table lists the commands that display the progress meter:
APPLY TO SELECTION IMPORT SYLK QUERY
DISTINCT VALUES IMPORT TEXT QUERY BY FORMULA
EXPORT DIF RELATE MANY SELECTION QUERY BY EXAMPLE
EXPORT SYLK RELATE ONE SELECTION QUERY SELECTION
EXPORT TEXT REDUCE SELECTION QUERY SELECTION BY FORMULA
GRAPH TABLE QR REPORT ORDER BY FORMULA
IMPORT DIF SCAN INDEX ORDER BY

Example
The following example turns off the progress meter before doing a sort, and then turns it
back on after completing the sort:

⇒ MESSAGES OFF
ORDER BY ([Addresses];[Addresses]ZIP;>;[Addresses]Name2;>)
MESSAGES ON

4th Dimension Language Reference 827

MESSAGES ON Messages

version 3
__

MESSAGES ON

Parameter Type Description
This command does not require any parameters

Description
See the description of the MESSAGES OFF command.

828 4th Dimension Language Reference

ALERT Messages

version 6.0 (Modified)
__

ALERT (message{; ok button title})

Parameter Type Description
message String → Message to display in the alert dialog box
ok button title String → OK button title

Description
The ALERT command displays an alert dialog box composed of a note icon, a message, and
an OK button.

You pass the message to be displayed in the parameter message. This message can be up to
255 characters long. However, if the message does not fit into the message area, it can
appear truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK.” To change the title of the OK button, pass
the new custom title into the optional parameter ok button title. If necessary, the OK
button width is resized toward the left, according to the width of the custom title you
pass.

Tip: Do not call the ALERT command from the section of a form or object method that
handles the On Activate or On Deactivate form events; this will cause an endless loop.

Examples
1. This example displays an alert showing information about a company. Note that the
displayed string contains carriage returns, which cause the string to wrap to the next line:

⇒ ALERT("Company: "+[Companies]Name+Char(13)+"People in company: "+
String(Records in selection([People]))+Char(13)+"Number of parts they supply: "+

String (Records in selection([Parts])))

4th Dimension Language Reference 829

This line of code displays the following alert box (on Windows):

2. The line:

⇒ ALERT("I'm sorry Dave, I can't do that.";"Alas!")

displays the alert dialog box (on Windows) shown:

830 4th Dimension Language Reference

3. The line:

⇒ ALERT("You no longer have the access privileges for deleting these records.";"Well, I
swear I did not know that")

displays the alert dialog box (on Windows) shown:

See Also
CONFIRM, DISPLAY NOTIFICATION, Request.

4th Dimension Language Reference 831

CONFIRM Messages

version 6.0 (Modified)
__

CONFIRM (message{; OK button title{; cancel button title}})

Parameter Type Description
message String → Message to display in the confirmation dialog box
OK button title String → OK button title
cancel button title String → Cancel button title

Description
The CONFIRM command displays a confirm dialog box composed of a note icon, a
message, an OK button, and a Cancel Button.

You pass the message to be displayed in the message parameter. This message can be up to
255 characters long. If the message does not fit into the message area, it can appear
truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK” and that of the Cancel button is “Cancel.”
To change the titles of these buttons, pass the new custom titles into the optional
parameters ok button title and cancel button title. If necessary, the width of the buttons is
resized toward the left, according to the width of the custom titles you pass.

The OK button is the default button. If the user clicks the OK button or presses Enter to
accept the dialog box, the OK system variable is set to 1. If the user clicks the Cancel
button to cancel the dialog box, the OK system variable is set to 0.

Tip: Do not call the CONFIRM command from the section of a form or object method
that handles the On Activate or On Deactivate form events; this will cause an endless loop.

Examples
1. The line:

⇒ CONFIRM("WARNING: You will not be able to revert this operation.")
If (OK=1)

ALL RECORDS([Old Stuff])
DELETE SELECTION([Old Stuff])

Else
ALERT ("Operation canceled.")

End if

832 4th Dimension Language Reference

will display the confirm dialog box (on Windows) shown here:

2. The line:

⇒ CONFIRM("Do you really want to close this account?";"Yes";"No")

will display the confirm dialog box (on Windows) shown here:

3. You are writing a 4D application for the international market. You wrote a project
method that returns the correct localized text from its English version. You have also
populated an array named <>asLocalizedUIMessages,where you store the most common
words. In doing so, the line:

⇒ CONFIRM(INTL Text ("Do you want to add a new Memo?");
<>asLocalizedUIMessages{kLoc_YES};<>asLocalizedUIMessages{kLoc_NO})

could display the French confirm dialog box (on Windows) shown here:

4th Dimension Language Reference 833

4. The line:

⇒ CONFIRM("WARNING: If your pursue this operation, some records will be "+
"irremediably affected."+Char(13)+"What do you want to do?";

"Do NOT continue";"Continue")

will display the confirm dialog box (on Macintosh) shown here:

See Also
ALERT, Request.

834 4th Dimension Language Reference

Request Messages

version 6.0 (Modified)
__

Request (message{; defaultResponse{; OKButtonTitle{; CancelButtonTitle}}}) → String

Parameter Type Description
message String → Message to display in the request dialog box
defaultResponse String → Default data for the enterable text area
OKButtonTitle String → OK button title
CancelButtonTitle String → Cancel button title

Function result String ← Value entered by user

Description
The command Request displays a request dialog box composed of a message, a text input
area, an OK button, and a Cancel Button.

You pass the message to be displayed in the message parameter. This message can be up to
255 characters long. If the message does not fit into the message area, it can appear
truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK” and that of the Cancel button is “Cancel.”
To change the titles of these buttons, pass the new custom titles into the optional
parameters OKButtonTitle and CancelButtonTitle. If necessary, the width of the buttons is
resized toward the left, according to the width of the custom titles you pass.

The OK button is the default button. If you click the OK button or press Enter to accept
the dialog box, the OK system variable is set to 1. If you click the Cancel button to cancel
the dialog box, the OK system variable is set to 0.

The user can enter text into the text input area. To specify a default value, pass the default
text in the defaultResponse parameter. If the user clicks OK, Request returns the text. If
the user clicks Cancel, Request returns an empty string (""). If the response should be a
numeric or a date value, convert the string returned by Request to the proper type with
the Num or Date functions.

Tip: Do not call the Request command from the section of a form or object method that
handles the On Activate or On Deactivate form event; this will cause an endless loop.

Tip: If you need to get several pieces of information from the user, design a form and
present it with DIALOG, rather than presenting a succession of Request dialog boxes.

4th Dimension Language Reference 835

Examples
1. The line:

⇒ $vsPrompt := Request ("Please enter your name:")

will display the request dialog box (on Windows) shown here:

2. The line:

⇒ vsPrompt := Request ("Name of the Employee:";"";"Create Record";"Cancel")
If (OK=1)

ADD RECORD ([Employees])
` Note: vsPrompt is then copied into the field [Employees]Last name
` during the On Load event in the form method

End if

will display the request dialog box (on Windows) shown here:

3. The line:

⇒ $vdPrompt := Date (Request ("Enter the new date:";String (Current date)))

will display the request dialog box (on Windows) shown here:

See Also
ALERT, CONFIRM.

836 4th Dimension Language Reference

MESSAGE Messages

version 3
__

MESSAGE (message)

Parameter Type Description
message String → Message to display

Description
The MESSAGE command is usually used to inform the user of some activity. It displays
message on the screen in a special message window that opens and closes each time you
call MESSAGE, unless you work with a window you previously opened using Open window
(see the following details). The message is temporary and is erased as soon as a form is
displayed or the method stops executing. If another MESSAGE is executed, the old
message is erased.

If a window is opened with Open window, all subsequent calls to MESSAGE display the
messages in that window. The window behaves like a terminal:
• Successive messages do not erase previous messages when displayed in the window.
Instead, they are concatenated onto existing messages.
• If a message is wider than the window, 4th Dimension automatically performs text
wrap.
• If a message has more lines than the window, 4th Dimension automatically scrolls the
message window.
• To control line breaks, include carriage returns — Char(13) — into your message.
• To display the text at a particular place in the window, call GOTO XY.
• To erase the contents of the window, call ERASE WINDOW .
• The window is only an output window and does not redraw when other windows
overlap it.

4th Dimension Language Reference 837

4th Dimension uses the Message Font and Message Font Size properties to display
messages. You can change these settings in the Preferences dialog box:

You can choose the font and the font size (within limits) at your convenience. However,
if you combine the use of MESSAGE and GOTO XY, it is a good idea to choose a fixed
width font, such as Terminal on Windows or Monaco on Macintosh.

Examples
1. The following example processes a selection of records and calls MESSAGE to inform the
user about the progress of the operation:

For($vlRecord;1;Records in selection([anyTable]))
⇒ MESSAGE ("Processing record #"+String($vlRecord))

` Do Something with the record
NEXT RECORD([anyTable])

End for

838 4th Dimension Language Reference

The following window appears and disappears at each MESSAGE call:

2. In order to avoid this "blinking" window, you can display the messages in a window
opened using Open window, as in this example:

Open window(50;50;500;250;5;"Operation in Progress")
For($vlRecord;1;Records in selection([anyTable]))

⇒ MESSAGE ("Processing record #"+String($vlRecord))
` Do Something with the record

NEXT RECORD([anyTable])
End for
CLOSE WINDOW

This provides the following result (shown here on Macintosh):

3. Adding a carriage return makes a better presentation:

Open window(50;50;500;250;5;"Operation in Progress")
For($vlRecord;1;Records in selection([anyTable]))

⇒ MESSAGE ("Processing record #"+String($vlRecord)+Char(13))
` Do Something with the record

NEXT RECORD([anyTable])
End for
CLOSE WINDOW

4th Dimension Language Reference 839

This provides the following result (shown here on Macintosh):

4. Using GOTO XY and writing some additional lines:

Open window(50;50;500;250;5;"Operation in Progress")
$vlNbRecords:=Records in selection([anyTable])
$vhStartTime:=Current time
For($vlRecord;1;$vlNbRecords)

GOTO XY(5;2)
⇒ MESSAGE ("Processing record #"+String($vlRecord)+Char(13))

` Do Something with the record
NEXT RECORD([anyTable])
GOTO XY(5;5)
$vlRemaining:=(($vlNbRecords/$vlRecord)-1)*(Current time-$vhStartTime)

⇒ MESSAGE ("Estimated remaining time: "+Time string($vlRemaining))
End for
CLOSE WINDOW

This provides the following result (shown here on Windows):

See Also
CLOSE WINDOW, ERASE WINDOW, GOTO XY, Open window.

840 4th Dimension Language Reference

GOTO XY Messages

version 3
__

GOTO XY (x; y)

Parameter Type Description
x Number → x (horizontal) position of cursor
y Number → y (vertical) position of cursor

Description
The GOTO XY command is used in conjunction with the MESSAGE command when you
display messages in a window opened using Open window.

GOTO XY positions the character cursor (an invisible cursor) to set the location of the
next message in the window.

The upper-left corner is position 0,0. The cursor is automatically placed at 0,0 when a
window is opened and after ERASE WINDOW is executed.

After GOTO XY positions the cursor, you can use MESSAGE to display characters in the
window.

Tip: Using a fixed-width (monospaced) font, such as Terminal on Windows and Monaco
on Macintosh, for the message, gives the best display results with GOTO XY and
MESSAGE. See the description of the MESSAGE command for more information.

Examples
1. See example for the command MESSAGE.

2. See example for the command Milliseconds.

3. The following example:

Open window(50;50;300;300;5;"This is only a test")
For ($vlRow;0;9)

GOTO XY($vlRow;0)
MESSAGE(String($vlRow))

End for
For ($vlLine;0;9)

GOTO XY(0;$vlLine)
MESSAGE(String($vlLine))

End for
$vhStartTime:=Current time
Repeat
Until ((Current time-$vhStartTime)>†00:00:30†)

4th Dimension Language Reference 841

displays the following window (on Macintosh) for 30 seconds:

See Also
MESSAGE.

842 4th Dimension Language Reference

DISPLAY NOTIFICATION Messages

version 2004
__

DISPLAY NOTIFICATION (title; text{; duration})

Parameter Type Description
title Alpha 255 → Notification title
text Alpha 255 → Notification text
duration Number → Display duration in seconds

Note: This command only works under Windows.

Description
The DISPLAY NOTIFICATION command displays a message in the notification area of the
Windows taskbar:

Usually this kind of message is used by the OS or an application to inform the user of an
external event (network disconnection, availability of an upgrade, etc.).

In title and text, pass the title and the text of the message to display (in the above
example, the title is “4D Export”). You can enter up to 255 characters.

By default, the message window remains displayed until the user clicks on the close box.
If you pass the optional duration parameter, the window will be closed automatically at
the end of the duration set if the user did not click on the close box. Note that the
notification icon will remain displayed until the end of duration, even if the user has
closed the window.

See also
ALERT.

4th Dimension Language Reference 843

844 4th Dimension Language Reference

30

Named Selections

4th Dimension Language Reference 845

846 4th Dimension Language Reference

Named Selections Named Selections

version 6.5 (Modified)
__

Named selections provide an easy way to manipulate several selections simultaneously. A
named selection is an ordered list of records for a table in a process. This ordered list can
be given a name and kept in memory. Named selections offer a simple means to preserve
in memory the order of the selection and the current record of the selection.

The following commands enable you to work with named selections:
• COPY NAMED SELECTION
• CUT NAMED SELECTION
• USE NAMED SELECTION
• CLEAR NAMED SELECTION
• CREATE SELECTION FROM ARRAY

Named selections are created with the COPY NAMED SELECTION, CUT NAMED SELECTION
and CREATE SELECTION FROM ARRAY commands. Named selections are generally used to
work on one or more selections and to save and later restore an ordered selection. There
can be many named selections for each table in a process. To reuse a named selection as
the current selection, call USE NAMED SELECTION. When you are done with a named
selection, use CLEAR NAMED SELECTION.

Note: Combining the statement SET QUERY DESTINATION(Into named
selection;namedselection) with a search command (for example QUERY) can also be used to
create a named selection. Refer to the description of the SET QUERY DESTINATION
command.

Named selections can be process or interprocess in scope.

A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

The scope of an interprocess named selection is identical to the scope of an interprocess
variable. An interprocess named selection can be accessed from any process.

A named selection whose name is not prefixed with the symbols (<>) is process in scope
and is available only within the process in which it was created.

4th Dimension Language Reference 847

With 4D Client and 4D Server, an interprocess named selection is available only to the
processes of the client that created it. An interprocess named selection is not available to
other client machines.

Warning: Creating a named selection requires access to the selection of the table. Since
selections are kept on the server and a local process does not have access to server data, do
not use named selections within local processes.

Named Selections and Sets

The differences between sets and named selections are:
• A named selection is an ordered list of records; a set is not.
• Sets are very memory efficient, because they require only one bit for each record in the
file. Named selections require 4 bytes for each record in the selection.
• Unlike sets, named selections cannot be saved to disk.
• Sets have the standard Intersection, Union and Difference operations; named selections
cannot be combined with other named selections.

The similarities between named selections and sets are:
• Like a set, a named selection exists in memory.
• A named selection and a set store references to a record. If records are modified or
deleted, the named selection or the set can become invalid.
• Like a set, a named selection “remembers” the current record as of the time the named
selection was created.

848 4th Dimension Language Reference

COPY NAMED SELECTION Named Selections

version 3
__

COPY NAMED SELECTION ({table; }name)

Parameter Type Description
table Table → Table from which to copy selection, or

Default table, if omitted
name String → Name of the named selection to create

Description
COPY NAMED SELECTION copies the current selection of table to the named selection
name. The default table for the process is used if the optional table parameter is not
specified. The parameter name contains a copy of the selection. The current selection and
the current record of Table for the process are not changed.

A named selection does not actually contain the records, but only an ordered list of
references to records. Each reference to a record takes 4 bytes in memory. This means that
when a selection is copied using the COPY NAMED SELECTION command, the amount of
memory required is 4 bytes multiplied by the number of records in the selection. Since
named selections reside in memory, you should have enough memory for the named
selection as well as the current selection of the table in the process.

Use the CLEAR NAMED SELECTION command to free the memory used by name.

Example
The following example allows you to check if there are other overdue invoices in the
[People] table. The selection is sorted and then saved. We search for all records where
invoices are due. Then we reuse the selection and clear the named selection in memory.
Clearing the named selection in memory is optional, in case the database designer wants
to keep the sorted selection for future use:

ALL RECORDS([People])
`Allow the user to sort the selection

ORDER BY([People])
` Save the sorted selection as a named selection

⇒ COPY NAMED SELECTION([People];"UserSort")
` Search for records where invoices are due

QUERY([People];[People]InvoiceDue=True)
` If records are found

4th Dimension Language Reference 849

If (Records in selection([People])>0)
` Alert the user

ALERT("Yes, there are overdue invoices on table.")
End if

` Reuse the sorted named selection
USE NAMED SELECTION("UserSort")

` Remove the selection from memory
CLEAR NAMED SELECTION("UserSort")

See Also
CLEAR NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

850 4th Dimension Language Reference

CUT NAMED SELECTION Named Selections

version 3
__

CUT NAMED SELECTION ({table; }name)

Parameter Type Description
table Table → Table from which to cut selection, or

Default table, if omitted
name String → Name of the named selection to create

Description
CUT NAMED SELECTION creates a named selection name and moves the current selection
of table to it. This command differs from COPY NAMED SELECTION in that it does not
copy the current selection, but moves the current selection of table itself.

After the command has been executed, the current selection of table in the current
process becomes empty. Therefore, CUT NAMED SELECTION should not be used while a
record is being modified.

CUT NAMED SELECTION is more memory efficient than COPY NAMED SELECTION. With
COPY NAMED SELECTION, 4 bytes times the number of selected records is duplicated in
memory. With CUT NAMED SELECTION, only the reference to the list is moved.

Example
The following method empties the current selection of a table [Customers]:

⇒ CUT NAMED SELECTION([Customers]; "ToBeCleared")
CLEAR NAMED SELECTION("ToBeCleared")

See Also
CLEAR NAMED SELECTION, COPY NAMED SELECTION, USE NAMED SELECTION.

4th Dimension Language Reference 851

USE NAMED SELECTION Named Selections

version 3
__

USE NAMED SELECTION (name)

Parameter Type Description
name String → Name of named selection to be used

Description
USE NAMED SELECTION uses the named selection name as the current selection for the
table to which it belongs.

When you create a named selection, the current record is “remembered” by the named
selection. USE NAMED SELECTION retrieves the position of this record and makes the
record the new current record; this command loads the current record. If the current
record was modified after name was created, the record should be saved before USE NAMED
SELECTION is executed, in order to avoid losing the modified information.

• If COPY NAMED SELECTION was used to create name, the named selection name is copied
to the current selection of the table to which name belongs. The named selection name
exists in memory until it is cleared. Use the CLEAR NAMED SELECTION command to clear
the named selection and free the memory used by name.

• If CUT NAMED SELECTION was used to create name, the current selection is set to name
and name no longer exists in memory.

Remember that a named selection is a representation of a selection of records at the
moment that the named selection is created. If the records represented by the named
selection change, the named selection may no longer be accurate. Therefore, a named
selection represents a group of records that does not change frequently. A number of
things can invalidate a named selection: modifying a record of the named selection,
deleting a record of the named selection, or changing the criterion that determined the
named selection.

Also note that during a transaction, temporary record addresses are used. If a named
selection is created during a transaction, it may contain addresses that will no longer be
valid when the transaction is validated or cancelled, because the records will receive their
final and actual address after the transaction is validated.

See Also
COPY NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

852 4th Dimension Language Reference

CLEAR NAMED SELECTION Named Selections

version 3
__

CLEAR NAMED SELECTION (name)

Parameter Type Description
name String → Name of named selection to be cleared

Description
CLEAR NAMED SELECTION clears name from memory and frees the memory used by name.
CLEAR NAMED SELECTION does not affect tables, selections, or records. Since named
selections use memory, it is good practice to clear named selections when they are no
longer needed.

If name was created using the CUT NAMED SELECTION command and then manipulated
using the USE NAMED SELECTION command, name no longer exists in memory. In this
case, the CLEAR NAMED SELECTION command does not need to be used.

See Also
COPY NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

4th Dimension Language Reference 853

CREATE SELECTION FROM ARRAY Named Selections

version 6.7 (Modified)
__

CREATE SELECTION FROM ARRAY (table; recordArray{; selectionName})

Parameter Type Description
table Table → Table from which to create the selection
recordArray Longint | Bool. Array → Array of record numbers, or

Array of booleans (True = the record is in the
selection, False = the record is not in the
selection)

selectionName String → Name of the named selection to create, or
Apply the command to the current selection
if the parameter is omitted

Description
The CREATE SELECTION FROM ARRAY command creates the named selection selectionName
from:

• either an array of absolute record numbers recordArray from table,
• or an array of booleans. In this case, the values of the array indicate the belonging
(True) or not (False) of each record in table to selectionName.

If you don’t pass selectionName or if you pass an empty string, the command will be
applied to the current selection, which will then be updated.

When you use a Longint array with this command, all the numbers of the array represent
the list of record numbers in selectionName. If a number is incorrect (record not created),
error -10503 is generated.

Note: Be careful, you must make sure that the array does not contain any lines that have
the same value, otherwise the resulting selection will be incorrect.

When you use a Boolean array with this command, the Xth element of the array
indicates if the record number X is (True) or is not (False) in selectionName. The number
of elements in recordArray must be equal to the number of records in table. If the array is
smaller than the number of records, only the records defined by the array can make up
the selection.

Note: With an array of booleans, the command uses elements from numbers 0 to X-1.

Warning: A named selection is created and loaded into memory. Therefore, make sure
that you have enough memory before executing this command.

See Also
CLEAR NAMED SELECTION, COPY NAMED SELECTION, CREATE SET FROM ARRAY, LONGINT
ARRAY FROM SELECTION, USE NAMED SELECTION.

854 4th Dimension Language Reference

31

Object Properties

4th Dimension Language Reference 855

856 4th Dimension Language Reference

Object Properties Object Properties

version 6.5 (Modified)
__

The Object Properties commands act on the properties of objects present in forms. They
enable you to change the appearance and behavior of the objects while using the forms
in the User or Custom menus environment.

Important: The scope of these commands is the form currently being used; changes
disappear when you exit the form.

Accessing Objects using their Object Names or their Data Source Names
The Object Properties commands share the same generic syntax described here:

COMMAND NAME({*;} object { ; additional parameters specific to each command)

If you specify the optional * parameter, you indicate an object name (a string) in object.

Note: It is possible to use the @ character within that name if you want to address several
objects of the form in one call. The following table shows examples of object names you
can specify to this command.

Object Names Objects affected by the call
mainGroupBox Only the object mainGroupBox.
main@ The objects whose name starts with “main”.
@GroupBox The objects whose name ends with “GroupBox”.
@Group@ The objects whose name contains “Group”.
main@Btn The objects whose name starts with “main” and ends with “Btn”.
@ All the objects present in the form.

If you omit the optional * parameter, you indicate a field or a variable in object. In this
case, you specify a field or variable reference (field or variable objects only) instead of a
string.

Note: This second syntax is compatible with the previous version of 4th Dimension.

4th Dimension Language Reference 857

FONT Object Properties

version 6.0 (Modified)
__

FONT ({*; }object; font)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
font String | Number → Font name or Font number

Description
FONT sets the form objects specified by object to be displayed using the font whose name
or number you pass in font.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

Examples
1. The following example sets the font for a button named bOK:

⇒ FONT (bOK; "Arial")

2. The following example sets the font for all the form objects whose name contains
"info":

⇒ FONT (*;"@info@"; "Times")

3. The following example assigns the special %password font, which can be used for entry
and display of “password” type fields (characters are hidden).

⇒ FONT ([Users]Password"%password")

See Also
FONT SIZE, FONT STYLE.

858 4th Dimension Language Reference

FONT SIZE Object Properties

version 6.0 (Modified)
__

FONT SIZE ({*; }object; size)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
size Number → Font size in points

Description
FONT SIZE sets the form objects specified by object to be displayed using the font size you
pass in size.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

The size is any integer between 1 and 255. If the exact font size does not exist, characters
are scaled.

The area for the object, as defined in the form, must be large enough to display the data
in the new size. Otherwise, the text may be truncated or not displayed at all.

Examples
1. The following example sets the font size for a variable named vtInfo:

⇒ FONT SIZE (vtInfo; 14)

2. The following example sets the font size for all the form objects whose name starts
with "hl":

⇒ FONT SIZE (*;"hl@"; 14)

See Also
FONT, FONT STYLE.

4th Dimension Language Reference 859

FONT STYLE Object Properties

version 6.0 (Modified)
__

FONT STYLE ({*; }object; styles)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
styles Number → Font style

Description
FONT STYLE sets the form objects specified by object to be displayed using the font style
you pass in styles.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

You pass in styles a sum of the constants describing your font style selection. The
following are the predefined constants provided by 4D:
Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the Plain, Bold, Italic and Underline styles are available.

Examples
1. This example sets the font style for a button named bAddNew. The font style is set to
bold italic:

⇒ FONT STYLE (bAddNew; Bold + Italic)

860 4th Dimension Language Reference

2. This example sets the font style to Plain for all form objects with names starting with
“vt”:

⇒ FONT STYLE (*;"vt@"; Plain)

See Also
FONT, FONT SIZE.

4th Dimension Language Reference 861

ENABLE BUTTON Object Properties

version 2004.1 (Modified)
__

ENABLE BUTTON ({*; }object)

Parameter Type Description
* → If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object → Object Name (if * is specified), or

Variable (if * is omitted)

Description
The ENABLE BUTTON command enables the form objects specified by object.

An enabled button or object reacts to mouse clicks and shortcuts.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

This command (despite what its name suggests) can be applied to the following types of
object:
• Button, Default Button, 3D Button, Invisible Button, Highlight Button
• Radio Button, 3D Radio Button, Radio Picture
• Check Box, 3D Check Box
• Pop-up menu, Drop-down List, Combo Box, Menu/Drop-down list
• Thermometer, Ruler

Note: This command has no effect with an object that is assigned an automatic action
(4D changes the state of the control when needed), except for Validate and Cancel
actions.

Examples
1. This example enables the button bValidate:

⇒ ENABLE BUTTON(bValidate)

2. This example enables all form objects that have names containing “btn”:

⇒ ENABLE BUTTON(*;"@btn@")

3. See example for the command BUTTON TEXT.

See Also
BUTTON TEXT, DISABLE BUTTON.

862 4th Dimension Language Reference

DISABLE BUTTON Object Properties

version 2004.1 (Modified)
__

DISABLE BUTTON ({*; }object)

Parameter Type Description
* → If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object → Object Name (if * is specified), or

Variable (if * is omitted)

Description
The DISABLE BUTTON command disables the form objects specified by object.

A disabled button or object does not react to mouse clicks and shortcuts, and is displayed
dimmed or grayed out.

Note: Disabling a button or an object does not prevent you from changing its value
programmatically.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

This command (despite what its name suggests) can be applied to the following types of
object:
• Button, Default Button, 3D Button, Invisible Button, Highlight Button
• Radio Button, 3D Radio Button, Radio Picture
• Check Box, 3D Check Box
• Pop-up menu, Drop-down List, Combo Box, Menu/Drop-down list
• Thermometer, Ruler

Note: This command has no effect with an object that is assigned an automatic action
(4D changes the state of the control when needed), except for Validate and Cancel
actions.

Examples
1. This example disables the button bValidate:

⇒ DISABLE BUTTON(bValidate)

4th Dimension Language Reference 863

2. This example disables all form objects that have names containing “btn”:

⇒ DISABLE BUTTON(*;"@btn@")

3. See example for the command BUTTON TEXT.

See Also
BUTTON TEXT, ENABLE BUTTON.

864 4th Dimension Language Reference

BUTTON TEXT Object Properties

version 6.0 (Modified)
__

BUTTON TEXT ({*; }object; buttonText)

Parameter Type Description
* → If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object → Object Name (if * is specified), or

Variable (if * is omitted)
buttonText String → New title for the button

Description
The BUTTON TEXT command changes the title of the buttons specified by object to the
value you pass in buttonText.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

BUTTON TEXT affects only buttons that display text: buttons, check boxes, and radio
buttons.

Usually, you will apply this command to one button at a time. The button area must be
large enough to accommodate the text; if it is not, the text is truncated. Do not use
carriage returns in buttonText.

Example
The following example is the object method of a search button located in the footer area
of an output form displayed using MODIFY SELECTION. The method searches a table;
depending on the search results, it enables or disables a button labeled bDelete and
changes its title:

4th Dimension Language Reference 865

QUERY ([People]; [People]Name = vName)
Case of

: (Records in selection ([People]) = 0) ` No people found
⇒ BUTTON TEXT (bDelete;" Delete")

DISABLE BUTTON (bDelete)
: (Records in selection ([People]) = 1) ` One person found

⇒ BUTTON TEXT (bDelete;"Delete Person")
ENABLE BUTTON (bDelete)

: (Records in selection([People]) > 1) ` Many people found
⇒ BUTTON TEXT (bDelete;"Delete People")

ENABLE BUTTON (bDelete)
End case

See Also
DISABLE BUTTON, ENABLE BUTTON.

866 4th Dimension Language Reference

Get format Object Properties

version 2004
__

Get format ({*; }object) → String

Parameter Type Description
* * → If specified, object is an object name (string)

If omitted, object is a field or a variable
object Form object → Object name (if * is specified) or

Field or variable (if * is omitted)

Function result String ← Object display format

Description
The Get format command returns the current display format applied to the object
specified in the object parameter.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (in this case, pass a string in object). If you do not pass this parameter, you indicate
that the object parameter is a field or variable. In this case, you do not pass a string, but a
field or variable reference.

This command returns the current display format of the object; in other words, the
format as defined in the Design environment or using the SET FORMAT command. Get
format works with all types of form objects (fields or variables) that accept a display
format: Boolean, date, time, picture, string, number, as well as button grids, dials,
thermometers, rulers, picture pop-up menus, picture buttons and 3D buttons. For more
information on the display formats of these objects, refer to the documentation for the
SET FORMAT command.

Note: If you apply the command to a set of objects, the form of the last object selected is
returned.

When the Get format command is applied to date, time or picture objects (formats
defined as constants), the string returned corresponds to the ASCII code of the constant.
To obtain the value of the constant, simply apply the Ascii function to the result (see
below).

Examples
1. This example allows you to obtain the value of the format constant applied to the
picture variable named “myphoto”:

C_STRING(2;$format)
SET FORMAT(*;"myphoto";Char(On background))

`Apply background format (value = 3)
⇒ $format:=Get format(*;"myphoto")

4th Dimension Language Reference 867

2. This example allows you to obtain the format applied to the Boolean field
[Members]Marital_status:

C_STRING(30;$format)
⇒ $format:=Get format([Members]Marital_status)

ALERT($format) `Display format, for example "Married;Single"

See also
SET FORMAT.

868 4th Dimension Language Reference

SET FORMAT Object Properties

version 2004 (Modified)
__

SET FORMAT ({*; }object; displayFormat)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
displayFormat String → New display format for the object

Description
SET FORMAT sets the display format for the objects specified by object to the format you
pass in displayFormat. The new format is only used for the current display; it is not stored
with the form.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

SET FORMAT can be used for both input forms and output forms (displayed or printed)
and can be applied to fields or variables (enterable/non-enterable).

Naturally, you must use a display format suitable to the type of data present in the object
or with the object itself:

Boolean
To format Boolean fields, there are two possibilities:
• you can pass a single value in displayFormat. In this case, the field will be displayed as a
checkbox and its label will be the value specified.
• you can pass two values, separated by a semicolon (;) in displayFormat. In this case, the
field will be displayed as two radio buttons.

4th Dimension Language Reference 869

Date
To format Date fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
Short Long Integer 1
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
Month Date Year Long Integer 5
Abbr Month Date Long Integer 6
MM DD YYYY Forced Long Integer 7

Time
To format Time fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
HH MM SS Long Integer 1
HH MM Long Integer 2
Hour Min Sec Long Integer 3
Hour Min Long Integer 4
HH MM AM PM Long Integer 5

Picture
To format Picture fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
Truncated Centered Long Integer 1
Scaled to Fit Long Integer 2
On Background Long Integer 3
Truncated non Centered Long Integer 4
Scaled to fit proportional Long Integer 5
Scaled to fit prop centered Long Integer 6
Replicated Long Integer 7

Alpha and number
To format fields or variables of the Alpha or Number type, pass the label of the format
directly in the displayFormat parameter.

For more information about display formats, see the 4th Dimension Design Reference
manual.

Note: In displayFormat, to use custom display formats you may have predefined in the
Preferences dialog box, prefix the name of the format with a vertical bar (|).

870 4th Dimension Language Reference

Picture buttons
To format picture buttons, in the displayFormat parameter, pass a character string
respecting the following syntax :
cols;lines;picture;flags{;ticks}

• cols = number of columns in the picture.
• lines = number of lines in the picture.
• picture = picture used, coming from the picture library, a picture variable or a PICT
resource:
- if the picture comes from the picture library, enter its number, preceded by a question
mark (e.g.: "?250").
- if the picture comes from a picture variable, enter the variable name.
- if the picture comes from a PICT resource, enter its number, preceded by a colon (e.g.:
":62500").
• flags = display mode and operation of a picture button. This parameter can take any of
the following values: 0, 1, 2, 16, 32, 64 and 128. Each of these values represents a display
mode or an operation mode. These values are cumulative; for instance, if you want to
enable the modes 1 and 64, pass 65 in the flags parameter. Here are the details for each
value:
- flags = 0 (no option)
Displays the next picture in the series when the user clicks the picture. Displays the
previous picture in the series when the user holds down the Shift key and clicks on the
picture. When the user reaches the last picture in the series, the picture does not change
when the user clicks it again. That is, it does not cycle back to the first picture in the
series.
- flags = 1 (Switch Continuously)
Similar to the previous option except that the user can hold down the mouse button to
display the pictures continuously (i.e., as an animation). When the user reaches the last
picture, the object does not cycle back to the first picture.
- flags = 2 (Loop Back to First Frame)
Similar to the previous option except that the pictures are displayed in a continuous loop.
When the user reaches the last picture and clicks again, the first picture appears, and so
forth.
- flags = 16 (Switch when Roll Over)
The contents of the picture button are modified when the mouse cursor passes over it.
The initial picture is re-established when the cursor leaves the button's area. This mode is
frequently used in multimedia applications or in HTML documents. The picture that is
then displayed is the last picture of the thumbnail table, unless the Use Last Frame as
Disabled option is selected (128). If that option is selected, it is the next-to-last thumbnail
that is displayed.
- flags = 32 (Switch Back when Released)
This mode operates with two pictures. It displays the first picture all the time except when
the user clicks the button. In that case, the second picture is displayed until the mouse
button is released, whereupon it switches back to the first picture. This mode allows you
to create an action button that displays its status (idle or clicked). You can use this mode
to create a 3D effect or display any picture that depicts the action.

4th Dimension Language Reference 871

- flags = 64 (Transparent)
Used to make the background picture transparent.
- flags = 128 (Use Last Frame as Disabled)
This mode allows you to set the last thumbnail as the thumbnail to display when the
button is disabled. When this mode is selected, 4th Dimension displays the last thumbnail
when the button is disabled. When this mode is used in addition to the modes 0, 1 and 2,
the last thumbnail is not taken into account in the sequence of the other modes. It will
appear only when the button is disabled.
• ticks = activates the “Switch every n Ticks” mode and sets the time interval between the
display of each picture. When this optional parameter is passed, it allows you to cycle
through the contents of the picture button at the specified speed. For example, if you
enter "2;3;?16807;0;10", the picture button will display a different picture every 10 ticks.
When this mode is active, only the Transparent mode can be used (64).

Picture pop-up menus
To format picture pop-up menus, in the displayFormat parameter, pass a character string
respecting the following syntax:
cols;lines;picture;hMargin;vMargin;flags

• cols = number of columns in the picture.
• lines = number of lines in the picture.
• picture = picture used, coming from the picture library, a picture variable or a PICT
resource:
- if the picture comes from the picture library, enter its number, preceded by a question
mark (e.g.: "?250").
- if the picture comes from a picture variable, enter the variable name.
- if the picture comes from a PICT resource, enter its number, preceded by a colon (e.g.:
":62500")
• hMargin = margin in pixels between the horizontal limits of the menu and the picture.
• vMargin = margin in pixels between the vertical limits of the menu and the picture.
• flags = transparency mode of picture pop-up menu. Accepts the values 0 and 64:
- mode = 0: the picture pop-up menu is not transparent,
- mode = 64: the picture pop-up menu is transparent.

Thermometers and rulers
To format objects of the thermometer or ruler type, in the displayFormat parameter, pass a
character string respecting the following syntax:
min;max;unit;step;flags{;format}

• min = value of the first graduation of the indicator.
• max = value of the last graduation of the indicator.
• unit = interval between the indicator graduations.
• step = minimum interval of cursor movement in the indicator.
• flags = display mode and operation of indicators. This parameter accepts the values 0, 2,
3, 16 and 32. These values can be accumulated in order to set several options. Here are the
details for each value:
- flags = 0: does not display the units.
- flags = 2: displays the units on the right or below the indicator.

872 4th Dimension Language Reference

- flags = 3: displays the units on the left or above the indicator.
- flags = 16: displays graduations adjacent to the units.
- flags = 32: On Data Change is executed while the user is adjusting the indicator. If this
value is not used, On Data Change occurs only after the user is finished adjusting the
indicator.
• format = display format of the indicator graduations.
Keep in mind that the units and graduations are automatically hidden if the size of the
indicator object does not permit them to be displayed correctly.

Dials
To format objects of the dial type, in the displayFormat parameter, pass a character string
respecting the following syntax:
min;max;unit;step{;flags}

• min = value of the first graduation of the indicator.
• max = value of the last graduation of the indicator.
• unit = interval between the indicator graduations.
• step = minimum interval of cursor movement in the indicator.
• flags = operation mode of the dial (optional). This parameter only accepts the value 32:
On Data Change is executed while the user is adjusting the indicator. If this value is not
used, On Data Change occurs only after the user is finished adjusting the indicator.

Button grids
To format button grids, in the displayFormat parameter, pass a character string respecting
the following syntax:
cols;lines

• cols = number of columns of the grid.
• lines = number of lines of the grid.

Note: For more information about the display formats for form objects, refer to the
4th Dimension Design Reference manual.

3D buttons
To format 3D buttons, in the displayFormat parameter, pass a character string respecting
the following syntax:
title;picture;background;titlePos;titleVisible;iconVisible;style;horMargin;vertMargin;
iconOffset;popupMenu

• title = Button title. This value can be expressed as text or a resource number (ex.:
“:16800,1”)
• picture = Picture linked to a button that comes from a picture library, a picture variable
or a PICT resource:
- if the picture comes from a picture library, enter its number, preceded with a question
mark (ex.: “?250”).
- if the picture comes from a picture variable, enter the variable name.
- if the picture comes from a PICT resource, enter its number, preceded by a colon (ex.:
“:62500”).

4th Dimension Language Reference 873

• background = Background picture linked to a button (Custom style), that comes from a
picture library, a picture variable or a PICT resource (see above).
• titlePos = position of the button title. Five values are possible:
- titlePos = 0: Middle
- titlePos = 1: Right
- titlePos = 2: Left
- titlePos = 3: Bottom
- titlePos = 4: Top
• titleVisible = Defines whether or not the title is visible. Two values are possible:
- titleVisible = 0: the title is hidden
- titleVisible = 1: the title is displayed
• icôneVisible = Defines whether or not the icon is visible. Two values are possible:
- icôneVisible = 0 : the icon is hidden
- icôneVisible = 1 : the icon is displayed
• style = Button style. The value of this option determines whether various other options
are taken into consideration (for example, background). Ten values are possible:
- style = 0: None
- style = 1: Background offset
- style = 2: Push button
- style = 3: Toolbar button
- style = 4: Custom
- style = 5: Circle
- style = 6: Small system square
- style = 7: Office XP
- style = 8: Bevel
- style = 9: Rounded bevel
• horMargin = Horizontal margin. Number of pixels delimiting the inside left and right
margins of the button (areas that the icon and the text must not encroach upon).
• vertMargin = Vertical margin. Number of pixels delimiting the inside top and bottom
margins of the button (areas that the icon and the text must not encroach upon).
• iconOffset = Shifting of the icon to the right and down. This value, expressed in pixels,
indicates the shifting of the button icon to the right and down when the button is
clicked (the same value is used for both directions).
• popupMenu = Association of a pop-up menu with the button. Three values are possible:
- popupMenu = 0: No pop-up menu
- popupMenu = 1: With linked pop-up menu
- popupMenu = 2: With separate pop-up menu
Certain options are not taken into account for all 3D button styles. Also, in certain cases,
you may wish to not change all the options. To not pass an option, simply omit the
corresponding value. For example, if you do not want to pass the titleVisible and
vertMargin options, you can write:

SET FORMAT(myVar;"NiceButton;?256;:562;1;;1;4;5;;5;0")

874 4th Dimension Language Reference

Examples
1. The following line of code formats the [Employee]Date Hired field to Month Date Year.

⇒ SET FORMAT ([Employee]Date Hired; Char(Month Date Year))

2. The following example changes the format for a [Company]ZIP Code field according to
the length of the value stored in the field:

If (Length ([Company]ZIP Code) = 9)
⇒ SET FORMAT ([Company]ZIP Code; "#####–####")

Else
⇒ SET FORMAT ([Company]ZIP Code; "#####")

End if

3. The following example sets the format of a Boolean field to display Married and
Unmarried, instead of the default Yes and No:

⇒ SET FORMAT ([Employee]Marital Status;"Married;Unmarried")

4. The following example sets the format of a Boolean field to display a checkbox labelled
“Classified”:

⇒ SET FORMAT ([Folder]Classification; "Classified")

5. You have a table of thumbnails containing 1 row and 4 columns, intended to display a
picture button (“default”, “clicked”, “roll over” and “disabled”). You want to associate the
Switch when Roll Over, Switch back when Released and Use Last Frame as Disabled
options with it:

⇒ SET FORMAT (*;"PictureButton"; "4;1;?15000;176")

See Also
Get format, SET FILTER.

4th Dimension Language Reference 875

SET FILTER Object Properties

version 6.0 (Modified)
__

SET FILTER ({*; }object; entryFilter)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
entryFilter String → New data entry filter for the enterable area

Description
SET FILTER sets the entry filter for the objects specified by object to the filter you pass in
entryFilter.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

SET FILTER can be used for input and dialog forms and can be applied to fields and
enterable variables that accept an entry filter in Design environment.

Passing an empty string in entryFilter removes the current entry filter for the objects.

Note: This command cannot be used with fields located in a subform’s list form.

Note: In entryFilter, to use entry filters you may have predefined using the Tool Box,
prefix the name of the filter with a vertical bar (|).

Examples

1. The following example sets the entry filter for a postal code field. If the address is in
the U.S., the filter is set to ZIP codes. Otherwise, it is set to allow any entry:

If ([Companies]Country = "US") ` Set the filter to a ZIP code format
⇒ SET FILTER ([Companies]ZIP Code; "&9#####")

Else ` Set the filter to accept alpha and numeric and uppercase the alpha
⇒ SET FILTER ([Companies]ZIP Code; "~@")

End if

876 4th Dimension Language Reference

2. The following example allows only the letters “a,” “b,” “c,” or “g” to be entered in two
places in the field Field:

⇒ SET FILTER([Table]Field ;"&"+Char(Double quote)+ "a;b;c;g"+Char(Double quote)+
"##")

Note: This example sets the entry filter to &"a;b;c;g"##.

See Also
SET FORMAT.

4th Dimension Language Reference 877

SET CHOICE LIST Object Properties

version 6.0 (Modified)
__

SET CHOICE LIST ({*; }object; list)

Parameter Type Description
* → If specified, object is an Object Name (String)

If omitted, object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
list String → Name of the list to use as Choice list

(as defined in Design environment)

Description
The command SET CHOICE LIST sets the choice list for the objects specified by object to
the hierarchical list (defined in the Design environment List Editor) whose name you pass
in list.

This command can be applied in an input or dialog form, to fields and enterable variables
whose value can be entered as text. The list is displayed during data entry when the user
selects the text area.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

Note: This command cannot be used with fields located in a subform’s list form.

Example
The following example sets a choice list for a shipping field. If the shipping is overnight,
then the choice list is set to shippers who can ship overnight. Otherwise, it is set to the
standard shippers:

If ([Shipments]Overnight)
⇒ SET CHOICE LIST([Shipments]Shipper; "Fast Shippers")

Else
⇒ SET CHOICE LIST([Shipments]Shipper; "Normal Shippers")

End if

878 4th Dimension Language Reference

SET ENTERABLE Object Properties

version 2004 (Modified)
__

SET ENTERABLE ({*; }entryArea; enterable)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
entryArea Form Object → Object Name (if * is specified), or

Table or Field or Variable (if * is omitted)
enterable Boolean → True for enterable; False for non-enterable

Description
The SET ENTERABLE command makes the form objects specified by object either enterable
or non-enterable.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a table, field or variable in object. In this
case, specify a table, field or variable reference (field or variable objects only) instead of a
string. For more information about object names, see the section Object Properties.

Using this command is equivalent to selecting Enterable for a field or variable in the Form
Editor’s Property List window. This command works in subforms only if it is in the form
method of the subform.

When the entryArea is enterable (TRUE), the user can move the cursor into the area and
enter data. When the entryArea is non-enterable (FALSE), the user cannot move the cursor
into the area and cannot enter data.

The SET ENTERABLE command can also be used to enable the “Enter in List” mode by
programming for subforms and list forms displayed using the MODIFY SELECTION and
DISPLAY SELECTION commands:
• For subforms, in the entryArea parameter, pass either the name of the subform table or
the name of the subform object itself, for example: SET ENTERABLE(*;"Subform";True).
• For list forms, you must pass the name of the form table in the entryArea parameter, for
example: SET ENTERABLE([MyTable];True).

Making an object non-enterable does not prevent you from changing its value
programmatically.

4th Dimension Language Reference 879

Examples
1. The following example sets a shipping field, depending on the weight of the shipment.
If the shipment is 1 ounce or less, then the shipper is set to US Mail and the field is set to
be non-enterable. Otherwise, the field is set to be enterable.

If ([Shipments]Weight<=1)
[Shipments]Shipper:="US Mail"

⇒ SET ENTERABLE([Shipments]Shipper;False)
Else

SET ENTERABLE([Shipments]Shipper;True)
End if

2. Here is the object method of a checkbox located in the header of a list in order to
control the Enter in List mode:

C_BOOLEAN(bEnterable)
⇒ SET ENTERABLE([Table1];bEnterable)

See Also
DISABLE BUTTON, ENABLE BUTTON, SET VISIBLE.

880 4th Dimension Language Reference

SET VISIBLE Object Properties

version 6.0
__

SET VISIBLE ({*; }object; visible)

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object parameter is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
visible Boolean → True for visible, False for invisible

Description
The SET VISIBLE command shows or hides the objects specified by object.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

If you pass visible equal to TRUE, the objects are shown. If you pass visible equal to FALSE,
the objects are hidden.

Example
Here is a typical form in the Design environment:

The objects in the Employer Information group box each have an object name that
contains the expression “employer” (including the group box). When the Currently
Employed check box is checked, the objects must be visible; when the check box is
unchecked, the objects must be invisible.

4th Dimension Language Reference 881

Here is the object method of the check box:

 ` cbCurrentlyEmployed Check Box Object Method
Case of

: (Form event=On Load)
cbCurrentlyEmployed:=1

: (Form event=On Clicked)
` Hide or Show all the objects whose name contains "emp"

SET VISIBLE(*;"@emp@";cbCurrentlyEmployed # 0)
` But always keep the check box itself visible

SET VISIBLE(cbCurrentlyEmployed;True)
End case

Therefore, in the User or Custom Menus environments, the form looks like:

or:

See Also
DISABLE BUTTON, ENABLE BUTTON, SET ENTERABLE.

882 4th Dimension Language Reference

SET SCROLLBAR VISIBLE Object Properties

version 2004.3 (Modified)
__

SET SCROLLBAR VISIBLE ({*; }object; horizontal; vertical)

Parameter Type Description
* → If specified, object is an object name (string)

If omitted, object is a variable
object Form object → Object name (if * is specified) or

Variable (if * is omitted)
horizontal Boolean → True = show, False = hide
vertical Boolean → True = show, False = hide

Description
The SET SCROLLBAR VISIBLE command allows you to display or hide the horizontal and/or
vertical scrollbars in the object set using the object and * parameters.

If you pass the optional * parameter, you indicate that the object parameter is an object
name (string). If you do not pass this parameter, you indicate that the object parameter is
a variable. In this case, you do not pass a string, but a variable reference. For more
information about object names, refer to the Object Properties section.

This command is used with the following form objects:
• list boxes,
• scrollable areas,
• subforms.

Pass the Boolean values in horizontal and vertical indicating whether the corresponding
scrollbars should be displayed (True) or hidden (False). The scrollbars are displayed by
default.

Note: Objects of the scrollable area type do not have horizontal scrollbars. Since the
horizontal parameter is mandatory, you must still pass it in this case; however, it will be
ignored.

See also
Get listbox information, SET VISIBLE, SHOW LISTBOX GRID.

4th Dimension Language Reference 883

SET COLOR Object Properties

version 2004 (Modified)
__

SET COLOR ({*; }object; color{; altColor})

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Field or variable → Object Name (if * is specified), or

Field or Variable (if * is omitted)
color Number → New colors for the object
altColor Number → Alternating colors for a list box

Description
The SET COLOR command sets the foreground and background colors of the form objects
specified by object. If object is a list box, an additional parameter is used to set the
foreground and background colors for even-numbered rows (alternating colors).

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

altColor is used to specify an alternative color for the even-numbered rows of a list box or
a list box column. When this parameter is passed, the color parameter will be applied only
to odd-numbered rows. Using alternating colors makes lists easier to read.
If object specifies the list box object, alternating colors are used throughout the entire list
box. If object specifies a column, only the column will use the colors set.

The color (as well as altColor) parameter specifies both foreground and background colors.
The color is calculated as:

Color:=-(Foreground+(256 * Background))

where foreground and background are color numbers (from 0 to 255) within the color
palette.
Color is always a negative number. For example, if the foreground color is to be 20 and
the background color is to be 10, then color is – (20 + (256 * 10)) or –2580.

Note: You can see the color palette in the Form Editor’s Property List window.

884 4th Dimension Language Reference

The numbers of the commonly used colors are provided by the following predefined
constants, located in the “Colors” theme:

Constant Type Value
White Long Integer 0
Yellow Long Integer 1
Orange Long Integer 2
Red Long Integer 3
Purple Long Integer 4
Dark Blue Long Integer 5
Blue Long Integer 6
Light Blue Long Integer 7
Green Long Integer 8
Dark Green Long Integer 9
Dark Brown Long Integer 10
Dark Grey Long Integer 11
Light Grey Long Integer 12
Brown Long Integer 13
Grey Long Integer 14
Black Long Integer 15

Note: While SET COLOR works with indexed colors within the default 4D color palette,
version 6 introduces the command SET RGB COLORS, which allows you to work with any
RGB color.

Example
The following example sets the color of the text area shown below in the form editor:

After executing the following statement:

⇒ SET COLOR (*;"Mytext"; - (Yellow + (256 * Red)))

... the area appears as follows in User mode:

See Also
SET RGB COLORS.

4th Dimension Language Reference 885

SET RGB COLORS Object Properties

version 2004 (Modified)
__

SET RGB COLORS ({*; }object; foregroundColor; backgroundColor{; altBackgrndColor})

Parameter Type Description
* → If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object → Object Name (if * is specified), or

Field or Variable (if * is omitted)
foregroundColor Number → RGB color value for Foreground color
backgroundColor Number → RGB color value for Background color
altBackgrndColor Number → RGB color value for Alternating background

 color

Description
The SET RGB COLORS command changes the foreground and background colors of the
objects specified by object and the optional * parameters. When the command is applied
to a List box object, an additional parameter lets you modify the alternating color of the
rows.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

The optional altBackgrndColor parameter lets you set an alternate background color for
even-numbered rows. This parameter is only used when the object specified is a List box
or a column of the List box. When this parameter is used, the backgroundColor parameter
is only used for odd-numbered rows. Using alternating colors makes lists easier to read.
If object specifies a List box object, alternating colors are used for the entire List box. If
object specifies a column of the List box, only the column will use the colors set.

You indicate RGB color values in foregroundColor, backgroundColor and altBackgrndColor.
An RGB value is a 4-byte Long Integer whose format (0x00RRGGBB) is described in the
following table (bytes are numbered from 0 to 3, from right to left):

Byte Description
3 Must be zero if absolute RGB color
2 Red component of the color (0..255)
1 Green component of the color (0..255)
0 Blue component of the color (0..255)

886 4th Dimension Language Reference

The following table shows some examples of RGB color values:

Value Description
0x00000000 Black
0x00FF0000 Bright Red
0x0000FF00 Bright Green
0x000000FF Bright Blue
0x007F7F7F Gray
0x00FFFF00 Bright Yellow
0x00FF7F7F Red Pastel
0x00FFFFFF White

Alternatively, you can specify one of the “system” colors used by 4th Dimension for
drawing objects whose colors are set automatically. The following predefined constants
are provided by 4th Dimension:

Constant Type Value
Foreground color Long Integer -1
Background color Long Integer -2
Dark shadow color Long Integer -3
Light shadow color Long Integer -4
Highlight text background color Long Integer -7
Highlight text color Long Integer -8
Highlight menu background color Long Integer -9
Highlight menu text color Long Integer -10
Disable highlight item color Long Integer -11

4th Dimension Language Reference 887

These colors (on a standard system) are shown here:

WARNING: These automatic colors are system dependent. If you change your system
colors, 4th Dimension will adjust its automatic colors accordingly. Use the automatic
color values for setting objects to the system colors, not for setting them to the example
colors shown above.

Examples
This form contains the two non-enterable variables vsColorValue and vsColor as well as the
three thermometers: thRed, thGreen, and thBlue.

888 4th Dimension Language Reference

Here are the methods for these objects:

` vsColorValue non-enterable Object Method
Case of

: (Form event=On Load)
vsColorValue:="0x00000000"

End case

` vsColor non-enterable variable Object Method
Case of

: (Form event=On Load)
vsColor:=""

⇒ SET RGB COLORS(vsColor;0x00FFFFFF;0x0000)
End case

` thRed Thermometer Object Method
CLICK IN COLOR THERMOMETER

` thGreen Thermometer Object Method
CLICK IN COLOR THERMOMETER

` thBlue Thermometer Object Method
CLICK IN COLOR THERMOMETER

The project method called by the three thermometers is:

` CLICK IN COLOR THERMOMETER Project Method
⇒ SET RGB COLORS(vsColor;0x00FFFFFF;(thRed << 16)+(thGreen << 8)+thBlue)

vsColorValue:=String((thRed << 16)+(thGreen << 8)+thBlue;"&x")
If (thRed=0)

vsColorValue:=Substring(vsColorValue;1;2)+"0000"+Substring(vsColorValue;3)
End if

Note the use of the Bitwise operators for calculating the color value from the thermometer
values.

4th Dimension Language Reference 889

In the User or Custom Menus environments, the form looks like this:

See Also
Bitwise Operators, SET COLOR.

890 4th Dimension Language Reference

GET OBJECT RECT Object Properties

version 6.7 (Modified)
__

GET OBJECT RECT ({*; }object; left; top; right; bottom)

Parameter Type Description
* * → If specified = object is the name of the object (string)

If omitted = object is a variable
object Object → Object name (if * is specified) or

Field or variable (if * is omitted)
left Longint ← Left coordinate of the object
top Longint ← Top coordinate of the object
right Longint ← Right coordinate of the object
bottom Longint ← Bottom coordinate of the object

Description
The command GET OBJECT RECT returns the coordinates left, top, right and bottom (in
points) in variables or fields of the object(s) of the current form defined by the
parameters * and object.

If you pass the optional parameter *, it indicates that the object parameter is an object
name (a string). If you don’t pass the optional parameter *, it indicates that object is a
field or a variable. In this case, you don’t pass a string but a field or variable reference
(only a field or variable of type object).

If you pass an object name to object and use the wildcard character (“@”) to select more
than one object, the coordinates returned will be those of the rectangle formed by all the
objects concerned.

Note: Since 4D version 6.5, it is possible to set the interpretation mode of the wildcard
character (“@”), when it is included in a string of characters. This option has an impact
on the “Object Properties” commands. Please refer to the 4D Design Mode manual.

If the object doesn’t exist or if the command is not called in a form, the coordinates
(0;0;0;0) are returned.

Example
Let’s assume that you want to obtain the coordinates of a rectangle formed by all the
objects that begin with “button”:

⇒ GET OBJECT RECT(*;"button@";left;top;right;bottom)

See Also
MOVE OBJECT.

4th Dimension Language Reference 891

MOVE OBJECT Object Properties

version 6.7 (Modified)
__

MOVE OBJECT ({*; }object; moveH; moveV{; resizeH{; resizeV{; *}}})

Parameter Type Description
* * → If specified= object is an object name (string)

If omitted = object is a variable
object Object → Object name (if * is specified) or

Field or variable (if * is omitted)
moveH Longint → Value of the horizontal move of the object

(>0 = to the right, <0 = to the left)
moveV Longint → Value of the vertical move of the object

(>0 = to the bottom, <0 = to the top)
resizeH Longint → Value of the horizontal resize of the object
resizeV Longint → Value of the vertical resize of the object
* * → If specified = absolute coordinates

If omitted = relative coordinates

Description
The command MOVE OBJECT allows you to move the object(s) in the current form,
defined by the * and object parameters moveH pixels horizontally and moveV pixels
vertically.
It is also possible (optionally) to resize the object(s) resizeH pixels horizontally and resizeV
pixels vertically.

The direction to move and resize depend on the values passed to the moveH and moveV
parameters:
• If the value is positive, objects are moved and resized to the right and to the bottom,
respectively.
• If the value is negative, objects are moved and resized to the left and to the top,
respectively.

If you pass the first optional parameter *, you indicate that the object parameter is a
parameter name (a string of characters). If you don’t pass the * parameter, object is a field
or a variable. In this case, you don’t pass a string but a field or variable reference (only a
field or variable of type object).

If you pass an object name to object and use the wildcard character (“@”) to select more
than one object, all the objects concerned will be moved or resized.

Note: Since 4D version 6.5, it is possible to set the interpretation mode of the wildcard
character (“@”), when it is included in a string of characters. This option has an impact
on the “Object Properties” commands. Please refer to the 4D Design Mode manual.

892 4th Dimension Language Reference

By default, the values moveH, moveV, resizeH and resizeV modify the coordinates of the
object relative to its previous position. If you want the parameters to define the absolute
parameters, pass the last optional parameter *.

This command works in the following contexts:
• Data entering in Input forms,
• Forms displayed using the DIALOG command,
• Headers and footers of Output forms displayed with MODIFY SELECTION or DISPLAY
SELECTION commands,
• Form printing events.

Examples
(1) The following statement moves “button_1” 10 pixels to the right, 20 pixels to the top
and resizes it to 30 pixels in width and 40 in height:

⇒ MOVE OBJECT (*;"button_1";10;-20;30;40)

(2) The following statement moves “button_1” to the following coordinates (10;20)
(30;40):

⇒ MOVE OBJECT (*;"button_1";10;20;30;40;*)

See Also
GET OBJECT RECT.

4th Dimension Language Reference 893

BEST OBJECT SIZE Object Properties

version 2003
__

BEST OBJECT SIZE ({*; }object; bestWidth; bestHeight{; maxWidth})

Parameter Type Description
* → If specified = object is an object name (String)

If omitted = object is a variable
object Object → Object name (if * is specified) or

Field or variable (if * is omitted)
bestWidth Longint ← Optimum object width
bestHeight Longint ← Optimum object height
maxWidth Longint → Maximum object width

Description
The BEST OBJECT SIZE command returns the bestWidth and bestHeight parameters, the
“optimal” width and height of the form object designated by the * and object parameters.
These values are expressed in pixels. This command is particularly useful for displaying or
printing complex reports, associated with the MOVE OBJECT command.

If you pass the optional * parameter, this indicates that the object parameter is an object
name (a character string). If you do not pass the * parameter, this indicates that object is a
field or a variable. In this case, do not pass a string but rather a field or variable reference
(object type only).

The optimal values returned indicate the minimum size of the object so that its current
contents are entirely included within the limits. Of course, these values are only
meaningful for objects containing text. This calculation takes the font, font size, font
style and object contents into account. It also takes hyphenation and carriage returns
into consideration. If the object specified is empty, the bestWidth returned is 0.

The size returned does not take into account any graphic frame applied around the object,
nor any scrollbars. To obtain the real size of an object on screen, it is necessary to add the
width of these elements.

The optional maxWidth parameter enables you to attribute a maximum width to the
object. If the optimal width of the object is greater than this value, BEST OBJECT SIZE
returns maxWidth in the bestWidth parameter and increases the optimal height as a
consequence.

The following objects are handled by this command:
• Static text areas
• Text inserted in the form of references
• Fields and variables of the following types: Alpha, Text, Real, Integer, Long Integer,
Date, Time, Boolean (check boxes and radio buttons)
• Buttons.

894 4th Dimension Language Reference

For all other form object types (group areas, tabs, rectangles, straight lines, circles/ovals,
external areas, etc.), the BEST OBJECT SIZE command returns the current object size
(defined in the form editor and possibly using the MOVE OBJECT command).

Example
Refer to the example in the SET PRINT MARKER command.

See also
MOVE OBJECT.

4th Dimension Language Reference 895

Get alignment Object Properties

version 6.8.1
__

Get alignment ({*; }object) → Number

Parameter Type Description
* → If specified, object is an Object name (String)

If omitted, object is a field or a variable
object Form object → Object name (if * specified), or

Field or variable (if * omitted)

Function result Number ← Alignment code

Description
The command Get alignment returns a code indicating the type of alignment applied to
the object designated by the object and * parameters.

If you specify the optional * parameter, you indicate an object name (a string) in the
object parameter. If you omit the * parameter, you indicate a field or variable in the object
parameter. In this case, you specify a field or variable reference (field or variable objects
only) instead of a string.

Note: If you apply the command to a group of objects, only the alignment value of the
last object is returned.

The returned code corresponds to one of the following constants located in the Object
alignment theme:
Constant Type Value
Align default Longint 1
Align left Longint 2
Center Longint 3
Align right Longint 4

The form objects to which alignment can be applied are as follows:
• Scrollable areas
• Combo boxes
• Static text
• Pop up menu/Drop-down lists
• Fields
• Variables

See Also
SET ALIGNMENT.

896 4th Dimension Language Reference

SET ALIGNMENT Object Properties

version 6.8.1
__

SET ALIGNMENT ({*; }object; alignment)

Parameter Type Description
* → If specified, object is an Object name (String)

If omitted, object is a field or a variable
object Form object → Object name (if * specified), or

Field or variable (if * omitted)
alignment Number → Alignment code

Description
The command SET ALIGNMENT allows you to set the type of alignment applied to the
object(s) designated by the object and * parameters.

If you specify the optional * parameter, you indicate an object name (a string) in the
object parameter. If you omit the * parameter, you indicate a field or variable in the object
parameter. In this case, you specify a field or variable reference (field or variable objects
only) instead of a string.

Pass one of the constants of the Object alignment theme in the alignment parameter:
Constant Type Value
Align default Longint 1
Align left Longint 2
Center Longint 3
Align right Longint 4

The form objects to which alignment can be applied are as follows:
• Scrollable areas
• Combo boxes
• Static text
• Pop up menu/Drop-down lists
• Fields
• Variables

See Also
Get alignment.

4th Dimension Language Reference 897

898 4th Dimension Language Reference

32

Obsolete commands

4th Dimension Language Reference 899

900 4th Dimension Language Reference

SEARCH BY INDEX Obsolete commands

version 3
__

SEARCH BY INDEX

This command is still present in 4th Dimension for compatibility with 4D version 1. For
any new programming, use the command QUERY.

WARNING: This command will disappear in future versions. Please do not use it.

4th Dimension Language Reference 901

SORT BY INDEX Obsolete commands

version 3
__

SORT BY INDEX

This command is still present in 4th Dimension for compatibility with 4D version 1. For
any new programming, use the command ORDER BY.

WARNING: This command will disappear in future versions. Please do not use it.

902 4th Dimension Language Reference

SAVE OLD RELATED ONE Obsolete commands

version 5
__

SAVE OLD RELATED ONE

This command has been kept for compatibility reasons regarding previous versions of 4th
Dimension. Its operation is identical to that of the SAVE RELATED ONE command.

WARNING: Do not use this command any longer; it will not be included in future
versions of 4D.

4th Dimension Language Reference 903

904 4th Dimension Language Reference

33

On a Series

4th Dimension Language Reference 905

906 4th Dimension Language Reference

On a Series On a Series

version 3
__

The functions of this theme perform calculations on a series of values.

The Average, Max, Min, Sum, Sum squares, Std deviation, and Variance functions can be
applied to fields or subfields. In the case of a field, they are applied to a selection of
records. In the case of a subfield, they are applied to a selection of the subrecords of the
current record. Note that the
Sum squares, Std deviation, and Variance functions can be used on a field only during
printing.

These functions work on numeric data only. Each of these functions returns a numeric
value.

Using a field
When Average, Max, Min, or Sum are used on a field outside a printing operation, they
may have to load each record in the current selection to calculate the result. If there are
many records, this process may take some time. To avoid this, index the field.

When these functions are used in a report, they behave differently than at other times.
This is because the report itself must load each record. Use these functions in a form or
object method when printing with the PRINT SELECTION command or when printing by
choosing Print from the File menu in the User environment.

When you use these functions in a report, the values that are returned are reliable only at
break level 0, and only when break processing is turned on. This means that they are
useful only at the end of a report, after all the records have been processed.

You would use these functions only in an object method for a non-enterable area that is
included in the B0 Break area.

Remember that the field passed as a parameter to the statistical function must be a
numeric.

See Also
Average, Max, Min, Std deviation, Sum, Sum Squares, Variance.

4th Dimension Language Reference 907

Sum On a Series

version 3
__

Sum (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the sum

Function result Number ← Sum for series

Description
The command Sum returns the sum (total of all values) for series. If series is an indexed
field, the index is used to total the values.

Example
The following example is an object method for a variable that vTotal placed in a form.
The object method assigns the sum of all salaries to vTotal:

⇒ vTotal:=Sum([Employees]Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
ACCUMULATE, Average, BREAK LEVEL, Max, Min, ORDER BY, PRINT SELECTION, Subtotal.

908 4th Dimension Language Reference

Average On a Series

version 3
__

Average (series) → Number

Parameter Type Description
series Field | subfield → Data for which to return the average

Function result Number ← Arithmetic mean (average) of series

Description
Average returns the arithmetic mean (average) of series. If series is an indexed field, the
index is used to find the average.

Example
The following example sets the variable vAverage that is in the B0 Break area of an output
form. The line of code is the object method for vAverage. The object method is not
executed until the level 0 break:

⇒ vAverage := Average ([Employees] Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
ACCUMULATE, BREAK LEVEL, Max, Min, ORDER BY, PRINT SELECTION, Subtotal, Sum.

4th Dimension Language Reference 909

Min On a Series

version 3
__

Min (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the minimum value

Function result Number ← Minimum value in series

Description
Min returns the minimum value in series. If series is an indexed field, the index is used to
find the minimum value.

Examples
1. The following example is an object method for the variable vMin placed in the break 0
portion of the form. The variable is printed at the end of the report. The object method
assigns the minimum value of the field to the variable, which is then printed in the last
break of the report:

⇒ vMin:=Min([Employees]Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

2. The following example finds the lowest sale amount of an employee and displays the
result in an alert box. The sales amounts are stored in the subfield [Employees]SalesDollars:

⇒ ALERT ("Minimum sale = " + String(Min([Employees]SalesDollars)))

See Also
Execute on server, Execute on server, GET PROCESS VARIABLE, Max, Processes, SET PROCESS
VARIABLE.

910 4th Dimension Language Reference

Max On a Series

version 3
__

Max (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the maximum value

Function result Number ← Maximum value in series

Description
Max returns the maximum value in series. If series is an indexed field, the index is used to
find the maximum value.

Example
The following example is an object method for the variable vMax placed in the break 0
portion of the form. The variable is printed at the end of the report. The object method
assigns the maximum value of the field to the variable, which is then printed in the last
break of the report.

⇒ vMax := Max ([Employees] Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Min.

4th Dimension Language Reference 911

Std deviation On a Series

version 3
__

Std deviation (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the standard

deviation

Function result Number ← Standard deviation of series

Description
Std deviation returns the standard deviation of series. If series is an indexed field, the index
is used to find the standard deviation. You can only use a field with this function when
printing a report.

Example
The following example is an object method for the variable vDeviate. The object method
assigns the standard deviation for a data series to vDeviate:

⇒ vDeviate := Std deviation ([Table1]DataSeries)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Table1])
ORDER BY ([Table1];[Table1]DataSeries;>)
BREAK LEVEL (1)
ACCUMULATE ([Table1]DataSeries)
OUTPUT FORM ([Table1];"PrintForm")
PRINT SELECTION ([Table1])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Sum, Sum Squares, Variance.

912 4th Dimension Language Reference

Variance On a Series

version 3
__

Variance (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the variance

Function result Number ← Variance of series

Description
Variance returns the variance for series. If series is an indexed field, the index is used to
find the variance. You can only use a field with this function when printing a report.

Example
The following example is an object method for the variable var. The object method
assigns the sum of squares for a data series to var:

⇒ var:= Variance (Students]Grades)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Students])
ORDER BY ([Students];[Students]Class;>)
BREAK LEVEL (1)
ACCUMULATE ([Students]Grades)
OUTPUT FORM ([Students];"PrintForm")
PRINT SELECTION ([Students])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Std deviation, Sum, Sum squares.

4th Dimension Language Reference 913

Sum squares On a Series

version 3
__

Sum squares (series) → Number

Parameter Type Description
series Field or subfield → Data for which to return the sum of squares

Function result Number ← Sum of squares of series

Description
Sum squares returns the sum of the squares of series. If series is an indexed field, the index
is used to find the sum of the squares. You can only use a field with this function when
printing a report.

Example
The following example is an object method for the variable vSquares. The object method
assigns the sum of squares for a data series to vSquares. The vSquares variable is printed in
the last break of the report:

⇒ vSquares:=Sum squares ([Table1]DataSeries)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Table1])
ORDER BY ([Table1];[Table1]DataSeries;>)
BREAK LEVEL (1)
ACCUMULATE ([Table1]DataSeries)
OUTPUT FORM ([Table1];"PrintForm")
PRINT SELECTION ([Table1])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Std deviation, Sum, Variance.

914 4th Dimension Language Reference

34

Operators

4th Dimension Language Reference 915

916 4th Dimension Language Reference

Operators Operators

version 6.0
__

Operators are symbols used to specify operations performed between expressions. They:
• Perform calculations on numbers, dates, and times.
• Perform string operations, Boolean operations on logical expressions, and specialized
operations on pictures.
• Combine simple expressions to generate new expressions.

Precedence
The order in which an expression is evaluated is called precedence. 4th Dimension has a
strict left-to-right precedence, in which algebraic order is not observed. For example:

3 + 4 * 5

returns 35, because the expression is evaluated as 3 + 4, yielding 7, which is then
multiplied by 5, with the final result of 35.

To override the left-to-right precedence, you MUST use parentheses. For example:

3 + (4 * 5)

returns 23 because the expression (4 * 5) is evaluated first, because of the parentheses. The
result is 20, which is then added to 3 for the final result of 23.

Parentheses can be nested inside other sets of parentheses. Be sure that each left
parenthesis has a matching right parenthesis to ensure proper evaluation of expressions.
Lack of, or incorrect use of parentheses can cause unexpected results or invalid
expressions. Furthermore, if you intend to compile your applications, you must have
matching parentheses—the compiler detects a missing parenthesis as a syntax error.

The Assignment Operator
You MUST distinguish the assignment operator := from the other operators. Rather than
combining expressions into a new one, the assignment operator copies the value of the
expression to the right of the assignment operator into the variable or field to the left of
the operator. For example, the following line places the value 4 (the number of characters
in the word Acme) into the variable named MyVar. MyVar is then typed as a numeric
value.

MyVar := Length ("Acme")

Important: Do NOT confuse the assignment operator := with the equality comparison
operator =.

4th Dimension Language Reference 917

The other operators provided by the 4D language are described in the following sections:

String Operators
See the section String Operators.

Numeric Operators
See the section Numeric Operators.

Date Operators
See the section Date Operators.

Time Operators
See the section Time Operators.

Comparison Operators
See the section Comparison Operators.

Logical Operators
See the section Logical Operators.

Picture Operators
See the section Picture Operators.

Bitwise Operators
See the section Bitwise Operators.

See Also
Constants, Data Types, Identifiers.

918 4th Dimension Language Reference

String Operators Operators

version 6.0
__

An expression that uses a string operator returns a string. The following table shows the
string operators:

Operation Syntax Returns Expression Value
Concatenation String + String String "abc" + "def" "abcdef"
Repetition String * Number String "ab" * 3 "ababab"

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, Picture Operators, Time Operators.

4th Dimension Language Reference 919

Numeric Operators Operators

version 6.0
__

An expression that uses a numeric operator returns a number. The following table shows
the numeric operators:

Operation Syntax Returns Expression Value
Addition Number + Number Number 2 + 3 5
Subtraction Number – Number Number 3 – 2 1
Multiplication Number * Number Number 5 * 2 10
Division Number /Number Number 5 / 2 2.5
Longint division Number \ Number Number 5 \ 2 2
Modulo Number % Number Number 5 % 2 1
Exponentiation Number ^ Number Number 2 ^ 3 8

Modulo Operator
The modulo operator % divides the first number by the second number and returns a
whole number remainder. Here are some examples:

• 10 % 2 returns 0 because 10 is evenly divided by 2.
• 10 % 3 returns 1 because the remainder is 1.
• 10.5 % 2 returns 0 because the remainder is not a whole number.

WARNING: The modulo operator % returns significant values with numbers that are in
the Long Integer range (from minus 2^31 to 2^31 minus one). To calculate the modulo
with numbers outside of this range, use the Mod command.

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Operators,
Picture Operators, String Operators, Time Operators.

920 4th Dimension Language Reference

Date Operators Operators

version 6.0
__

An expression that uses a date operator returns a date or a number, depending on the
operation. All date operations will result in an accurate date, taking into account the
change between years and leap years. The following table shows the date operators:

Operation Syntax Returns Expression Value
Date difference Date – Date Number !1/20/97! – !1/1/97! 19
Day addition Date + Number Date !1/20/97! + 9 !1/29/97!
Day subtraction Date – Number Date !1/20/97! – 9 !1/11/97!

See Also
Bitwise Operators, Comparison Operators, Logical Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

4th Dimension Language Reference 921

Time Operators Operators

version 6.0
__

An expression that uses a time operator returns a time or a number, depending on the
operation. The following table shows the time operators:

Operation Syntax Returns Expression Value
Addition Time + Time Time ?02:03:04? + ?01:02:03? ?03:05:07?
Subtraction Time – Time Time ?02:03:04? – ?01:02:03? ?01:01:01?
Addition Time + Number Number ?02:03:04? + 65 7449
Subtraction Time – Number Number ?02:03:04? – 65 7319
Multiplication Time * Number Number ?02:03:04? * 2 14768
Division Time / Number Number ?02:03:04? / 2 3692
Longint division Time \ Number Number ?02:03:04? \ 2 3692
Modulo Time % Number Number ?02:03:04? % 2 0

Tips

(1) To obtain a time expression from an expression that combines a time expression with
a number, use the commands Time and Time string.
Example:

` The following line assigns to $vlSeconds the number of seconds that will be elapsed
` between midnight and one hour from now

$vlSeconds:=Current Time+3600

` The following line assigns to $vHSoon the time it will be in one hour
$vhSoon:=Time(Time string(Current time+3600))

The second line could be written in a simpler way:

` The following line assigns to $vHSoon the time it will be in one hour
$vhSoon:=Current time+?01:00:00?

However, while developing your application, you may encounter situations where a delay,
expressed in seconds and added to a time value, is only available to you as a numeric
value.
In this case, use the next tip.

(2) Some situations may require you to convert a time expression into a numeric
expression.
For example, you open a document using Open document, which returns a Document
Reference (DocRef) that is formally a time expression. Later, you want to pass that DocRef
to a 4D Extension routine that expects a numeric value as document reference. In such a
case, use the addition with 0 (zero) to get a numeric value from the time value, but
without changing its value.

922 4th Dimension Language Reference

Example:

` Select and open a document
$vhDocRef:=Open document("")
If (OK=1)

` Pass the DocRef time expression as a numeric expresssion to a
`4D Extension routine

DO SOMETHING SPECIAL (0+$vhDocRef)
End if

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, Picture Operators, String Operators.

4th Dimension Language Reference 923

Comparison Operators Operators

version 6.5 (Modified)
__

The tables in this section show the comparison operators as they apply to string, numeric,
date, time, and pointer expressions. An expression that uses a comparison operator returns
a Boolean value, either TRUE or FALSE.

String Comparisons
Operation Syntax Returns Expression Value
Equality String = String Boolean "abc" = "abc" True

"abc" = "abd" False
Inequality String # String Boolean "abc" # "abd" True

"abc" # "abc" False
Greater than String > String Boolean "abd" > "abc" True

"abc" > "abc" False
Less than String < String Boolean "abc" < "abd" True

"abc" < "abc" False
Greater than or equal to String >= String Boolean "abd" >= "abc" True

"abc" >= "abd" False
Less than or equal to String <= String Boolean "abc" <= "abd" True

"abd" <= "abc" False

Numeric Comparisons
Operation Syntax Returns Expression Value
Equality Number = Number Boolean 10 = 10 True

10 = 11 False
Inequality Number # Number Boolean 10 #11 True

10 # 10 False
Greater than Number > Number Boolean 11 > 10 True

10 > 11 False
Less than Number < Number Boolean 10 < 11 True

11 < 10 False
Greater than or equal to Number >= Number Boolean 11 >= 10 True

10 >= 11 False
Less than or equal to Number <= Number Boolean 10 <= 11 True

11 <= 10 False

924 4th Dimension Language Reference

Date Comparisons
Operation Syntax Returns Expression Value
Equality Date = Date Boolean !1/1/97! =!1/1/97! True

!1/20/97! =!1/1/97! False
Inequality Date # Date Boolean !1/20/97! # !1/1/97! True

!1/1/97! # !1/1/97! False
Greater than Date > Date Boolean !1/20/97! > !1/1/97! True

!1/1/97! > !1/1/97! False
Less than Date < Date Boolean !1/1/97! < !1/20/97! True

!1/1/97! < !1/1/97! False
Greater than or equal to Date >= Date Boolean !1/20/97! >=!1/1/97! True

!1/1/97!>=!1/20/97! False
Less than or equal to Date <= Date Boolean !1/1/97!<=!1/20/97! True

!1/20/97!<=!1/1/97! False

Time Comparisons
Operation Syntax Returns Expression Value
Equality Time = Time Boolean ?01:02:03? = ?01:02:03? True

?01:02:03? = ?01:02:04? False
Inequality Time # Time Boolean ?01:02:03? # ?01:02:04? True

?01:02:03? # ?01:02:03? False
Greater than Time > Time Boolean ?01:02:04? > ?01:02:03? True

?01:02:03? > ?01:02:03? False
Less than Time < Time Boolean ?01:02:03? < ?01:02:04? True

?01:02:03? < ?01:02:03? False
Greater than or equal to Time >= Time Boolean ?01:02:03? >=?01:02:03? True

?01:02:03? >=?01:02:04? False
Less than or equal to Time <= Time Boolean ?01:02:03? <=?01:02:03? True

?01:02:04? <=?01:02:03? False

Pointer comparisons
With:

` vPtrA and vPtrB point to the same object
vPtrA:=->anObject
vPtrB:=->anObject

` vPtrC points to another object
vPtrC:=->anotherObject

4th Dimension Language Reference 925

Operation Syntax Returns Expression Value
Equality Pointer = Pointer Boolean vPtrA = vPtrB True

vPtrA = vPtrC False
Inequality Pointer # Pointer Boolean vPtrA # vPtrC True

vPtrA # vPtrB False

More about string comparisons

• Strings are compared on a character-by-character basis.

• When strings are compared, the case of the characters is ignored; thus, "a"="A" returns
TRUE. To test if the case of two characters is different, compare their ASCII codes. For
example, the following expression returns FALSE:

Ascii ("A") = Ascii ("a") ` because 65 is not equal to 97

• When strings are compared, diacritical characters are compared using the system
character comparison table of your computer. For example, the following expressions
return TRUE:

"n" = "ñ"
"n" = "Ñ"
"A"="å"

` and so on

• The wildcard character (@) can be used in any string comparison to match any number
of characters. For example, the following expression is TRUE:

"abcdefghij" = "abc@"

The wildcard character must be used within the second operand (the string on the right
side) in order to match any number of characters. The following expression is FALSE,
because the @ is considered only as a one character in the first operand:

"abc@" = "abcdefghij"

The wildcard means “one or more characters or nothing”. The following expressions are
TRUE:

"abcdefghij" = "abcdefghij@"
"abcdefghij" = "@abcdefghij"
"abcdefghij" = "abcd@efghij"
"abcdefghij" = "@abcdefghij@"
"abcdefghij" = "@abcde@fghij@"

On the other hand, whatever the case, a string comparison with two consecutive
wildcards will always return FALSE. The following expression is FALSE:

"abcdefghij" = "abc@@fg"

926 4th Dimension Language Reference

Tip
If you want to execute comparisons or queries using @ as a character (and not as a
wildcard), you have two options:

• Use the Ascii (At sign) instruction.
Imagine, for example, that you want to know if a string ends with the @ character.
- the following expression (if $vsValue is not empty) is always TRUE:

($vsValue≤Length($vsValue)≥="@")

- the following expression will be evaluated correctly:
(Ascii ($vsValue≤Length($vsValue)≥)#64)

• Use the "Consider @ as a character for Query and Order By" option which can be
accessed using the Preferences dialog box.
This option lets you define how the @ character is interpreted when it is included in a
character string. As such, it can influence how comparison operators are used in Query or
Order By. For more information, refer to the 4D Design Reference manual.

See Also
Bitwise Operators, Date Operators, Logical Operators, Numeric Operators, Operators, Picture
Operators, Time Operators.

4th Dimension Language Reference 927

Logical Operators Operators

version 6.0
__

4th Dimension supports two logical operators that work on Boolean expressions:
conjunction (AND) and inclusive disjunction (OR). A logical AND returns TRUE if both
expressions are TRUE. A logical OR returns TRUE if at least one of the expressions is TRUE.

4th Dimension also provides the Boolean functions True, False, and Not. For more
information, see the descriptions of these commands.

The following table shows the logical operators:

Operation Syntax Returns Expression Value
AND Boolean & Boolean Boolean ("A" = "A") & (15 # 3) True

("A" = "B") & (15 # 3) False
("A" = "B") & (15 = 3) False

OR Boolean | Boolean Boolean ("A" = "A") | (15 # 3) True
("A" = "B") | (15 # 3) True
("A" = "B") | (15 = 3) False

The following is the truth table for the AND logical operator:

Expr1 Expr2 Expr1 & Expr2
True True True
True False False
False True False
False False False

The following is the truth table for the OR logical operator:

Expr1 Expr2 Expr1 | Expr2
True True True
True False True
False True True
False False False

Tip
If you need to calculate the exclusive disjunction between Expr1 and Expr2, evaluate:

(Expr1 | Expr2) & Not(Expr1 & Expr2)

See Also
Bitwise Operators, Comparison Operators, Date Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

928 4th Dimension Language Reference

Picture Operators Operators

version 6.0
__

An expression that uses a picture operator returns a picture. The following table shows the
picture operators.

Operation Syntax Action
Horizontal concatenation Pict1 + Pict2 Add Pict2 to the right of Pict1
Vertical concatenation Pict1 / Pict2 Add Pict2 to the bottom of Pict1
Exclusive superimposition Pict1 & Pict2 Perform an XOR on Pict1 and Pict2
Inclusive superimposition Pict1 | Pict2 Perform a OR on Pict1 and Pict2
Horizontal move Picture + Number Move Picture horizontally Number pixels
Vertical move Picture / Number Move Picture vertically Number pixels
Resizing Picture * Number Resize Picture by Number ratio
Horizontal scaling Picture *+ Number Resize Picture horizontally by Number ratio
Vertical scaling Picture */ Number Resize Picture vertically by Number ratio

The two operators & and | always return a bitmapped picture, no matter what the nature
of the two source pictures. The reason is that 4th Dimension first draws the pictures into
memory bitmaps, then calculates the resulting picture by performing graphical exclusive
or inclusive OR on the pixels of the bitmaps.

The other picture operators return vectorial pictures if the two source pictures are
vectorial. Remember, however, that pictures printed by the display format On
Background are printed bitmapped.

Examples
In the following examples, all of the pictures are shown using the display format On
Background.

Here is the picture circle:

4th Dimension Language Reference 929

Here is the picture rectangle:

In the following examples, each expression is followed by its graphical representation.

• Horizontal concatenation

circle + rectangle ` Place the rectangle to the right of the circle

rectangle + circle ` Place the circle to the right of the rectangle

930 4th Dimension Language Reference

• Vertical concatenation

circle / rectangle ` Place the rectangle under the circle

rectangle / circle ` Place the circle under the rectangle

4th Dimension Language Reference 931

• Exclusive superimposition (XOR)

circle & rectangle ` Exclusive OR of the two pictures

• Inclusive superimposition (OR)

circle | rectangle ` Inclusive OR of the two pictures

932 4th Dimension Language Reference

• Horizontal move

rectangle + 50 ` Move the rectangle 50 pixels to the right

rectangle - 50 ` Move the rectangle 50 pixels to the left

4th Dimension Language Reference 933

• Vertical move

rectangle /50 ` Move the rectangle down by 50 pixels

rectangle /-20 ` Move the rectangle up by 20 pixels

934 4th Dimension Language Reference

• Resize

rectangle * 1.5 ` The rectangle becomes 50% bigger

rectangle * 0.5 ` The rectangle becomes 50% smaller

4th Dimension Language Reference 935

• Horizontal scaling

circle *+3 ` The circle becomes 3 times wider

circle *+ 0.25 ` The circle's width becomes a quarter of what it was

936 4th Dimension Language Reference

• Vertical scaling

circle */ 2 ` The circle becomes twice as tall

circle */ 0.25 ` The circle's height becomes a quarter of what it was

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, String Operators, Time Operators.

4th Dimension Language Reference 937

Bitwise Operators Operators

version 6.0
__

The bitwise operators operates on Long Integer expressions or values.

Note: If you pass an Integer or a Real value to a bitwise operator, 4th Dimension evaluates
the value as a Long Integer value before calculating the expression that uses the bitwise
operator.

While using the bitwise operators, you must think about a Long Integer value as an array
of 32 bits. The bits are numbered from 0 to 31, from right to left.

Because each bit can equal 0 or 1, you can also think about a Long Integer value as a value
where you can store 32 Boolean values. A bit equal to 1 means True and a bit equal to 0
means False.

An expression that uses a bitwise operator returns a Long Integer value, except for the Bit
Test operator, where the expression returns a Boolean value. The following table lists the
bitwise operators and their syntax:

Operation Operator Syntax Returns
Bitwise AND & Long & Long Long
Bitwise OR (inclusive) | Long | Long Long
Bitwise OR (exclusive) ^| Long ^| Long Long
Left Bit Shift << Long << Long Long (see note 1)
Right Bit Shift >> Long >> Long Long (see note 1)
Bit Set ?+ Long ?+ Long Long (see note 2)
Bit Clear ?- Long ?- Long Long (see note 2)
Bit Test ?? Long ?? Long Boolean (see note 2)

Notes
(1) For the Left Bit Shift and Right Bit Shift operations, the second operand indicates the
number of positions by which the bits of the first operand will be shifted in the resulting
value.
Therefore, this second operand should be between 0 and 32. Note however, that shifting
by 0 returns an unchanged value and shifting by more than 31 bits returns 0x00000000
because all the bits are lost. If you pass another value as second operand, the result is non
significant.
(2) For the Bit Set, Bit Clear and Bit Test operations , the second operand indicates the
number of the bit on which to act. Therefore, this second operand must be between 0
and 31. Otherwise, the expression returns the value of the first operand unchanged for Bit
Set and Bit Clear, and returns False for Bit Test.

938 4th Dimension Language Reference

The following table lists the bitwise operators and their effects:

Operation Description
Bitwise AND Each resulting bit is the logical AND of the bits in the two

operands. Here is the logical AND table:

1 & 1 → 1
0 & 1 → 0
1 & 0 → 0
0 & 0 → 0
In other words, the resulting bit is 1 if the two operand bits are
1; otherwise the resulting bit is 0.

Bitwise OR (inclusive) Each resulting bit is the logical OR of the bits in the two
operands. Here is the logical OR table:

1 | 1 → 1
0 | 1 → 1
1 | 0 → 1
0 | 0 → 0
In other words, the resulting bit is 1 if at least one of the two
operand bits is 1; otherwise the resulting bit is 0.

Bitwise OR (exclusive) Each resulting bit is the logical XOR of the bits in the two
operands. Here is the logical XOR table:

1 ^| 1 → 0
0 ^| 1 → 1
1 ^| 0 → 1
0 ^| 0 → 0
In other words, the resulting bit is 1 if only one of the two
operand bits is 1; otherwise the resulting bit is 0.

Left Bit Shift The resulting value is set to the first operand value, then the
resulting bits are shifted to the left by the number of positions
indicated by the second operand. The bits on the left are lost
and the new bits on the right are set to 0.
Note: Taking into account only positive values, shifting to the
left by N bits is the same as multiplying by 2^N.

Right Bit Shift The resulting value is set to the first operand value, then the
resulting bits are shifted to the right by the number of position
indicated by the second operand. The bits on the right are lost
and the new bits on the left are set to 0.
Note: Taking into account only positive values, shifting to the
right by N bits is the same as dividing by 2^N.

4th Dimension Language Reference 939

Bit Set The resulting value is set to the first operand value, then the
resulting bit, whose number is indicated by the second operand,
is set to 1. The other bits are left unchanged.

Bit Clear The resulting value is set to the first operand value, then the
resulting bit, whose number is indicated by the second operand,
is set to 0.
The other bits are left unchanged.

Bit Test Returns True if, in the first operand, the bit whose number
is indicated by the second operand is equal to 1.
Returns False if, in the first operand, the bit whose number
is indicated by the second operand is equal to 0.

Examples
(1) The following table gives an example of each bit operator:

Operation Example Result
Bitwise AND 0x0000FFFF & 0xFF00FF00 0x0000FF00
Bitwise OR (inclusive) 0x0000FFFF | 0xFF00FF00 0xFF00FFFF
Bitwise OR (exclusive) 0x0000FFFF ^| 0xFF00FF00 0xFF0000FF
Left Bit Shift 0x0000FFFF << 8 0x00FFFF00
Right Bit Shift 0x0000FFFF >> 8 0x000000FF
Bit Set 0x00000000 ?+ 16 0x00010000
Bit Clear 0x00010000 ?- 16 0x00000000
Bit Test 0x00010000 ?? 16 True

(2) 4th Dimension provides many predefined constants. The literals of some of these
constants end with “bit” or “mask.” For example, this is the case of the constants
provided in the Resources properties theme:

Constant Type Value
System heap resource mask Long Integer 64
System heap resource bit Long Integer 6
Purgeable resource mask Long Integer 32
Purgeable resource bit Long Integer 5
Locked resource mask Long Integer 16
Locked resource bit Long Integer 4
Protected resource mask Long Integer 8
Protected resource bit Long Integer 3
Preloaded resource mask Long Integer 4
Preloaded resource bit Long Integer 2
Changed resource mask Long Integer 2
Changed resource bit Long Integer 1

940 4th Dimension Language Reference

These constants enable you to test the value returned by Get resource properties or to
create the value passed to SET RESOURCE PROPERTIES. Constants whose literal ends with
“bit” give the position of the bit you want to test, clear, or set. Constants whose literal
ends with “mask” gives a long integer value where only the bit (that you want to test,
clear, or set) is equal to one.

For example, to test whether a resource (whose properties have been obtained in the
variable $vlResAttr) is purgeable or not, you can write:

If ($vlResAttr ?? Purgeable resource bit) ` Is the resource purgeable?
or:

If (($vlResAttr & Purgeable resource mask) # 0) Is the resource purgeable?

Conversely, you can use these constants to set the same bit. You can write:

$vlResAttr:=$vlResAttr ?+ Purgeable resource bit
or:

$vlResAttr:=$vlResAttr | Purgeable resource bit

(3) This example stores two Integer values into a Long Integer value. You can write:

$vlLong:=($viIntA<<16) | $viIntB ` Store two Integers in a Long Integer

$vlIntA:=$vlLong>>16 ` Extract back the integer stored in the high-word

$viIntB:=$vlLong & 0xFFFF ` Extract back the Integer stored in the low-word

Tip: Be careful when manipulating Long Integer or Integer values with expressions that
combine numeric and bitwise operators. The high bit (bit 31 for Long Integer, bit 15 for
Integer) sets the sign of the value—positive if it is cleared, negative if it is set. Numeric
operators use this bit for detecting the sign of a value, bitwise operators do not care about
the meaning of this bit.

See Also
Comparison Operators, Date Operators, Logical Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

4th Dimension Language Reference 941

942 4th Dimension Language Reference

35

Printing

4th Dimension Language Reference 943

944 4th Dimension Language Reference

PRINT LABEL Printing

version 2004 (Modified)
__

PRINT LABEL ({table}{; document{; * | >}})

Parameter Type Description
table Table → Table to print, or

Default table, if omitted
document String → Name of disk label document
* | > → * to suppress the printing dialog boxes, or

> to not reinitialize print settings

Description
PRINT LABEL enables you to print labels with the data from the selection of table.

If do not specify the document parameter, PRINT LABEL prints the current selection of
table as labels, using the current output form. You cannot use this command to print
subforms. For details about creating forms for labels, refer to the 4th Dimension Design
Reference manual.

If you specify the document parameter, PRINT LABEL enables you to access the Label
Wizard (shown below) or to print an existing Label document stored on disk. See the
following discussion.

4th Dimension Language Reference 945

By default, PRINT LABEL displays the printer dialog boxes before printing. If the user
cancels either of the printer dialog boxes, the command is canceled and the labels are not
printed.
You can suppress these dialog boxes by using either the optional asterisk (*) parameter or
the optional “greater than” (>) parameter:
• The * parameter causes a print job using the current print parameters (default parameters
or those defined by the PAGE SETUP and/or SET PRINT OPTION commands).
• Furthermore, the > parameter causes a print job without reinitializing the current print
parameters. This setting is useful for executing several successive calls to PRINT LABEL (ex.
inside a loop) while maintaining previously set customized print parameters. For an
example of use of this parameter, refer to the PRINT RECORD command description.
Note that this parameter has no effect if the Label Wizard is involved.

If the Label Wizard is not involved, the OK variable is set to 1 if all labels are printed;
otherwise, it is set to 0 (zero) (i.e., if user clicked Cancel in the printing dialog boxes).

If you specify the document parameter, the labels are printed with the label setup defined
in document. If document is an empty string (""), PRINT LABEL will present an Open File
dialog box so the user can specify the file to use for the label setup. If document is the
name of a document that does not exist (for example, pass char(1) in document), the
Label Wizard is displayed and the user can define the label setup.

4D Server: This command can be executed on 4D Server within the framework of a stored
procedure. In this context:
• Make sure that no dialog box appears on the server machine (except for a specific
requirement). To do this, it is necessary to call the command with the * or > parameter.
• The syntax which makes the label editor appear does not work with 4D Server; in this
case, the system variable OK is set to 0.
• In the case of a problem concerning the printer (out of paper, printer disconnected,
etc.), no error message is generated.

Examples
1. The following example prints labels using the output form of a table. The example uses
two methods. The first is a project method that sets the correct output form and then
prints labels:

ALL RECORDS([Addresses]) ` Select all records
OUTPUT FORM ([Addresses]; "Label Out") ` Select the output form

⇒ PRINT LABEL([Addresses]) ` Print the labels
OUTPUT FORM ([Addresses];"Output") ` Restore default output form

946 4th Dimension Language Reference

The second method is the form method for the form "Label Out". The form contains one
variable named vLabel, which is used to hold the concatenated fields. If the second address
field (Addr2) is blank, it is removed by the method. Note that this task is performed
automatically with the Label Wizard. The form method creates the label for each record:

` [Addresses]; "Label Out" form method
Case of

: (Form event=On load)
vLabel:=[Addresses]Name1+" "+[Addresses]Name2+Char(13)+

[Addresses]Addr1+Char(13)
If ([Addresses]Addr2 # "")

vLabel:=vLabel +[Addresses]Addr2+Char(13)
End if
vLabel:=vLabel+[Addresses]City+", "+[Addresses]State+" "+[Addresses]ZipCode

End case

2. The following example lets the user query the [People] table, and then automatically
prints the labels “My Labels”:

QUERY ([People])
If (OK=1)

⇒ PRINT LABEL ([People];"My Labels";*)
End if

3. The following example lets the user query the [People] table, and then lets the user
choose the labels to be printed:

QUERY ([People])
If (OK=1)

⇒ PRINT LABEL ([People];"")
End if

4. The following example lets the user query the [People] table, and then displays the
Label Wizard so the user can design, save, load and print any labels:

QUERY ([People])
If (OK=1)

⇒ PRINT LABEL ([People];Char(1))
End if

See Also
PRINT SELECTION, QR REPORT.

4th Dimension Language Reference 947

PRINT SELECTION Printing

version 2004 (Modified)
__

PRINT SELECTION ({table}{; }{* | >})

Parameter Type Description
table Table → Table for which to print the selection, or

Default table, if omitted
* | > * | > → * to delete the printing dialog boxes, or

> to not reinitialize print settings

Description
PRINT SELECTION prints the current selection of table. The records are printed with the
current output form of the table in the current process. PRINT SELECTION performs the
same action as the Print menu command in the User environment. If the selection is
empty, PRINT SELECTION does nothing.

By default, PRINT SELECTION displays the printer dialog boxes before printing. If the user
cancels either of the printer dialog boxes, the command is canceled and the report is not
printed.
You can delete these dialog boxes by using either the optional asterisk (*) parameter or
the optional “greater than” (>) parameter:
• The * parameter causes a print job using the current print parameters (default parameters
or those defined by the PAGE SETUP and/or SET PRINT OPTION commands).
• Furthermore, the > parameter causes a print job without reinitializing the current print
parameters. This setting is useful for executing several successive calls to PRINT SELECTION
(e.g., inside a loop) while maintaining previously set customized print parameters. For an
example of the use of this parameter, refer to the PRINT RECORD command description.

During printing, the output form method and/or the form’s object methods are executed
depending on the events that are enabled for the form and objects using the Property List
window in the Design environment, as well as on the events actually occurring:

• An On Header event is generated just before a header area is printed.
• An On Printing Detail event is generated just before a record is printed.
• An On Printing Break event is generated just before a break area is printed.
• An On Printing Footer event is generated just before a footer is printed.

You can check whether PRINT SELECTION is printing the first header by testing Before
selection during an On Header event. You can also check for the last footer, by testing End
selection during an On Printing Footer event. For more information, see the description of
these commands, as well as those of Form event and Level.

948 4th Dimension Language Reference

To print a sorted selection with subtotals or breaks using PRINT SELECTION, you must first
sort the selection. Then, in each Break area of the report, include a variable with an object
method that assigns the subtotal to the variable. You can also use statistical and
arithmetical functions like Sum and Average to assign values to variables. For more
information, see the descriptions of Subtotal, BREAK LEVEL and ACCUMULATE.

Warning: Do not use the PAGE BREAK command with the PRINT SELECTION command.
PAGE BREAK is to be used with the PRINT FORM command.

After a call to PRINT SELECTION, the OK variable is set to 1 if the printing has been
completed. If the printing was interrupted, the OK variable is set to 0 (zero) (i.e., the user
clicked Cancel in the printing dialog boxes).

4D Server: This command can be executed on 4D Server within the framework of a stored
procedure. In this context:
• Make sure that no dialog box appears on the server machine (except for a specific
requirement). To do this, it is necessary to call the command with the * or > parameter.
• In the case of a problem concerning the printer (out of paper, printer disconnected,
etc.), no error message is generated.

Example
The following example selects all the records in the [People] table. It then uses the
DISPLAY SELECTION command to display the records and allows the user to highlight the
records to print. Finally, it uses the selected records with the USE SET command, and
prints them with PRINT SELECTION:

ALL RECORDS([People]) ` Select all records
DISPLAY SELECTION ([People]; *) ` Display the records
USE SET ("UserSet") ` Use only records picked by user

⇒ PRINT SELECTION([People]) ` Print the records that the user picked

See Also
ACCUMULATE, BREAK LEVEL, Level, PAGE SETUP, Subtotal.

4th Dimension Language Reference 949

Print form Printing

version 2004 (Modified)
__

Print form ({table; }form{; area1{; area2}}){ → Number }

Parameter Type Description
table Table → Table owning the form, or

Default table, if omitted
form String → Form to print
area1 Number → Print marker, or Beginning area (if area2 is specified)
area2 Number → Ending area (if area1 specified)

Function result Number ← Height of printed section

Description
Print form simply prints form with the current values of fields and variables. It is usually
used to print very complex reports that require complete control over the printing
process. Print form does not do any record processing, break processing or page breaks.
These operations are your responsibility. Print form prints fields and variables in a fixed
size frame only.

Since Print form does not issue a page break after printing the form, it is easy to combine
different forms on the same page. Thus, Print form is perfect for complex printing tasks
that involve different tables and different forms. To force a page break between forms,
use the PAGE BREAK command. In order to carry printing over to the next page for a form
whose height is greater than the available space, call the CANCEL command before the
PAGE BREAK command.

Three different syntaxes may be used:

• Detail area printing

Syntax:
height:=Print form (myTable;myForm)

In this case, Print form only prints the Detail area (the area between the Header line and
the Detail line) of the form.

• Form area printing

Syntax:
height:=Print form (myTable;myForm;marker)

950 4th Dimension Language Reference

In this case, the command will print the section designated by the marker. Pass one of the
constants of the Form area theme in the marker parameter:
Constant Type Value
Form Header Longint 200
Form Header1...10 Longint 201...210
Form Detail Longint 0
Form Break0...9 Longint 300...309
Form Footer Longint 100

• Section printing

Syntax:
height:=Print form (myTable;myForm;areaStart;areaEnd)

In this case, the command will print the section included between the areaStart and
areaEnd parameters. The values entered must be expressed in pixels.

The value returned by Print form indicates the height of the printable area. This value will
be automatically taken into account by the Get printed height command.

The printer dialog boxes do not appear when you use Print form. The report does not use
the print settings that were assigned to the form in the Design environment. There are
two ways to specify the print settings before issuing a series of calls to Print form:
• Call PRINT SETTINGS. In this case, you let the user choose the settings.
• Call PAGE SETUP. In this case, print settings are specified programmatically.

Print form builds each printed page in memory. Each page is printed when the page in
memory is full or when you call PAGE BREAK. To ensure the printing of the last page after
any use of Print form, you must conclude with the PAGE BREAK command. Otherwise, if
the last page is not full, it stays in memory and is not printed.

Warning: Subforms and external objects are not printed with Print form. To print only one
form with such objects, use PRINT RECORD instead.

Print form generates only one On Printing Detail event for the form method.

4D Server: This command can be executed on 4D Server within the framework of a stored
procedure. In this context:
• Make sure that no dialog box appears on the server machine (except for a specific
requirement).
• In the case of a problem concerning the printer (out of paper, printer disconnected,
etc.), no error message is generated.

4th Dimension Language Reference 951

Examples
(1)The following example performs as a PRINT SELECTION command would. However, the
report uses one of two different forms, depending on whether the record is for a check or
a deposit:

QUERY([Register]) ` Select the records
If (OK=1)

ORDER BY([Register]) ` Sort the records
If (OK=1)

PRINT SETTINGS ` Display Printing dialog boxes
If (OK=1)

For ($vlRecord; 1; Records in selection([Register]))
If ([Register]Type = "Check")

⇒ Print form ([Register]; "Check Out") ` Use one form for checks
Else

⇒ Print form ([Register]; "Deposit Out") ` Use another form for deposits
End if
NEXT RECORD([Register])

End for
PAGE BREAK ` Make sure the last page is printed

End if
End if

End if

(2) Refer to the example of the SET PRINT MARKER command.

See Also
CANCEL, PAGE BREAK, PAGE SETUP, PRINT SETTINGS.

952 4th Dimension Language Reference

PAGE BREAK Printing

version 2003 (Modified)
__

PAGE BREAK {(* | >)}

Parameter Type Description
* | > → * Cancel printing job started with Print form, or

> Force one printing job

Description
PAGE BREAK triggers the printing of the data that has been sent to the printer and ejects
the page. PAGE BREAK is used with Print form (in the context of the On Printing Detail
form event) to force page breaks and to print the last page created in memory. Do not use
PAGE BREAK with the PRINT SELECTION command. Instead, use Subtotal or BREAK LEVEL
with the optional parameter to generate page breaks.

The * and > parameters are both optional.

The * parameter allows you to cancel a print job started with the Print form command.
Executing this command immediately stops the print job in progress.

Note: Under Windows, this mechanism can be disrupted by the spooling properties of the
print server. If the printer is configured to start printing immediately, cancelling will not
be effective. For the PAGE BREAK(*) command to operate correctly, it is preferable to
choose the "Start printing after last page is spooled" property for the printer.

The > parameter modifies the way in which the PAGE BREAK command behaves. This
syntax has two effects:
• It holds the print job open until the PAGE BREAK command is executed again without a
parameter.
• It gives priority to the print job. No other printing can take place until the print job is
finished.
The second option is particularly useful when used with a spooled print job. The >
parameter guarantees that the print job will be spooled to one file. This will reduce
printing time.

Examples
(1) See example for the Print form command.

(2) Refer to the example of the SET PRINT MARKER command.

See Also
CANCEL, PRINT FORM.

4th Dimension Language Reference 953

PRINT RECORD Printing

version 2004 (Modified)
__

PRINT RECORD ({table}{; }{* | >})

Parameter Type Description
table Table → Table for which to print the current record or

Default table if omitted
* | > * | > → * to suppress the printer dialog boxes, or

> to not reinitialize print settings

Description
PRINT RECORD prints the current record of table, without modifying the current
selection. The current output form is used for printing. If there is no current record for
table, PRINT RECORD does nothing.

You can print subforms and external objects with the PRINT RECORD command. This is
not possible with Print form.

Note: If there are modifications to the record that have not been saved, this command
prints the modified field values, not the field values located on disk.

By default, PRINT RECORD displays the printer dialog boxes before printing. If the user
cancels either of the printer dialog boxes, the command is canceled and the record is not
printed.
You can suppress these dialog boxes by using either the optional asterisk (*) parameter or
the optional “greater than” (>) parameter:
• The * parameter causes a print job using the current print parameters (default parameters
or those defined by the PAGE SETUP and/or SET PRINT OPTION commands).
• Furthermore, the > parameter causes a print job without reinitializing the current print
parameters. This setting is useful for executing several successive calls to PRINT RECORD
(ex. inside a loop) while maintaining previously set customized print parameters.

4D Server: This command can be executed on 4D Server within the framework of a stored
procedure. In this context:
• Make sure that no dialog box appears on the server machine (except for a specific
requirement). To do this, it is necessary to call the command with the * or > parameter.
• In the case of a problem concerning the printer (out of paper, printer disconnected,
etc.), no error message is generated.

954 4th Dimension Language Reference

Examples
1. The following example prints the current record of the [Invoices] table. The code is
contained in the object method of a Print button on the input form. When the user
clicks the button, the record is printed using an output form designed for this purpose.

 ` Select the right output form for printing
OUTPUT FORM([Invoices];"Print One From Data Entry")

` Print Invoices as it is (without showing the printing dialog boxes)
⇒ PRINT RECORD([Invoices];*)

OUTPUT FORM([Invoices];"Standard Output") ` Restore the previous output form

2. The following example prints the same current record in two different forms. The code
is contained in the object method of a Print button on the input form. You want to set
customized print parameters and then use them in the two forms.

PRINT SETTINGS `User defines print parameters
If (OK=1)

OUTPUT FORM([Employees];"Detailed") `Use the first print form
⇒ PRINT RECORD([Employees];>) `Print using user-defined parameters

OUTPUT FORM([Employees];"Simple") `Use the second print form
⇒ PRINT RECORD([Employees];>) `Print using user-defined parameters

OUTPUT FORM([Employees];"Output") `Restore default output form
End if

See Also
Print form.

4th Dimension Language Reference 955

Printing page Printing

version 3
__

Printing page → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Page number of page currently being printed

Description
Printing page returns the printing page number. It can be used only when you are
printing with PRINT SELECTION or the Print menu in the User environment.

Example
The following example changes the position of the page numbers on a report so that the
report can be reproduced in a double-sided format. The form for the report has two
variables that display page numbers. A variable in the lower-left corner (vLeftPageNum)
will print the even page numbers. A variable in the lower-right corner (vRightPageNum)
will print the odd page numbers. The example tests for even pages, then clears and sets
the appropriate variables:

Case of
: (Form event=On Printing Footer)

⇒ If ((Printing page % 2) = 0) ` Modulo is 0, it is an even page
⇒ vLeftPageNum:=String(Printing page) ` Set the left page number

vRightPageNum:="" ` Clear the right page number
Else ` Otherwise it is an odd page

vLeftPageNum:="" ` Clear the left page number
⇒ vRightPageNum:=String (Printing page) ` Set the right page number

End if
End case

See Also
PRINT SELECTION.

956 4th Dimension Language Reference

PRINTERS LIST Printing

version 2004.1 (Modified)
__

PRINTERS LIST (namesArray{; altNamesArray{; modelsArray}})

Parameter Type Description
namesArray Text Array ← Printer names
altNamesArray Text Array ← Windows: Printer locations

Mac OS: Custom printer names
modelsArray Text Array ← Printer models (Windows only)

Description
The PRINTERS LIST command fills in the array(s) passed as parameter(s) with the names as
well as, optionally, the locations or custom names and models of the available printers for
the machine.

Note: If the printers are managed using a print server (spooler), the complete access path
(under Windows) or the name of the spooler (under Mac OS) is returned.

Pass the name of a text array in the namesArray parameter. After command execution,
this array will contain the names of available printers. Under Mac OS, this will be the
fixed “system” names.

You can pass a second optional array, altNamesArray. The contents of this array will
depend on the platform:
• Under Windows, for each printer, you get its network location (or local port).
• Under Mac OS, for each printer, you get its custom name, which can be modified by the
user. This name can be used, for example, in dialog boxes.

The optional modelsArray parameter is used to get the model of each printer. This
parameter can only be used under Windows.

Use the SET CURRENT PRINTER and Get current printer commands to modify or get the
selected printer in 4D. You must pass them the names returned in the first array
(namesArray)

Under Windows, the name of a printer can be modified manually at the operating system
level. On the other hand, its location and model type are linked to its physical
characteristics. Therefore, you can use the optional array values to check the
characteristics of the selected printer — typically, you can check that all the client
machines use the same printer.

Under Mac OS, this check can be carried out using the name of the printer (name of the
print server), which is the same for each machine that is connected.

See also
Get current printer, SET CURRENT PRINTER.

4th Dimension Language Reference 957

SET CURRENT PRINTER Printing

version 2003
__

SET CURRENT PRINTER (printerName)

Parameter Type Description
printerName String → Name of printer to be used

Description

Note: This command does not work under Mac OS 9. Under Windows, it requires at least
Windows 2000.

The SET CURRENT PRINTER command is used to designate the printer to be used for
printing with the current 4D application.

Pass the name of the printer to be selected in the printerName parameter. To get a list of
available printers, use the new PRINTERS LIST command beforehand.
If you pass an empty string in printerName, the current printer defined in the system will
be used.

The SET CURRENT PRINTER command must be called before SET PRINT OPTION, so that
the options available correspond to the selected printer. On the other hand, SET CURRENT
PRINTER must be called after PAGE SETUP, otherwise the print settings are lost.

This command can be used with the PRINT SELECTION, PRINT LABEL, PRINT RECORD, Print
form, and QR REPORT commands, and is applied to all 4th Dimension printing, including
that in Design mode.
It is imperative for print commands to be called with the > parameter (where applicable)
so that the specified settings are not lost.

See also
Get current printer, PRINTERS LIST.

System Variables or Sets
If printer selection is carried out correctly, the system variable OK is set to 1. Should the
opposite occur (for instance if the designated printer is not found), the system variable
OK is set to 0 and the current printer remains unchanged.

958 4th Dimension Language Reference

Get current printer Printing

version 2003
__

Get current printer → String

Parameter Type Description
This command does not require any parameters

Function result String ← Name of the current printer

Description

Note: This command does not work under Mac OS 9. Under Windows, it requires at least
Windows 2000.

The Get current printer command returns the name of the current printer defined in the
4D application. By default, on start-up of 4D, the current printer is the printer defined in
the system.

If the current printer is managed using a print server (spooler), the complete access path
(under Windows) or the name of the spooler (under Mac OS) is returned.

To obtain the list of available printers as well as additional information, use the PRINTERS
LIST command. To modify the current printer, use the SET CURRENT PRINTER command.

See also
PRINTERS LIST, SET CURRENT PRINTER.

System Variables or Sets
If no printer is installed, the system variable OK is set to 0. Otherwise, it is set to 1.

4th Dimension Language Reference 959

BREAK LEVEL Printing

version 3
__

BREAK LEVEL (level{; pageBreak})

Parameter Type Description
level Number → Number of break levels
pageBreak Number → Break level for which to do a page break

Description
BREAK LEVEL specifies the number of break levels in a report performed using PRINT
SELECTION.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every report for which you want to do break processing. These commands activate break
processing for a report. See the explanation for the Subtotal command.

The level parameter indicates the deepest level for which you want to perform break
processing. You must have sorted the records with at least that many levels. If you have
sorted more levels, those levels will be printed as sorted, but will not be processed for
breaks.

Each break level that is generated will print the corresponding Break areas and Header
areas in the form. There should be at least as many Break areas in the form as the number
you pass in level. If there are more Break areas, they will be ignored and will not be
printed.

The second, optional, argument, pageBreak, is used to cause page breaks during printing.

Example
The following example prints a report with two break levels. The selection is sorted on
four levels, but the BREAK LEVEL command specifies to break on only two levels. One field
is accumulated with the ACCUMULATE command:

ORDER BY ([Emp]Dept;>;[Emp]Title;>;[Emp]Last;>;[Emp]First;>) ` Sort on four levels
⇒ BREAK LEVEL (2) ` Turn on break processing to 2 levels (Dept and Title)

ACCUMULATE ([Emp]Salary) ` Accumulate the salaries
OUTPUT FORM ([Emp];"Dept salary") ` Select the report form
PRINT SELECTION([Emp]) ` Print the report

See Also
ACCUMULATE, ORDER BY, PRINT SELECTION, Subtotal.

960 4th Dimension Language Reference

SET PRINT OPTION Printing

version 2004.3 (Modified)
__

SET PRINT OPTION (option; value1{; value2})

Parameter Type Description
option Longint → Option number
value1 Longint | String → Value 1 of the option
value2 Longint | String → Value 2 of the option

Description
The SET PRINT OPTION command is used to modify, by programming, the value of a
print option. Each option defined using this command is applied to the entire database
and for the duration of the session as long as no other command that modifies print
parameters (PRINT SETTINGS, PRINT SELECTION without the > parameter, etc.) is called.

The option parameter allows you to indicate the option to be modified. You can pass
either a value or one of the predefined constants of the “Print options” theme.
Pass the new value(s) of the specified option in the value1 and (optionally) value2
parameters. The number and nature of the values to be passed depend on the type of
option specified.

The following table lists the options and their possible values:

option (constant) value1 value2
1 (Paper option) Name -

Height Width
2 (Orientation option) 1=Portrait, 2=Landscape -
3 (Scale option) Number (%) -
4 (Number of copies option) Number -
5 (Paper source option) Windows only:

Index (number) -
8 (Color option) Windows only:

1=N/B, 2=Color -
9 (Destination option) 1=Printer, -

2=File (PC)/PS (Mac), Access path
3=PDF (Mac), Access path
5=Screen (Mac) -

11 (Double sided option) Windows only:
0=Single-sided (standard) -
1=Double-sided Binding: 0=Left

(default), 1=Top

4th Dimension Language Reference 961

12 (Spooler document name option) Name of document -
to be printed

13 (Mac spool file format option) 0=PDF mode, 1= PostScript -
mode

14 (Hide printing progress option) 0=Display (default), -
1=Hide

• Paper option (1): the list of all the names of available paper can be obtained using the
PRINT OPTION VALUES command.
You can either pass the name of the paper in value1 (and, in this case, omit value2), or
pass the paper height in value1 and its width in value2. The width and height must be
expressed in screen pixels.
• Orientation option (2): you can pass either 1 (Portrait), or 2 (Landscape) in value1.
• Scale option (3): pass a percentage in value1. Be careful, some printers do not allow you
to modify the scale. If you pass an invalid value, the property is reset to 100% at the time
of printing.
• Number of copies option (4): pass the number of copies to be printed in value1.
• Paper source option (5): pass the number corresponding to the index, in the array of
trays returned by the PRINT OPTION VALUES command, of the paper tray to be used.
Note: This option can only be used under Windows.
• Color option (8): in value1, pass the code specifying the mode for handling color:
1=Black and white (monochrome), 2=Color.
Note: This option can only be used under Windows.
• Destination option (9): in value1, pass the code specifying the type of print destination:
1=Printer, 2=File (PC)/PS (Mac), 3=PDF file (Mac OS only), 5=Screen (Mac OS X driver
option).
If value1 is different from 1 or 5, pass the pathname for the resulting document in value2.
This path will be used until another path is specified. If a file with the same name already
exists at the destination location, it will be replaced. Under Windows only: if you pass an
empty string in value2 or omit this parameter, a file saving dialog appears at the time of
printing.
• Double sided option (11): you can either pass 0 (Single-sided or standard), or 1 (Double-
sided) in value1. If value1 equals 1, you can define the binding to be applied using value2:
0=Left binding (default value), 1=Top binding.
Note: This option can only be used under Windows.
• Spooler document name option (12): in value1, pass the name of the print document
that must appear in the list of spooler documents.
To use or restore standard operation (using the method name in the case of a method, the
table name for a record, etc.), pass an empty string in value1.
Warning: The name defined by this statement will be used for all the print documents of
the session for as long as a new name or an empty string is not passed.
• Mac spool file format option (13): in value1, pass 0 to set the print job in PDF mode
(default value) and 1 to “force” the print job in PostScript mode. This option has no effect
under Windows.
Note: Under Mac OS X, printing is done as a PDF by default. However, the PDF print
driver does not support PICT pictures with encapsulated PostScript information — these
pictures are generated, more particularly, by vectorial drawing software.

962 4th Dimension Language Reference

To avoid this problem, this option lets you modify the print mode to use under Mac OS X
for the current session. Keep in mind that printing in PostScript mode can lead to
undesired side effects.
• Hide printing progress option (14): pass 1 in value1 to hide the progress windows and 0
to display them again (default operation). This option is particularly useful in the case of
PDF printing under Mac OS X.
Note: There is already a Printing progress option found in the Preferences dialog box
(Application/Options page). However, it is applied globally to the application and does not
hide all the windows under Mac OS X.

Once set using this command, a print option is kept throughout the duration of the
session for the entire 4D application. It will be used by the PRINT SELECTION, PRINT
LABEL, PRINT RECORD, Print form, and QR REPORT commands, as well as for all 4th
Dimension printing, including that in Design mode.

Notes:
• It is indispensable to use the optional > parameter with the PRINT SELECTION, PRINT
LABEL, PRINT RECORD and PAGE BREAK commands in order to avoid resetting the print
options that were set using the SET PRINT OPTION command.
• The SET PRINT OPTION command only operates with PostScript printers.

See also
GET PRINT OPTION, PRINT OPTION VALUES, SET CURRENT PRINTER.

System Variables or Sets
The system variable OK is set to 1 if the command has been executed correctly; otherwise,
it is set to 0.

Error Handling
If the value passed for an option is invalid or if it is not available on the printer, the
command returns an error (that you can intercept using an error-handling method
installed by the ON ERR CALL command) and the current value of the option remains
unchanged.

Constants
Print options theme.

4th Dimension Language Reference 963

GET PRINT OPTION Printing

version 2004.3 (Modified)
__

GET PRINT OPTION (option; value1{; value2})

Parameter Type Description
option Longint → Option number
value1 Longint | String ← Value 1 of the option
value2 Longint ← Value 2 of the option

Description
The GET PRINT OPTION command returns the current value(s) of a print option.

The option parameter enables you to specify the option to get. You can either pass a value
or one of the following predefined constants, located in the “Print options” theme:
Constant Type Value
Paper option Longint 1
Orientation option Longint 2
Scale option Longint 3
Number of copies option Longint 4
Paper source option Longint 5
Color option Longint 8
Destination option Longint 9
Double sided option Longint 11
Spooler document name option Longint 12
Mac spool file format option Longint 13
Hide printing progress option Longint 14

The command returns, in the value1 and (optionally) value2 parameters, the current
value(s) of the specified option. For more information on options and possible values,
refer to the description of the SET PRINT OPTION command. Note the following specific
features of the GET PRINT OPTION command:
• option = 1 (paper option): returns the name of the current paper in value1 if value2 is
omitted. If value2 is passed, the command returns, respectively, the height and width of
the paper in value1 and value2. Use the PRINT OPTION VALUES command to get the name,
height and width of all the paper formats offered by the printer.
• option = 2 (orientation option): returns 1 (Portrait) or 2 (Landscape). If a different
orientation option is used, value1 is set to 0.
• option = 5 (paper source option): in value1, returns the index (in the array of trays
returned by the PRINT OPTION VALUES command) of the paper tray used (value2 must be
omitted).
Note: This option can only be used under Windows.
• option = 8 (color option): returns a code in value1 specifying the mode for handling
color: 1=Black and white (monochrome), 2=Color.
Note: This option can only be used under Windows.

964 4th Dimension Language Reference

• option = 9 (destination option): if the current value is not in the predefined list, value1
contains -1 and the system variable OK is set to 1. If an error occurs, value1 and the
system variable OK are set to 0. If value1 contains a predefined value different from 1 or 5,
value2 contains the access path of the printed file.
• option = 11 (double sided option): returns 0 (Standard or Single-sided, default value) or 1
(Double-sided) in value1. If value1 equals 1, value2 may return one of the following values:
0=Left binding (default), 1=Top binding.
Note: This option can only be used under Windows.
• option = 12 (spooler document name option): returns the name of the current print
document in value1, if it has been defined previously. Otherwise, an empty string is
returned.

Note: The GET PRINT OPTION command only operates with PostScript printers.

See also
PRINT OPTION VALUES, SET PRINT OPTION.

System Variables or Sets
The system variable OK is set to 1 if the command has been executed correctly; otherwise,
it is set to 0.

Constants
Print options theme.

4th Dimension Language Reference 965

PRINT OPTION VALUES Printing

version 2003
__

PRINT OPTION VALUES (option; namesArray{; info1Array{; info2Array}})

Parameter Type Description
option Longint → Option number
namesArray Text Array ← Names of values
info1Array Longint Array ← Values (1) of the option
info2Array Longint Array ← Values (2) of the option

Description
In namesArray, the PRINT OPTION VALUES command returns a list of value names
available for the print option defined. Optionally, you can retrieve information for each
value in info1Array and info2Array.

The option parameter allows you to specify the option to get. You must pass one of the
following constants of the “Print options” theme (options able to return lists of value
names):
Constant Type Value
Paper option Longint 1
Paper source option Longint 5

After command execution, the namesArray array as well as, where applicable, the
info1Array and info2Array arrays will be filled in by the command with the names and
information of the available values.

If you pass value 1 (paper option) in the option parameter, the command will return the
following information:
• in namesArray, the names of the available paper formats;
• in info1Array, the heights of each paper format;
• in info2Array, the widths of each paper format.

Note: In order to obtain this information, the print driver must have access to a valid
PPD (PostScript Printer Description) file for the printer.

In order to apply a specific paper format using the SET PRINT OPTION command, you can
either pass one of the values of namesArray, the corresponding values of info1Array and
info2Array.

If you pass value 5 (paper source option) in the option parameter, the command returns
the names of the different trays available in namesArray, and their internal Windows ID
numbers in info1Array (info2Array remains empty).

966 4th Dimension Language Reference

The order of the values in the arrays is defined by the print driver. To indicate a tray using
the SET PRINT OPTION command, you must pass the index, as found in the namesArray or
info1Array arrays, of the element desired.

Note: This option can only be used under Windows.

For more information on the different print options, refer to the description of the SET
PRINT OPTION and GET PRINT OPTION commands.

All the information returned by these commands is supplied by the operating system.
Refer to the documentation of your system for more details about specific options.

Note: The PRINT OPTION VALUES command only operates with PostScript printers.

See also
GET PRINT OPTION, SET PRINT OPTION.

Constants
Print options theme.

4th Dimension Language Reference 967

ACCUMULATE Printing

version 3
__

ACCUMULATE (data{; data2; ...; dataN})

Parameter Type Description
data Field or variable → Numeric field or variable on which to accumulate

Description
ACCUMULATE specifies the fields or variables to be accumulated during a form report
performed using PRINT SELECTION.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every report for which you want to do break processing. These commands activate break
processing for a report. See the explanation for the Subtotal command.

Use ACCUMULATE when you want to include subtotals for numeric fields or variables in a
form report. ACCUMULATE tells 4th Dimension to store subtotals for each of the Data
arguments. The subtotals are accumulated for each break level specified with the BREAK
LEVEL command.

Execute ACCUMULATE before printing the report with PRINT SELECTION.

Use the Subtotal function in the form method or an object method to return the subtotal
of one of the data arguments.

Example
See the example for the BREAK LEVEL command.

See Also
BREAK LEVEL, ORDER BY, PRINT SELECTION, Subtotal.

968 4th Dimension Language Reference

Subtotal Printing

version 3
__

Subtotal (data{; pageBreak}) → Number

Parameter Type Description
data Field → Numeric field or variable to return subtotal
pageBreak Number → Break level for which to cause a page break

Function result Number ← Subtotal of data

Description
Subtotal returns the subtotal for data for the current or last break level. Subtotal works
only when a sorted selection is being printed with PRINT SELECTION or when printing
using Print in the User environment. The data parameter must be of type real, integer, or
long integer. Assign the result of the Subtotal function to a variable placed in the Break
area of the form.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every form report for which you want to do break processing and calculate subtotals. See
discussion at the end of the description of this command.

Subtotal should be in the form method or an object method for the form. 4th Dimension
scans the form method and object methods before printing; if Subtotal is present, break
processing will be initiated (in interpreted mode only).

The second, optional, argument to Subtotal is used to cause page breaks during printing. If
pageBreak is 0, Subtotal does not issue a page break. If pageBreak equals 1, Subtotal issues a
page break for each level 1 break. If pageBreak equals 2, Subtotal issues a page break for
each level 1 and level 2 break, and so on.

To have breaks on N sort levels, you must sort the current selection on N + 1 levels (unless
you use BREAK LEVEL or ACCUMULATE, in which case N levels is sufficient). This lets you
sort on a last field, so that the field does not create unwanted breaks. To have the last sort
field generate a break, sort the field twice.

Tip: If you execute Subtotal from within an output form displayed at the screen, an error
will be generated, triggering an infinite loop of updates between the form and the error
window. To get out of this loop, press Alt+Shift (Windows) or Option-Shift (Macintosh)
when you click on the Abort button in the Error window (you may have to do so several
times). This temporarily stops the updates for the form’s window. Select another form as
the output form so the error will occur again. Go back to the Design Environment and
isolate the call to Subtotal into a test Form event=On Printing Break if you use the form
both for display and printing.

4th Dimension Language Reference 969

Example
The following example is a one-line object method in a Break area of a form (B0, the area
above the B0 marker). The vSalary variable is placed in the Break area. The variable is
assigned the subtotal of the Salary field for this break level:

Case of
: (Form event=On Printing Break)

⇒ vSalary:=Subtotal ([Employees]Salary)
End case

For more information about designing forms with header and break areas, see the
4th Dimension Design Reference manual.

Activating Break Processing in Form Reports
__

Break processing in form reports can be activated in two ways:
• The first uses the Subtotal function.
• The second uses the BREAK LEVEL and ACCUMULATE commands.
Both methods can achieve the same results, but have different advantages.

Using Subtotal For Break Processing (Interpreted Mode Only)
To turn on break processing with the Subtotal function, the function must appear in the
form method or an object method for a variable located in a Break area of the form.
Before printing the report, 4th Dimension scans the form and object methods for the
Subtotal function.

If 4th Dimension finds the function, break processing is activated. The Subtotal function
does not need to be executed for it to turn on break processing. For example, it could be
in a method of an object that is below the Footer line and therefore would never be
printed or executed.

When Subtotal is used to activate break processing, you must sort on one more level than
you break on. For example, to have two levels of breaks in your report, sort on three
levels.

Using BREAK LEVEL and ACCUMULATE for Break Processing
You can also use the BREAK LEVEL and ACCUMULATE commands to turn on break
processing. To do so, you must execute both of these commands before printing a form
report. In this scheme, the Subtotal function is still required in order to display values on a
form. You do not need to sort on one extra level; you must, of course, sort on at least as
many levels as you need to break on.

970 4th Dimension Language Reference

Comparing the Two Methods
The primary advantage of using Subtotal to initiate break processing is that you do not
need to execute a method prior to printing the report. This is especially useful in the User
environment.

The process to print the report in the User environment is typically like this:
1. Select the records to be printed.
2. Order by (sort) the records, sorting on one extra level.
3. Choose Print from the File menu.

4th Dimension scans the form and object methods, finds the Subtotal function, turns on
break processing, and prints the report. There are two disadvantages to using Subtotal to
trigger break processing:
• You cannot use Subtotal to activate break processing in compiled databases.
• You must sort on one extra level; if you have many records, this may be time
consuming.

Using BREAK LEVEL and ACCUMULATE to activate break processing is the recommended
method when using methods to generate form reports. The process to print a report using
this method is typically like this:
1. Select the records to be printed.
2. Sort the records using ORDER BY. Sort on at least the same number of levels as breaks.
3. Execute BREAK LEVEL and ACCUMULATE.
4. Print the report using PRINT SELECTION.

You must use BREAK LEVEL and ACCUMULATE to activate break processing in compiled
mode. However, the Subtotal function is still necessary in order to display values on a
form.

See Also
ACCUMULATE, BREAK LEVEL, Level, PRINT SELECTION.

4th Dimension Language Reference 971

Level Printing

version 3
__

Level → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Current break or header level

Description
Level is used to determine the current header or break level. It returns the level number
during the On Header and On Printing Break events.

Level 0 is the last level to be printed and is appropriate for printing a grand total. Level
returns 1 when 4th Dimension prints a break on the first sorted field, 2 when
4th Dimension prints a break on the second sorted field, and so on.

Example
This example is a template for a form method. It shows each of the possible events that
can occur while a summary report uses a form as an output form. Level is called when a
header or a break is printed:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
: (Form event=On Header)

` A header area is about to be printed
Case of

: (Before selection($vpFormTable->))
` Code for the first break header goes here

⇒ : (Level = 1)
` Code for a break header level 1 goes here

⇒ : (Level = 2)

972 4th Dimension Language Reference

` Code for a break header level 2 goes here
` ...

End case
: (Form event=On Printing Details)

` A record is about to be printed
` Code for each record goes here

: (Form event=On Printing Break)
` A break area is about to be printed

Case of
⇒ : (Level = 0)

` Code for a break level 0 goes here
⇒ : (Level = 1)

` Code for a break level 1 goes here
` ...

End case
: (Form event=On Printing Footer)

If(End selection($vpFormTable->))
` Code for the last footer goes here

Else
` Code for a footer goes here

End if
End case

See Also
ACCUMULATE, BREAK LEVEL, Form event, PRINT SELECTION.

4th Dimension Language Reference 973

PAGE SETUP Printing

version 3
__

PAGE SETUP ({table; }form)

Parameter Type Description
table Table → Table owning form, or

Default table, if omitted
form String → Form to use for page setup

Description
PAGE SETUP sets the page setup for the printer to that stored with form. The page setup is
stored with the form when the form is saved in the Design environment.

In the following three cases, the printing dialog boxes are not displayed and the printing
is performed with the default print settings. :
• Calling PRINT SELECTION to which you pass the optional * parameter
• Calling PRINT RECORD to which you pass the optional * parameter
• Issuing a series of calls to PRINT FORM not preceeded by a call to PRINT SETTINGS.

Calling PAGE SETUP enables you, in this case, to skip the printing dialog boxes AND to use
print settings other than the default ones.

Example
Several (empty) forms are created for a table named [Design Stuff]. The form “PS100” is
assigned a page setup with a scaling of 100%, the form “PS90” is assigned a page setup
with a scaling of 90%, and so on. The following project method enables you to print the
selection of a table using various scalings without having to specify the scaling in the
printing dialog boxes (which are not displayed), each time:

` AUTOMATIC SCALED PRINTING project method
` AUTOMATIC SCALED PRINTING (Pointer ; String {; Long })
` AUTOMATIC SCALED PRINTING (->[Table]; "Output form" {; Scaling })

If (Count parameters>=3)
⇒ PAGE SETUP([Design Stuff];"PS"+String($3))

If (Count parameters>=2)
OUTPUT FORM($1->;$2)

End if
End if
If (Count parameters>=1)

PRINT SELECTION($1->;*)
Else

PRINT SELECTION(*)
End if

974 4th Dimension Language Reference

Once this project method is written, you call it in this way:

` Look for current invoices
QUERY ([Invoices];[Invoices]Paid=False)

` Print Summary Report in 90% reduction
AUTOMATIC SCALED PRINTING (->[Invoices];"Summary Report";90)

` Print Detailed Report in 50% reduction
AUTOMATIC SCALED PRINTING (->[Invoices];"Detailed Report";50)

See Also
PRINT FORM, PRINT RECORD, PRINT SELECTION.

4th Dimension Language Reference 975

Get print marker Printing

version 2003 (Modified)
__

Get print marker (markNum) → Number

Parameter Type Description
markNum Number → Marker number

Function result Number ← Position of the marker

Description
The command Get print marker enables you to get the current position of a marker during
printing.

This command can be used in two contexts:
• during the On Header form event, in the context of PRINT SELECTION and PRINT
RECORD commands.
• during the On Printing Detail form event, in the context of the Print form command.

The coordinates are returned in pixels (1 pixel = 1/72 inch).

Pass one of the constants of the Form area theme in the markNum parameter:
Constant Type Value
Form Header Longint 200
Form Header1...10 Longint 201...210
Form Detail Longint 0
Form Break0...9 Longint 300...309
Form Footer Longint 100

Example
Refer to the example of the SET PRINT MARKER command.

See Also
MOVE OBJECT, SET PRINT MARKER.

976 4th Dimension Language Reference

PRINT SETTINGS Printing

version 3
__

PRINT SETTINGS

Parameter Type Description
This command does not require any parameters

Description
PRINT SETTINGS displays the printing dialog boxes. First, it displays the Print Setup dialog
box. Then, it displays the Print Job dialog box.

You should include PRINT SETTINGS before any group of PRINT FORM commands.

The Print Job dialog box contains a Preview on Screen check box that allows the user to
specify to print to the screen. You can preset or reset this check bok by calling SET PRINT
PREVIEW before calling PRINT SETTINGS.

Example
See example for the command PRINT FORM.

System Variables or Sets
If the user clicks OK in both dialog boxes, the OK system variable is set to 1. Otherwise,
the OK system variable is set to 0.

See Also
PAGE BREAK, PRINT FORM, SET PRINT PREVIEW.

4th Dimension Language Reference 977

SET PRINT PREVIEW Printing

version 3
__

SET PRINT PREVIEW (preview)

Parameter Type Description
preview Boolean → Preview on screen (TRUE), or

No preview (FALSE)

Description
SET PRINT PREVIEW allows you to programmatically check or uncheck the Preview on
Screen option of the Print dialog box. If you pass TRUE in preview, Preview on Screen will
be checked, if you pass FALSE in preview , Preview on Screen will be unchecked. This
setting is local to a process and does not affect the printing of other processes or users.

Example
The following example turns on the Preview on Screen option to display the results of a
query on screen, and then turns it off.

QUERY([Customers])
If (OK=1)

⇒ SET PRINT PREVIEW (True)
PRINT SELECTION ([Customers] ; *)

⇒ SET PRINT PREVIEW (False)
End if

See Also
PRINT RECORD, PRINT SELECTION, PRINT SETTINGS.

978 4th Dimension Language Reference

SET PRINT MARKER Printing

version 2003 (Modified)
__

SET PRINT MARKER (markNum; position{; *})

Parameter Type Description
markNum Number → Marker number
position Number → New position for the marker
* * → If passed = move subsequent markers

If omitted = do not move subsequent markers

Description
The SET PRINT MARKER command enables the definition of the marker position during
printing. Combined with the Get print marker, MOVE OBJECT or Print form commands,
this command allows you to adjust the size of the print areas.

SET PRINT MARKER can be used in two contexts:
• during the On header form event, in the context of PRINT SELECTION and PRINT
RECORD commands.
• during the On Printing Detail form event, in the context of the Print form command.
This operation facilitates the printing of customized reports (see example).
The effect of the command is limited to printing; no modification appears on the screen.
The modifications made to the forms are not saved.

Pass one of the constants of the Form area theme in the markNum parameter:
Constant Type Value
Form Header Longint 200
Form Header1...10 Longint 201...210
Form Detail Longint 0
Form Break0...9 Longint 300...309
Form Footer Longint 100

In position, pass the new position desired, expressed in pixels.

If you pass the optional * parameter, all the markers located below the marker specified in
markNum will be moved the same number of pixels and in the same direction as this
marker when the command is executed. Warning: in this case, any objects present in the
areas located below the marker are also moved.

4th Dimension Language Reference 979

When the * parameter is used, it is possible to position the markNum marker beyond the
initial position of the markers that follow it — these latter markers will be moved
simultaneously.

Notes:
• This command modifies only the existing marker position. It does not allow the
addition of markers. If you designate a marker that does not exist in the form, the
command will not do anything.
• The print marker mechanism in the Structure mode is retained: a marker cannot go any
higher than the one that precedes it, nor any lower than the one that follows it (when
the * parameter is not used).

Example
This complete example enables you to generate the printing of a three-column report, the
height of each row being calculated on the fly according to the contents of the fields.
The output form used for printing is as follows:

980 4th Dimension Language Reference

The On Printing Detail form event was selected for the form (keep in mind that no matter
what area is printed, the Print form command only generates this type of form event).
For each record, the row height must be adapted according to the contents of the "Actors"
or "Summary" column (column having the most content). Here is the desired result:

4th Dimension Language Reference 981

The print project method is as follows:

C_LONGINT(vLprint_height;$vLheight;vLprinted_height)
C_STRING(31;vSprint_area)
PAGE SETUP([Film];"Print_List3")
GET PRINTABLE AREA(vLprint_height)
vLprinted_height:=0
ALL RECORDS([Film])

vSprint_area:="Header" `Printing of header area
$vLheight:=Print form([Film];"Print_List3";Form Header)
$vLheight:=21 `Fixed height
vLprinted_height:=vLprinted_height+$vLheight

While(Not(End selection([Film])))
vSprint_area:="Detail" `Printing of detail area
$vLheight:=Print form([Film];"Print_List3";Form Detail)

`Detail calculation is carried out in the form method
vLprinted_height:=vLprinted_height+$vLheight
If(OK=0) `CANCEL has been carried out in the form method

PAGE BREAK
vLprinted_height:=0
vSprint_area:="Header" `Reprinting of the header area
$vLheight:=Print form([Film];"Print_List3";Form Header)
$vLheight:=21
vLprinted_height:=vLprinted_height+$vLheight
vSprint_area:="Detail"
$vLheight:=Print form([Film];"Print_List3";Form Detail)
vLprinted_height:=vLprinted_height+$vLheight

End if
NEXT RECORD([Film])

End while
PAGE BREAK `Make sure that the last page is printed

The Print_List3 form method is as follows:

C_LONGINT($l;$t;$r;$b;$fixed_wdth;$exact_hght;$l1;$t1;$r1;$b1)
C_LONGINT($final_pos;$i)
C_LONGINT($detail_pos;$header_pos;$hght_to_print;$hght_remaining)

Case of
: (vSprint_area="Detail") `Printing of detail underway

GET OBJECT RECT([Film]Actors;$l;$t;$r;$b)
$fixed_wdth:=$r-$l `Calculation of the Actors text field size
$exact_hght:=$b-$t
BEST OBJECT SIZE([Film]Actors;$wdth;$hght;$fixed_wdth)

`Optimal size of the field according to its contents
$movement:=$hght-$exact_hght

982 4th Dimension Language Reference

GET OBJECT RECT([Film]Summary;$l1;$t1;$r1;$b1)
$fixed_wdth1:=$r1-$l1 `Calculation of the Summary text field size
$exact_hght1:=$b1-$t1
BEST OBJECT SIZE([Film]Summary;$wdth1;$hght1;$fixed_wdth1)

`Optimal size of the field according to its contents
$movement1:=$hght1-$exact_hght1
If($movement1>$movement)

`We determine the highest field
$movement:=$movement1

End if

If($movement>0)
$position:=Get print marker(Form Detail)
$final_pos:=$position+$movement

`We move the Detail marker and those that follow it
⇒ SET PRINT MARKER(Form Detail ;$final_pos;*)

`Resizing of text areas
MOVE OBJECT([Film]Actors;$l;$t;$r;$hght+$t;*)
MOVE OBJECT([Film]Summary;$l1;$t1;$r1;$hght1+$t1;*)

`Resizing of dividing lines
GET OBJECT RECT(*;"H1Line";$l;$t;$r;$b)
MOVE OBJECT(*;"H1Line";$l;$final_pos-1;$r;$final_pos;*)
For ($i;1;4;1)

GET OBJECT RECT(*;"VLine"+String($i);$l;$t;$r;$b)
MOVE OBJECT(*;"VLine"+String($i);$l;$t;$r;$final_pos;*)

End for
End if

`Calculation of available space
$detail_pos:=Get print marker(Form Detail)
$header_pos:=Get print marker(Form Header)
$hght_to_print:=$detail_pos-$header_pos
$hght_remaining:=printing_height-vLprinted_height
If($hght_remaining<$hght_to_print) `Insufficient height

CANCEL `Move form to the next page
End if

End case

See Also
BEST OBJECT SIZE, GET OBJECT RECT, Get print marker, MOVE OBJECT, PAGE BREAK, Print
form, PRINT RECORD, PRINT SELECTION.

4th Dimension Language Reference 983

GET PRINTABLE MARGIN Printing

version 6.8.1
__

GET PRINTABLE MARGIN (left; top; right; bottom)

Parameter Type Description
left Number ← Left margin
top Number ← Top margin
right Number ← Right margin
bottom Number ← Bottom margin

Description
The command GET PRINTABLE MARGIN returns the current values of the different
margins defined using the Print form command.

The values are returned in pixels with respect to the paper edges.

It is possible to obtain the paper size as well as to calculate the printable area using the
GET PRINTABLE AREA function.

About Printable Margin Management
By default, the printing calculation in 4th Dimension is based on “printable margins”.
The advantage of this system is that the forms adapt themselves automatically to the new
printers (since they are positioned in the printable area). On the other hand, in the case
of pre-printed forms, it was not possible to position the elements to be printed precisely
because changing the printer could modify the printable margins.

Beginning with 4th Dimension version 6.8.1, it is possible to base the form printing
carried out using the Print form, PRINT RECORD and PRINT SELECTION commands on a
fixed margin which is identical on each printer: the paper margins, i.e. the physical limits
of the sheet. To do this, simply use the GET PRINTABLE MARGIN, SET PRINTABLE MARGIN
and GET PRINTABLE AREA commands.

984 4th Dimension Language Reference

About Printing Terminology
• Paper margin: the paper margin corresponds to the physical limits of the sheet.
• Printer margin: the printer margin is the margin beyond which the printer is incapable
of printing (for material reasons: print rollers, printer head end-of-travel...). It varies from
one printer to another and from one format to another.
• Dead margin: this referes to the area located between the paper margin and the printer
margin.

See Also
GET PRINTABLE AREA, Print form, SET PRINTABLE MARGIN.

4th Dimension Language Reference 985

SET PRINTABLE MARGIN Printing

version 6.8.1
__

SET PRINTABLE MARGIN (left; top; right; bottom)

Parameter Type Description
left Number → Left margin
top Number → Top margin
right Number → Right margin
bottom Number → Bottom margin

Description
The command SET PRINTABLE MARGIN enables you to set the values of various printing
margins by using the Print form command.

You can pass one of the following values into the left, top, right and bottom parameters:
• 0 = use paper margins
• -1 = use printer margins
• value > 0 = margin in pixels (1 pixel in 72 dpi represents approximately 0.4 mm)

The values of the right and bottom parameters relate to the right and bottom edges of the
paper respectively.

Note: For more information regarding Printing management and terminology in 4D,
refer to the GET PRINTABLE MARGIN command description.

By default, 4th Dimension bases its printouts on the printer margins. Once the SET
PRINTABLE MARGIN command is executed, the modified parameters are retained in the
same process for the entire session.

Examples
(1) The following example enables you to obtain the size of the dead margin:

⇒ SET PRINTABLE MARGIN (-1;-1;-1;-1) `Sets the printer margin
GET PRINTABLE MARGIN($l;$t;$r;$b)

`$l, $t, $r and $b correspond to the dead margins of the sheet

(2) The following example enables you to obtain the paper size:

SET PRINTABLE MARGIN (0;0;0;0) `Sets the paper margin
GET PRINTABLE AREA($height;$width)

`For size A4: $height=842 ; $width=595 pixels

See Also
GET PRINTABLE MARGIN, Get printed height, Print form.

986 4th Dimension Language Reference

GET PRINTABLE AREA Printing

version 6.8.1
__

GET PRINTABLE AREA (height{; width})

Parameter Type Description
height Number ← Height of printable area
width Number ← Width of printable area

Description
The GET PRINTABLE AREA command returns the size, in pixels, of the height and width
parameters of the printable area. This size depends on the current printing parameters,
the paper orientation, etc.

The sizes returned do not vary from one page to another (after a page break, for
instance).

Associated with the Get printed height command, this command is useful for knowing the
number of pixels available for printing or for centering an object on the page.

Note: For more information regarding Printing management and terminology in 4D,
refer to the GET PRINTABLE MARGIN command description.

To know the total size of the page, you can:
• either add the margins supplied by the GET PRINTABLE MARGIN command to the values
returned by this command.
• or use the following syntax:

SET PRINTABLE MARGIN(0;0;0;0) ` Set the paper margin
GET PRINTABLE AREA(hPaper;wPaper) ` Paper size

See Also
GET PRINTABLE MARGIN, Print form.

4th Dimension Language Reference 987

Get printed height Printing

version 6.8.1
__

Get printed height → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Position of the marker

Description
The command Get printed height returns the overall height (in pixels) of the section
printed using the Print form command.

The value returned will be included between 0 (the top edge of the page) and the overall
height returned by the GET PRINTABLE AREA command (the maximum size of the
printable area).

If you print a new section using the Print form command, the height of the new section
is added to this value. If the printable area available is insufficient to contain this section,
a new page is generated and the value returned is 0.

The right and left printable margins, unlike the top and bottom margins (which may be
defined using the SET PRINTABLE MARGIN command), do not influence the value
returned.

Note: For more information regarding Printing management and terminology in 4D,
refer to the GET PRINTABLE MARGIN command description.

See Also
GET PRINTABLE AREA, Print form, SET PRINTABLE MARGIN.

988 4th Dimension Language Reference

36

Pictures

4th Dimension Language Reference 989

990 4th Dimension Language Reference

Pictures Pictures

version 6.7 (Modified)
__

Supported Formats
The following charts summarize the support for various picture formats on the Macintosh
and Windows platforms.

• Cut and Paste: Supported formats

PICT EMF WMF BITMAP
Macintosh Yes - - -
Windows Yes Yes Yes Yes

embedded in embedded in converted to
PicComment PicComment Macintosh PICT

• Display: Supported formats

PICT QuickTime embedded WMF
embedded EMF
Macintosh Yes Yes No No
Windows Yes Yes Yes Yes

+ QuickTime

• About WMF files (Windows Metafile)
These files must be "positionable" files, and include a header describing the picture size
and its resolution. If no header is available, 4D will not be able to read the picture file.
WMF files are to the Windows platform what PICT files are to the Mac OS platform; they
can contain both vectorial and bitmap data (drawing and painting) that correspond to
each system. The two main advantages of WMF files on Windows are the faster display
speed (no conversion is required) and their universal use. All Windows applications can
export in this format.
However, keep in mind that using this format prevents you from displaying the pictures
on the Macintosh platform.

• About EMF files (Windows Enhanced Metafile)
This format is an improvement on WMF. Future Windows applications are likely to
support it. The main advantages of this format are enhanced basic elements, such as
Beziers and transformations. This format prevents you from displaying the pictures on
the Macintosh platform.

4th Dimension Language Reference 991

Using Apple QuickTime with 4D
__

4D uses Apple QuickTime routines to implement picture conversion and compression in
databases.

• Compression
Apple has added opcodes to the original PICT specifications, so applications can handle
QuickTime pictures without modification. When the application asks the system to draw
a picture containing embedded QuickTime data, the bitmap is expanded and displayed if
QuickTime is present; the QuickTime opcode is ignored if QuickTime is not installed.
This technology is transparent to the user and takes a minimal amount of memory,
because a 1 megabyte picture can be stored in a 40 kilobyte PICT, and needs not be
expanded before it is displayed.
Under Windows, 4D requires QuickTime for Windows version 4 (or above) installation,
otherwise picture compression will not work. The compression codecs that can be used
with the picture compression commands are provided as constants in the Picture
compression constant theme.

Note: Both 4D commands requiring QuickTime but using desktop files (LOAD COMPRESS
PICTURE FROM FILE and COMPRESS PICTURE FILE) will not work on Windows.

• Conversion
4D commands such as WRITE PICTURE FILE allow you to convert and to save pictures to
different formats. Usually, these commands require QuickTime to work. Under Windows,
4D requires QuickTime for Windows version 4 (or above) installation, otherwise picture
conversion will not work.

The internal picture format is stored by QuickTime. Consequently, it is necessary to get
QuickTime to read compressed or converted pictures within 4D.

• QuickTime 4 Conversion Codes
Below is the standard conversion code list provided by QuickTime 4. Each code is
composed of 4 characters. Please note that all machines do not offer the same codes,
QuickTime 4 allows adding customized conversion routines. Use the command PICTURE
TYPE LIST to know QuickTime codes available on the machine where it is executed.

992 4th Dimension Language Reference

QuickTime 4 Codes Names
PICT QuickDraw PICT
PICS PICS
GIFf GIF
PNGf PNG
TIFF TIFF
8BPS Photoshop (2.5 & 3.0)
SGI Silicon Graphics
BMPf BMP
JPEG JPEG
JPEG JFIF
PNTG MacPaint
TPIC TGA (Targa)
qdgx QuickDraw GX Picture (if QuickDraw GX is installed)
qtif QuickTime picture
FPix FlashPix

• Picture Conversion and Compression Errors
When you try to use a picture conversion or compression command and QuickTime is
not installed in your system, 4th Dimension returns the error code -9955. Other errors
generated by QuickTime can also be returned. You can catch these errors using an error-
handling method installed with ON ERR CALL.

See Also
BLOB TO PICTURE, COMPRESS PICTURE, COMPRESS PICTURE FILE, LOAD COMPRESS
PICTURE FROM FILE, PICTURE PROPERTIES, Picture size, PICTURE TO BLOB, PICTURE TYPE
LIST, READ PICTURE FILE, SAVE PICTURE TO FILE, WRITE PICTURE FILE.

4th Dimension Language Reference 993

COMPRESS PICTURE Pictures

version 3
__

COMPRESS PICTURE (picture; method; quality)

Parameter Type Description
picture Picture → Picture to be compressed

← Compressed picture
method String → 4-character string compression method
quality Number → Compression quality (1..1000)

Description
The COMPRESS PICTURE command compresses the picture contained in the field or
variable picture.

The parameter method is a 4-character string indicating the compressor type. You should
pass one of the constants of the Picture compression theme in this parameter.

The parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

See Also
COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE, Pictures.

994 4th Dimension Language Reference

LOAD COMPRESS PICTURE FROM FILE Pictures

version 3
__

LOAD COMPRESS PICTURE FROM FILE (document; method; quality; picture)

Parameter Type Description
document DocRef → Document reference number
method String → 4-character string compression method
quality Number → Compression quality (1..1000)
picture Picture ← Compressed picture

Description
This command compresses a picture loaded from a document on disk.

Note: This command does not work on Windows.

You can open a PICT document using the Open document function. You can then use the
document reference returned by this function to load and compress the PICT found in
the document. This command loads the picture into memory, compresses it using the
method and quality you have specified, and then returns it into picture.

The picture is loaded into memory before it is compressed. If there is not enough memory
to load the picture, use COMPRESS PICTURE FILE before calling LOAD COMPRESS PICTURE
FROM FILE.

The parameter method is a 4-character string indicating the compressor type. You should
pass one of the constants of the Picture compression theme in method. If method is an
empty string, the picture is loaded but not compressed.

The parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

4th Dimension Language Reference 995

Example
The following example presents an Open File dialog box that allows you to select a PICT
file. The picture in the PICT file is loaded into memory, compressed, and stored in a
picture variable. The file is then closed.

vRef:=Open document ("";"PICT")
If (OK=1)

⇒ LOAD COMPRESS PICTURE FROM FILE(vRef;QT Photo compressor;500;vPict)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE, COMPRESS PICTURE FILE, Pictures, SAVE PICTURE TO FILE.

996 4th Dimension Language Reference

COMPRESS PICTURE FILE Pictures

version 3
__

COMPRESS PICTURE FILE (document; method; quality)

Parameter Type Description
document DocRef → Document reference number
method String → 4-character string compression method
quality Number → Compression quality (1..1000)

Description
This command compresses a picture document on disk. Use this command to compress a
picture that you know cannot be loaded with the available memory. Once compressed, it
can be loaded into memory using LOAD COMPRESS PICTURE FROM FILE.

Note: This command does not work on Windows.

The parameter method is a 4-character string indicating the compressor type. You should
pass one of the constants of the Picture compression theme in method.

The parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

Example
The following example presents the Open File dialog box that allows you to select a PICT
file. Only PICT files will be displayed. The picture is compressed, loaded into memory, and
stored in a picture variable. The file is then closed.

vRef:=Open document ("";"PICT")
If (OK=1)

⇒ COMPRESS PICTURE FILE(vRef;QT Photo compressor;500)
LOAD COMPRESS PICTURE FROM FILE(vRef;"";500;vPict)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE, LOAD COMPRESS PICTURE FROM FILE, SAVE PICTURE TO FILE.

4th Dimension Language Reference 997

SAVE PICTURE TO FILE Pictures

version 3
__

SAVE PICTURE TO FILE (document; picture)

Parameter Type Description
document DocRef → Document reference number
picture Picture → Picture to be saved

Description
This command saves picture in a document that was created using the Create document
function.

Example
The following example creates a document and saves a picture in it:

vRef:=Create document("";"PICT")
If (OK=1)

⇒ SAVE PICTURE TO FILE(vRef;vPict)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE.

998 4th Dimension Language Reference

PICTURE TO GIF Pictures

version 6.7 (Modified)
__

PICTURE TO GIF (pict; blobGIF)

Parameter Type Description
pict Picture → Picture field or picture variable
blobGIF BLOB ← BLOB containing the GIF picture

Description
The command PICTURE TO GIF allows you to convert a PICT picture stored in a variable
or in a 4D field into a GIF picture.

You pass a picture variable or a picture field in pict and a BLOB variable or a BLOB field in
blobGIF. After executing the command, blobGIF contains the image in GIF format.

Note: The GIF picture format cannot contain more than 256 colors. If the original PICT
picture contains more colors, some may be lost. The command reduces the number of
colors according to the system palette. The GIF generated is of type 87a (opaque) and
normal (not interlaced).

You can then save the picture located in blobGIF in a file using the BLOB TO DOCUMENT
command or you can even publish it on the Web.

If the conversion was successful, the OK system variable is set to 1. Otherwise, it will be
equal to 0.

Example
Let us assume that you want to generate a GIF picture on the fly by displaying a
connection counter. In the database’s picture library, place all the numbers as pictures:

4th Dimension Language Reference 999

In the On Web Connection Database Method, you write the following code:

If (Web Context)
...

Else
C_BLOB ($blob)
Case of

...
: ($1="/4dcgi/counter") `Generating a GIF counter

`When 4D detects this URL while sending the static page
$blob:=gifcounter (◊nbHits) `Calculates the GIF picture

`The ◊nbHits variable contains the number of connections
SEND HTML BLOB ($blob;"image/gif")

`Insert the picture and send it to the browser
...

End case
End if

Here is the gifcounter method:

C_LONGINT($1)
C_PICTURE($img)
C_BLOB($0)
If ($1=0)

$ndigits:=1
Else

$ndigits:=1+Length(String($1))
End if
If ($ndigits<5)

$ndigits:=5
End if

$div:=10^($ndigits-1)
For ($i;1;$ndigits)

$ref:=Int($1/$div)%10
GET PICTURE FROM LIBRARY($ref+1000;picture)
$img:=$img+picture
$div:=$div/10

End for

⇒ PICTURE TO GIF($img;$0)

When sending a page to the Web browser, 4D displays a GIF picture that looks like the
following picture:

1000 4th Dimension Language Reference

PICTURE TO BLOB Pictures

version 6.7
__

PICTURE TO BLOB (picture; pictureBlob; format)

Parameter Type Description
picture Picture → Picture field or variable
pictureBlob BLOB ← BLOB to receive the converted picture
format String (4) → Picture format (4 characters)

Description
The command PICTURE TO BLOB converts a picture stored in a 4D variable or field to
another format and places the resulting picture in a BLOB.

A picture 4D field or variable is passed in the picture parameter. In the pictureBlob
parameter is passed a BLOB variable or field which should contain the converted picture.

Pass in the format parameter a 4-characters string setting the conversion format. This
format can be:
• either a QuickTime format (see command PICTURE TYPE LIST description), in this case
QuickTime version 4 or above must be installed on the machine,
• either "GIFf" (GIF format) or "WBMP" (Wireless Bitmap); these last two formats do not
require QuickTime 4.

Once the command has been executed, the pictureBlob contains the picture in the
specified format.

If the conversion was successful, the system variable OK is set to 1. If the conversion has
failed (QuickTime is not installed or the convertor is not available), OK is set to 0 and the
generated BLOB is empty (0 byte).

See Also
BLOB TO PICTURE, PICTURE TO GIF, PICTURE TYPE LIST, WRITE PICTURE FILE.

4th Dimension Language Reference 1001

BLOB TO PICTURE Pictures

version 6.7
__

BLOB TO PICTURE (pictureBlob; picture)

Parameter Type Description
pictureBlob BLOB → BLOB containing a picture
picture Picture ← Picture from BLOB

Description
The BLOB TO PICTURE command inserts a picture stored in a BLOB into a 4D picture
variable or field, regardless its original format — however the format should be QuickTime
4 compatible.

Warning: This command requires QuickTime version 4 or above for Mac OS and
Windows. If Quicktime 4 is not installed, the command does nothing.

This command is similar to the command READ PICTURE FILE, it just applies to a BLOB
instead of a file. It allows you to display pictures stored in native format into BLOBs. You
can load a picture into a BLOB using, for example, the command DOCUMENT TO BLOB or
PICTURE TO BLOB.

A BLOB variable or field containing a picture is passed in the pictureBlob parameter. The
picture can be in any QuickTime 4 supported format. You can obtain the list of available
formats using the PICTURE TYPE LIST command. Refer to the PICTURE TYPE LIST
command for a description of QuickTime 4 standard format codes.

Pass in the picture parameter the 4D picture field or variable which should display the
picture.

Note: The internal picture format is stored by QuickTime within the 4D variable or field.
Consequently, it is necessary to get QuickTime to read the picture within 4D.

Once the command has been executed, the picture parameter contains the picture to
display.

If the conversion has been done successfully, the system variable OK is set to 1. If the
conversion has failed (QuickTime 4 is not installed, or the BLOB does not contain a
readable picture), OK is set to 0 and the picture variable or field is empty.

See Also
PICTURE TO BLOB, PICTURE TYPE LIST, READ PICTURE FILE.

1002 4th Dimension Language Reference

WRITE PICTURE FILE Pictures

version 6.7
__

WRITE PICTURE FILE (fileName; picture{; format})

Parameter Type Description
fileName String → Name or full pathname of the file to write,

or empty string
picture Picture → 4D Picture field or variable to write
format String (4) → Quicktime code for picture export format

(4 characters), PICT by default

Description
The WRITE PICTURE FILE command allows you to save the picture passed in the picture
parameter in the defined format to disk.

Warning: This command uses QuickTime conversion routines (version 4 or above
recommended) for Mac OS and Windows. If QuickTime is not installed, the command
creates a PICT file by default.

You can pass in fileName the full pathname to the file to create, or a file name only. If you
just pass the file name, the file will be located next to the database structure file. Under
Windows, the file extension has to be indicated.
If an empty string ("") is passed in fileName, the standard Save file dialog box is displayed
and the user can indicate the name, location and format of the file to create.

You will pass in picture the picture variable or field which contains the picture to save on
disk.
The optional parameter format defines the picture saving format. This parameter should
contain a 4-characters QuickTime code. You can get the list of available formats using the
PICTURE TYPE LIST command. Refer to the PICTURE TYPE LIST command to get a
description for QuickTime 4 standard format codes.

If the format parameter is omitted or if QuickTime is not installed, the picture file is
created with a PICT format.

If the command is executed successfully, the system variable Document contains the full
pathname to the file created and the system variable OK is set to 1. Otherwise, OK is set to
0.

See Also
PICTURE TO BLOB, PICTURE TYPE LIST, Pictures, READ PICTURE FILE.

4th Dimension Language Reference 1003

READ PICTURE FILE Pictures

version 6.7
__

READ PICTURE FILE (fileName; picture)

Parameter Type Description
fileName String → Name or full pathname of the file to read,

or empty string
picture Picture ← Picture from file

Description
The READ PICTURE FILE command allows you to open the picture saved in the fileName
disk file and to load it in the picture 4D field or variable.

Warning: This command uses QuickTime conversion routines (version 4 or above
recommended) for Mac OS and Windows. If Quicktime is not installed, the command can
only open PICT file format.

You can pass in fileName the full pathname of the file to read, or a file name only. If you
just pass the file name, it should be located next to the database structure file. Under
Windows, the file extension must be indicated.
If an empty string ("") is passed in fileName, the standard Open file dialog box is displayed
and the user can select the file to be read, as well as the available formats (provided with
QuickTime 4).
You can obtain the list of available formats using the PICTURE TYPE LIST command. Refer
to the PICTURE TYPE LIST command for a description of QuickTime 4 standard format
codes.

You pass in picture the picture variable or field which will get the read image.

Note: The internal picture format is stored by QuickTime within the 4D variable or field.
Consequently, it is necessary to get QuickTime to read the picture within 4D.

If the command is executed successfully, the system variable Document contains the full
pathname to the open file and the system variable OK is set to 1. Otherwise, OK is set to
0.

See Also
BLOB TO PICTURE, PICTURE TYPE LIST, Pictures, WRITE PICTURE FILE.

1004 4th Dimension Language Reference

PICTURE TYPE LIST Pictures

version 6.7
__

PICTURE TYPE LIST (formatArray{; nameArray})

Parameter Type Description
formatArray String Array (4) ← QuickTime codes for the available

import/export formats
nameArray String Array ← Format names

Description
The command PICTURE TYPE LIST fills the formatArray array with picture import/export
QuickTime codes available on the machine where it is executed.

The optional parameter nameArray array gets each picture format name. Format names are
easier to understand than their codes.

QuickTime (version 4 minimum) needs to be installed on the machine where the
command is executed. Otherwise, formatArray contains the PICT format only.

PICTURE TYPE LIST can be used to check that some picture formats are available for a
given database. This command is useful when some specific formats, not installed by
default, are necessary (a QuickTime 4 feature).
The information gathered in the nameArray array allow to build and to display a pop up
menu containing the available picture export formats.

QuickTime 4 Conversion Codes
Below is the standard conversion code list provided by QuickTime 4. Each code is
composed of 4 characters. Please note that as QuickTime 4 allows adding customized
conversion routines, not all machines offer the same codes.

QuickTime 4 Codes Names
PICT QuickDraw PICT
PICS PICS
GIFf GIF
PNGf PNG
TIFF TIFF
8BPS Photoshop (2.5 & 3.0)
SGI Silicon Graphics
BMPf BMP
JPEG JPEG
JPEG JFIF
PNTG MacPaint
TPIC TGA (Targa)
qdgx QuickDraw GX Picture (if QuickDraw GX is installed)
qtif QuickTime picture
FPix FlashPix
See Also
BLOB TO PICTURE, PICTURE TO BLOB, READ PICTURE FILE, WRITE PICTURE FILE.

4th Dimension Language Reference 1005

Picture size Pictures

version 3
__

Picture size (picture) → Number

Parameter Type Description
picture Picture → Picture for which to return the size in bytes

Function result Number ← Size in bytes of the picture

Description
This function returns the size of picture in bytes.

See Also
PICTURE PROPERTIES.

1006 4th Dimension Language Reference

PICTURE PROPERTIES Pictures

version 6.0
__

PICTURE PROPERTIES (picture; width; height{; hOffset{; vOffset{; mode}}})

Parameter Type Description
picture Picture → Picture for which to get information
width Number ← Width of the picture expressed in pixels
height Number ← Height of the picture expressed in pixels
hOffset Number ← Horizontal offset when displayed on background
vOffset Number ← Vertical offset when displayed on background
mode Number ← Transfer mode when displayed on background

Description
The command PICTURE PROPERTIES returns information about the picture you pass in
picture.

The parameters width and height return the width and height of the picture.

The parameters hOffset, vOffset, and mode return the horizontal and vertical positions and
the transfer mode of the picture when displayed on the background in a form (“On
Background”).

See Also
Picture size.

4th Dimension Language Reference 1007

CREATE THUMBNAIL Pictures

version 6.7
__

CREATE THUMBNAIL (source; dest{; width{; height{; mode{; depth}}}})

Parameter Type Description
source Picture → 4D picture field or variable to convert as a thumbnail
dest Picture ← Resulting thumbnail
width Integer → Thumbnail width in pixels, Default value = 48
height Integer → Thumbnail height in pixels, Default value = 48
mode Integer → Thumbnail creation mode

Default value = Scaled to fit prop centered (6)
depth Integer → Thumbnail colors in bits/pixels

Default value = Current screen depth (0)

Description
The CREATE THUMBNAIL command returns a thumbnail from a given source picture.
Thumbnails are usually used for picture preview within multimedia software or Web sites.

Note: This command does not require QuickTime installation.

You pass in the source parameter the 4D variable or field containing the picture to reduce
to a thumbnail. You pass in the dest parameter the 4D picture field or variable which
should host the resulting thumbnail.

The optional parameters width and height define the required thumbnail size (in pixels). If
you omit these parameters, the thumbnail default size will be 48 x 48 pixels.

The optional parameter mode defines the thumbnail creation mode, i.e. the reduction
mode. Three modes are available. The following predefined constants are provided by 4th
Dimension in the “Picture Display Formats” constant theme:

Constants Type Value
Scaled to fit Long integer 2
Scaled to fit proportional Long integer 5
Scaled to fit prop centered Long integer 6 (default)

Note: Only these constants can be used with CREATE THUMBNAIL. The other constants in
the theme “Picture Display Formats” cannot be applied to this command.

1008 4th Dimension Language Reference

If you do not enter any parameter, the “Scaled to fit prop centered” mode (6) is applied
by default. Below is an illustration of the various modes:

Source picture

Resulting thumbnails (48x48)

• Scaled to fit = 2

• Scaled to fit proportional = 5

• Scaled to fit prop centered = 6 (default mode)

Note: With the “Scaled to fit proportional” and the “Scaled to fit prop centered”, the free
space will be displayed in white. When these modes are applied to picture field or variable
in 4D forms, the free space is transparent.

4th Dimension Language Reference 1009

The optional parameter depth defines the number of colors under Mac OS (i.e., the screen
depth) to keep for the resulting thumbnail. The parameter is an integer equal to the
number of bits per pixel: 1, 2, 4, 8, 16 or 32. Enter 0 to use the current screen depth
(default value).

Note: Under Windows, the depth parameter is ignored; the command always uses the
current screen depth.

1010 4th Dimension Language Reference

PICTURE LIBRARY LIST Pictures

version 6.0.2
__

PICTURE LIBRARY LIST (picRefs; picNames)

Parameter Type Description
picRefs Numeric Array ← Reference numbers of the Picture Library graphics
picNames String Array ← Names of the Picture Library graphics

Description
The PICTURE LIBRARY LIST command returns the reference numbers and names of the
pictures currently stored in the Picture Library of the database.

After the call, you retrieve the reference numbers in the array picRefs and the names in
the array picNames. The two arrays are synchronized: the nth element of picRefs is the
reference number of the Picture Library graphic whose name is returned in the nth
element of picNames.

The array picRefs can be a Real, Long Integer or Integer array. In interpreted mode, if the
array is not declared prior to the call to PICTURE LIBRARY LIST, a Real array is created by
default.

The array picNames can be a String or Text array. In interpreted mode, if the array is not
declared prior to the call PICTURE LIBRARY LIST, a Text array is created by default.

The maximum length of a Picture Library graphic name is 31 characters. If you use a
String array as picNames, declare it with a large enough fixed length to avoid having a
truncated name returned.

If there are no pictures in the Picture Library, both arrays are returned empty.

To obtain the number of pictures currently stored in the Picture Library, use the Size of
array command to get the size of one of the two arrays.

Examples
1. The following code returns the catalog of the Picture Library in the arrays alPicRef and
asPicName:

⇒ PICTURE LIBRARY LIST(alPicRef;asPicName)

4th Dimension Language Reference 1011

2. The following example tests whether or not the Picture Library is empty:

PICTURE LIBRARY LIST(alPicRef;asPicName)
If (Size of array(alPicRef)=0)

ALERT("The Picture Library is empty.")
Else

ALERT("The Picture Library contains "+String(Size of array(alPicRef))+" pictures.")
End if

3. The following example exports the Picture Library to a document on disk:

⇒ PICTURE LIBRARY LIST($alPicRef;$asPicName)
$vlNbPictures:=Size of array($alPicRef)
If ($vlNbPictures>0)

SET CHANNEL(12;"")
If (OK=1)

$vsTag:="4DV6PICTURELIBRARYEXPORT"
SEND VARIABLE($vsTag)
SEND VARIABLE($vlNbPictures)
gError:=0
For($vlPicture;1;$vlNbPictures)

$vlPicRef:=$alPicRef{$vlPicture}
$vsPicName:=$asPicName{$vlPicture}

⇒ GET PICTURE FROM LIBRARY($alPicRef{$vlPicture};$vgPicture)
If (OK=1)

SEND VARIABLE($vlPicRef)
SEND VARIABLE($vsPicName)
SEND VARIABLE($vgPicture)

Else
$vlPicture:=$vlNbPictures+1
gError:=-108

End if
End for
SET CHANNEL(11)
If (gError#0)

ALERT("The Picture Library could not be exported, retry with more memory.")
DELETE DOCUMENT (Document)

End if
End if

Else
ALERT("The Picture Library is empty.")

End if

See Also
GET PICTURE FROM LIBRARY, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO LIBRARY.

1012 4th Dimension Language Reference

GET PICTURE FROM LIBRARY Pictures

version 6.7 (Modified)
__

GET PICTURE FROM LIBRARY (picRef | picName; picture)

Parameter Type Description
picRef | picName Number | String → Reference number of Picture Library graphic or

Name of Picture Library graphic
picture Picture Variable ← Picture from the Picture Library

Description
The GET PICTURE FROM LIBRARY command returns in the picture parameter the Picture
Library graphic whose reference number is passed in picRef or whose name is passed in
picName.

Note for components developers: If you want a 4D component to use graphics stored in
the Picture Library, you must pass a picture name as first parameter. Indeed, when a
component requiring its own pictures is installed by 4D Insider, the application can
renumber automatically these new pictures if some database pictures have already the
same reference number.

If there is no picture with that reference number or name, GET PICTURE FROM LIBRARY
leaves picture unchanged.

Examples
1. The following example returns in vgMyPicture the picture whose reference number is
stored in the local variable $vlPicRef:

⇒ GET PICTURE FROM LIBRARY($vlPicRef;vgMyPicture)

2. The following example returns in $DDcom_Prot_MyPicture the picture with the name
"DDcom_Prot_Button1" stored in the Picture Library:

⇒ GET PICTURE FROM LIBRARY("DDcom_Prot_Button1";$DDcom_Prot_MyPicture)

3. See the third example for the command PICTURE LIBRARY LIST.

See Also
PICTURE LIBRARY LIST, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO LIBRARY.

System Variables and Sets
If the Picture Library exists, the OK variable is set to 1. Otherwise, OK is set to zero.

Error Handling
If there is not enough memory to return the picture, an error -108 is generated. You can
catch this error using an error-handling method.

4th Dimension Language Reference 1013

SET PICTURE TO LIBRARY Pictures

version 6.0.2
__

SET PICTURE TO LIBRARY (picture; picRef; picName)

Parameter Type Description
picture Picture → New picture
picRef Number → Reference number of Picture Library graphic
picName String → New name of the picture

Description
The command SET PICTURE TO LIBRARY creates a new picture or replaces a picture in the
Picture Library.

Before the call, you pass:
• the picture reference number in picRef (range 1...32767)
• the picture itself in picture.
• the name of the picture in picName (maximum length: 31 characters).

If there is an existing Picture Library graphic with the same reference number, the picture
contents are replaced and the picture is renamed according to the values passed in picture
and picName.

If there is no Picture Library graphic with the reference number passed in picRef, a new
picture is added to the Picture Library.

4D Server: SET PICTURE TO LIBRARY cannot be used from within a method executed on
the server machine (stored procedure or trigger). If you call SET PICTURE TO LIBRARY on a
server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when modifying a Picture Library graphic
programmatically.

Note: If you pass an empty picture in picture or a negative or null value in picRef, the
command does nothing.

1014 4th Dimension Language Reference

Examples
1. No matter what the current contents of the Picture Library, the following example
adds a new picture to the Picture Library by first looking for a unique picture reference
number:

⇒ PICTURE LIBRARY LIST($alPicRef;$asPicNames)
Repeat

$vlPicRef:=1+Abs(Random)
Until (Find in array($alPicRef;$vlPicRef)<0)

⇒ SET PICTURE TO LIBRARY(vgPicture;$vlPicRef;"New Picture")

2. The following example imports into the Picture Library the pictures (stored in a
document on disk) created by the third example for the command PICTURE LIBRARY LIST:

SET CHANNEL(10;"")
If (OK=1)

RECEIVE VARIABLE($vsTag)
If ($vsTag="4DV6PICTURELIBRARYEXPORT")

RECEIVE VARIABLE($vlNbPictures)
If ($vlNbPictures)

For($vlPicture;1;$vlNbPictures)
RECEIVE VARIABLE($vlPicRef)
If (OK=1)

RECEIVE VARIABLE($vlPicName)
End if
If (OK=1)

RECEIVE VARIABLE ($vgPicture)
End if
If (OK=1)

⇒ SET PICTURE TO LIBRARY($vgPicture;$vlPicRef;$vlPicName)
Else

$vlPicture:=$vlNbPictures+1
ALERT("This file looks like being damaged.")

End if
End for

Else
ALERT("This file looks like being damaged.")

End if
Else

ALERT("The file “"+Document+"” is not a Picture Library export file.")
End if
SET CHANNEL(11)

End

4th Dimension Language Reference 1015

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, REMOVE PICTURE FROM LIBRARY.

System Variables and Sets
None is affected.

Error Handling
If there is not enough memory to add the picture to the Picture Library, an error -108 is
generated. Note that I/O errors may also be returned (i.e., the structure file is locked). You
can catch these errors using an error-handling method.

1016 4th Dimension Language Reference

REMOVE PICTURE FROM LIBRARY Pictures

version 6.7 (Modified)
__

REMOVE PICTURE FROM LIBRARY (picRef | picName)

Parameter Type Description
picRef | picName Number | String → Reference number of Picture Library graphic or

Name of Picture Library graphic

Description
The command REMOVE PICTURE FROM LIBRARY removes from the Picture Library the
picture whose reference number is passed in picRef or whose name is passed in picName.

If there is no picture with that reference number or name, the command does nothing.

4D Server: REMOVE PICTURE FROM LIBRARY cannot be used from within a method
executed on the server machine (stored procedure or trigger). If you call REMOVE PICTURE
FROM LIBRARY on a server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when deleting a Picture Library graphic programmatically.

Examples
1. The following example deletes the picture #4444 from the Picture Library.

⇒ REMOVE PICTURE FROM LIBRARY(4444)

2. The following example deletes from the Picture Library any pictures whose names
begin with a dollar sign ($):

PICTURE LIBRARY LIST($alPicRef;$asPicName)
For($vlPicture;1;Size of array($alPicRef))

If ($asPicName{$vlPicture}="$@")
⇒ REMOVE PICTURE FROM LIBRARY($alPicRef{$vlPicture})

End if
End for

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, SET PICTURE TO LIBRARY.

4th Dimension Language Reference 1017

1018 4th Dimension Language Reference

37

Process
(Communications)

4th Dimension Language Reference 1019

1020 4th Dimension Language Reference

Semaphore Process (Communications)

version 3
__

Semaphore (semaphore{; tickCount}) → Boolean

Parameter Type Description
semaphore String → Semaphore to test and set
tickCount Integer → Maximum waiting time

Function result Boolean ← Semaphore has been successfully set (FALSE) or
Semaphore was already set (TRUE)

Description
A semaphore is a flag shared among workstations (each user’s computer) or among
processes on the same workstation. A semaphore simply exists or does not exist. The
methods that each user is running can test for the existence of a semaphore. By creating
and testing semaphores, methods can communicate between workstations.

The Semaphore function returns TRUE if semaphore exists. If semaphore does not exist,
Semaphore creates it and returns FALSE. Only one user at a time can create a semaphore. If
Semaphore returns FALSE, it means that the semaphore did not exist, but it also means
that the semaphore has been set for the process in which the call has been made.

Semaphore returns FALSE if the semaphore was not set. It also returns FALSE if the
semaphore is already set by the same process in which the call has been made. semaphore
is limited to 30 characters, including prefixes (<>, $). If you pass a longer string, the
semaphore will be tested with the truncated string.

The optional parameter tickCount allows you to specify a waiting time (in ticks) if
semaphore is already set. In this case, the function will wait either for the semaphore to be
freed or the waiting time to expire before returning True.

There are two types of semaphores in 4th Dimension: local semaphores and global
semaphores.
• A local semaphore is accessible by all processes on the same workstation and only on the
workstation. A local semaphore can be created by prefixing the name of the semaphore
with a dollar sign ($). You use local semaphores to monitor operations among processes
executing on the same workstation. For example, a local semaphore can be used to
monitor access to an interprocess array shared by all the processes in your single-user
database or on the workstation.
• A global semaphore is accessible to all users and all their processes. You use global
semaphores to monitor operations among users of a multi-user database.

Global and local semaphores are identical in their logic. The difference resides in their
scope.

4th Dimension Language Reference 1021

In 4D Server, global semaphores are shared among all the processes running on all clients.
A local semaphore is only shared among the processes running on the client where it has
been created.
In 4th Dimension, global or local semaphores have the same scope because you are the
only user. However, if your database is being used in both setups, make sure to use global
or local semaphores depending on what you want to do.

You do not use semaphores to protect record access. This is automatically done by
4th Dimension and 4D Server. Use semaphores to prevent several users from performing
the same operation at the same time.

Examples
1. In this example, you want to prevent two users from doing a global update of the
prices in a Products table. The following method uses semaphores to manage this:

⇒ If (Semaphore("UpdatePrices")) ` Try to create the semaphore
ALERT("Another user is already updating prices. Retry later.")

Else
DoUpdatePrices ` Update all the prices
CLEAR SEMAPHORE("UpdatePrices")) ` Clear the semaphore

End if

2. The following example uses a local semaphore. In a database with several processes, you
want to maintain a To Do list. You want to maintain the list in an interprocess array and
not in a table. You use a semaphore to prevent simultaneous access. In this situation, you
only need to use a local semaphore, because your To Do list is only for your use.

The interprocess array is initialized in the On Startup Database Method:

ARRAY TEXT(◊ToDoList;0) ` The To Do list is initially empty

Here is the method used for adding items to the To Do list:

` ADD TO DO LIST project method
` ADD TO DO LIST (Text)
` ADD TO DO LIST (To do list item)

C_TEXT($1)
` Wait 5 seconds if the semaphore already exists

⇒ If(Not(Semaphore("$AccessToDoList";300)))
 $vlElem:=Size of array(◊ToDoList)+1

INSERT ELEMENT(◊ToDoList;$vlElem)
◊ToDoList{$vlElem}:=$1
CLEAR SEMAPHORE("$AccessToDoList") ` Clear the semaphore

End if

You can call the above method from any process.

See Also
CLEAR SEMAPHORE, Test semaphore.

1022 4th Dimension Language Reference

CLEAR SEMAPHORE Process (Communications)

version 3
__

CLEAR SEMAPHORE (semaphore)

Parameter Type Description
semaphore String → Semaphore to clear

Description
CLEAR SEMAPHORE erases semaphore previously set by the Semaphore function.

As a rule, all semaphores that have been created should be cleared. If semaphores are not
cleared, they remain in memory until the process that creates them ends. A process can
only clear semaphores that it has created. If you try to clear a semaphore from within a
process that did not create it, nothing happens.

Example
See the example for Semaphore.

See Also
Semaphore.

4th Dimension Language Reference 1023

Test semaphore Process (Communications)

version 6.5
__

Test semaphore (semaphore) → Boolean

Parameter Type Description
semaphore String → Name of the semaphore to test

Function result Boolean ← True = the semaphore exists,
False = the semaphore doesn’t exist

Description
The command Test semaphore allows you to test the existence of a semaphore.

The difference between the Semaphore function and the Test semaphore function is that
Test semaphore doesn’t create the semaphore if it doesn’t exit. If the semaphore exists, the
function returns True. Otherwise, it returns False.

Example
The following example allows you to know the state of a process (in our case, while
modifying the code) without modifying semaphore:

$Win:=Open window (x1;x2;y1;y2;-Palette window)
Repeat

⇒ If (Test semaphore("Encrypting code"))
POSITION MESSAGE ($x3;$y3)
MESSAGE("Encrypting code being modified.")

Else
POSITION MESSAGE($x3;$y3)
MESSAGE("Modification of the encrypting code authorized.")

End if
Until (StopInfo)
CLOSE WINDOW

See Also
Semaphore.

1024 4th Dimension Language Reference

CALL PROCESS Process (Communications)

version 3
__

CALL PROCESS (process)

Parameter Type Description
process Number → Process number

Description
CALL PROCESS calls the form displayed in the frontmost window of process.

Important: CALL PROCESS only works between processes running on the same machine.

If you call a process that does not exist, nothing happens.

If process (the target process) is not currently displaying a form, nothing happens. The
form displayed in the target process receives an On Outside call event. This event must be
enabled for that form in the Design environment Form Properties window, and you must
manage the event in the form method. If the event is not enabled or if it is not managed
in the form method, nothing happens.

Note: The On Outside call event modifies the entry context of the receiving input form.
In particular, if a field was being edited, the On Data change event is generated.

The caller process (the process from which CALL PROCESS is executed) does not “wait”—
CALL PROCESS has an immediate effect. If necessary, you must write a waiting loop for a
reply from the called process, using interprocess variables or using process variables
(reserved for this purpose) that you can read and write between the two processes (using
GET PROCESS VARIABLE and SET PROCESS VARIABLE).

To communicate between processes that do not display forms, use the commands GET
PROCESS VARIABLE and SET PROCESS VARIABLE.

CALL PROCESS has the alternate syntax CALL PROCESS(-1).

In order not to slow down the execution of methods, 4th Dimension does not redraw
interprocess variables each time they are modified. If you pass -1 instead of a process
reference number in the process parameter, 4th Dimension does not call any process.
Instead, it redraws all the interprocess variables currently displayed in all windows of any
process running on the same machine.

Example
See example for On Exit Database Method.

See Also
Form event, GET PROCESS VARIABLE, SET PROCESS VARIABLE.

4th Dimension Language Reference 1025

GET PROCESS VARIABLE Process (Communications)

version 6.0
__

GET PROCESS VARIABLE (process; srcVar; dstVar{; srcVar2; dstVar2; ...; srcVarN; dstVarN})

Parameter Type Description
process Number → Source process number
srcVar Variable → Source variable
dstVar Variable ← Destination variable

Description
The GET PROCESS VARIABLE command reads the srcVar process variables (srvVar2, etc.)
from the source process whose number is passed in process, and returns their current
values in the dstVar variables (dstVar2, etc.) of the current process.

Each source variable can be a variable, an array or an array element. However, see the
restrictions listed later in this section.

In each couple of srcVar;dstVar variables, the two variables must be of compatible types,
otherwise the values you obtain may be meaningless.

The current process “peeks” the variables from the source process—the source process is
not warned in any way that another process is reading the instance of its variables.

4D Server: Using 4D Client, you can read variables in a destination process executed on
the server machine (stored procedure). To do so, put a minus sign before the process ID
number in the process parameter.
“Intermachine” process communication, provided by the commands GET PROCESS
VARIABLE, SET PROCESS VARIABLE and VARIABLE TO VARIABLE, is possible from client to
server only. It is always a client process that reads or write the variables of a stored
procedure.

TIP: If you do not know the ID number of the server process, you can still use the
interprocess variables of the server. To do so, you can use any negative value in process. In
other words, it is not necessary to know the ID number of the process to be able to use
the GET PROCESS VARIABLE command with the interprocess variables of the server. This is
useful when a stored procedure is launched using the On server startup database method.
As clients machines do not automatically know the ID number of that process, any
negative value can be passed in the process parameter.

Restrictions
GET PROCESS VARIABLE does not accept local variables as source variables.

On the other hand, the destination variables can be interprocess, process or local
variables. You “receive” the values only into variables, not into fields.

1026 4th Dimension Language Reference

GET PROCESS VARIABLE accepts any type of source process or interprocess variable, except:
• Pointers
• Array of pointers
• Two-dimensional arrays

The source process must be a user process; it cannot be a kernel process. If the source
process does not exist, this command has no effect.

Note: In interpreted mode, if a source variable does not exist, the undefined value is
returned. You can detect this by using the Type function to test the corresponding
destination variable.

Examples
1. This line of code reads the value of the text variable vtCurStatus from the process whose
number is $vlProcess. It returns the value in the process variable vtInfo of the current
process:

⇒ GET PROCESS VARIABLE($vlProcess;vtCurStatus;vtInfo)

2. This line of code does the same thing, but returns the value in the local variable $vtInfo
for the method executing in the current process:

⇒ GET PROCESS VARIABLE($vlProcess;vtCurStatus;$vtInfo)

3. This line of code does the same thing, but returns the value in the variable vtCurStatus
of the current process:

⇒ GET PROCESS VARIABLE($vlProcess;vtCurStatus;vtCurStatus)

Note: The first vtCurStatus designates the instance of the variable in the source process
The second vtCurStatus designates the instance of the variable in the current process.

4. This example sequentially reads the elements of a process array from the process
indicated by $vlProcess:

⇒ GET PROCESS VARIABLE($vlProcess;vl_IPCom_Array;$vlSize)
For($vlElem;1;$vlSize)

⇒ GET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};$vtElem)
` Do something with $vtElem

End for

Note: In this example, the process variable vl_IPCom_Array contains the size of the array
at_IPCom_Array, and must be maintained by the source process.

4th Dimension Language Reference 1027

5. This example does the same thing as the previous one, but reads the array as a whole,
instead of reading the elements sequentially:

⇒ GET PROCESS VARIABLE($vlProcess;at_IPCom_Array;$anArray)
For($vlElem;1;Size of array($anArray))

` Do something with $anArray{$vlElem}
End for

6. This example reads the source process instances of the variables v1,v2,v3 and returns
their values in the instance of the same variables for the current process:

⇒ GET PROCESS VARIABLE($vlProcess;v1;v1;v2;v2;v3;v3)

7. See the example for the command DRAG AND DROP PROPERTIES.

See Also
CALL PROCESS, Drag and Drop, DRAG AND DROP PROPERTIES, Processes, SET PROCESS
VARIABLE, VARIABLE TO VARIABLE.

1028 4th Dimension Language Reference

SET PROCESS VARIABLE Process (Communications)

version 6.0
__

SET PROCESS VARIABLE (process; dstVar; expr{; dstVar2; expr2; ...; dstVarN; exprN})

Parameter Type Description
process Number → Destination process number
dstVar Variable → Destination variable
expr Variable → Source expression (or source variable)

Description
The SET PROCESS VARIABLE command writes the dstVar process variables (dstVar2, etc.)
of the destination process whose number is passed in process using the values passed in
expr1 (expr2, etc.).

Each destination variable can be a variable or an array element. However, see the
restrictions listed later in this section.

For each couple of dstVar;expr variables, the expression must be of a type compatible with
the destination variable, otherwise you may end up with a meaningless value in the
variable. In interpreted mode, if a destination variable does not exist, it is created and
assigned with the expression.

The current process “pokes” the variables of the destination process—the destination
process is not warned in any way that another process is writing the instance of its
variables.

4D Server: Using 4D Client, you can write variables in a destination process executed on
the server machine (stored procedure). To do so, put a minus sign before the process ID
number in the process parameter.
“Intermachine” process communication, provided by the commands GET PROCESS
VARIABLE, SET PROCESS VARIABLE and VARIABLE TO VARIABLE, is possible from client to
server only. It is always a client process that reads or write the variables of a stored
procedure.

TIP: If you do not know the ID number of the server process, you can still use the
interprocess variables of the server. To do so, use any negative value in process. In
other words, it is not necessary to know the ID number of the process to be able to use
the SET PROCESS VARIABLE command with the interprocess variables of the server. This is
useful when a stored procedure is launched using the On server startup database method.
As client machines do not automatically know the ID number of that process, any
negative value can be passed in the process parameter.

4th Dimension Language Reference 1029

Restrictions
SET PROCESS VARIABLE does not accept local variables as destination variables.

SET PROCESS VARIABLE accepts any type of destination process or interprocess variable,
except:
• Pointers
• Arrays of any type. To write an array as a whole from one process to another one, use
the command VARIABLE TO VARIABLE. Note, however, that SET PROCESS VARIABLE allows
you to write the element of an array.
• You cannot write the element of an array of pointers or the element of a two-
dimensional array.

The destination process must be a user process; it cannot be a kernel process. If the
destination process does not exist, an error is generated. You can catch this error using
an error-handling method installed with ON ERR CALL.

Examples
1. This line of code sets (to the empty string) the text variable vtCurStatus of the process
whose number is $vlProcess:

⇒ SET PROCESS VARIABLE($vlProcess;vtCurStatus;"")

2. This line of code sets the text variable vtCurStatus of the process whose number is
$vlProcess to the value of the variable $vtInfo from the executing method in the current
process:

⇒ SET PROCESS VARIABLE($vlProcess;vtCurStatus;$vtInfo)

3. This line of code sets the text variable vtCurStatus of the process whose number is
$vlProcess to the value of the same variable in the current process:

⇒ SET PROCESS VARIABLE($vlProcess;vtCurStatus;vtCurStatus)

Note: The first vtCurStatus designates the instance of the variable in the destination
process. The second vtCurStatus designates the instance of the variable in the current
process.

4. This example sequentially sets to uppercase all elements of a process array from the
process indicated by $vlProcess:

GET PROCESS VARIABLE($vlProcess;vl_IPCom_Array;$vlSize)
For($vlElem;1;$vlSize)

GET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};$vtElem)
⇒ SET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};Uppercase($vtElem))

End for

Note: In this example, the process variable vl_IPCom_Array contains the size of the array
at_IPCom_Array and must be maintained by the source/destination process.

1030 4th Dimension Language Reference

5. This example writes the destination process instance of the variables v1, v2 and v3
using the instance of the same variables from the current process:

⇒ SET PROCESS VARIABLE($vlProcess;v1;v1;v2;v2;v3;v3)

See Also
CALL PROCESS, GET PROCESS VARIABLE, Processes, VARIABLE TO VARIABLE.

4th Dimension Language Reference 1031

VARIABLE TO VARIABLE Process (Communications)

version 6.0.2
__

VARIABLE TO VARIABLE (process; dstVar; srcVar{; dstVar2; srcVar2; ...; dstVarN; srcVarN})

Parameter Type Description
process Number → Destination process number
dstVar Variable → Destination variable
srcVar Variable → Source variable

Description
The command VARIABLE TO VARIABLE writes the dstVar process variables (dstVar2, etc.) of
the destination process whose number is passed in process using the values of the
variables srcVar1 srcVar2, etc.

VARIABLE TO VARIABLE has the same action as SET PROCESS VARIABLE, with the following
differences:
• You pass source expressions to SET PROCESS VARIABLE, and therefore cannot pass an
array as a whole. You must exclusively pass source variables to VARIABLE TO VARIABLE, and
therefore can pass an array as a whole.
• Each destination variable of SET PROCESS VARIABLE can be a variable or an array
element, but cannot be an array as a whole. Each destination variable of VARIABLE TO
VARIABLE can be a variable or an array or an array element.

4D Server: “Intermachine” process communication, provided by the commands GET
PROCESS VARIABLE, SET PROCESS VARIABLE and VARIABLE TO VARIABLE, is possible from
client to server only. It is always a client process that reads or write the variables of a
stored procedure.

For each couple of dstVar;expr variables, the source variable must be of a type compatible
with the destination variable, otherwise you may end up with a meaningless value in the
variable. In interpreted mode, if a destination variable does not exist, it is created and
assigned with the type and value of the source variable.

The current process “pokes” the variables of the destination process—the destination
process is not warned in any way that another process is writing the instance of its
variables.

Restrictions
VARIABLE TO VARIABLE does not accept local variables as destination variables.

VARIABLE TO VARIABLE accepts any type of destination process or interprocess variables
except:
• Pointers
• Array of pointers
• Two-dimensional arrays

1032 4th Dimension Language Reference

The destination process must be a user process; it cannot be a kernel process. If the
destination process does not exist, an error is generated. You can catch this error using an
error-handling method installed with ON ERR CALL.

Example
The following example reads a process array from the process indicated by $vlProcess,
sequentially sets the elements to uppercase and then writes back the array as a whole:

GET PROCESS VARIABLE($vlProcess;at_IPCom_Array;$anArray)
For($vlElem;1;Size of array($anArray))

$anArray{$vlElem}:=Uppercase($anArray{$vlElem})
End for

⇒ VARIABLE TO VARIABLE($vlProcess;at_IPCom_Array;$anArray)

See Also
GET PROCESS VARIABLE, Processes, SET PROCESS VARIABLE.

4th Dimension Language Reference 1033

1034 4th Dimension Language Reference

38

Process (User Interface)

4th Dimension Language Reference 1035

1036 4th Dimension Language Reference

HIDE PROCESS Process (User Interface)

version 3
__

HIDE PROCESS (process)

Parameter Type Description
process Number → Process number or process to be hidden

Description
HIDE PROCESS hides all windows that belong to process. All interface elements of process
are hidden until the next SHOW PROCESS. The menu bar of the process is also hidden.
This means that opening a window while the process is hidden does not make the screen
redraw or display. If the process is already hidden, the command has no effect.

The only exception to this rule is the Debugger window. If the Debugger window is
displayed when process is a hidden process, process is displayed and becomes the
frontmost process.

If you do not want a process to be displayed when it is created, HIDE PROCESS should be
the first command in the process method. The User/Custom Menus and Cache Manager
processes cannot be hidden using this command.

Even though a process may be hidden, the process is still executing.

Example
The following example hides all the windows belonging to the current process:

⇒ HIDE PROCESS (Current process)

See Also
Process state, SHOW PROCESS.

4th Dimension Language Reference 1037

SHOW PROCESS Process (User Interface)

version 3
__

SHOW PROCESS (process)

Parameter Type Description
process Number → Process number of process to be shown

Description
SHOW PROCESS displays all the windows belonging to process. This command does not
bring the windows of process to the frontmost level. To do this, use the BRING TO FRONT
command.
If the process was already displayed, the command has no effect.

Example
The following example displays a process called Customers, if it has been previously
hidden. The process reference to the Customers process is stored in the interprocess
variable <>Customers:

⇒ SHOW PROCESS (<>Customers)

See Also
BRING TO FRONT, HIDE PROCESS, Process state.

1038 4th Dimension Language Reference

BRING TO FRONT Process (User Interface)

version 3
__

BRING TO FRONT (process)

Parameter Type Description
process Number → Process number of the process to

pass to the frontmost level

Description
BRING TO FRONT brings all the windows belonging to process to the front. The order of
the windows is retained. If the process is already the frontmost process, the command
does nothing. If the process is hidden, you must use SHOW PROCESS to display the
process, otherwise BRING TO FRONT has no effect.

The User/Custom Menus and Design processes can be brought to the front using this
command.

Example
The following example is a method that can be executed from a menu. It checks to see if
<>vlAddCust_PID is the frontmost process. If not, the method brings it to the front:

If (Frontmost process#<>vlAddCust_PID)
⇒ BRING TO FRONT (<>vlAddCust_PID)

End if

See Also
HIDE PROCESS, Process state, SHOW PROCESS.

4th Dimension Language Reference 1039

Frontmost process Process (User Interface)

version 3
__

Frontmost process {(*)} → Integer

Parameter Type Description
* → Process number for first non-floating window

Function result Integer ← Number of the process whose windows
are in the front

Description
Frontmost process returns the number of the process whose window (or windows) are in
the front.

When you have one or more floating windows open, there are two window layers:
• Regular windows
• Floating windows

If the Frontmost process function is used from within a floating window form method or
object method, the function returns the process reference number of the frontmost
floating window in the floating window layer. If you specify the optional * parameter, the
function returns the process reference number of the frontmost active window in the
regular window layer.

Example
See the example for BRING TO FRONT.

See Also
BRING TO FRONT, WINDOW LIST.

1040 4th Dimension Language Reference

39

Processes

4th Dimension Language Reference 1041

1042 4th Dimension Language Reference

Processes Processes

version 6.0
__

Multi-tasking in 4th Dimension is the ability to have distinct database operations that are
executed simultaneously. These operations are called processes.

Multiple processes are like multiple users on the same computer, each working on his or
her own task. This essentially means that each method can be executed as a distinct
database task.

This section covers the following topics:
• Creating and clearing processes
• Elements of a process
• User processes
• Processes created by 4th Dimension
• Local and global processes
• Record locking between processes

Note: This section does not cover stored procedures. See the section Stored Procedures in
the 4D Server Reference manual.

Creating and Clearing Processes
__

There are three ways to create a new process:
• Execute a method in the User environment after checking the New Process check box
in the Execute Method dialog box. The method chosen in the Execute Method dialog
box is the process method.
• Processes can be run by choosing menu commands. In the Design environment’s Menu
Bar editor, select the menu command and click the Start a New Process check box. The
method associated with the menu command is the process method.
• Use the New process function. The method passed as a parameter to the New process
function is the process method.

A process can be cleared under the following conditions. The first two conditions are
automatic:
• When the process method finishes executing
• When the user quits from the database
• If you stop the process procedurally or use the Abort button in the Debugger
• If you choose Abort from the Process menu in the Design environment

A process can create another process. Processes are not organized hierarchically—all
processes are equal, regardless of the process from which they have been created. Once
the “parent” process creates a “child” process, the child process will continue regardless of
whether or not the parent process is still executing.

4th Dimension Language Reference 1043

Elements of a Process
__

Each process contains specific elements. There are three types of distinctly different
elements in a process:
• Interface elements: Elements that are necessary to display a process.
• Data elements: Information that is related to the data in the database.
• Language elements: Elements that are used procedurally or are that are important for
developing your own application.

Interface Elements
Interface elements consist of the following:
• Menu bar: Each process can have its own current menu bar. The menu bar of the
frontmost process is the current menu bar for the database.
• One or more windows: Each process can have more than one window open
simultaneously. On the other hand, some processes have no windows at all.
• One active (frontmost) window: Even though a process can have several windows open
simultaneously, each process has only one active window. To have more than one active
window, you must start more than one process.

Data Elements
Data elements refer to the data used by the database. The data elements are:
• Current selection per table: Each process has a separate current selection. One table can
have a different current selection in different processes.
• Current record per table: Each table can have a different current record in each process.

Note: This description of the data elements is valid if your processes are global in scope.
By default, all processes are global. See the “Global and Local Processes” section below.

Language Elements
The language elements of a process are the elements related to programming in
4th Dimension.
• Variables: Every process has its own process variables. See Variables for more
information. Process variables are recognized only within the domain of their native
process.
• Default table: Each process has its own default table. However, note that the DEFAULT
TABLE command is only a typing convention for programming.
• Input and Output forms: Default input and output forms can be set procedurally for
each table in each process.
• Process sets: Each process has its own process sets. UserSet and LockedSet are process sets.
Process sets are cleared as soon as the process method ends.
• On Error Call per process: Each process has its own error-handling method.
• Debugger window: Each process can have its own Debugger window.

1044 4th Dimension Language Reference

User Processes
__

User processes are processes that you create to perform certain tasks. They share
processing time with the kernel processes. As an example, Web connection processes are
user processes.

Processes Created by 4th Dimension
__

The following processes are created and managed by 4th Dimension:
• User/Custom Menus process: The User/Custom Menus process consists of the Custom
Menus and the User environments. The default splash screen window in the Custom
Menus environment is also a part of the User/Custom Menus process. This process is
created as soon as 4th Dimension is run.
• Design process: The Design process consists of the Design environment running as a
separate process. It can be closed using the Exit Design Environment menu command in
the File menu of the Design environment. There is no Design process in a compiled
database. The Design process is created only when the user enters the Design
environment for the first time. If the application opens in the User or Custom Menus
environment, by default, the process will not be created.
• Web Server process: The Web Server process runs when the database is published on the
Web. See the section Web server configuration and connection management for more
information.
• Cache Manager process: The Cache Manager process manages disk I/ O for the
database. This process is created as soon as 4th Dimension or 4D Server are run.
• Indexing process: The Indexing process manages the indexing of fields in a database as a
separate process. This process is created when an index for a field is built or deleted.
• On Event Manager process: This process is created when an event-handling method is
installed by the ON EVENT CALL command. It executes the event method installed by ON
EVENT CALL whenever there is an event. The event method is the process method for this
process. This process executes continuously, even if no method is executing. Event
handling also occurs in the Design environment.

Global and Local Processes
__

Processes can be either global or local in scope. By default, all processes are global.

Global processes can perform any operation, including accessing and manipulating data.
In most cases, you will want to use global processes.

Local processes should be used only for operations that do not access data. For example,
you can use a local process to run an event-handling method or to control interface
elements such as floating windows.

You specify that a process is local in scope through its name. The name of local process
must start with a dollar sign ($).

4th Dimension Language Reference 1045

Warning: If you attempt to access data from a local process, you access it though the
User/Custom Menus process, risking conflicts with operations performed within that
process.

4D Server: Using local processes on the Client side for operations that do not require data
access reserves more processing time for server-intensive tasks.

Record Locking Between Processes
__

A record is locked when another process has successfully loaded the record for
modification. A locked record can be loaded by another process, but cannot be modified.
The record is unlocked only in the process in which the record is being modified. A table
must be in read/write mode for a record to be loaded unlocked.

See Also
Methods, Project Methods, Variables.

1046 4th Dimension Language Reference

New process Processes

version 2004.3 (Modified)
__

New process (method; stack{; name{; param{; param2; ...; paramN}{; *}}}) → Number

Parameter Type Description
method String → Method to be executed within the process
stack Number → Stack size in bytes
name String → Name of the process created
param Expression → Parameter(s) to the method
* → Unique process

Function result Number ← Process number for newly created process
or already executing process

Description
The command New process starts a new process (on the same machine) and returns the
process number for that process.

If the process could not be created (for example, if there is not enough memory), New
process returns zero (0) and an error is generated. You can catch this error using an error-
handling method installed using ON ERR CALL.

Process Method: In method, you pass the name of the process method for the new
process. After 4D has set up the context for the new process, it starts executing this
method, which therefore becomes the process method.

Process Stack: In stack, you pass the amount of memory allocated for the stack of the
process. It is the space in memory used to “pile up” method calls, local variables,
parameters in subroutines, and stacked records. It is expressed in bytes; it is
recommended to pass at least 64K (around 64,000 bytes), but you can pass more if the
process can perform large chain calls (subroutines calling subroutines in cascade). For
example, you can pass 200K (around 200000 bytes), if necesary.

Note: The stack is NOT the total memory for the process. Processes share memory for
records, interprocess variables, and so on. A process also uses extra memory for storing its
process variables. The stack contains various 4D informations ; the amount of
information kept on the stack depends on the number of nested methods calls the
process will employ, the number of forms that it will open before closing them and the
number and size of local variables used in each nested method call.

4th Dimension Language Reference 1047

Process Name: You pass the name of the new process in name. This name will appear in
the Process List window of the Design environment, and will be returned by the
command PROCESS PROPERTIES when applied to this new process. A process name can be
up to 31 characters long. You can omit this parameter; if you do so, the name of the
process will be the empty string. You can make a process local in scope by prefixing its
name with the dollar sign ($).

Important: Remember that local processes should not access data in Client/Server.

Parameter to Process Method: Starting with version 6, you can pass parameters to the
process method. You can pass parameters in the same way as you would pass them to a
subroutine. However, there is a restriction—you cannot pass pointer expressions. Also,
remember that arrays cannot be passed as parameters to a method. Upon starting
execution in the context of the new process, the process method receives the parameters
values in $1, $2, etc.

Note: If you pass parameters to the process method, you must pass the name parameter; it
cannot be omitted in this case.

The optional * parameter: Specifying this last parameter tells 4D to first check whether or
not a process with the name you passed in name is already running. If it is, 4D does not
start a new process and returns the process number of the process with that name.

Example
Given the following project method:

` ADD CUSTOMERS
MENU BAR (1)
Repeat

ADD RECORD([Customers];*)
Until (OK=0)

If you attach this project method to a custom menu item in the Design environment
Menu Bar Editor window whose Start a New Process property is set, 4D will automatically
start a new process running that method. The call MENU BAR(1) adds a menu bar to the
new process. In the absence of any window (that you could open with Open window), the
call to ADD RECORD will automatically open one.

To be able to start this Add Customers process when you click on a button in a custom
control panel, you can write:

` bAddCustomers button object method
⇒ $vlProcessID:=New process("Add Customers";32*1024;"Adding Customers")

The button does the same thing as the custom menu item.

1048 4th Dimension Language Reference

While choosing the menu item or clicking the button, if you want to start the process (if
it does not exist) or bring it to the front (if it is already running), you can create the
method START ADD CUSTOMERS:

` START ADD CUSTOMERS
⇒ $vlProcessID:=New process("Add Customers";32*1024;"Adding Customers";*)

If ($vlProcessID#0)
BRING TO FRONT ($vlProcessID)

End if

The object method of the bAddCustomers becomes:

` bAddCustomers button object method
START ADD CUSTOMERS

In the Menu Bar editor, you replace the method ADD CUSTOMERS with the method
START ADD CUSTOMERS, and you deselect the Start a New Process property for the menu
item.

See Also
Execute on server, Methods, Processes, Project Methods, Variables.

4th Dimension Language Reference 1049

Execute on server Processes

version 2004.3 (Modified)
__

Execute on server (procedure; stack{; name{; param{; param2; ...; paramN}{; *}}}) → Number

Parameter Type Description
procedure String → Procedure to be executed within the process
stack Number → Stack size in bytes
name String → Name of the process created
param Expression → Parameter(s) to the procedure
* → Unique process

Function result Number ← Process number for newly created process
or already executing process

Description
The Execute on server command starts a new process on the Server machine (if it is called
in Client/Server) or on the same machine (if it is called in single-user) and returns the
process number for that process.

You use Execute on server to start a stored procedure. For more information about stored
procedures, see the section Stored Procedures in the 4D Server Reference manual.

If you call Execute on server on a Client machine, the command returns a negative
process number. If you call Execute on server on the Server machine, Execute on server
returns a positive process number. Note that calling New process on the Server machine
does the same thing as calling Execute on server.

If the process could not be created (for example, if there is not enough memory), Execute
on server returns zero (0) and an error is generated. You can catch this error using an
error-handling method installed using ON ERR CALL.

Process Method: In method, you pass the name of the process method for the new
process. After 4D has set up the context for the new process, it starts executing this
method, which therefore becomes the process method.

Process Stack: In stack, you pass the amount of memory allocated for the stack of the
process. It is the space in memory used to “pile up” method calls, local variables,
parameters in subroutines, and stacked records. It is expressed in bytes; it is
recommended to pass at least 64K (around 64,000 bytes), but you can pass more if the
process can perform large chain calls (subroutines calling subroutines in cascade). For
example, you can pass 200K (around 200000 bytes), if necessary.

Note: The stack is NOT the total memory for the process. Processes share memory for
records, interprocess variables, and so on. A process also uses extra memory for storing its
process variables. The stack only holds local variables, method calls, parameters in
subroutines and stacked records.

1050 4th Dimension Language Reference

Process Name: You pass the name of the new process in name. In single-user, this name
will appear in the Process List window of the Design environment, and will be returned
by the command PROCESS PROPERTIES when applied to this new process. In
Client/Server, this name will appear in blue in the Stored Procedure list of the 4D Server
main window.

A process name can be up to 31 characters long. You can omit this parameter; if you do
so, the name of the process will be the empty string.

Warning: Contrary to New Process, do not attempt to make a process local in scope by
prefixing its name with the dollar sign ($) while using Execute on server. This will work in
single-user, because Execute on server acts as New Process in this environment. On the
other hand, in Client/Server, this will generate an error.

Parameter to Process Method: Starting with version 6, you can pass parameters to the
process method. You can pass parameters in the same way as you would pass them to a
subroutine. However, there is a restriction—you cannot pass pointer expressions. Also,
remember that arrays cannot be passed as parameters to a method. Upon starting
execution in the context of the new process, the process method receives the parameters
values in $1, $2, etc.

Note: If you pass parameters to the process method, you must pass the name parameter; it
cannot be omitted in this case.

The optional * parameter: Specifying this last parameter tells 4D to first check whether or
not a process with the name you passed in name is already running. If it is, 4D does not
start a new process and returns the process number of the process with that name.

Example
(1) The following example shows how importing data can be dramatically accelerated in
Client/Server. The Regular Import method listed below allows you to test how long it takes
to import records using the IMPORT TEXT command on the Client side:

` Regular Import Project Method
$vhDocRef:=Open document("")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
INPUT FORM([Table1];"Import")
$vhStartTime:=Current time
IMPORT TEXT([Table1];Document)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

End if

4th Dimension Language Reference 1051

With the regular import data, 4D Client performs the parsing of the text file, then, for
each record, create a new record, fills out the fields with the imported data and sends the
record to the Server machine so it can be added to the database. There are consequently
many requests going over the network. A way to optimize the operation is to use a stored
procedure to do the job locally on the Server machine. The Client machine loads the
document into a BLOB, start a stored procedure passing the BLOB as parameter. The stored
procedure stores the BLOB into a document on the server machine disk, then imports the
document locally. The import data is therefore performed locally at a single-user version-
like speed because most the network requests have been eliminated. Here is the CLIENT
IMPORT project method. Executed on the Client machine, it starts the SERVER IMPORT
stored procedure listed just below:

` CLIENT IMPORT Project Method
` CLIENT IMPORT (Pointer ; String)
` CLIENT IMPORT (-> [Table] ; Input form)

C_POINTER($1)
C_STRING(31;$2)
C_TIME($vhDocRef)
C_BLOB($vxData)
C_LONGINT(spErrCode)

` Select the document do be imported
$vhDocRef:=Open document("")
If (OK=1)

` If a document was selected, do not keep it open
CLOSE DOCUMENT($vhDocRef)
$vhStartTime:=Current time

` Try to load it in memory
DOCUMENT TO BLOB(Document;$vxData)
If (OK=1)

` If the document could be loaded in the BLOB,
` Start the stored procedure that will import the data on the server machine

$spProcessID:=Execute on server("SERVER IMPORT";32*1024;
"Server Import Services";Table($1);$2;$vxData)

` At this point, we no longer need the BLOB in this process
CLEAR VARIABLE($vxData)

` Wait for the completion of the operation performed by the stored procedure
Repeat

DELAY PROCESS(Current process;300)
GET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
If (Undefined(spErrCode))

` Note: if the stored procedure has not initialized its own instance
` of the variable spErrCode, we may be returned an undefined variable

spErrCode:=1
End if

1052 4th Dimension Language Reference

Until (spErrCode<=0)
` Tell the stored procedure that we acknowledge

spErrCode:=1
SET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

Else
ALERT("There is not enough memory to load the document.")

End if
End if

Here is the SERVER IMPORT project method executed as a stored procedure:

` SERVER IMPORT Project Method
` SERVER IMPORT (Long ; String ; BLOB)
` SERVER IMPORT (Table Number ; Input form ; Import Data)

C_LONGINT($1)
C_STRING(31;$2)
C_BLOB($3)
C_LONGINT(spErrCode)

` Operation is not finished yet, set spErrCode to 1
spErrCode:=1
$vpTable:=Table($1)
INPUT FORM($vpTable->;$2)
$vsDocName:="Import File "+String(1+Random)
DELETE DOCUMENT($vsDocName)
BLOB TO DOCUMENT($vsDocName;$3)
IMPORT TEXT($vpTable->;$vsDocName)
DELETE DOCUMENT($vsDocName)

` Operation is finished, set spErrCode to 0
spErrCode:=0

` Wait until the requester Client got the result back
Repeat

DELAY PROCESS(Current process;1)
Until (spErrCode>0)

Once these two project methods have been implemented in a database, you can perform a
“Stored Procedure-based” import data by, for instance, writing:

CLIENT IMPORT (->[Table1];"Import")

With some benchmarks you will discover that using this method you can import records
up to 60 times faster than the regular import.

See Also
New process, Stored Procedures.

4th Dimension Language Reference 1053

DELAY PROCESS Processes

version 3
__

DELAY PROCESS (process; duration)

Parameter Type Description
process Number → Process number
duration Number → Duration expressed in ticks

Description
DELAY PROCESS delays the execution of a process for a number of ticks (1 tick = 1/60th of
a second). During this period, process does not take any processing time. Even though
the execution of a process may be delayed, it is still in memory.

If the process is already delayed, this command delays it again. The parameter duration is
not added to the time remaining, but replaces it. Therefore pass zero (0) for duration if
you no longer want to delay a process.

If the process does not exist, the command does nothing.

Warning: DELAY PROCESS has no effect on the Kernel processes (all environments),
including the User/Custom Menus process.

Tip: To “delay” the User/Custom Menus process, write a small “waiting” subroutine that
loops measuring the elasped time using Current time, or Tickcount or Milliseconds). For
example, if you want to display, for a given time period, a message in a window that you
open and close for this purpose.

Examples
1. See example in Record Locking.
2. See example for the command Process number.

See Also
HIDE PROCESS, PAUSE PROCESS.

1054 4th Dimension Language Reference

PAUSE PROCESS Processes

version 3
__

PAUSE PROCESS (process)

Parameter Type Description
process Number → Process number

Description
PAUSE PROCESS suspends the execution of process until it is reactivated by the RESUME
PROCESS command. During this period, process does not take any time on your machine.
Even though a process may be paused, the process is still in memory.

If process is already paused, PAUSE PROCESS does nothing. If the process has been delayed
using the DELAY PROCESS command, the process is paused. RESUME PROCESS resumes the
process immediately.

While process execution is suspended, the windows belonging to this process are not
enterable. In this case, to avoid confusing the user, consider hiding the process. If process
does not exist, the command does nothing.

Warning: Use PAUSE PROCESS only in processes that you have started. PAUSE PROCESS will
not affect the original User/Custom Menus process.

See Also
DELAY PROCESS, HIDE PROCESS, RESUME PROCESS.

4th Dimension Language Reference 1055

RESUME PROCESS Processes

version 3
__

RESUME PROCESS (process)

Parameter Type Description
process Number → Process number

Description
RESUME PROCESS resumes a process whose execution has been paused or delayed. If
process is not paused or delayed, RESUME PROCESS does nothing.

If process has been delayed before, see the PAUSE PROCESS or DELAY PROCESS commands.
If process does not exist, the command does nothing.

See Also
DELAY PROCESS, PAUSE PROCESS.

1056 4th Dimension Language Reference

Process aborted Processes

version 6.5
__

Process aborted → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True = the process is about to be aborted,
False = the process is not about to be aborted

Description
The command Process aborted returns True if the process in which it is called is about to
be interrupted unexpectedly, which means that the execution of the command was
unable to reach its “normal” completion. For example, this can occur after calling QUIT
4D.

Example
This command can be used as a particular type of programming on the Web server, only
in compiled mode. When you use a method to send Web pages by using a loop like
While...End while (cf. example), the mechanism of the Web server doesn’t allow you to
stop the loop in case of a timeout (end of the inactivity period authorized) on a Web
browser. If the Web process is not closed, a context is therefore still in use.
The Process aborted command, placed in the initial test of the loop, will return True in
case of a timeout. The loop can then be interrupted and the process can be aborted.
Here is a method that can be used to send HTML pages. In compiled mode, this loop
cannot be interrupted in case of a timeout:

While (True)
SEND HTML FILE (HTMLFile)

End while

The Process aborted command allows you to use the same type of method, while still
being able to exit the loop and abort the Web process in case of a timeout:

⇒ While (Not (Process aborted))
SEND HTML FILE (HTMLFile)

End while

4th Dimension Language Reference 1057

Current process Processes

version 3
__

Current process → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Process number

Description
Current process returns the process reference number of the process within which this
command is called.

Example
See the examples for DELAY PROCESS and PROCESS PROPERTIES.

See Also
Process number, PROCESS PROPERTIES, Process state.

1058 4th Dimension Language Reference

Process state Processes

version 3
__

Process state (process) → Number

Parameter Type Description
process Number → Process number

Function result Number ← State of the process

Description
The command Process state returns the state of the process whose number you pass in
process.

The function result can be one of the values provided by the following predefined
constants:

Constant Type Value
Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

If the process does not exist (which means you did not pass a number in the range 1 to
Count tasks), Process state returns Does not exist (-100).

4th Dimension Language Reference 1059

Example
The following example puts the name and process reference number for each process into
the asProcName and aiProcNum arrays. The method checks to see if the process has been
aborted. In this case, the process name and number are not added to the arrays:

$vlNbTasks:=Count tasks
ARRAY STRING(31;arProcName; $vlNbTasks)
ARRAY INTEGER(aiProcNum; $vlNbTasks)
$vlActualCount:=0
For ($vlProcess;1; $vlNbTasks)

If (Process state($vlProcess)>=Executing)
$vlActualCount:=$vlActualCount+1
PROCESS PROPERTIES($vlProcess; asProcName{$vlActualCount};

$vlState;$vlTime)
aiProcNum{$vlActualCount}:=$vlProcess

End if
End for

` Eliminate unused extra elements
ARRAY STRING(31;asProcName;$vlActualCount)
ARRAY INTEGER(aiProcNum;$vlActualCount)

See Also
Count tasks, PROCESS PROPERTIES.

1060 4th Dimension Language Reference

PROCESS PROPERTIES Processes

version 2003 (Modified)
__

PROCESS PROPERTIES (process; procName; procState; procTime{; procVisible{; uniqueID{;
origin}}})

Parameter Type Description
process Number → Process number
procName String ← Process name
procState Number ← Process state
procTime Number ← Cumulative time taken by process in ticks
procVisible Boolean ← Visible (TRUE) or Hidden (FALSE)
uniqueID Integer ← Unique process number
origin Longint ← Origin of the process

Description
The PROCESS PROPERTIES command returns information about the process whose process
number you pass in process.

After the call:
• procName returns the name of the process. Some things to note about the process
name:
- If the process was started from the User environment Execute Method dialog box (with
the New Process option selected), its name is “P_” followed by a number.
- If the process was started from a Custom menus item whose Start a New Process
property is checked, the name of the process is “M_” or “ML_” followed by a number.
- If the process has been aborted (and its “slot” not reused yet), the name of the process is
still returned. To detect if a process is aborted, test procState=-1 (see below).

• procState returns the state of the process at the moment of the call. This parameter can
return one of the values provided by the following predefined constants:

Constant Type Value
Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

• procTime returns the cumulative time that the process has used since it started, in ticks
(1/60th of a second) .

4th Dimension Language Reference 1061

• procVisible, if specified, returns TRUE if the process is visible, FALSE if hidden.

• uniqueID, if specified, returns the unique process number. Actually, starting with 4D
version 6.5, each process has attributed a process number to it as well as a unique process
number per session. The unique number allows you to differentiate between two processes
or two process sessions. It corresponds to the process number having been started during
4th Dimension’s session.

• origin, if specified, returns a value that describes the origin of the process. 4th
Dimension offers the following predefined constants (in the "Process Type" theme):

Constant Type Value
Web Process on 4D Client Longint -12
Web Process with Context Longint -11
Other 4D Process Longint -10
External Task Longint -9
Event Manager Longint -8
Apple Event Manager Longint -7
Serial Port Manager Longint -6
Indexing Process Longint -5
Cache Manager Longint -4
Web Process with no Context Longint -3
Design Process Longint -2
User or Custom Menus Process Longint -1
None Longint 0
Execute on Server Process Longint 1
Created from Menu Command Longint 2
Created from User Mode Longint 3
Other User Process Longint 4

Note: 4D’s internal processes return a negative value and the processes generated by the
user return a positive value.

If the process does not exist, which means you did not pass a number in the range 1 to
Count tasks, PROCESS PROPERTIES leaves the variable parameters unchanged.

Examples
1. The following example returns the name, state, and time taken in the variables vName,
vState, and vTimeSpent for the current process:

C_STRING(80; vName) ` Initialize the variables
C_INTEGER(vState)
C_INTEGER(vTime)
PROCESS PROPERTIES (Current process; vName; vState; vTimeSpent)

2. See example for On Exit Database Method.

See Also
Count tasks, Process state.

1062 4th Dimension Language Reference

Process number Processes

version 6.0
__

Process number (name{; *}) → Number

Parameter Type Description
name String → Name of process for which to retrieve

the process number
* → Return the process number from the server

Function result Number ← Process number

Description
Process number returns the number of the process whose name you pass in name. If no
process is found, Process number returns 0.

The optional parameter * allows you to retrieve, from 4D Client, the process ID of a
process that is executed on the server (a stored procedure). In this case, the returned value
is negative. This option is especially useful when using the GET PROCESS VARIABLE and SET
PROCESS VARIABLE commands. Please refer to the descriptions of these commands for
details.

If the command is executed with the * parameter from a process on the server machine,
the returned value is positive.

Example
You create a custom floating window, run in a separate process, in which you implement
your own tools to interact with the Design environment. For example, when selecting an
item in a hierarchical list of keywords, you want to paste some text into the frontmost
window of the Design environment. To do so, you can use the clipboard, but the pasting
event must occur within the Design process. The following small function returns the
process number of the Design process (if running):

` Design process number Project Method
` Design process number -> LongInt
` Design process number -> Design process number

⇒ $0:=Process number(Get indexed string(170;3))
` The name of the Design process is stored in the 'STR#" resource ID=170,
` string #3 within 4D
` Note: This can break in the future if the resource changes

4th Dimension Language Reference 1063

Using this function, the following project method pastes the text received as parameter to
the frontmost window of the Design environment (if applicable):

` PASTE TEXT TO DESIGN Project Method
` PASTE TEXT TO DESIGN (Text)
` PASTE TEXT TO DESIGN (Text to Paste in frontmost Design window)

C_TEXT($1)
C_LONGINT($vlDesignPID;$vlCount)

$vlDesignPID:=Design process number
If ($vlDesignPID # 0)

` Put the text into the clipboard
SET TEXT TO CLIPBOARD($1)

` Post a Ctrl-V / Command-V event
POST KEY(Ascii("v");Command key mask;$vlDesignPID)

` Call repeatedly DELAY PROCESS so the scheduler gets a chance
` to pass over the event to the Design process

For ($vlCount;1;5)
DELAY PROCESS(Current process;1)

End for
End if

See Also
GET PROCESS VARIABLE, PROCESS PROPERTIES, Process state, SET PROCESS VARIABLE.

1064 4th Dimension Language Reference

Count users Processes

version 3
__

Count users → Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ← Number of users connected to the server

Description
The Count users function returns the number of users connected to the database. If the
server executes any stored procedure(s), Count users returns the number of users + 1.

In the single-user version of 4th Dimension, Count users returns 1.

See Also
Count tasks, Count user processes.

4th Dimension Language Reference 1065

Count tasks Processes

version 3
__

Count tasks → Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ← Number of open processes
(including kernel processes)

Description
Count tasks returns the number of processes open in 4D Client, 4D Server (stored
procedures) or in single-user 4th Dimension.

This number takes into account all processes, even those that are automatically managed
by 4th Dimension. These include the User/Custom Menus process, Design process, Cache
Manager process, Indexing process, and Web Server process.

The number returned by Count tasks also takes into account processes that have been
aborted.

Example
See the example for Process state and On Exit Database Method.

See Also
Count user processes, Count users, PROCESS PROPERTIES, Process state.

1066 4th Dimension Language Reference

Count user processes Processes

version 3
__

Count user processes → Integer

Parameter Type Description

This command does not require any parameters

Function result Integer ← Number of open processes
(excluding kernel processes)

Description

The Count user processes function returns the number of open processes, except those
processes that are managed automatically by 4th Dimension.

The User/Custom Menus process, the Design process and the Web server process are
considered to be user processes since they can be closed by users. Therefore, these
processes will be counted when determining the number of user processes.

See Also

Count tasks, Count users.

4th Dimension Language Reference 1067

EXECUTE ON CLIENT Processes

version 6.5
__

EXECUTE ON CLIENT (clientName; methodName{; param}{; param2; ...; paramN})

Parameter Type Description
clientName String → 4D Client’s registered name
methodName String → Name of the method to execute
param → Method’s parameter(s)

Description
The command EXECUTE ON CLIENT forces the execution of the methodName method,
with the parameters param1... paramN, if necessary, on the registered 4D Client whose
name is clientName. 4D Client’s registered name is defined by the REGISTER CLIENT
command.
This command can be called from a 4D Client or a stored method from 4D Server.

If the method requires one or more parameters, pass them after the name of the method.
The execution of the method on 4D Client is done in a global process automatically
created on the client workstation, and its name will be the 4D Client’s registered name.

If this command is called many times in a row on the same 4D Client, the execution
orders will be stacked. Therefore, the methods will be treated one after another in
asynchronous mode. The more methods that are stacked, the bigger the workload is for
the 4D Client. You can know the state of the workload of each client by using the GET
REGISTERED CLIENTS command.

Note: The stacking of the execution orders cannot be modified or stopped unless 4D
Client is unregistered by using the UNREGISTER CLIENT command.

You can simultaneously execute the same method on many or all of the registered 4D
Clients. To do so, use the wildcard character (@) in the clientName parameter.

The OK system variable is equal to 1 if 4D Server has correctly received the execution
request of a method; however, this does not guarantee that the method has been properly
executed by 4D Client.

Examples
(1) Let’s assume that you want to execute the “GenerateNums” method on the “Client1”
client station:

⇒ EXECUTE ON CLIENT("Client1";"GenerateNums";12;$a;"Text")

1068 4th Dimension Language Reference

(2) If you want all the clients to execute the “EmptyTemp” method:

⇒ EXECUTE ON CLIENT("@";"EmptyTemp")

(3) Refer to the example of the REGISTER CLIENT command.

See Also
GET REGISTERED CLIENTS, REGISTER CLIENT, UNREGISTER CLIENT.

4th Dimension Language Reference 1069

REGISTER CLIENT Processes

version 6.5
__

REGISTER CLIENT (clientName{; period{; *}})

Parameter Type Description
clientName String → Name of the 4D Client session
period Longint → Server’s interrogation period (in seconds)
* * → Local process

Description
The REGISTER CLIENT command “registers” a 4D Client station with the name specified in
clientName on 4D Server, so as to allow other clients or eventually 4D Server (by using
stored methods) to execute methods on it by using the EXECUTE ON CLIENT command.
Once it is registered, a 4D Client can then execute one or more methods for other clients.

Note: You can also automatically register each client station that connects to 4D Server
by using the “Register Clients at Startup...” option in the Preferences dialog box.

When this command is executed, a process, named clientName, is created on the client
station. This process can only be aborted by the UNREGISTER CLIENT command.
If you pass the optional * parameter, the created process is local. 4D will automatically add
the dollar sign ($) at the beginning of the process name. Otherwise, the process is global.

After executing the command, the client station will periodically ask 4D Server to see if
another 4D Client or the server itself is calling it.
By default, this interrogation is done every two seconds. You can modify this time period
by modifying period. The minimum value is one second.

Note: If this command is used with a single-user version of 4th Dimension, it has no
effect.

Once the command is executed, it is not possible to modify 4D Client’s name or the
server’s interrogation period on the fly. To do so, you must call the UNREGISTER CLIENT
command, then the REGISTER CLIENT command.

Note: More than one 4D Client can have the same registered name.

If 4D Client is correctly registered, the OK system variable is equal to 1. If 4D Client was
already registered, the command doesn’t do anything and OK is equal to 0.

1070 4th Dimension Language Reference

Example
In the following example, we are going to create a small messaging system that allows the
client workstations to communicate between themselves.

1) This method, Registration, allows you to register a 4D Client and to keep it ready to
receive a message from another 4D Client:

`You must unregister before registering under another name
⇒ UNREGISTER CLIENT

Repeat
vPseudoName:=Request("Enter your name:";"User";"OK";"Cancel")

Until ((OK=0) | (vPseudoName # ""))
If (OK=0)

...` Don’t do anything
Else

⇒ REGISTER CLIENT(vPseudoName)
End if

2) The following instruction allows you to get a list of the registered 4D Clients. It can be
placed in the On Startup Database Method:

PrClientList:=New process("4D Client List";32000;"List of registered clients")

3) The method 4D Client List allows you to recuperate all the registered 4D Clients and
those that can receive messages:

If (Application type=4D Client)
` the code below is only valid in client-server mode

$Ref:=Open window(100;100;300;400;-(Palette window+Has window title);
"List of registered clients")

Repeat
GET REGISTERED CLIENTS($ClientList;$ListeCharge)

`Retrieve the registered clients in $ClientList
ERASE WINDOW($Ref)
GOTO XY(0;0)
For ($p;1;Size of array($ClientList))

MESSAGE($ClientList{$p}+Char(Carriage return))
End for

`Display each second
DELAY PROCESS(Current process;60)

Until (False) ` Infinite loop
End if

4th Dimension Language Reference 1071

4) The following method allows you to send a message to another registered 4D Client. It
calls the Display_Message method (see below).

$Addressee:=Request("Addressee of the message:";"")
` Enter the name of the people visible in the window generated by the
` On Startup database method

If (OK # 0)
$Message:=Request("Message:") ` message
If (OK # 0)

⇒ EXECUTE ON CLIENT($Addressee;"Display_Message";$Message) ` Send message
End if

End if

5) Here is the Display_Message method:

C_TEXT($1)
ALERT($1)

6) Finally, this method allows a client station to no longer be visible by the other 4D
Clients and to no longer receive messages:

⇒ UNREGISTER CLIENT

See Also
EXECUTE ON CLIENT, GET REGISTERED CLIENTS, UNREGISTER CLIENT.

System Variables and Sets
If 4D Client is correctly registered, the OK system variable is equal to 1. If 4D Client was
already registered, the command doesn’t do anything and OK is equal to 0.

1072 4th Dimension Language Reference

UNREGISTER CLIENT Processes

version 6.5
__

UNREGISTER CLIENT

Parameter Type Description
This command does not require any parameters

Description
The command UNREGISTER CLIENT “unregisters” a 4D Client station. The client must
have already been registered by the REGISTER CLIENT command.

Note: A 4D Client is automatically unregistered when the user quits the application.

If the client workstation was not previously registered or if the command was executed
on a single-user 4th Dimension, the command has no effect.

If the client is correctly unregistered, the OK system variable is equal to 1. If the client
wasn’t registered, OK is equal to 0.

Example
Refer to the example for the REGISTER CLIENT command.

See Also
EXECUTE ON CLIENT, GET REGISTERED CLIENTS, REGISTER CLIENT.

4th Dimension Language Reference 1073

GET REGISTERED CLIENTS Processes

version 6.5
__

GET REGISTERED CLIENTS (clientList; methods)

Parameter Type Description
clientList Text Array ← List of the saved 4D Clients
methods Longint Array ← List of the methods to be executed

Description
The command GET REGISTERED CLIENTS fills two arrays:

• clientLists contains the list of clients who were “registered” by using the REGISTER
CLIENT command.

• methods supplies the list of each client’s “workload”. The workload is the number of
methods that a 4D Client must still execute by calling the EXECUTE ON CLIENT command
(for more information, please refer to the description of the EXECUTE ON CLIENT
command).

Note: If the operation was successful, the OK system variable is equal to 1.

Examples
(1) Let’s assume that you want to obtain a list of all the registered clients and the
methods that remain to be executed:

ARRAY TEXT($clients;0)
ARRAY LONGINT($methods;0)

⇒ GET REGISTERED CLIENTS($clients;$methods)

(2) Refer to the example of the REGISTER CLIENT command.

See Also
EXECUTE ON CLIENT, REGISTER CLIENT, UNREGISTER CLIENT.

1074 4th Dimension Language Reference

40

Queries

4th Dimension Language Reference 1075

1076 4th Dimension Language Reference

QUERY BY EXAMPLE Queries

version 3
__

QUERY BY EXAMPLE ({table}{; }{*})

Parameter Type Description
table Table → Table for which to return a selection

of records, or
Default table, if omitted

* → If passed, the scrolling bar will not be displayed

Description
QUERY BY EXAMPLE performs the same action as the Query by Example menu command
in the User environment. It displays the current input form as a query window.

QUERY BY EXAMPLE queries table for the data that the user enters into the query window.
The form must contain the fields that you want the user to be able to query. The query is
optimized; indexed fields are automatically used to optimize the query.

See the 4th Dimension User Reference for information about using the Query by Example
menu command in the User environment.

Example
The method in this example displays the MyQuery form to the user. If the user accepts
the form and performs the query (that is, if the OK system variable is set to 1), the
records that meet the query criteria are displayed:

INPUT FORM ([People]; "MyQuery") ` Switch to query form
⇒ QUERY BY EXAMPLE ([People]) ` Display form and perform query

If (OK=1) ` If the user performed the query
DISPLAY SELECTION ([People]) ` Display the records

End if

See Also
ORDER BY, QUERY.

System Variables or Sets
If the user clicks the Accept button or presses the Enter key, the OK system variable is set
to 1 and the query is performed. If the user clicks the Cancel button or presses the
“cancel” key combination, the OK system variable is set to 0 and the query is canceled.

4th Dimension Language Reference 1077

QUERY Queries

version 3
__

QUERY ({table}{; queryArgument{; *}})

Parameter Type Description
table Table → Table for which to return a selection of
records, or

Default table, if omitted
queryArgument → Query argument
* → Continue query flag

Description
QUERY looks for records matching the criteria specified in queryArgument and returns a
selection of records for table. QUERY changes the current selection of table for the current
process and makes the first record of the new selection the current record.

If the table parameter is omitted, the command applies to the default table. If no default
table has been set, an error occurs.

If you do not specify queryArgument or the * parameters, QUERY displays the Query editor
for table. The User environment Query editor is shown here:

For more information about using the Query Editor, refer to the 4th Dimension User
Reference manual.

1078 4th Dimension Language Reference

The user builds the query, then clicks the Query button or chooses Query in selection to
perform the query. If the query is performed without interruption, the OK variable is set
to 1. If the user clicks Cancel, the QUERY terminates with no query actually performed,
and sets the OK variable to 0 (zero).

Examples
1. The following line displays the Query editor for the [Products] table:

⇒ QUERY([Products])

2. The following line displays the Query editor for the default table (if it has been set)

⇒ QUERY

If you specify the queryArgument parameter, the standard Query editor is not presented
and the query is defined programmatically. For simple queries (search on only one field)
you call QUERY once with queryArgument. For multiple queries (search on multiple fields
or with multiple conditions), you call QUERY as many times as necessary with
queryArgument, and you specify the optional * parameter, except for the last QUERY call,
which starts the actual query operation. The queryArgument parameter is described further
in this section.

Examples
3. The following line looks for the [People] whose name starts with an “a”:

⇒ QUERY([People];[People]Last name="a@")

4. The following line looks for the [People] whose name starts with “a” or “b”:

⇒ QUERY([People];[People]Name="a@";*) ` * indicates that there are further search criteria
 ` No * ends the query definition and starts the actual query operation

⇒ QUERY([People]; |;[People]Name="b@")

Specifying the Query Argument

• The queryArgument parameter uses the following syntax:
 { conjunction ; } field comparator value

• The conjunction is used to join QUERY calls when defining multiple queries. The
conjunctions available are the same as those in the User environment Query editor:

Conjunction Symbol to use with QUERY
AND &
OR |
Except #

4th Dimension Language Reference 1079

The conjunction is optional and not used for the first QUERY call of a multiple query, or if
the query is a simple query.

• The field is the field to query. The field may belong to another table if it belongs to a One
table related to table with an automatic relation. The table on which QUERY is applied to
must be the Many table.

• The comparator is the comparison that is made between field and value. The comparator
is one of the symbols shown here:

Comparison Symbol to use with QUERY
Equal to =
Not equal to #
Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=

• The value is the data against which field will be compared. The value can be any
expression that evaluates to the same data type as field. The value is evaluated once, at the
beginning of the query. The value is not evaluated for each record. To query for a string
contained in a string (a “contains” query), use the wildcard symbol (@) in value.

Here are the rules for building multiple queries:
• The first query argument must not contain a conjunction.
• Each successive query argument must begin with a conjunction.
• The first query and every other query, except the last, must use the * parameter.
• To perform the query, do not specify the * parameter in the last QUERY command.
Alternatively, you may execute the QUERY command without any parameters other than
the table (the Query editor is not presented; instead, the multiple query you just defined is
performed).

Note: Each table maintains its own current built query. This means that you can create
multiple built queries simultaneously, one for each table. You must use the table
parameter or set the default table to specify which table to use.

No matter the way a query has been defined:

• If the actual query operation is going to take some time to be performed,
4th Dimension automatically displays a message containing a progress thermometer.
These messages can be turned on and off by using the commands MESSAGES ON and
MESSAGES OFF. If the progress thermometer is displayed, the user can click on the Stop
button to interrupt the query. If the query is completed, OK is set to 1. Otherwise, if the
query is interrupted, OK is set to 0 (zero).

• If any indexed fields are specified, the query is optimized every time that it is possible
(indexed fields are searched first) resulting in a query that takes the least amount of time
possible.

1080 4th Dimension Language Reference

Examples
5. The following command finds the records for all the people named Smith:

⇒ QUERY([People];[People]Last Name="Smith")

Note: If the Last Name field were indexed, the QUERY command would automatically use
the index for a fast query.

Reminder: This query will find records like “Smith”, “smith”,“SMITH”, etc. To distinguish
lowercase from uppercase, perform additional queries using the ASCII codes.

6. The following example finds the records for all people named John Smith. The Last
Name field is indexed. The First Name field is not indexed.

⇒ QUERY ([People]; [People]Last Name = "smith"; *) ` Find every person named Smith
⇒ QUERY ([People]; &; [People]First Name = "john") ` with John as first name

When the query is performed, it quickly does an indexed search on Last Name and
reduces the selection of records to those of people named Smith. The query then
sequentially searches on First Name in this selection of records.

7. The following example finds the records of people named Smith or Jones. The Last
Name field is indexed.

⇒ QUERY ([People]; [People]Last Name="smith"; *) ` Find every person named Smith…
⇒ QUERY ([People]; | ; [People]Last Name="jones") ` ...or Jones

The QUERY command uses the Last Name index for both queries. The two queries are
performed, and their results put into internal sets that are eventually combined using a
union.

8. The following example finds the records for people who do not have a company name.
It does this by finding entries with empty fields (the empty string).

⇒ QUERY ([People]; [People]Company="") ` Find every person with no company

9. The following example finds the record for every person whose last name is Smith and
who works for a company based in New York. The second query uses a field from another
table. This query can be done because the [People] table is related to the [Company] table
with a many to one relation:

⇒ QUERY ([People]; [People]Last Name = "smith"; *) ` Find every person named Smith…
 ` ... and who works for a company based in NY

⇒ QUERY ([People]; & ; [Company]State = "NY")

4th Dimension Language Reference 1081

10. The following example finds the record for every person whose name falls between A
(included) and M (included):

⇒ QUERY ([People]; [People]Name < "n") ` Find every person from A to M

11. The following example finds the records for all the people living in the San Francisco
or Los Angeles areas (ZIP codes beginning with 94 or 90):

⇒ QUERY ([People]; [People]ZIP Code = "94@"; *) ` Find every person in the SF…
⇒ QUERY ([People]; | ; [People]ZIP Code = "90@") ` ...or Los Angeles areas

12. The following example queries an indexed subfield. The query returns a selection of
parent records (records for the [People] table). It does not return a selection of subrecords.
The result of the query would be the selection of records for all the people who have a
child named Sabrina:

` Find people with child named Sabrina
⇒ QUERY ([People]; [People]Children'Name = "Sabrina")

13. The following example finds the record that matches the invoice reference entered in
the request dialog box:

vFind:=Request("Find invoice reference:") ` Get an invoice reference from the user
If (OK = 1) ` If the user pressed OK

 ` Find the invoice reference that matches vFind
⇒ QUERY ([Invoice]; [Invoice]Ref = vFind)

End if

14. The following example finds the records for the invoices entered in 1996. It does this
by finding all records entered after 12/31/95 and before 1/1/97:

⇒ QUERY ([Invoice]; [Invoice]In Date > !12/31/95!; *) ` Find invoices after 12/31/95…
⇒ QUERY ([Invoice]; &; [Invoice]In Date < !1/1/97!) ` and before 1/1/97

15. The following example finds the record for each employee whose salary is between
$10,000 and $50,000. The query includes the employees who make $10,000, but excludes
those who make $50,000:

 ` Find employees who make between…
⇒ QUERY ([Employee]; [Employee]Salary >= 10000; *)

 ` ...$10,000 and $50,000
⇒ QUERY ([Employee]; & ; [Employee]Salary < 50000)

1082 4th Dimension Language Reference

16. The following example finds the records for the employees in the marketing
department who have salaries over $20,000. The Salary field is queried first because it is
indexed. Notice that the second query uses a field from another table. It can do this
because the [Dept] table is related to the [Employee] table with an automatic many to one
relation. Although the [Dept]Name field is indexed, this is not an indexed query because
the relation must be activated sequentially for each record in the [Employee] table:

 ` Find employees with salaries over $20,000 and...
⇒ QUERY ([Employee]; [Employee]Salary > 20000; *)

 ` ...who are in the marketing department
⇒ QUERY ([Employee]; &;[Dept]Name = "marketing")

17. The following example queries for information that was entered into the variable
myVar.

⇒ QUERY ([Laws]; [Laws]Text = myVar) ` Find all laws that match myVar

The query could have many different results, depending on the value of myVar. The query
will also be performed differently. For example:
• If myVar equals "Copyright@", the selection contains all laws with texts beginning with
Copyright.
• If myVar equals "@Copyright@", the selection contains all laws with texts containing at
least one occurrence of Copyright.

See Also
QUERY SELECTION.

4th Dimension Language Reference 1083

QUERY SELECTION Queries

version 3
__

QUERY SELECTION ({table}{; queryArgument}{; *})

Parameter Type Description
table Table → Table for which to return a selection of records, or

Default table, if omitted
queryArgument → Query argument
* → Continue query flag

Description
QUERY SELECTION looks for records in table. QUERY SELECTION command changes the
current selection of table for the current process and makes the first record of the new
selection the current record.

QUERY SELECTION works and performs the same actions as QUERY. The difference
between the two commands is the scope of the query:
• QUERY looks for records among all the records in the table.
• QUERY SELECTION looks for records among the records currently selected in the table.

For more information, see the description of the command QUERY.

Note: The command SET DATABASE PARAMETER allows you to choose whether QUERY
SELECTION should use the index, depending on the number of selected records.

Example
This example illustrates the difference between QUERY and QUERY SELECTION. Here are
two queries:

` Find ALL companies located in New York City
QUERY ([Company]; [Company]City="New York City")

` Find ALL companies doing Stock Exchange business
` no matter where they are located

QUERY ([Company]; [Company]Type Business="Stock Exchange")

Note that the second QUERY simply “ignores” the result of the first one. Compare this
with:

` Find ALL companies located in New York City
QUERY ([Company]; [Company]City="New York City")

` Find companies doing Stock Exchange business
` and that are located in New York City

QUERY SELECTION ([Company]; [Company]Type Business="Stock Exchange")

1084 4th Dimension Language Reference

QUERY SELECTION looks only among the selected records, therefore, in this example,
among the companies located in New York City.

See Also
QUERY, SET DATABASE PARAMETER.

4th Dimension Language Reference 1085

QUERY BY FORMULA Queries

version 3
__

QUERY BY FORMULA ({table}{; }{queryFormula})

Parameter Type Description
table Table → Table for which to return

a selection of records, or
Default table, if omitted

queryFormula Boolean → Query formula

Description
QUERY BY FORMULA looks for records in table. QUERY BY FORMULA changes the current
selection of table for the current process and makes the first record of the new selection
the current record.

QUERY BY FORMULA and QUERY SELECTION BY FORMULA work exactly the same way,
except that QUERY BY FORMULA queries every record in the entire table and QUERY
SELECTION BY FORMULA queries only the records in the current selection.

Both commands apply queryFormula to each record in the table or selection. The
queryFormula is a Boolean expression that must evaluate to either TRUE or FALSE. If
queryFormula evaluates as TRUE, the record is included in the new selection.

The queryFormula may be simple, perhaps comparing a field to a value; or it may be
complex, perhaps performing a calculation or even evaluating information in a related
table. The queryFormula can be a 4th Dimension function (command), or a function
(method) or expression you have created. You can use wildcards in queryFormula when
working with Alpha or text fields.

When the query is complete, the first record of the new selection is loaded from disk and
made the current record.

These commands always perform a sequential search, not an indexed search. QUERY BY
FORMULA and QUERY SELECTION BY FORMULA are slower than QUERY when used on
indexed fields. The query time is proportional to the number of records in the table or
selection.

4D Server: The server does not execute the query formula. Each record is sent to the local
workstation and the query formula is evaluated on the workstation. This makes the
command less efficient with 4D Server than the QUERY command.

1086 4th Dimension Language Reference

Examples
1. The following example finds the records for all invoices that were entered in December
of any year. It does this by applying the Month of function to each record. This query
could not be performed any other way without creating a separate field for the month:

 ` Find the invoices entered in December
⇒ QUERY BY FORMULA ([Invoice]; Month of ([Invoice]Entered) = 12)

2. The following example finds records for all the people who have names with more
than ten characters:

` Find names longer than ten characters
⇒ QUERY BY FORMULA ([People]; Length ([People]Name)>10)

See Also
QUERY, QUERY SELECTION, QUERY SELECTION BY FORMULA.

4th Dimension Language Reference 1087

QUERY SELECTION BY FORMULA Queries

version 3
__

QUERY SELECTION BY FORMULA ({table}{; }{queryFormula})

Parameter Type Description
table Table → Table for which to return

a selection of records, or
Default table, if omitted

queryFormula Boolean → Query formula

Description
QUERY SELECTION BY FORMULA looks for records in table. QUERY SELECTION BY FORMULA
changes the current selection of table for the current process and makes the first record of
the new selection the current record.

QUERY SELECTION BY FORMULA performs the same actions as QUERY BY FORMULA. The
difference between the two commands is the scope of the query:
• QUERY BY FORMULA looks for records among all the records in the table.
• QUERY SELECTION BY FORMULA looks for records among the records currently selected
in the table.

For more information, see the description of the command QUERY BY FORMULA.

See Also
QUERY, QUERY BY FORMULA, QUERY SELECTION.

1088 4th Dimension Language Reference

QUERY WITH ARRAY Queries

version 6.5
__

QUERY WITH ARRAY (indexedField; array)

Parameter Type Description
indexedField Field → Indexed field used to compare the values
array Array → Array of the searched values

Description
The QUERY WITH ARRAY command searches all the records for which the value of
indexedField is equal, at least, to one of the values of the elements in array. The records
found will become the new current selection.

This command allows you to quickly and simply build a search on multiple values.

Notes:
• This command only works with indexed fields. It cannot be used with fields of type
Text, Picture, Subfield, or BLOB.
• indexedField and array must be of the same data type. Exception: you can use a Longint
array with a field of the Time type.

Example
The following example allows you to retrieve the records of both French and American
clients:

ARRAY STRING (2;SearchArray;2)
SearchArray{1}:="FR"
SearchArray{2}:="US"

⇒ QUERY WITH ARRAY ([Clients]Country;SearchArray)

4th Dimension Language Reference 1089

SET QUERY DESTINATION Queries

version 6.5 (Modified)
__

SET QUERY DESTINATION (destinationType{; destinationObject})

Parameter Type Description
destinationType Number → 0 current selection

1 set
2 named selection
3 variable

destinationObject String | Variable → Name of the set, or
Name of the named selection, or
Variable

Description
SET QUERY DESTINATION enables you to tell 4th Dimension where to put the result of any
subsequent query for the current process.

You specify the type of the destination in the parameter destinationType. 4th Dimension
provides the following predefined constants:

Constant Type Value
Into current selection Long Integer 0
Into set Long Integer 1
Into named selection Long Integer 2
Into variable Long Integer 3

You specify the destination of the query itself in the optional destinationObject parameter
according to the following table:

destinationType destinationObject
parameter parameter

0 (current selection) You omit the parameter
1 (set) You pass the name of a set (existing or to be created)
2 (named selection) You pass the named of a named selection (existing or to be created)
3 (variable) You pass a numeric variable (existing or to be created)

• With:
SET QUERY DESTINATION(Into current selection)

The records found by any subsequent query will end up in a new current selection for the
table involved by the query.

1090 4th Dimension Language Reference

• With:
SET QUERY DESTINATION(Into set;"mySet")

The records found by any subsequent query will end up in the set "mySet". The current
selection and the current record for the table involved by the query are left unchanged.

Note: In client/server, you cannot use local/client sets (name preceeded by $ symbol) as a
query destination. This type of set is created on client machines when queries are
executed on the server. For more information on these types of sets, refer to the Sets
section.

• With:
SET QUERY DESTINATION(Into named selection;"myNamedSel")

The records found by any subsequent query will end up in the named selection
"myNamedSel". The current selection and the current record for the table involved by the
query are left unchanged.

Note: If the named selection does not exist beforehand, it will be created automatically at
the end of the query.

• With:
SET QUERY DESTINATION(Into variable;$vlResult)

The number of records found by any subsequent query will end up in the variable
$vlResult. The current selection and the current record for the table involved by the query
are left unchanged.

Warning: SET QUERY DESTINATION affects all subsequent queries made within the current
process. REMEMBER to always counterbalance a call to SET QUERY DESTINATION (where
destinationType#0) with a call to SET QUERY DESTINATION(0) in order to restore normal
query mode.

SET QUERY DESTINATION changes the behavior of the query commands only:
• QUERY
• QUERY SELECTION
• QUERY BY EXAMPLE
• QUERY BY FORMULA
• QUERY SELECTION BY FORMULA
• QUERY WITH ARRAY

On the other hand, SET QUERY DESTINATION does not affect other commands that may
change the current selection of a table such as ALL RECORDS, RELATE MANY and so on.

4th Dimension Language Reference 1091

Examples
1. You create a form that will display the records from a [Phone Book] table. You create a
Tab Control named asRolodex (with the 26 letters of the alphabet) and a subform
displaying the [Phone Book] records. Choosing one Tab from the Tab Control displays the
records whose names start with the corresponding letter.

In your application, the [Phone Book] table contains a set of quite static data, so you do
not want to (or need to) perform a query each time you select a Tab. In this way, you can
save precious database engine time.

To do so, you can redirect your queries into named selections that you reuse as needed.
You write the object method of the Tab Control asRolodex as follows:

` asRolodex object method
Case of

: (Form event=On Load)
` Before the form appears on the screen,
` initialize the rolodex and an array of Booleans that
` will tell us if a query for the corresponding letter
` has been performed or not

ARRAY STRING(1;asRolodex;26)
ARRAY BOOLEAN(abQueryDone;26)
For ($vlElem;1;26)

asRolodex{$vlElem}:=Char(64+$vlElem)
abQueryDone{$vlElem}:=False

End for

: (Form event=On Clicked)
` When a click on the Tab control occurs, check whether the corresponding
`query has been performed or not

If (Not(abQueryDone{asRolodex}))
` If not, redirect the next query(ies) toward a named selection

⇒ SET QUERY DESTINATION(Into named selection;"Rolodex"
+asRolodex{asRolodex})

` Perform the query
QUERY([Phone Book];[Phone Book]Last name=asRolodex{asRolodex}+"@")

` Restore normal query mode
⇒ SET QUERY DESTINATION(Into current selection)

` Next time we choose that letter, we won't perform the query again
abQueryDone{asRolodex}:=True

End if
` Use the named selection for displaying the records corresponding to the
`chosen letter

USE NAMED SELECTION("Rolodex"+asRolodex{asRolodex})

1092 4th Dimension Language Reference

: (Form event=On Unload)
` After the form disappeared from the screen
` Clear the named selections we created

 For ($vlElem;1;26)
If(abQueryDone{$vlElem})

CLEAR NAMED SELECTION("Rolodex"+asRolodex{$vlElem})
End if

End for
` Clear the two arrays we no longer need

CLEAR VARIABLE(asRolodex)
CLEAR VARIABLE(abQueryDone)

End case

2. The Unique values project method in this example allows you to verify the uniqueness
of the values for any number of fields in a table. The current record can be an existing or
a newly created record.

` Unique values project method
` Unique values (Pointer ; Pointer { ; Pointer... }) -> Boolean
` Unique values (->Table ; ->Field { ; ->Field2... }) -> Yes or No

C_BOOLEAN($0;$2)
C_POINTER(${1})
C_LONGINT($vlField;$vlNbFields;$vlFound;$vlCurrentRecord)
$vlNbFields:=Count parameters-1
$vlCurrentRecord:=Record number($1->)
If ($vlNbFields>0)

If ($vlCurrentRecord#-1)
If ($vlCurrentRecord<0)

` The current record is an unsaved new record (record number is -3);
` therefore we can stop the query as soon as at least one record is found

SET QUERY LIMIT(1)
Else

` The current record is an existing record;
` therefore we can stop the query as soon as at least two records are found

SET QUERY LIMIT(2)
End if

` The query will return its result in $vlFound
` without changing the current record nor the current selection

⇒ SET QUERY DESTINATION(Into variable;$vlFound)
` Make the query according to the number of fields that are specified

Case of
: ($vlNbFields=1)

QUERY($1->;$2->=$2->)
: ($vlNbFields=2)

QUERY($1->;$2->=$2->;*)
QUERY($1->; & ;$3->=$3->)

Else

4th Dimension Language Reference 1093

QUERY($1->;$2->=$2->;*)
For ($vlField;2;$vlNbFields-1)

QUERY($1->; & ;${1+$vlField}->=${1+$vlField}->;*)
End for
QUERY($1->; & ;${1+$vlNbFields}->=${1+$vlNbFields}->)

End case
⇒ SET QUERY DESTINATION(Into current selection) ` Restore normal query mode

SET QUERY LIMIT(0) ` No longer limit queries
` Process query result

Case of
: ($vlFound=0)

$0:=True ` No duplicated values
: ($vlFound=1)

If ($vlCurrentRecord<0)
 ` Found an existing record with the same values as the
 ` unsaved new record

$0:=False
Else

$0:=True ` No duplicated values; just found the very same record
End if

: ($vlFound=2)
$0:=False ` Whatever the case is, the values are duplicated

End case
Else

If (◊DebugOn) ` Does not make sense; signal it if development version
TRACE ` WARNING! Unique values is called with NO current record

End if
$0:=False ` Can't guarantee the result

End if
Else

If (◊DebugOn) ` Does not make sense; signal it if development version
TRACE ` WARNING! Unique values is called with NO query condition

End if
$0:=False ` Can't guarantee the result

End if
After this project method is implemented in your application, you can write:

` ...
If (Unique values (->[Contacts];->[Contacts]Company);->[Contacts]Last name;

->[Contacts]First name)
` Do appropriate actions for that record which has unique values

Else
ALERT("There is already a Contact with this name for this Company.")

End if
` ...

See Also
QUERY, QUERY BY EXAMPLE, QUERY BY FORMULA, QUERY SELECTION, QUERY SELECTION
BY FORMULA, QUERY WITH ARRAY, SET QUERY LIMIT.

1094 4th Dimension Language Reference

SET QUERY LIMIT Queries

version 6.0
__

SET QUERY LIMIT (limit)

Parameter Type Description
limit Number → Number of records, or

0 for no limit

Description
SET QUERY LIMIT allows you to tell 4th Dimension to stop any subsequent query for the
current process as soon as at least the number of records you pass in limit has been found.

For example, if you pass limit equal to 1, any subsequent query will stop browsing an index
or the data file as soon as one record that matches the query conditions has been found.

To restore queries with no limit, call SET QUERY LIMIT again with limit equal to 0.

Warning: SET QUERY LIMIT affects all the subsequent queries made within the current
process. REMEMBER to always counterbalance a call to SET QUERY LIMIT(limit) (where
limit>0) with a call to SET QUERY LIMIT(0) in order to restore queries with no limit.

SET QUERY LIMIT changes the behavior of the query commands:
• QUERY
• QUERY SELECTION
• QUERY BY EXAMPLE
• QUERY BY FORMULA
• QUERY SELECTION BY FORMULA
• QUERY WITH ARRAY

On the other hand, SET QUERY LIMIT does not affect the other commands that may
change the current selection of a table, such as ALL RECORDS, RELATE MANY, and so on.

Examples
1. To perform a query corresponding to the request “...give me any ten customers whose
gross sales are greater than $1 M...”, you would write:

⇒ SET QUERY LIMIT(10)
QUERY([Customers];[Customers]Gross sales>1000000)

⇒ SET QUERY LIMIT(0)

2. See the second example for the command SET QUERY DESTINATION.

4th Dimension Language Reference 1095

Find index key Queries

version 6.5
__

Find index key (indexedField; value) → Longint

Parameter Type Description
indexedField Field → Indexed field on which to execute the search
value → Value to search

← Value found

Function result Longint ← Number of the record found or
-1 if no record was found

Description
The Find index key command returns the number of the first record whose indexedField
field is equal to value.
If no records are found, Find index key returns -1.

After calling this command, value contains the value found. This feature allows you to
execute searches using the wildcard character (“@”) on Alpha fields and then retrieve the
value found.

This command doesn’t modify the current selection or the current record.

This command is fast because it only uses the index, and is particularly useful to avoid
creating double entries during data entry.

Example
In an audio CD database, during data entry let’s assume that you want to verify the
singer’s name to see if it already exists in the database. Because homonyms can exist, you
don’t want the [Singer]Name field to be unique. Therefore, in the input form, you can
write the following code in the [Singer]Name field’s object method:

If (Form event=On Data Change)
⇒ $RecNum:=Find index key([Singer]Name;[Singer]Name)

If ($RecNum # -1) ` If this name has already been entered
CONFIRM("A singer with the same already exists. Do you want to see the

 record?";"Yes";"No")
If (OK=1)

GOTO RECORD([Singer];$RecNum)
End if

End if
End if

1096 4th Dimension Language Reference

ORDER BY Queries

version 5
__

ORDER BY ({table}{; field}{; > or <}{; field2; > or <2; ...; fieldN; > or <N}{; *})

Parameter Type Description
table Table → Table for which to order selected records, or

Default table, if omitted
field Field → Field on which to set the order for each level
> or < → Ordering direction for each level:

> to order in ascending order, or
< to order in descending order

* → Continue order flag

Description
ORDER BY sorts (reorders) the records of the current selection of table for the current
process. After the sort has been completed, the new first record of the selection becomes
the current record.

If you omit the table parameter, the command applies to the default table. If no default
table has been set, an error occurs.

If you do not specify the field, the > or < or the * parameters, ORDER BY displays the Order
By editor for table. The User environment's Order By editor is shown here:

For more information about using the Order By editor, refer to the 4th Dimension User
Reference manual.

4th Dimension Language Reference 1097

The user builds the sort, then clicks the Sort button to perform the sort. If the sort is
performed without interruption, the OK variable is set to 1. If the user clicks Cancel, the
ORDER BY terminates with no sort actually performed, and sets the OK variable to 0
(zero).

Examples
1. The following line displays the Order By editor for the [Products] table:

⇒ ORDER BY([Products])

2. The following line displays the Order By editor for the default table (if it has been set):

⇒ ORDER BY

If you specify the field and > or < parameters, the standard Order By editor is not
presented and the sort is defined programmatically. You can sort the selection on one
level or on several levels. For each sort level, you specify a field in field and the sorting
order in > or <. If you pass the “greater than” symbol (>), the order is ascending. If you
pass the “less than” symbol (<), the order is descending.

Examples
3. The following line orders the selection of [Products] by name in ascending order:

⇒ ORDER BY([Products];[Products]Name;>)

4. The following line orders the selection of [Products] by name in descending order:

⇒ ORDER BY([Products];[Products]Name;<)

5. The following line orders the selection of [Products] by type and price in ascending
order for both levels:

⇒ ORDER BY([Products];[Products]Type;>;[Products]Price;>)

6. The following line orders the selection of [Products] by type and price in descending
order for both levels:

⇒ ORDER BY([Products];[Products]Type;<;[Products]Price;<)

7. The following line orders the selection of [Products] by type in ascending order and by
price in descending order:

⇒ ORDER BY([Products];[Products]Type;>;[Products]Price;<)

1098 4th Dimension Language Reference

8. The following line orders the selection of [Products] by type in descending order and by
price in ascending order:

⇒ ORDER BY([Products];[Products]Type;<;[Products]Price;>)

If you omit the sorting order parameter > or <, ascending order is the default.

Example
9. The following line orders the selection of [Products] by name in ascending order:

⇒ ORDER BY([Products];[Products]Name)

If only one field is specified (one level sort) and it is indexed, the index is used for the
order. If the field is not indexed or if there is more than one field, the order is performed
sequentially. The field may belong to the (selection’s) table being reordered or to a One
table related to table with an automatic relation. (Remember, the table to which ORDER
BY is applied must be the Many table.) In this case, the sort is always sequential.

Examples
10. The following line performs an indexed sort if [Products]Name is indexed:

⇒ ORDER BY([Products];[Products]Name;>)

11. The following line performs a sequential sort, whether or not the fields are indexed:

⇒ ORDER BY([Products];[Products]Type;>;[Products]Price;>)

12. The following line performs a sequential sort using a related field:

 ` Invoices are sorted alphabetically on the Company name field
⇒ ORDER BY([Invoices];[Companies]Name;>)

For multiple sorts (sorts on multiple fields), you can call ORDER BY as many times as
necessary and specify the optional * parameter, except for the last ORDER BY call, which
starts the actual sort operation. This feature is useful for multiple sorts management in
customized user interfaces.
Warning: with this syntax, you can pass only one sort level (field) per ORDER BY call.

4th Dimension Language Reference 1099

Example
(13) In an Output form displayed in Custom menus environment, you allow the users to
order a column in ascending order by simply clicking in the column header.
If the user holds the Shift key down while clicking in other column headers, the sort is
performed on several levels:

Each column header contains a highlight button attached with the following object
method:

MULTILEVEL (->[CDs]Title) `Title column header button

Each button calls the MULTILEVEL project method with a pointer to the corresponding
column field. The MULTILEVEL project method is the following:

` MULTILEVEL Project Method
` MULTILEVEL (Pointer)
` MULTILEVEL (->[Table]Field)

C_POINTER($1) `Sort level (field)
C_LONGINT($lLevelNb)

`Getting sorting levels
If (Not(Shift down)) `Simple sort (one-level)

ARRAY POINTER(aPtrSortField;1)
aPtrSortField{1}:=$1

Else

1100 4th Dimension Language Reference

$lLevelNb:=Find in array(aPtrSortField;$1) `Is this field already sorted?
If ($lLevelNb<0) `If not

INSERT ELEMENT(aPtrSortField;Size of array(aPtrSortField)+1;1)
aPtrSortField{Size of array(aPtrSortField)}:=$1

End if
End if

`Performing the sort
$lLevelNb:=Size of array(aPtrSortField)
If ($lLevelNb>0) `There is at least one order level

For ($i;1;$lLevelNb)
⇒ ORDER BY([CDs];(aPtrSortField{$i})->;>;*) `Building sort definition

End for
⇒ ORDER BY([CDs]) `No * ends the sort definition and starts the actual sort operation

End if

No matter what way a sort has been defined, if the actual sort operation is going to take
some time to be performed, 4th Dimension automatically displays a message containing a
progress thermometer. These messages can be turned on and off by using the commands
MESSAGES ON and MESSAGES OFF. If the progress thermometer is displayed, the user can
click the Stop button to interrupt the sort. If the sort is completed, OK is set to 1.
Otherwise, if the sort is interrupted, OK is set to 0 (zero).

See Also
ORDER BY FORMULA.

4th Dimension Language Reference 1101

ORDER BY FORMULA Queries

version 3
__

ORDER BY FORMULA (table{; expression}{; > or <}{; expression2; > or <2; ...; expressionN;
> or <N})

Parameter Type Description
table Table → Table for which to order selected records
expression → Expression on which to set the order for each level (can

be of type Alphanumeric, Real, Integer, Long Integer,
Date, Time or Boolean)

> or < → Ordering direction for each level:
> to order in ascending order, or
< to order in descending order

Description
ORDER BY FORMULA sorts (reorders) the records of the current selection of table for the
current process. After the sort has been completed, the new first record of the selection
becomes the current record.

Note that you must specify table. You cannot use a default table.

You can sort the selection on one level or on several levels. For each sort level, you specify
a expression in expression and the sorting order in > or <. If you pass the “greater than”
symbol (>), the order is ascending. If you pass the “less than” symbol (<), the order is
descending. If you do not specify the sorting order, ascending order is the default.

The parameter expression can be of type Alphanumeric, Real, Integer, Long Integer, Date,
Time or Boolean.

No matter what way a sort has been defined, if the actual sort operation is going to take
some time to be performed, 4th Dimension automatically displays a message containing a
progress thermometer. These messages can be turned on and off by using the commands
MESSAGES ON and MESSAGES OFF. If the progress thermometer is displayed, the user can
click the Stop button to interrupt the sort. If the sort is completed, OK is set to 1.
Otherwise, if the sort is interrupted, OK is set to 0 (zero).

4D Server: Since expression cannot be interpreted by 4D Server, each record is sent to the
local workstation; the order formula is evaluated on the workstation. This will make the
order inefficient. Use the ORDER BY command whenever possible.

Unlike ORDER BY, ORDER BY FORMULA always performs a sequential sort.

1102 4th Dimension Language Reference

Example
This example orders the records of the [People] table in descending order, based on the
length of each person’s last name. The record for the person with the longest last name
will be first in the current selection:

⇒ ORDER BY FORMULA ([People]; Length([People]Last Name);<)

See Also
ORDER BY.

4th Dimension Language Reference 1103

1104 4th Dimension Language Reference

41

Quick Report

4th Dimension Language Reference 1105

1106 4th Dimension Language Reference

QR REPORT Quick Report

version 2004 (Modified)
__

QR REPORT ({table; }document{; hierarchical{; wizard{; search}}}{; *})

Parameter Type Description
table Table → Table to use for the report, or Default table if omitted
document String → Quick Report document to load
hierarchical Boolean → True = Display related Many tables

False or omitted = Do not display (default)
wizard Boolean → True = Display the wizard button

False or omitted = Do not display (default)
search Boolean → True = Display the search tools and master table

choice, False or omitted = Do not display (default)
* * → Deletion of printing dialog boxes

Description
QR REPORT prints a report for table, created with the Quick Report editor shown here.

4th Dimension Language Reference 1107

The Quick Report editor allows users to create their own reports. When the Quick Report
editor is displayed, the user is in the same context as when the editor is displayed in User
mode, with the exception of the possible presence of the Master table selection drop-
down list and of the New Query button. The user has complete control over the editor.
See the 4th Dimension User Reference for details on creating reports with the Quick Report
editor.

Notes:
• The editor does not appear if the table has been declared “Invisible.”
• When the editor is called using the QR REPORT command, the All relations in
automatic option that is used to modify the automatic/manual status of the relations is
hidden. This allows the developer to manage this status himself using the SET
AUTOMATIC RELATIONS and SET FIELD RELATION command.

• document (string)
The document parameter is a report document that was created with the Quick Report
editor and saved on disk. The document stores the specifications of the report, not the
records to be printed.
If an empty string ("") is specified for document, QR REPORT displays an Open File dialog
box and the user can select the report to print.
If the document parameter specifies a document that does not exist (for example, pass
Char(1) in document), the Quick Report editor is displayed.

• hierarchical (Boolean)
The hierarchical parameter defines whether the related Many tables are displayed in the
field selection list. By default, this value is set to 0 (no display for related Many tables).

• wizard (Boolean)
This parameter indicates whether the Open Wizard button is going to be displayed in the
Quick Report editor, therefore either allowing or disallowing access to the wizard. By
default, this value is set to False (no access to the wizard).

• search (Boolean)
This parameter indicates whether the New Query button and the Master table drop-down
menu are going to be displayed in the Quick Report editor, therefore either allowing or
disallowing modification of the current table and current master table. By default, this
value is set to False (no access to the search tools and master table).

After a report is selected, the dialog boxes for printing are displayed, unless the *
parameter is specified. If this parameter is specified, these dialog boxes are not displayed.
The report is then printed.

If the Quick Report editor is not involved, the OK variable is set to 1 if a report is printed;
otherwise, it is set to 0 (zero) (i.e., if the user clicked Cancel in the printing dialog boxes).

1108 4th Dimension Language Reference

4D Server: This command can be executed on 4D Server within the framework of a stored
procedure. In this context:
• Make sure that no dialog box appears on the server machine (except for a specific
requirement). To do this, it is necessary to call the command with the * or > parameter.
• The syntax which makes the label editor appear does not work with 4D Server; in this
case, the system variable OK is set to 0.
• In the case of a problem concerning the printer (out of paper, printer disconnected,
etc.), no error message is generated.

Examples
1. The following example lets the user query the [People] table, and then automatically
prints the report “Detailed Listing”:

QUERY ([People])
If (OK=1)

⇒ QR REPORT ([People];"Detailed Listing";False;False;False;*)
End if

2. The following example lets the user query the [People] table, and then lets the user
choose which report to print:

QUERY ([People])
If (OK=1)

⇒ QR REPORT ([People];"";False;False;False)
End if

3. The following example lets the user query the [People] table, and then displays the
Quick Report editor so the user can design, save, load and print any reports with or
without the wizard:

QUERY ([People])
If (OK=1)

⇒ QR REPORT ([People];Char(1);False;True)
End if

4. Refer to the example of the SET FIELD RELATION command.

See Also
PRINT LABEL, PRINT SELECTION.

4th Dimension Language Reference 1109

QR REPORT TO BLOB Quick Report

version 2003
__

QR REPORT TO BLOB (area; blob)

Parameter Type Description
area Longint → Reference of the area
blob BLOB → Blob to house the Quick Report

Description
The QR REPORT TO BLOB command places the report whose reference was passed in area
in a BLOB (variable or field).

If you pass an invalid area number, the error -9850 will be generated.

Example
The following statement assigns the Quick Report stored in MyArea into a BLOB Field.

⇒ QR REPORT TO BLOB (MyArea;[Table 1]Field4)

See Also
QR BLOB TO REPORT.

1110 4th Dimension Language Reference

QR BLOB TO REPORT Quick Report

version 2003
__

QR BLOB TO REPORT (area; blob)

Parameter Type Description
area Longint → Reference of the area
blob BLOB → BLOB that houses the report

Description
The QR BLOB TO REPORT command places the report contained in blob in the Quick
Report area passed in area.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid blob parameter, the error -9852 will be generated.

Examples
(1) The following code allows you to display, in MyArea, a report file named “report.4qr”
located next to the database structure. The report file does not have to be created with 4th
Dimension 2003; it can originate from previous versions:

C_BLOB($doc)
C_LONGINT (MyArea)
DOCUMENT TO BLOB("report.4qr";$doc)

⇒ QR BLOB TO REPORT(MyArea;$doc)

(2) The following statement retrieves the Quick Report stored in Field4 and displays it in
MyArea:

⇒ QR BLOB TO REPORT(MyArea;[Table 1]Field4)

See Also
QR REPORT TO BLOB.

4th Dimension Language Reference 1111

QR New offscreen area Quick Report

version 2003
__

QR New offscreen area → Longint

Parameter Type Description
This command does not require any parameters

Function result Longint ← Reference of the area created

Description
The QR New offscreen area command creates a new Quick Report offscreen area and
returns its reference.

See Also
QR DELETE OFFSCREEN AREA.

1112 4th Dimension Language Reference

QR DELETE OFFSCREEN AREA Quick Report

version 2003
__

QR DELETE OFFSCREEN AREA (area)

Parameter Type Description
area Longint → Reference of the area to delete

Description
The QR DELETE OFFSCREEN AREA command deletes in memory the Quick Report offscreen
area whose reference was passed as parameter.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR New offscreen area.

4th Dimension Language Reference 1113

QR SET DESTINATION Quick Report

version 2003
__

QR SET DESTINATION (area; type; specifics)

Parameter Type Description
area Longint → Reference of the area
type Longint → Type of the report
specifics String | Variable → Specifics linked to the output type

Description
The QR SET DESTINATION command sets the output type of the report for the area whose
reference was passed in area.

The following table describes the values that can be passed in both type and specifics
parameters:

Destination Constant (value) specifics
Printer qr printer (1) N.A.
Text file qr text file (2) Pathname to the file
4D View qr 4D View area (3) N.A.
4D Chart qr 4D Chart area (4) N.A.
HTML file qr HTML file (5) Pathname to the HTML file

Text file (2): If you pass an empty string as the file’s pathname, a Save file dialog is
displayed, otherwise the file is saved at the location indicated by the path.
The default field delimiter is the tab character (ASCII 9). The default record delimiter is
the carriage return character (ASCII 13). You can change these defaults by assigning
values to the two delimiter system variables: FldDelimit and RecDelimit. If under Windows,
FldDelimit equals 13, a char 10 (line feed) will be appended after the carriage return. Be
aware that these variables are used by other commands such as IMPORT TEXT for example.
Changing them for the Quick Report editor, changes them everywhere in the
application.

4D View (3): If 4D View is active for the user, a 4D View external window is created and
populated with the results of the current settings of the Quick Report area.

4D Chart(4): A 4D Chart external window is created and populated with the results of the
current settings of the Quick Report area. For detailed information on how the translation
is performed, please refer to the User Reference section of the Quick Report Editor
documentation.

1114 4th Dimension Language Reference

HTML file(5): An HTML file is created using the template set by QR SET HTML TEMPLATE.
For detailed information on how the translation is performed, please refer to the User
Reference section of the Quick Report Editor documentation.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid destination value, the error -9852 will be generated.

Example
The following code sets the destination as being the text file Mydoc.txt and executes the
Quick Report:

⇒ QR SET DESTINATION(MyArea; 2; "MyDoc.txt")
QR RUN(MyArea)

See Also
QR GET DESTINATION.

4th Dimension Language Reference 1115

QR GET DESTINATION Quick Report

version 2003
__

QR GET DESTINATION (area; type{; specifics})

Parameter Type Description
area Longint → Reference of the area
type Longint ← Type of the report
specifics String | Variable ← Specifics linked to the output type

Description
The QR GET DESTINATION command retrieves the output type of the report for the area
whose reference was passed in area.

You can compare the value of the type parameter with the constants of the QR
Destination theme.

The following table describes the values that can be retrieved in both type and specifics
parameters:

Destination Constant (value) Specifics
Printer qr printer (1) N.A.
Text file qr text file (2) File pathname
4D View qr 4D View area (3) N.A.
4D Chart qr 4D Chart area (4) N.A.
HTML file qr HTML file (5) Pathname to the HTML file

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET DESTINATION.

1116 4th Dimension Language Reference

QR SET DOCUMENT PROPERTY Quick Report

version 2003
__

QR SET DOCUMENT PROPERTY (area; property; value)

Parameter Type Description
area Longint → Reference of the area
property Longint → 1 = Printing dialog, 2 = Document unit
value Longint → Value for the property

Description
The QR SET DOCUMENT PROPERTY command allows you to display the printing dialog or
to define the unit used for the document.

In property, you can pass the following constants, located in the QR Document properties
constant theme:

Constant Value
qr printing dialog 1
qr unit 2

• If property equals 1, the command applies to the display of the print dialog.
- If value equals 1, the print dialog is displayed prior to printing.
- If value equals 0, the print dialog is not displayed prior to printing (default value).

• If property equals 2, the command applies to the document unit.
- If value equals 0, the document unit is points.
- If value equals 1, the document unit is centimeters.
- If value equals 2, the document unit is inches.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid property value, the error -9852 will be generated.

See Also
QR Get document property.

4th Dimension Language Reference 1117

QR Get document property Quick Report

version 2003
__

QR Get document property (area; property) → Longint

Parameter Type Description
area Longint → Reference of the area
property Longint → 1 = Print Dialog, 2 = Document unit

Function result Longint ← Value for the property

Description
The QR Get document property command allows you to retrieve the display status for the
print dialog box or the unit used for the document that are present in area.

In property, you can use the following constants, located in the QR Document properties
constant theme:

Constant Value
qr printing dialog 1
qr unit 2

• If property equals 1, the command applies to the display of the print dialog box.
- If value equals 1, the print dialog box is displayed prior to printing.
- If value equals 0, the print dialog box is not displayed prior to printing.
The default value is 1.

• If property equals 2, the command applies to the document unit.
- If value equals 0, the document unit is points.
- If value equals 1, the document unit is centimeters.
- If value equals 2, the document unit is inches.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid property value, the error -9852 will be generated.

See Also
QR SET DOCUMENT PROPERTY.

1118 4th Dimension Language Reference

QR SET REPORT KIND Quick Report

version 2003
__

QR SET REPORT KIND (area; type)

Parameter Type Description
area Longint → Reference of the area
type Longint → Type of the report

Description
The QR SET REPORT KIND command sets the report type for the area whose reference was
passed in area.

• If type equals 1, the report type is list.
• If type equals 2, the report type is cross-table.

You can also use the constants of the QR Report Types theme:
Constant Value
qr list report 1
qr cross report 2

If you set a new type for an existing current report, it removes the previous settings and
creates a new empty report, ready to be set.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid type value, the error -9852 will be generated.

See Also
QR Get report kind.

4th Dimension Language Reference 1119

QR Get report kind Quick Report

version 2003
__

QR Get report kind (area) → Longint

Parameter Type Description
area Longint → Reference of the area

Function result Longint ← Type of the report

Description
The QR Get report kind command retrieves the report type for the area whose reference
was passed in area.

• If the command returns 1, the report type is list.
• If the command returns 2, the report type is cross-table.

You can also compare the function result with the constants of the QR Report Types
theme:
Constant Value
qr list report 1
qr cross report 2

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET REPORT KIND.

1120 4th Dimension Language Reference

QR SET AREA PROPERTY Quick Report

version 2003
__

QR SET AREA PROPERTY (area; property; value)

Parameter Type Description
area Longint → Reference of the area
property Longint → Interface element designated
value Longint → 1 = displayed, 0 = hidden

Description
The QR SET AREA PROPERTY command allows you to display or hide the interface element
(toolbar or menu bar) whose reference is passed in property.

The menu bar and toolbars are numbered from 1 to 6 (top to bottom) and the value 7 is
dedicated to the contextual menu.
You can use the constants from the QR Area Properties theme to designate the interface
item:

Constant Description
qr view menubar (1) Display status of the menu bar (Displayed=1, Hidden=0)
qr view standard toolbar (2) Display status of the Standard toolbar (Displayed=1,

Hidden=0)
qr view style toolbar (3) Display status of the Style toolbar (Displayed=1,

Hidden=0)
qr view operators toolbar (4) Display status of the Operators toolbar (Displayed=1,

Hidden=0)
qr view color toolbar (5) Display status of the Color toolbar (Displayed=1,

Hidden=0)
qr view column toolbar (6) Display status of the Column toolbar (Displayed=1,

Hidden=0)
qr view contextual menus (7) Display status of the Contextual menu (Displayed=1,

Hidden=0)

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid property parameter, the error -9852 will be generated.

See Also
QR Get area property.

4th Dimension Language Reference 1121

QR Get area property Quick Report

version 2003
__

QR Get area property (area; property) → Longint

Parameter Type Description
area Longint → Reference of the area
property Longint → Interface element designated

Function result Longint ← 1 = displayed, 0 = hidden

Description
The QR Get area property command returns 0 if the interface element (toolbar or menu
bar) passed in property is not displayed; otherwise, it returns 1.

The menu bar and toolbars are numbered from 1 to 6 (top to bottom) and the value 7 is
dedicated to the contextual menu.

You can use the constants from the QR Area Properties theme to designate the interface
item:

Constant Description
qr view menubar (1) Display status of the menu bar (Displayed=1, Hidden=0)
qr view standard toolbar (2) Display status of the Standard toolbar (Displayed=1,

Hidden=0)
qr view style toolbar (3) Display status of the Style toolbar (Displayed=1,

Hidden=0)
qr view operators toolbar (4) Display status of the operators toolbar (Displayed=1,

Hidden=0)
qr view color toolbar (5) Display status of the Color toolbar (Displayed=1,

Hidden=0)
qr view column toolbar (6) Display status of the Column toolbar (Displayed=1,

Hidden=0)
qr view contextual menus (7) Display status of the Contextual menu (Displayed=1,

Hidden=0)

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid property parameter, the error -9852 will be generated.

See Also
QR SET AREA PROPERTY.

1122 4th Dimension Language Reference

QR SET REPORT TABLE Quick Report

version 2003
__

QR SET REPORT TABLE (area; table)

Parameter Type Description
area Longint → Reference of the area
table Longint → Table number

Description
The QR SET REPORT TABLE command sets the current table for the report area whose
reference was passed in area to the table whose number was passed in table.

It is necessary for a table to be assigned to the report since the report editor will be using
the current selection for that table to display the data, perform computations and
propagate relations, if needed.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid table value, the error -9852 will be generated.

See Also
QR Get report table.

4th Dimension Language Reference 1123

QR Get report table Quick Report

version 2003
__

QR Get report table (area) → Longint

Parameter Type Description
area Longint → Reference of the area

Function result Longint ← Table number

Description
The QR Get report table command returns the current table number for the report area
whose reference was passed in area.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET REPORT TABLE.

1124 4th Dimension Language Reference

QR SET TEXT PROPERTY Quick Report

version 2003
__

QR SET TEXT PROPERTY (area; colNum; rowNum; property; value)

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
rowNum Longint → Row number
property Longint → Operator value for the cell
value Longint → Value for the selected property

Description
The QR SET TEXT PROPERTY command allows you to set the text attributes for the cell
determined by colNum and rowNum.

area is the reference of the Quick Report area.

colNum is the number of the cell column.

rowNum is the reference of the cell row:
• if rowNum equals -1, it designates the column title.
• if rowNum equals -2, it designates the detail area.
• if rowNum equals -3, it designates the column grand total.
• if rowNum equals -4, it designates the page header.
• if rowNum equals -5, it designates the page footer.
You can use constants from the QR Rows for Properties theme to designate the row item.
Constant Values are: qr title (-1), qr detail (-2), qr grand total (–3), qr header (–4), and qr
footer (-5).
Note: When passing -4 or -5 as rowNum, you still need to pass a column number in
colNum, even if it is not used.
• if rowNum is a positive value, it designates the corresponding subtotal (break level).

Note: In cross-table mode, the principle is similar except for the row values, which are
always positive.

4th Dimension Language Reference 1125

property is the value of the text attribute to assign. You can use the constants of the QR
Text Properties theme, and the following values can be set:

Constant (value) Value to set
qr font (1) font number as returned through FONT LIST
qr font size (2) font size expressed in points (9 to 255)
qr bold (3) Bold style attribute (0 or 1)
qr italic (4) Italic style attribute (0 or 1)
qr underline (5) font Underline style attribute (0 or 1)
qr text color (6) font Color number attribute (longint)
qr justification (7) font Justification attribute (0 for default, 1 for left,

2 for center or 3 for right)
qr background color (8) background color number
qr alternate background color (9) alternate background color number

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid colNum number, the error -9852 will be generated.
If you pass an invalid rowNum number, the error -9853 will be generated.
If you pass an invalid property number, the error -9854 will be generated.

Example
This method defines several attributes of the first column’s title:

`The following call assigns the font Times:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr font;Font number("Times"))

`assigning the font size 10 points:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr font size;10)

`assigning the font attribute Bold:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr bold;1)

`assigning the font attribute Italic:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr italic;1)

`assigning the font attribute Underline:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr underline;1)

`assigning the color bright green:
⇒ QR SET TEXT PROPERTY(qr_area;1;-1;qr text color;0x0000FF00)

See Also
QR Get text property.

1126 4th Dimension Language Reference

QR Get text property Quick Report

version 2003
__

QR Get text property (area; colNum; rowNum; property) → Longint

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
rowNum Longint → Break number
property Longint → Operator value for the cell

Function result Longint ← Value for the selected property

Description
The QR Get text property command returns the property value of the text attributes for
the cell determined by colNum and RowNum.

area is the reference of the Quick Report area.

colNum is the number of the cell column.

rowNum is the reference of the cell row.
- if rowNum equals -1, it designates the column title.
- if rowNum equals -2, it designates the detail area.
- if rowNum equals -3, it designates the column grand total.
- if rowNum equals -4, it designates the page header.
- if rowNum equals -5, it designates the page footer.
Note: When passing -4 or -5 as rowNum, you still need to pass a column number in
colNum, even if it is not used.
- if rowNum is a positive value, it designates the corresponding subtotal (break level).

Note: In cross-table mode, the principle is similar except for the row values, which are
always positive.

4th Dimension Language Reference 1127

property is the value of the text attribute to get. You can use the constants of the QR Text
Properties theme, and the following values can be returned:

Constant (value) Returned value
qr font (1) font number as returned through FONT LIST
qr font size (2) font size expressed in points (9 to 255)
qr bold (3) Bold style attribute (0 or 1)
qr italic (4) Italic style attribute (0 or 1)
qr underline (5) font Underline style attribute (0 or 1)
qr text color (6) font Color attribute (color number)
qr justification (7) font Justification attribute (0 for default, 1 for left,

2 for center or 3 for right).
qr background color (8) background color
qr alternate background color (9) alternate background color

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid colNum number, the error -9852 will be generated.
If you pass an invalid rowNum number, the error -9853 will be generated.
If you pass an invalid property number, the error -9854 will be generated.

See Also
QR SET TEXT PROPERTY.

1128 4th Dimension Language Reference

QR RUN Quick Report

version 2003
__

QR RUN (area)

Parameter Type Description
area Longint → Reference of the area to execute

Description
The QR RUN command executes the report area whose reference was passed as parameter
with the Quick Report current settings, including the output type. You can use the QR
SET DESTINATION command to modify the output type.

The report is executed on the table to which the area belongs. When area designates an
offscreen area, it is necessary to specify the table to be used via the QR SET REPORT TABLE
command.

If you pass an invalid area number, the error -9850 will be generated.

4th Dimension Language Reference 1129

QR EXECUTE COMMAND Quick Report

version 2003
__

QR EXECUTE COMMAND (area; command)

Parameter Type Description
area Longint → Reference of the area
command Longint → Menu command to be executed

Description
The QR EXECUTE COMMAND command executes the menu command or toolbar button
whose reference was passed in command. The most common use for this command is to
execute a command after the user selected that command and your code intercepted it
through the QR ON COMMAND command.

In command, you can pass a value or one of the constants of the QR Commands constant
theme.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid command number, the error -9852 will be generated..

See Also
QR Get command status, QR ON COMMAND.

1130 4th Dimension Language Reference

QR Get command status Quick Report

version 2003
__

QR Get command status (area; command{; value}) → Longint

Parameter Type Description
area Longint → Reference of the area
command Longint → Command number
value Text | Longint ← Value for the selected sub-item

Function result Longint ← Command status

Description
The QR Get command status command returns 0 if the command is disabled or 1 if it is
enabled.

value returns the value of the selected sub-item, if any. For example, if the command that
was selected is the Font menu (1000) and the font selected was “Arial”, value would return
“Arial”, or if the command that was selected is a color menu (1002, 1003 or 1004), value
would return the color number.

You can use the command in two types of contexts:
• As a simple statement to determine whether a command is enabled or disabled.
• In the method installed by QR ON COMMAND, to allow you to know which sub-item
was selected. In that method, $1 is the reference of the area and $2 is the number of the
command.

In command, you can pass a value or one of the constants of the QR Commands constant
theme.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid command number, the error -9852 will be generated.

See Also
QR EXECUTE COMMAND, QR ON COMMAND.

4th Dimension Language Reference 1131

QR ON COMMAND Quick Report

version 2003
__

QR ON COMMAND (area; methodName)

Parameter Type Description
area Longint → Reference of the area
methodName String → Name of the replacement method

Description
The QR ON COMMAND command executes the 4D method passed in methodName when
a Quick Report command is invoked by the user, by the selection of a menu command or
by a click on a button.

Note: This command does not work with external windows in User mode.

If area equals zero, methodName will apply to each Quick Report area until the database is
closed or until the following call to QR ON COMMAND is made: QR ON COMMAND(0;"").

methodName receives two parameters:
• $1 is the reference of the area (Longint).
• $2 is the command number of the command that was selected (Longint).

Note: When planning on compiling the database, it is necessary to declare both $1 and
$2 as Longints, even if you do not use them.

If you want the initial command to be executed, you need to include the following in the
called method: QR EXECUTE COMMAND($1;$2).

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR EXECUTE COMMAND, QR Get command status.

1132 4th Dimension Language Reference

QR Find column Quick Report

version 2003
__

QR Find column (area; expression) → Longint

Parameter Type Description
area Longint → Reference of the area
expression String | Pointer → Column object

Function result Longint ← Number of the column

Description
The QR Find column command returns the number of the first column whose contents
match the expression passed in parameter.

expression can either be a string or a pointer.

QR Find column returns –1 if nothing has been found.

If you pass an invalid area number, the error -9850 will be generated.

Example
The following code retrieves the column number that holds the field [G.NQR
Tests]Quarter and deletes that column:

⇒ $NumColumn:=QR Find column (MyArea;->[G.NQR Tests]Quarter)
or:
⇒ $NumColumn:=QR Find column (MyArea; "[G.NQR Tests]Quarter")

followed by:

If ($NumColumn#-1)
QR DELETE COLUMN (MyArea ; $NumColumn)

End if

4th Dimension Language Reference 1133

QR SET SELECTION Quick Report

version 2003
__

QR SET SELECTION (area; left; top; right; bottom)

Parameter Type Description
area Longint → Reference of the area
left Longint → Left boundary
top Longint → Top boundary
right Longint → Right boundary
bottom Longint → Bottom boundary

Description
The QR SET SELECTION command allows you to highlight a cell, a row, a column or the
entire area as you would with a mouse click. It also allows you to deselect the current
selection.

left is the number of the left boundary. If left equals 0, the entire row is selected.
top is the number of the top boundary. If top equals 0, the entire column is selected.
right is the number of the right boundary.
bottom is the number of the bottom boundary.

Notes:
• If both left and top equal 0, the entire area is highlighted.
• If you want no selection, pass -1 to left, right, top and bottom.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR GET SELECTION.

1134 4th Dimension Language Reference

QR GET SELECTION Quick Report

version 2003
__

QR GET SELECTION (area; left; top{; right{; bottom}})

Parameter Type Description
area Longint → Reference of the area
left Longint ← Left boundary
top Longint ← Top boundary
right Longint ← Right boundary
bottom Longint ← Bottom boundary

Description
The QR GET SELECTION command returns the coordinates of the cell that is selected.

left returns the number of the column that is the left boundary of the selection. If left
equals 0, the entire row is selected.

top returns the number of the row that is the top boundary of the selection. If top equals
0, the entire column is selected.

Note: If both left and top equal 0, the entire area is highlighted.

right is the number of the column that is the right boundary of the selection.

bottom is the number of the row that is the top boundary of the selection.

Note: If there is no selection, left, top, right and bottom are set to -1.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET SELECTION.

4th Dimension Language Reference 1135

QR SET HEADER AND FOOTER Quick Report

version 2003
__

QR SET HEADER AND FOOTER (area; selector; leftTitle; centerTitle; rightTitle; height{; picture{;
pictAlignment}})

Parameter Type Description
area Longint → Reference of the area
selector Longint → 1 = Header, 2 = Footer
leftTitle String → Text displayed on the left side
centerTitle String → Text displayed in the middle
rightTitle String → Text displayed on the right side
height Real → Header or footer height
picture Picture → Picture to display
pictAlignment Longint → Alignment attribute for the picture

Description
The QR SET HEADER AND FOOTER command allows you to set the contents and size of the
header or footer.

selector allows you to select the header or the footer:
• if selector equals 1, the header will be affected;
• if selector equals 2, the footer will be affected.

leftTitle, centerTitle and rightTitle are the values for, respectively, the left, center and right
header/footer.

height is the height of the header/footer, expressed in the unit selected for the quick
report.

picture is a picture that will be displayed in the header or footer.

pictAlignment is the alignment attribute for the picture passed in picture.
• If pictAlignment equals 0, the picture is aligned to the left.
• If pictAlignment equals 1, the picture is centered.
• If pictAlignment equals 2, the picture is aligned to the right.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid selector value, the error -9852 will be generated.

1136 4th Dimension Language Reference

Example
The following statement places the title “Center title” in the header for the Quick Report
in MyArea and sets the header height to 200 points:

⇒ QR SET HEADER AND FOOTER(MyArea; 1;""; "Center title";""; 200)

See Also
QR GET HEADER AND FOOTER.

4th Dimension Language Reference 1137

QR GET HEADER AND FOOTER Quick Report

version 2003
__

QR GET HEADER AND FOOTER (area; selector; leftTitle; centerTitle; rightTitle; height{;
picture{; pictAlignment}})

Parameter Type Description
area Longint → Reference of the area
selector Longint → 1 = Header, 2 = Footer
leftTitle String ← Text displayed on the left side
centerTitle String ← Text displayed in the middle
rightTitle String ← Text displayed on the right side
height Real ← Header or footer height
picture Picture ← Picture to display
pictAlignment Longint ← Alignment attribute for the picture

Description
The QR GET HEADER AND FOOTER command allows you to retrieve the contents and size
of the header or footer.

selector allows you to select the header or the footer:
• if selector equals 1, the header information will be retrieved;
• if selector equals 2, the footer information will be retrieved.

leftTitle, centerTitle and rightTitle returns the values for, respectively, the left, center and
right header/footer.

height returns the height of the header/footer, expressed in the unit selected for the
report.

picture returns a picture that is displayed in the header or footer.

pictAlignment is the alignment attribute for the picture displayed in the header/footer.
• If pictAlignment returns 0, the picture is aligned to the left.
• If pictAlignment returns 1, the picture is centered.
• If pictAlignment returns 2, the picture is aligned to the right.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid selector value, the error -9852 will be generated.

1138 4th Dimension Language Reference

Example
The following code retrieves the values of the header titles as well as the header size and
displays them in alerts:

⇒ QR GET HEADER AND FOOTER(MyArea;1;$LeftText;$CenterText;$RightText;$height)
Case of

: ($LeftText # "")
ALERT("The left title is "+Char(34)+$LeftText+Char(34))

: ($CenterText # "")
ALERT("The center title is "+Char(34)+$CenterText+Char(34))

: ($RightText # "")
ALERT("The right title is "+Char(34)+$RightText+Char(34))

Else
ALERT("No header title in this report.")

End case
ALERT("The height of the header is "+String($height))

See Also
QR SET HEADER AND FOOTER.

4th Dimension Language Reference 1139

QR SET BORDERS Quick Report

version 2003
__

QR SET BORDERS (area; column; row; border; line{; color})

Parameter Type Description
area Longint → Reference of the area
column Longint → Column number
row Longint → Row number
border Longint → Border composite value
line Longint → Line thickness
color Longint → Border color

Description
The QR SET BORDERS command allows you to set the border style for a given cell.

area is the reference of the Quick Report area.

column is the column number of the cell.

row is the row number of the cell.
• if row equals -1, the title of the report is affected
• if row equals -2, the detail of the report is affected
• if row equals -3, the grand total of the report is affected
• if row is a positive integer, it designates the Subtotal (break) level that is affected.

You can use constants from the QR Rows for Properties theme to designate the row item.
(qr title= -1, qr detail=-2, qr grand total=-3).

border is a composite value that indicates which borders of the cell are to be affected:
• 1 indicates the left border
• 2 indicates the top border
• 4 indicates the right border
• 8 indicates the bottom border
• 16 indicates the inside vertical border
• 32 indicates the inside horizontal border.

You can use constants from the QR Borders theme to designate the border item.

For example, a value of 5 passed in border would affect the right and left borders.

1140 4th Dimension Language Reference

line is the thickness of the line:
• 0 indicates no line
• 1 indicates a thickness of 1/4 point
• 2 indicates a thickness of 1/2 point
• 3 indicates a thickness of 1 point
• 4 indicates a thickness of 2 points

color is the color of the line:
• If color is a positive value, it indicates a specific color.
• If color equals 0, the color is black.
• If color equals -1, no changes are to be made.
Note: The default color is black.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid column number, the error -9852 will be generated.
If you pass an invalid row number, the error -9853 will be generated.
If you pass an invalid border parameter, the error -9854 will be generated.
If you pass an invalid line parameter, the error -9855 will be generated.

See Also
QR GET BORDERS.

4th Dimension Language Reference 1141

QR GET BORDERS Quick Report

version 2003
__

QR GET BORDERS (area; column; row; border; line{; color})

Parameter Type Description
area Longint → Reference of the area
column Longint → Column number
row Longint → Row number
border Longint → Border value
line Longint ← Line thickness
color Longint ← Border color

Description
The QR GET BORDERS command allows you to retrieve the border style for a border of a
given cell.

area is the reference of the Quick Report area.
column is the column number of the cell.

row designates the row number of the cell.
• if row equals -1, the title of the report is affected
• if row equals -2, the detail of the report is affected
• if row equals -3, the grand total of the report is affected
• if row is a positive integer, it designates the Subtotal (break) level that is affected.

You can use constants from the QR Rows for Properties theme to designate the row item
(qr title= -1, qr detail=-2, qr grand total=-3).

border is the value that indicates which cell border is affected:
• 1 indicates the left border
• 2 indicates the top border
• 4 indicates the right border
• 8 indicates the bottom border
• 16 indicates the inside vertical border
• 32 indicates the inside horizontal border.
You can use constants from the QR Borders theme to designate the border item.

Note: Unlike the command QR SET BORDERS, QR GET BORDERS does not accept a
cumulative value. You must test all the parameters separately to have an overall view of
the cell border.

1142 4th Dimension Language Reference

line is the thickness of the line:
• 0 indicates no line
• 1 indicates a thickness of 1/4 point
• 2 indicates a thickness of 1/2 point
• 3 indicates a thickness of 1 point
• 4 indicates a thickness of 2 points.

color is the color of the line; it returns the value of the color applied to the line segment.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid column number, the error -9852 will be generated.
If you pass an invalid row number, the error -9853 will be generated.
If you pass an invalid border parameter, the error -9854 will be generated.

See Also
QR SET BORDERS.

4th Dimension Language Reference 1143

QR SET INFO COLUMN Quick Report

version 2003
__

QR SET INFO COLUMN (area; colNum; title; object; hide; size; repeatedValue; displayFormat)

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
title String → Title of the column
object Field | Variable → Object assigned for that column
hide Longint → 0 = displayed, 1 = hidden
size Longint → Column size
repeatedValue Longint → 0 = not repeated, 1 = repeated
displayFormat String → Format for the data

Description

List mode
The QR SET INFO COLUMN command allows you to set the parameters of an existing
column.

area is the reference of the Quick Report area.

colNum is the number of the column to modify.

title is the title that will be displayed in the header of the column.

object is the actual object of the column (variable, field or formula).

hide specifies whether the column is displayed or hidden:
• if hide equals 1, the column is set to hidden;
• if hide equals 0, the column is set to displayed.

size is the size in pixels to assign to the column. If size equals -1, the size is made
automatic.

repeatedValue is the status for data repetition. For example, if the value for a field or
variable does not change from one record to the other, it may or may not be repeated
when they do not change.
• If repeatedValue equals 0, values are not repeated.
• If repeatedValue equals 1, values are repeated.

displayFormat is the display format. Display formats are the 4D formats compatible with
the data displayed.

1144 4th Dimension Language Reference

The following statement sets the title of column #1 to Title, sets the contents of the body
to Field2, makes the column visible with a width of 150 pixels and sets the format to
###.##.

⇒ QR SET INFO COLUMN(area; 1;"Title"; "[Table 1]Field2";0;150;0;"###,##")

Cross-table mode
The QR SET INFO COLUMN command allows you to set the same parameters but the
reference of the areas to which it applies is different and varies depending on the
parameter you want to set.
First of all, the title, hide, and repeatedValue parameters are not used when this command
is used in cross-table mode. The value to use for colNum varies depending on whether you
want to set the column size or the data source and display format.

• Column size
This is a “visual” attribute, therefore columns are numbered from left to right, as depicted
below.

The following statement will set the size to automatic for all the columns in a cross-table
report and will leave other elements unchanged:

For ($i;1;3)
QR GET INFO COLUMN(qr_area;$i;$title;$obj;$hide;$size;$rep;$format)

⇒ QR SET INFO COLUMN(qr_area;$i;$title;$obj;$hide;0;$rep;$format)
End for

You will notice that since you want to alter only the column size, you have to use QR GET
INFO COLUMN to retrieve the column properties and pass them to QR SET INFO COLUMN
to leave it unchanged, except for the column size.

4th Dimension Language Reference 1145

• Data source (object) and display format
In this case the numbering of columns operates as depicted below:

You will notice that not all cells can be addressed using the QR SET INFO COLUMN
command, the cells that are not numbered above are addressed using QR SET TOTALS
DATA.

The following code assigns data sources to the three cells required for creating a basic
cross-table report:

QR SET REPORT TABLE(qr_area;Table(->[Invoices]))
ALL RECORDS([Invoices])
QR SET REPORT KIND(qr_area;2)

⇒ QR SET INFO COLUMN(qr_area;1;"";->[Invoices]Item;1;-1;1;"")
⇒ QR SET INFO COLUMN(qr_area;2;"";->[Invoices]Quarter;1;-1;1;"")
⇒ QR SET INFO COLUMN(qr_area;3;"";->[Invoices]Quantity;1;-1;1;"")

This would be the resulting report area:

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid colNum value, the error -9852 will be generated.

See Also
QR GET INFO COLUMN, QR Get info row, QR SET INFO ROW.

1146 4th Dimension Language Reference

QR GET INFO COLUMN Quick Report

version 2003
__

QR GET INFO COLUMN (area; colNum; title; object; hide; size; repeatedValue; displayFormat)

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
title String ← Title of the column
object Field | Variable ← Object assigned for that column
hide Longint ← 0 = displayed, 1 = hidden
size Longint ← Column size
repeatedValue Longint ← 0 = not repeated, 1 = repeated
displayFormat Text ← Display format for the data

Description

List mode
The QR GET INFO COLUMN command allows you to retrieve the parameters of an existing
column.

area is the reference of the Quick Report area.

colNum is the number of the column to modify.

title returns the title that will be displayed in the header of the column.

object returns the name of the actual object of the column (variable, field name or
formula).

hide returns whether the column is displayed or hidden:
• if hide equals 1, the column is hidden;
• if hide equals 0, the column is displayed.

size returns the size of the column in pixels. If the value returned is negative, the size of
the column is automatic.

repeatedValue returns the status for data repetition. For example, if the value for a field or
variable does not change from one record to the other, it may or may not be repeated
when they do not change:
• if repeatedValue equals 0, values are not repeated,
• if repeatedValue equals 1, values are repeated.

format returns the display format. Display formats are the 4D formats compatible with
the data displayed.

4th Dimension Language Reference 1147

Cross-table mode
The QR GET INFO COLUMN command allows you to retrieve the same parameters but the
reference of the areas to which it applies is different and varies depending on the
parameter you want to set. First of all, the title, hide, and repeatedValue parameters are
meaningless when this command is used in cross-table mode. The value to use for colNum
varies depending on whether you want to retrieve the column size or the data source and
display format.

• Column size
This is a “visual” attribute, therefore columns are numbered from left to right, as depicted
below:

The following statement sets the size to automatic for all the columns in a cross-table
report and leaves other elements unchanged:

For ($i;1;3)
⇒ QR GET INFO COLUMN(qr_area;$i;$title;$obj;$hide;$size;$rep;$format)
⇒ QR SET INFO COLUMN(qr_area;$i;$title;$obj;$hide;0;$rep;$format)

End for

You will notice that since you want to alter only the column size, you have to use QR GET
INFO COLUMN to retrieve the column properties and pass them to QR SET INFO COLUMN
to leave it unchanged, except for the column size.

1148 4th Dimension Language Reference

• Data source (object) and display format
In this case, the numbering of columns operates as depicted below:

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid ColNum value, the error -9852 will be generated.

See Also
QR Get info row, QR SET INFO COLUMN, QR SET INFO ROW.

4th Dimension Language Reference 1149

QR SET INFO ROW Quick Report

version 2003
__

QR SET INFO ROW (area; row; hide)

Parameter Type Description
area Longint → Reference of the area created
row Longint → Row designator
hide Longint → 0 = displayed, 1 = hidden

Description
The QR SET INFO ROW command displays/hides the row whose reference was passed in
row.

row designates which row is affected:
• if row equals -1, the title of the report is affected,
• if row equals -2, the detail of the report is affected,
• if row equals -3, the grand total of the report is affected,
• if row is a positive integer, it designates the subtotal (break) level that is affected.

You can use constants from the QR Rows for Properties theme to designate the row item
(qr title= -1, qr detail=-2, qr grand total=-3).

hide specifies whether the line is displayed or hidden:
• if hide equals 1, the row is set to hidden;
• if hide equals 0, the row is set to displayed.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid row value, the error -9852 will be generated.

Example
The following statement hides the detail row:

⇒ QR SET INFO ROW (area;qr detail; 1)

See Also
QR GET INFO COLUMN, QR Get info row, QR SET INFO COLUMN.

1150 4th Dimension Language Reference

QR Get info row Quick Report

version 2003
__

QR Get info row (area; row) → Longint

Parameter Type Description
area Longint → Reference of the area created
row Longint → Row designator

Function result Longint ← 0 = displayed, 1 = hidden

Description
The QR Get info row command retrieves the display status of the row whose reference was
passed in row.

row designates which row is affected by the command:
• if row equals -1, the title display attribute is retrieved
• if row equals -2, the detail display attribute is retrieved
• if row equals -3, the grand total display attribute is retrieved
• if row is a positive integer, it designates the subtotal (break level) whose display attribute
is retrieved.

You can use constants from the QR Rows for Properties theme to designate the row item
(qr title= -1, qr detail=-2, qr grand total=-3)

The function result specifies whether the row is displayed or hidden. If it equals 1, the row
is set to hidden; if it equals 0, the row is set to displayed.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid row value, the error -9852 will be generated.

See Also
QR GET INFO COLUMN, QR SET INFO COLUMN, QR SET INFO ROW.

4th Dimension Language Reference 1151

QR SET SORTS Quick Report

version 2003
__

QR SET SORTS (area; aColumns{; aOrders})

Parameter Type Description
area Longint → Reference of the area
aColumns Real array → Columns
aOrders Real array → Sort orders

Description
The QR SET SORTS command allows you to set the sort orders for the columns in the
report whose reference is passed in area.

aColumns: in this array, you need to store the column numbers of columns to which you
want to assign a sort order.

aOrders: each element of this array must contain the sort orders for the matching column
in the aColumns array.
• If aOrders{$i} equals 1, the sort order is ascending.
• If aOrders{$i} equals - 1, the sort order is descending.

Cross-table mode
In the case of cross-table mode, you cannot have more than two items in the array. You
can only sort columns (1) and rows (2). The data (that are the intersection of columns
and rows) cannot be sorted.

Here is the code to sort only the rows in the case of a cross-table report:

ARRAY REAL($aColumns;1)
$aColumns{1}:=2
ARRAY REAL($aOrders;1)
$aOrders{1}:=-1 `Alphabetic sort for rows

⇒ QR SET SORTS (qr_area;$aColumns;$aOrders)

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR GET SORTS.

1152 4th Dimension Language Reference

QR GET SORTS Quick Report

version 2003
__

QR GET SORTS (area; aColumns{; aOrders})

Parameter Type Description
area Longint → Reference of the area
aColumns Array real ← Sorted columns
aOrders Array real ← Sort orders

Description
The QR GET SORTS command populates two arrays:

• aColumns
This array includes all the columns that have a sort order.

• aOrders
Each element of this array contains the sort orders for the matching column.
- If aOrders{$i} equals 1, the sort order is ascending.
- If aOrders{$i} equals - 1, the sort order is descending.

Cross-table mode
In the case of cross-table mode, the resulting arrays cannot have more than two elements
since sorts can only be performed on columns (1) and rows (2). (Values for aColumns).

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET SORTS.

4th Dimension Language Reference 1153

QR SET TOTALS DATA Quick Report

version 2003
__

QR SET TOTALS DATA (area; colNum; breakNum; operator | value)

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
breakNum Longint → Break number
operator | value Longint | String → Operator value for the cell or Cell content

Description

Note: This command cannot create a subtotal.

List Mode
The QR SET TOTALS DATA command allows you to set the details of a specific break (total
or subtotal).

area is the reference of the Quick Report area.

colNum is the column number of the cell whose data is going to be set.

breakNum is the number of the break whose data will be set (subtotal or grand total). For a
Subtotal, breaknum is the sort number. For the Grand total, breaknum equals -3 or the
constant qr grand total.

operator is an addition of all the operators present in the cell. You can use the constants
of the QR Operators theme to set the value:

Constant Value
qr sum 1
qr average 2
qr min 4
qr max 8
qr count 16
qr standard deviation 32

If operator equals 0, there is no operator.

value is the text to be placed in the cell.

Note: Operator/value is mutually exclusive, so you either set an operator or a text.

1154 4th Dimension Language Reference

You can pass the following values:
- # for the value that triggered the break or subtotal
- ##S will be replaced by the sum.
- ##A will be replaced by the Average.
- ##C will be replaced by the Count
- ##X will be replaced by the Max.
- ##N will be replaced by the Min.
- ##D will be replaced by the Standard deviation.
- ##xx, where xx is a column number. This will be replaced by that column’s value, using
its formatting. If this column does not exist, then it will not be replaced.

Cross-table Mode
The QR SET TOTALS DATA command allows you to set the details of a specific cell.

area is the reference of the Quick Report area.

colNum is the column number of the cell whose data is going to be set.

breakNum is the row number of the cell whose data is going to be set.

operator is an addition of all the operators present in the cell. You can use the constants
of the QR Operators theme to set the value (see above).

value is the text to be placed in the cell.

Here is a depiction of how the parameters column and break have to be combined in
cross-table mode:

4th Dimension Language Reference 1155

Supported Types of Data
The types of data that you can pass are of two basic kinds:

• Title
A title is passed through the parameter value. The value is actually a string and can be
passed only for the following cells: colNum=3 breakNum=1 and colNum=1 breakNum=3.

• Operator
An operator or a combination of operators (as described above) can be passed for the
following cells:
colNum=2, breakNum=2
colNum=3, breakNum=2
colNum=2, breakNum=3
Please note that these last two values affect the cell (Column 3; Row 3) as well. If a
computation is defined in the cell (Column 2; Row 3), the contents of this cell (Column
2; Row 3) always define the contents of the cell (Column 3; Row 3).

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid colNum number, the error -9852 will be generated.
If you pass an invalid breakNum number, the error -9853 will be generated.

See Also
QR GET TOTALS DATA.

1156 4th Dimension Language Reference

QR GET TOTALS DATA Quick Report

version 2003
__

QR GET TOTALS DATA (area; colNum; breakNum; operator; text)

Parameter Type Description
area Longint → Reference of the area
colNum Longint → Column number
breakNum Longint → Break number
operator Longint ← Operator value for the cell
text String ← Contents of the cell

Description

List Mode
The QR GET TOTALS DATA command allows you to retrieve the details of a specific break.

area is the reference of the Quick Report area.

colNum is the number of the column whose data will be retrieved.

breakNum is the number of the break whose data will be retrieved (subtotal or grand
total):

- Subtotal: between 1 and the number of Subtotal/sort.
- Grand total: -3 / constant: qr grand total.

operator returns the sum of all the operators present in the cell. You can use the constants
of the QR Operators theme to process the returned value:

Constant Value
qr sum 1
qr average 2
qr min 4
qr max 8
qr count 16
qr standard deviation 32

If the value returned equals 0, there is no operator.

text returns the text present in the cell.

Note: operator and text are mutually exclusive, so you either have a result returned
through operator or through text.

4th Dimension Language Reference 1157

Cross-table Mode
The QR GET TOTALS DATA command allows you to retrieve the details of a specific cell.

area is the reference of the Quick Report area.

colNum is the column number of the cell whose data is going to be retrieved.

breakNum is the row number of the cell whose data is going to be retrieved.

operator returns the sum of all the operators present in the cell. You can use the constants
of the QR Operators theme to process the returned value (see above).

text returns the text in the cell.

Here is a depiction of how the parameters colNum and breakNum have to be combined in
cross-table mode:

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid colNum number, the error -9852 will be generated.
If you pass an invalid breakNum number, the error -9853 will be generated.

See Also
QR SET TOTALS DATA.

1158 4th Dimension Language Reference

QR SET TOTALS SPACING Quick Report

version 2003
__

QR SET TOTALS SPACING (area; subtotal; value)

Parameter Type Description
area Longint → Reference of the area
subtotal Longint → Subtotal number
value Longint → 0=no space, 32000=inserts a page break,

>0=spacing added at the top of the break level,
<0=proportional increase

Description
The QR SET TOTALS SPACING command allows you to set a space above a subtotal row. It
applies only to the list mode.

area is the reference of the Quick Report area.
subtotal is the subtotal level (or break level) that will be affected.

value defines the value of the spacing:
• If value equals 0, no space is added.
• If value equals 32000, a page break is inserted.
• If value is a positive value, it expresses the spacing value in pixels.
• If value is a negative value, it expresses the spacing as a percentage of the subtotal row.
For example, -100 will set a space of 100% above the subtotal row.

Note: If the space above a subtotal row “pushes” the row to the next page, there will be
no space inserted above the row on that page.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid subtotal, the error -9852 will be generated.

See Also
QR GET TOTALS SPACING.

4th Dimension Language Reference 1159

QR GET TOTALS SPACING Quick Report

version 2003
__

QR GET TOTALS SPACING (area; subtotal; value)

Parameter Type Description
area Longint → Reference of the area
subtotal Longint → Subtotal number
value Longint ← 0=no space, 32000=inserts a page break,

>0=spacing added at the top of the break level,
<0=proportional increase

Description
The QR GET TOTALS SPACING command allows you to retrieve a space above a subtotal
row. It applies only to the list mode.

area is the reference of the Quick Report area.

subtotal is the subtotal level (or break level) that will be affected. subtotal is a value
between 1 and the number of the subtotal/sort.

value defines the value of the spacing:
• If value equals 0, no space is added.
• If value equals 32000, a page break is inserted.
• If value is a positive value, it expresses the spacing value in pixels.
• If value is a negative value, it expresses the spacing as a percentage of the subtotal row.
For example, -100 will set a space of 100% above the subtotal row.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid subtotal, the error -9852 will be generated.

See Also
QR SET TOTALS SPACING.

1160 4th Dimension Language Reference

QR INSERT COLUMN Quick Report

version 2003
__

QR INSERT COLUMN (area; colNumber; object)

Parameter Type Description
area Longint → Reference of the area
colNumber Longint → Column number
object Field | Variable | Pointer → Object to be inserted in the column

Description
The QR INSERT COLUMN command inserts or creates a column at the specified position.
Columns located to the right of that position will be shifted accordingly.

position is the number of the column, established from left to right.

The default title for the column will be the value passed in object.

If you pass an invalid area number, the error -9850 will be generated.

Example
The following statement inserts (or creates) a first column in a Quick Report area, inserts
“Field1” as column title (default behavior) and populates the contents of the body with
values from Field1.

⇒ QR INSERT COLUMN (MyArea;1;->[Table 1]Field1)

See Also
QR DELETE COLUMN.

4th Dimension Language Reference 1161

QR Get drop column Quick Report

version 2003
__

QR Get drop column (area) → Longint

Parameter Type Description
area Longint → Reference of the area

Function result Longint ← Drop value

Description
The QR Get drop column command returns a value depending on where the drop was
performed:
• if the value is negative, it indicates a column number (i.e., -3 if the the drop was
performed on column number 3)
• if the value is positive, it indicates that the drop was performed on a separator preceding
the column (i.e., 3 if the drop was performed after column 2). Keep in mind that the drop
does not have to take place before an existing column.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR DELETE COLUMN.

1162 4th Dimension Language Reference

QR Count columns Quick Report

version 2003
__

QR Count columns (area) → Longint

Parameter Type Description
area Longint → Reference of the area

Function result Longint ← Number of columns in area

Description
The QR Count columns command returns the number of columns present in the Quick
Report area.

If you pass an invalid area number, the error -9850 will be generated.

Example
The following code retrieves the column count and inserts a column to the right of the
rightmost existing column:

⇒ $ColNb:=QR Count columns(MyArea)
QR INSERT COLUMN(MyArea;$ColNb+1;->[Table 1]Field2)

See Also
QR DELETE COLUMN, QR INSERT COLUMN.

4th Dimension Language Reference 1163

QR DELETE COLUMN Quick Report

version 2003
__

QR DELETE COLUMN (area; colNumber)

Parameter Type Description
area Longint → Reference of the area
colNumber Longint → Column number

Description
The QR DELETE COLUMN command deletes the column in area whose number was passed
in colNumber. This command does not apply to cross-table reports.

If you pass an invalid area number, the error -9850 will be generated.
If you pass an invalid column number, the error -9852 will be generated.

Example
The following example makes sure the report is a list report and deletes the third column:

If(QR Get report kind(MyArea)=qr list report)
⇒ QR DELETE COLUMN (MyArea;3)

End if

See Also
QR INSERT COLUMN.

1164 4th Dimension Language Reference

QR SET HTML TEMPLATE Quick Report

version 2003
__

QR SET HTML TEMPLATE (area; template)

Parameter Type Description
area Longint --> Reference of the area
template Text --> HTML template

Description
The QR SET HTML TEMPLATE command sets the HTML template currently used for the
Quick Report area. The template will be used when building the report in HTML format.

The template uses a set of tags to process the data in order to either retain a layout close to
the original report or to adopt your own custom HTML.

Note: You first need to call QR SET DESTINATION to set the output to HTML file.

HTML Tags
<!--#4DQRheader--> ... <!--/#4DQRheader-->
The HTML contents that are included between these tags come from the column titles.
You will typically use these tags to define the title row of the report.

<!--#4DQRrow--> ... <!--/#4DQRrow-->
The HTML contents that are included between these tags are repeated for each data row
(including detail and subtotal rows).

<!--#4DQRcol--> ... <!--/#4DQRcol-->
The HTML contents that are included between these tags are repeated for each data
column within a row. The column order will remain identical to the order in the report.
When used in conjunction with <!--#4DQRcol;n--> ... <!--/#4DQRcol;n-->, the tags <!--
#4DQRcol--> ... <!--/#4DQRcol--> will only go through the columns whose contents are
not inserted using <!--#4DQRcol;n--> ... <!--/#4DQRcol;n-->.
For example, in a report that has five columns, you choose to use <!--#4DQRcol;2--> ... <!--
/#4DQRcol;2--> to insert data from the second column, <!--#4DQRcol--> ... <!--/#4DQRcol--
> will go, for each row, through columns 1, 3, 4, and 5. These last tags ignore the column
whose contents are published using <!--#4DQRcol;2--> ... <!--/#4DQRcol;2-->.

<!--#4DQRcol;n--> ... <!--/#4DQRcol;n-->
The HTML contents that are included between these tags are extracted from the column
in the report whose number is “n”. If, for example, you want to display a different
column order in the HTML output for a three-column report, you could use:
<!--#4DQRrow--> <!--#4DQRcol;3--> ... <!--/#4DQRcol;3--><!--#4DQRcol;2--> ... <!--
/#4DQRcol;2--><!--#4DQRcol;1--> ... <!--/#4DQRcol;1--> <!--/#4DQRrow-->
In this example, the columns are inserted in the opposite order of the report.

4th Dimension Language Reference 1165

<!--#4DQRfont--> ... <!--/#4DQRfont-->
The HTML contents that are included between these tags will be assigned the font of the
current column or cell.
<!--#4DQRfont--> will be replaced by an HTML font definition and <!--/#4DQRfont--> will
be replaced by the matching closing tag ().

<!--#4DQRface--> ... <!--/#4DQRface-->
The HTML contents that are included between these tags will be assigned the font style of
the current column or cell.
<!--#4DQRface--> will be replaced by an HTML face definition and <!--#4DQRface--> will be
replaced by the matching closing tag (</face>).

<!--#4DQRbgcolor-->
This color tag will be replaced by the current color for the current cell.

<!--#4DQRdata-->
This tag will be replaced by the current data for the current cell.

<!--#4DQRlHeader--><!--#4DQRdata--><!--/#4DQRlHeader-->
<!--#4DQRcHeader--><!--#4DQRdata--><!--/#4DQRcHeader-->
<!--#4DQRrHeader--><!--#4DQRdata--><!--/#4DQRrHeader-->
These tags will be replaced respectively by the data in the left, center or right header.

<!--#4DQRlFooter--><!--#4DQRdata--><!--/#4DQRlFooter-->
<!--#4DQRcFooter--><!--#4DQRdata--><!--/#4DQRcFooter-->
<!--#4DQRrFooter--><!--#4DQRdata--><!--/#4DQRrFooter-->
These tags will be replaced respectively by the data in the left, center or right footer.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR Get HTML template.

1166 4th Dimension Language Reference

QR Get HTML template Quick Report

version 2003
__

QR Get HTML template (area) → Text

Parameter Type Description
area Longint → Reference of the area

Function result Text ← HTML code used as template

Description
The QR Get HTML template command returns the HTML template currently used for the
Quick Report area. The returned value is a text value and includes all the contents of the
HTML template.

If no specific template was defined, the template that is returned is the default template.
Please note that no template will be returned if the output was not set to HTML file,
either manually or programmatically.

If you pass an invalid area number, the error -9850 will be generated.

See Also
QR SET HTML TEMPLATE.

4th Dimension Language Reference 1167

1168 4th Dimension Language Reference

42

Record Locking

4th Dimension Language Reference 1169

1170 4th Dimension Language Reference

Record Locking Record Locking

version 3
__

4th Dimension and 4D Server/4D Client automatically manage databases by preventing
multi-user or multi-process conflicts. Two users or two processes cannot modify the same
record or object at the same time. However, the second user or process can have read-only
access to the record or object at the same time.

There are several reasons for using the multi-user commands:
• Modifying records by using the language.
• Using a custom user interface for multi-user operations.
• Saving related modifications inside a transaction.

There are three important concepts to be aware of when using commands in a multi-
processing database:
• Each table is in either a read-only or a read/write state.
• Records become locked when they are loaded and unlocked when they are unloaded.
• A locked record cannot be modified.

As a convention in the following sections, the person performing an operation on the
multi-user database is referred to as the local user. Other people using the database are
referred to as the other users. The discussion is from the perspective of the local user. Also,
from a multi-process perspective, the process executing an operation on the database is
the current process. Any other executing process is referred to as other processes. The
discussion is from the point of view of the current process.

Locked Records
__

A locked record cannot be modified by the local user or the current process. A locked
record can be loaded, but cannot be modified. A record is locked when one of the other
users or processes has successfully loaded the record for modification. Only the user who is
modifying the record sees that record as unlocked. All other users and processes see the
record as locked, and therefore unavailable for modification. A table must be in a
read/write state for a record to be loaded unlocked.

Read-Only and Read/Write States
__

Each table in a database is in either a read/write or a read-only state for each user and
process of the database. Read-only means that records for the table can be loaded but not
modified. Read/write means that records for the table can be loaded and modified if no
other user has locked the record first.

4th Dimension Language Reference 1171

Note that if you change the status of a table, the change takes effect for the next record
loaded. If there is a record currently loaded when you change the table’s status, that
record is not affected by the status change.

Read-Only State
When a table is read-only and a record is loaded, the record is always locked. In other
words, the record can be displayed, printed, and otherwise used, but it cannot be
modified.

Note that read-only status applies only to editing existing records. Read-only status does
not affect the creation of new records. You can add records to a read-only table using
CREATE RECORD and ADD RECORD or the New Record menu command from the User
environment’s Enter menu.

4th Dimension automatically sets a table to read-only for commands that do not require
write access to records. These commands are:
• DISPLAY SELECTION
• DISTINCT VALUES
• EXPORT DIF
• EXPORT SYLK
• EXPORT TEXT
• GRAPH TABLE
• PRINT SELECTION
• PRINT LABEL
• QR REPORT
• SELECTION TO ARRAY
• SELECTION RANGE TO ARRAY

You can find out the state of a table at any time using the Read only state function.

Before executing any of these commands, 4th Dimension saves the current state of the
table (read-only or read/write) for the current process. After the command has executed,
the state is restored.

Read/Write State
When a table is read/write and a record is loaded, the record will become unlocked if no
other user has locked the record first. If the record is locked by another user, the record is
loaded as a locked record that cannot be modified by the local user.

A table must be set to read/write and the record loaded for it to become unlocked and
thus modifiable.

If a user loads a record from a table in read/write mode, no other users can load that
record for modification. However, other users can add records to the table, either through
the CREATE RECORD or ADD RECORD commands or manually in the User environment.

1172 4th Dimension Language Reference

Read/write is the default state for all tables when a database is opened and a new process is
started.

Changing the Status of a Table
You can use the READ ONLY and READ WRITE commands to change the state of a table. If
you want to change the state of a table in order to make a record read-only or read/write,
you must execute the command before the record is loaded. Any record that is already
loaded is not affected by the
READ ONLY and READ WRITE commands.

Each process has its own state (read-only or read/write) for each table in the database.

Loading, Modifying and Unloading Records
__

Before the local user can modify a record, the table must be in the read/write state and the
record must be loaded and unlocked.

Any of the commands that loads a current record (if there is one) — such as NEXT
RECORD, QUERY, ORDER BY, RELATE ONE, etc. — sets the record as locked or unlocked.
The record is loaded according to the current state of its table (read-only or read/write)
and its availability. A record may also be loaded for a related table by any of the
commands that cause an automatic relation to be established.

If a table is in the read-only state, then a record loaded from that table is locked. A locked
record cannot be saved or deleted. Read-only is the preferred state, because it allows other
users to load, modify, and then save the record.

If a table is in the read/write state, then a record that is loaded from that table is unlocked
only if no other users have locked the record first. An unlocked record can be modified
and saved. A table should be put into the read/write state before a record needs to be
loaded, modified, and then saved.

If the record is to be modified, you use the Locked function to test whether or not a
record is locked by another user. If a record is locked (Locked returns True), load the
record with the LOAD RECORD command and again test whether or not the record is
locked. This sequence must be continued until the record becomes unlocked (Locked
returns False).

When modifications to be made to a record are finished, the record must be released (and
therefore unlocked for the other users) with UNLOAD RECORD. If a record is not
unloaded, it will remain locked for all other users until a different current record is
selected. Changing the current record of a table automatically unlocks the previous
current record. You need to explicitly call UNLOAD RECORD if you do not change the
current record. This discussion applies to existing records. When a new record is created, it
can be saved regardless of the state of the table to which it belongs.

4th Dimension Language Reference 1173

Note: When it is used in a transaction, the UNLOAD RECORD command unloads the
current record only for the process that manages the transaction. For other processes, the
record stays locked as long as the transaction has not been validated (or cancelled).

Use the LOCKED ATTRIBUTES command to see which user and/or process have locked a
record.

Loops to Load Unlocked Records
__

The following example shows the simplest loop with which to load an unlocked record:

READ WRITE ([Customers]) ` Set the table’s state to read/write
Repeat ` Loop until the record is unlocked

LOAD RECORD ([Customers]) ` Load record and set locked status
Until (Not (Locked([Customers])))

` Do something to the record here
READ ONLY ([Customers]) ` Set the table’s state to read-only

The loop continues until the record is unlocked.

A loop like this is used only if the record is unlikely to be locked by anyone else, since the
user would have to wait for the loop to terminate. Thus, it is unlikely that the loop would
be used as is unless the record could only be modified by means of a method.

The following example uses the previous loop to load an unlocked record and modify the
record:

READ WRITE([Inventory])
Repeat ` Loop until the record is unlocked

LOAD RECORD([Inventory]) ` Load record and set it to locked
Until (Not (Locked([Inventory])))
[Inventory]Part Qty := [Inventory]Part Qty – 1 ` Modify the record
SAVE RECORD ([Inventory]) ` Save the record
UNLOAD RECORD ([Inventory]) ` Let other users modfiy it
READ ONLY([Inventory])

The MODIFY RECORD command automatically notifies the user if a record is locked, and
prevents the record from being modified. The following example avoids this automatic
notification by first testing the record with the Locked function. If the record is locked,
the user can cancel.

1174 4th Dimension Language Reference

This example efficiently checks to see if the current record is locked for the table
[Commands]. If it is locked, the process is delayed by the procedure for one second. This
technique can be used both in a multi-user or multi-process situation:

Repeat
READ ONLY([Commands]) ` You do not need read/write right now
QUERY([Commands])

` If the search was completed and some records were returned
If ((OK=1) & (Records in selection([Commands])>0))

READ WRITE([Commands]) ` Set the table to read/write state
LOAD RECORD([Commands])
While (Locked([Commands]) & (OK=1)) `If the record is locked,

` loop until the record is unlocked
` Who is the record locked by?

LOCKED ATTRIBUTES([Commands];$Process;$User;$Machine;$Name)
If ($Process=-1) ` Has the record been deleted?

ALERT("The record has been deleted in the meantime.")
OK:=0

Else
If ($User="") ` Are you in single-user mode

$User:="you"
End if
CONFIRM("The record is already used by "+$User+" in the "+$Name+"

 Process.")
If (OK=1) ` If you want to wait for a few seconds

DELAY PROCESS(Current process;120) ` Wait for a few seconds
LOAD RECORD([Commands])` Try to load the record

End if
End if

End while
If (OK=1) ` The record is unlocked

MODIFY RECORD([Commands]) ` You can modify the record
UNLOAD RECORD([Commands])

End if
READ ONLY([Commands]) ` Switch back to read-only
OK:=1

End if
Until (OK=0)

Using Commands in Multi-user or Multi-process Environment
__

A number of commands in the language perform specific actions when they encounter a
locked record. They behave normally if they do not encounter a locked record.

4th Dimension Language Reference 1175

Here is a list of these commands and their actions when a locked record is encountered.

• MODIFY RECORD: Displays a dialog box stating that the record is in use. The record is
not displayed, therefore the user cannot modify the record. In the User environment, the
record is shown in read-only state.
• MODIFY SELECTION: Behaves normally except when the user double-clicks a record to
modify it. MODIFY SELECTION displays dialog box stating that the record is in use and
then allows read-only access to the record.
• APPLY TO SELECTION: Loads a locked record, but does not modify it. APPLY TO
SELECTION can be used to read information from the table without special care. If the
command encounters a locked record, the record is put into the LockedSet system set.
• DELETE SELECTION: Does not delete any locked records; it skips them. If the command
encounters a locked record, the record is put into the LockedSet system set.
• DELETE RECORD: This command is ignored if the record is locked. No error is returned.
You must test that the record is unlocked before executing this command.
• SAVE RECORD: This command is ignored if the record is locked. No error is returned. You
must test that the record is unlocked before executing this command.
• ARRAY TO SELECTION: Does not save any locked records. If the command encounters a
locked record, the record is put into the LockedSet system set.
• GOTO RECORD: Records in a multi-user/multi-process database may be deleted and
added by other users, therefore the record numbers may change. Use caution when
directly referencing a record by number in a multi-user database.
• Sets: Take special care with sets, as the information that the set was based on may be
changed by another user or process.

See Also
LOAD RECORD, Locked, LOCKED ATTRIBUTES, Methods, READ ONLY, Read only state, READ
WRITE, UNLOAD RECORD, Variables.

1176 4th Dimension Language Reference

READ WRITE Record Locking

version 3
__

READ WRITE {(table | *)}

Parameter Type Description
table | * Table → Table for which to set read-write state, or

* for all the tables, or
Default table, if omitted

Description
READ WRITE changes the state of table to read/write for the process in which it is called. If
the optional * parameter is specified, all tables are changed to read/write state.

After a call to READ WRITE, when a record is loaded, the record is unlocked if no other user
has locked the record. This command does not change the status of the currently loaded
record, only that of subsequently loaded records.

The default state for all tables is read/write.

Use READ WRITE when you must modify a record and save the changes. Also use READ
WRITE when you must lock a record for other users, even if you are not making any
changes. Setting a table to read/write mode prevents other users from editing that table.
However, other users can create new records.

Note: This command is not retroactive. A record is loaded according to the table’s
read/write status at the time of loading. To load a record from a read-only table in
read/write mode, you must first change the table state to read/write.

See Also
READ ONLY, Read only state, Record Locking.

4th Dimension Language Reference 1177

READ ONLY Record Locking

version 3
__

READ ONLY {(table | *)}

Parameter Type Description

table | * Table → Table for which to set read-only state, or
* for all the tables, or
Default table, if omitted

Description

READ ONLY changes the state of table to read-only for the process in which it is called. All
subsequent records that are loaded are locked, and you cannot make any changes made to
them. If the optional * parameter is specified, all tables are changed to read-only state.

Use READ ONLY when you do not need to modify the record or records.

Note: This command is not retroactive. A record is loaded according to the table’s
read/write status at the time of loading. To load a record from a read/write table in read-
only mode, you must first change the table state to read-only.

See Also

Read only state, READ WRITE, Record Locking.

1178 4th Dimension Language Reference

Read only state Record Locking

version 3
__

Read only state {(table)} → Boolean

Parameter Type Description

table Table → Table for which to test read-only state, or
Default table, if omitted

Function result Boolean ← Access to table is read-only (TRUE), or
Access to table is read-write (FALSE)

Description

This function is used to test whether or not the state of table is read-only for the process
in which it is called. Read only state returns TRUE if the state of table is read-only. Read
only state returns FALSE if the state of table is read/ write.

Example

The following example tests the state of an [Invoice] table. If the state of the [Invoice]
table is read-only, it is set to read/write, and then the current record is reloaded.

⇒ If (Read only state([Invoice]))
READ WRITE([Invoice])
LOAD RECORD([Invoice])

End if

Note: The invoice record is reloaded to allow the user to modify it. A record that was
previously loaded in a read-only state will remain locked until it is reloaded in a read/write
state.

See Also

READ ONLY, READ WRITE, Record Locking.

4th Dimension Language Reference 1179

LOAD RECORD Record Locking

version 3
__

LOAD RECORD {(table)}

Parameter Type Description
table Table → Table for which to load record, or

Default table, if omitted

Description
LOAD RECORD loads the current record of table. If there is no current record, LOAD
RECORD has no effect.
You can then use the Locked function to determine whether you can modify the record:
• If the table is in read-only state, the Locked function returns TRUE, and you cannot
modify the record.
• If the table is in read/write state but the record was already locked, the record will be
read-only, and you cannot modify the record.
• If the table is in read/write state and the record is not locked, you can modify the record
in the current process. The Locked function returns TRUE for all other users and processes.

Note: If the LOAD RECORD command is executed after a READ ONLY, the record is
automatically unloaded and loaded without having to use the UNLOAD RECORD
command.

Usually, you do not need to use the LOAD RECORD command, because commands like
QUERY, NEXT RECORD, PREVIOUS RECORD, etc., automatically load the current record.

In multi-user and multi-process environments, when you need to modify an existing
record, you must access the table (to which the record belongs) in read/write mode. If a
record is locked and not loaded, LOAD RECORD allows you to attempt to load the record
again at a later time. By using LOAD RECORD in a loop, you can wait until the record
becomes available in read/write mode.

Tip: The LOAD RECORD command can be used to reload the current record in the context
of an input form. All the data modified are then replaced by their previous values. In this
case, the LOAD RECORD command carries out a sort of general cancellation of data entry.

See Also
Locked, Record Locking, UNLOAD RECORD.

1180 4th Dimension Language Reference

UNLOAD RECORD Record Locking

version 3
__

UNLOAD RECORD {(table)}

Parameter Type Description
table Table → Table for which to unload record, or

Default table, if omitted

Description
UNLOAD RECORD unloads the current record of table.

If the record is unlocked for the local user (locked for the other users), UNLOAD RECORD
unlocks the record for the other users.

Although UNLOAD RECORD unloads it from memory, the record remains the current
record. When another record is made the current record, the previous current record is
automatically unloaded and therefore unlocked for other users. Always execute this
command when you have finished modifying a record and want to make it available to
other users, while retaining the record as your current record.

If a record has a large amount of data, picture fields, or external documents (such as 4D
Write or 4D Draw documents), you may not want to keep the current record in memory
unless you need to modify it. In this case, use the UNLOAD RECORD command to keep
the current record without having it in memory. You free the memory occupied by the
record, but you do not have access to its field values. If you later need access to the values
of the record, use the LOAD RECORD command.

Note: When it is used in a transaction, the UNLOAD RECORD command unloads the
current record only for the process that manages the transaction. For other processes, the
record stays locked as long as the transaction has not been validated (or cancelled).

See Also
LOAD RECORD, Record Locking.

4th Dimension Language Reference 1181

Locked Record Locking

version 3
__

Locked {(table)} → Boolean

Parameter Type Description
table Table → Table to check for locked current record, or

Default table, if omitted

Function result Boolean ← Record is locked (TRUE), or
Record is unlocked (FALSE)

Description
Locked tests whether or not the current record of table is locked. Use this function to find
out whether or not the record is locked; then take appropriate action, such as giving the
user the choice of waiting for the record to be free or skipping the operation.

If Locked returns TRUE, then the record is locked by another user or process and cannot
be saved. In this case, use LOAD RECORD to reload the record until Locked returns FALSE.

If Locked returns FALSE, then the record is unlocked, meaning that the record is locked
for all other users. Only the local user or current process can modify and save the record.
A table must be in read/write state in order for you to modify the record.

If you try to load a record that has been deleted, Locked continues to return TRUE. To
avoid waiting for a record that does not exist anymore, use the LOCKED ATTRIBUTES
command. If the record has been deleted, the LOCKED ATTRIBUTES command returns -1
in the process parameter.

During transaction processing, LOAD RECORD and Locked are often used to test record
availability. If a record is locked, it is common to cancel the transaction.

See Also
LOAD RECORD, LOCKED ATTRIBUTES, Record Locking.

1182 4th Dimension Language Reference

LOCKED ATTRIBUTES Record Locking

version 3
__

LOCKED ATTRIBUTES ({table; }process; user; machine; processName)

Parameter Type Description
table Table → Table to check for record locked, or

Default table, if omitted
process Number ← Process reference number
user String ← User name if multi-user
machine String ← Machine name if multi-user
processName String ← Process name

Description
LOCKED ATTRIBUTES returns information about the user and process that have locked a
record. The process number, user name, machine name, and process name are returned in
the process, user, machine, and processName variables. You can use this information in a
custom dialog box to warn the user when a record is locked.

If the record is not locked, process returns 0 and user, machine, and processName return
empty strings. If the record you try to load in read/write has been deleted, process returns
-1 and user, machine, and processName return empty strings.

In single-user mode, this command returns values in process and processName only if a
record is locked. The values returned in user and machine are empty strings.

In Client/Server mode, the returned process number is the number of the process on the
server.

The User parameter returned is the user name from the 4th Dimension password system,
even if user name is blank. If there is no password system, “Manager” is returned.

The machine parameter returned is the owner name from the operating system file
sharing setup. A name change does not take effect until you restart.

See Also
Locked, Record Locking.

4th Dimension Language Reference 1183

1184 4th Dimension Language Reference

43

Records

4th Dimension Language Reference 1185

1186 4th Dimension Language Reference

DISPLAY RECORD Records

version 3
__

DISPLAY RECORD {(table)}

Parameter Type Description
table Table → Table from which to display the current record,

or Default table, if omitted

Description
The command DISPLAY RECORD displays the current record of table, using the current
input form. The record is displayed only until an event redraws the window. Such an
event might be the execution of an ADD RECORD command, returning to an input form,
or returning to the menu bar. DISPLAY RECORD does nothing if there is no current
record.

DISPLAY RECORD is often used to display custom progress messages. It can also be used to
generate a free-running slide show.

If a form method exists, an On Load event will be generated.

WARNING: Do not call DISPLAY RECORD from within a Web connection process, because
the command will be executed on the 4th Dimension Web server machine and not on
the Web browser client machine.

Example
The following example displays a series of records as a slide show:

ALL RECORDS([Demo]) ` Select all of the records
INPUT FORM ([Demo]; "Display") ` Set the form to use for display
For ($vlRecord;1;Records in selection([Demo])) ` Loop through all of the records

⇒ DISPLAY RECORD([Demo]) ` Display a record
DELAY PROCESS (Current process; 180) ` Pause for 3 seconds
NEXT RECORD([Demo]) ` Move to the next record

End for

See Also
MESSAGE.

4th Dimension Language Reference 1187

CREATE RECORD Records

version 3
__

CREATE RECORD {(table)}

Parameter Type Description
table Table → Table for which to create a new record, or

Default table, if omitted

Description
CREATE RECORD creates a new empty record for table, but does not display the new
record. Use ADD RECORD to create a new record and display it for data entry.

CREATE RECORD is used instead of ADD RECORD when data for the record is assigned with
the language. The new record becomes the current record but the current selection is left
untouched.

The record exists in memory only until a SAVE RECORD command is executed for the
table. If the current record is changed (for example, by a query) before the record is saved,
the new record is lost.

Example
The following example archives records that are over 30 days old. It does does this by
creating new records in an archival table. When the archiving is finished, the records that
were archived are deleted from the [Accounts] table:

` Find records more than 30 days old
QUERY ([Accounts]; [Accounts]Entered < (Current date – 30))
For ($vlRecord;1; Records in selection([Accounts])) ` Loop once for each record

⇒ CREATE RECORD ([Archive]) ` Create a new archive record
[Archive]Number:=[Account]Number ` Copy fields to the archive record
[Archive]Entered:=[Account]Entered
[Archive]Amount:=[Account]Amount
SAVE RECORD([Archive]) ` Save the archive record
NEXT RECORD([Accounts]) ` Move to the next account record

End for
DELETE SELECTION([Accounts]) ` Delete the account records

See Also
SAVE RECORD.

1188 4th Dimension Language Reference

DUPLICATE RECORD Records

version 3
__

DUPLICATE RECORD {(table)}

Parameter Type Description
table Table → Table for which to duplicate

the current record,
or Default table, if omitted

Description
DUPLICATE RECORD creates a new record for table that is a duplicate of the current record.
The new record becomes the current record. If there is no current record, then DUPLICATE
RECORD does nothing. You must use SAVE RECORD to save the new record.

DUPLICATE RECORD can be executed during data entry. This allows you to create a clone
of the currently displayed record. Remember that you must first execute SAVE RECORD in
order to save any changes made to the original record.

See Also
SAVE RECORD.

4th Dimension Language Reference 1189

Is new record Records

version 6.5
__

Is new record {(table)} → Boolean

Parameter Type Description
table Table → Table of the record to examine or

Default table if this parameter is omitted

Function result Boolean ← True if the record is being created,
False otherwise

Description
The command Is new record returns True when the table’s current record is being created
and has not yet been saved in the current process.

Compatibility Note: You can obtain the same information by using the existing
command Record number, and by testing if it returns -3.
However, we strongly advise you to use Is new record instead of Record number in this
case. Actually, the Is new record command ensures compatibility with future versions of
4th Dimension.

Example
The following two instructions are identical. The second one is strongly advised so that
the code will be compatible with future versions of 4D:

If (Record number([Table])=-3) `Not advised
` ...

End if

⇒ If (Is new record([Table])) `Strongly advised
` ...

End if

See Also
Modified record, Record number.

1190 4th Dimension Language Reference

Modified record Records

version 3
__

Modified record {(table)} → Boolean

Parameter Type Description
table Table → Table to test if current record

has been modified, or
Default table, if omitted

Function result Boolean ← Record has been modified (True), or
Record has not been modified (False)

Description
Modified record returns True if the current record of table has been modified but not
saved; otherwise it returns False. This function allows the designer to quickly test whether
or not the record needs to be saved. It is especially valuable in input forms to check
whether or not to save the current record before proceeding to the next one. This
function always returns TRUE for a new record.

Example
The following example shows a typical use for Modified record:

⇒ If (Modified record ([Customers]))
SAVE RECORD ([Customers])

End if

See Also
Modified, Old, SAVE RECORD.

4th Dimension Language Reference 1191

Is record loaded Records

version 6.5
__

Is record loaded {(table)} → Boolean

Parameter Type Description
table Table → Table of the record to examine or

Default table if this parameter is omitted

Function result Boolean ← True if the record is loaded
Otherwise False

Description
The command Is record loaded returns True if the table’s current record is loaded in the
current process.

Example
Instead of using the “Next record” or “Previous record” automatic actions, you can write
object methods for these buttons to improve their operation. The “Next” button will
display the beginning of the selection if the user is at the end of the selection and the
“Previous” button will show the end of the selection when the user is at the beginning of
the selection.

` Object method of the “Previous” button (without an automatic action)
If (Form event=On Clicked)

PREVIOUS RECORD([Group])
⇒ If (Not(Is record loaded([Group])))

GOTO SELECTED RECORD([Group];Records in selection([Group]))
`Go to the last record in the selection

End if
End if

` Object method of the “Next” button (without an automatic action)
If (Form event=On Clicked)

NEXT RECORD([Group])
⇒ If (Not(Is record loaded([Group])))

GOTO SELECTED RECORD([Groups];1)
`Go to the first record in the selection

End if
End if

1192 4th Dimension Language Reference

SAVE RECORD Records

version 3
__

SAVE RECORD {(table)}

Parameter Type Description
table Table → Table for which to save the current record, or

Default table, if omitted

Description
SAVE RECORD saves the current record of table in the current process. If there is no
current record, then SAVE RECORD is ignored.

You use SAVE RECORD to save a record that you created or modified with code. A record
that has been modified and validated by the user in a form does not need to be saved
with SAVE RECORD. A record that has been modified by the user in a form, but has been
canceled, can still be saved with SAVE RECORD.

Here are some cases where SAVE RECORD is required:
• To save a new record created with CREATE RECORD or DUPLICATE RECORD
• To save data from RECEIVE RECORD
• To save a record modified by a method
• To save a record that contains new or modified subrecord data following an ADD
SUBRECORD, CREATE SUBRECORD, or MODIFY SUBRECORD command
• During data entry to save the displayed record before using a command that changes
the current record
• During data entry to save the current record

You should not execute a SAVE RECORD during the On Validate event for a form that has
been accepted. If you do, the record will be saved twice.

Example
The following example is part of a method that reads records from a document. The code
segment receives a record, and then, if it is received properly, saves it:

RECEIVE RECORD ([Customers]) ` Receive record from disk
If (OK= 1) ` If the record is received properly…

⇒ SAVE RECORD ([Customers]) ` save it
End if

See Also
CREATE RECORD, Locked, Triggers.

4th Dimension Language Reference 1193

DELETE RECORD Records

version 3
__

DELETE RECORD {(table)}

Parameter Type Description
table Table → Table where the current record will be deleted, or

Default table, if omitted

Description
DELETE RECORD deletes the current record of table in the process. If there is no current
record for table in the process, DELETE RECORD has no effect. In a form, you can create a
Delete Record button instead of using this command.

Deleting records is a permanent operation and cannot be undone.

If a record is deleted, the record number will be reused when new records are created. Do
not use the record number as the record identifier if you will ever delete records from the
database.

Example
The following example deletes an employee record. The code asks the user what employee
to delete, searches for the employee’s record, and then deletes it:

vFind := Request ("Employee ID to delete:") ` Get an employee ID
If (OK = 1)

QUERY ([Employee]; [Employee]ID = vFind) ` Find the employee
DELETE RECORD ([Employee]) ` Delete the employee

End if

See Also
Locked, Triggers.

1194 4th Dimension Language Reference

Records in table Records

version 3
__

Records in table {(table)} → Number

Parameter Type Description
table Table → Table for which to return the number

of records, or Default table, if omitted

Function result Number ← Total number of records in the table

Description
Records in table returns the total number of records in table. Records in selection returns
the number of records in the current selection only. If Records in table is used within a
transaction, records created during the transaction will be taken into account.

Example
The following example displays an alert that shows the number of records in a table:

⇒ ALERT ("There are "+String(Records in table([People]))+" records in the table.")

See Also
Records in selection.

4th Dimension Language Reference 1195

Record number Records

version 3
__

Record number {(table)} → Number

Parameter Type Description
table Table → Table for which to return the

number of the current record, or
Default table, if omitted

Function result Number ← Current record number

Description
Record number returns the physical record number for the current record of table. If there
is no current record, such as when the record pointer is before or after the current
selection, Record number returns –1. If the record is a new record that has not been saved,
Record number returns –3.

Record numbers can change. The record numbers of deleted records are reused. Record
numbers will also change if you compact the database or perform a recover by tags
operation on the database using 4D Tools. During a transaction, a newly created record
has a temporary record number. After the transaction has been accepted, the record is
assigned a regular record number.

Example
The following example saves the current record number and then searches for any other
records that have the same data:

⇒ $RecNum:=Record number([People]) ` Get the record number
QUERY ([People]; [People]Last = [People]Last) ` Anyone else with the last name?

` Display an alert with the number of people with the same last name
ALERT ("There are "+String (Records in selection([People])+" with that name.")
GOTO RECORD ([People]; $RecNum) ` Go back to the same record

See Also
About Record Numbers, GOTO RECORD, Is new record, Selected record number, Sequence
number.

1196 4th Dimension Language Reference

GOTO RECORD Records

version 3
__

GOTO RECORD ({table; }record)

Parameter Type Description
table Table → Table in which to go to the record, or

Default table, if omitted
record Number → Number returned by Record number

Description
GOTO RECORD selects the specified record of table as the current record. The record
parameter is the number returned by the Record number function. After executing this
command, the record is the only record in the selection.

If record is less than the smallest record number in the database or greater than the
greatest record number in the database, 4th Dimension generates an error message stating
that the record number is out of range. If record is equal to the record number of a
deleted record, the selection becomes empty.

Note: With this command, you should not use temporary record numbers issued during
transactions.

Example
See the example for Record number.

See Also
About Record Numbers, Record number.

4th Dimension Language Reference 1197

Sequence number Records

version 2004.1 (Modified)
__

Sequence number {(table)} → Number

Parameter Type Description
table Table → Table for which to return the sequence number, or

Default table, if omitted

Function result Number ← Sequence number

Description
Sequence number returns the next sequence number for table. The sequence number is
unique for each table. It is a nonrepeating number that is incremented for each new
record created for the table. By default, the numbering starts at 1. You can change the
numbering for a table using the SET DATABASE PARAMETER command.

You should use the Sequence number function instead of the #N symbol if:
• You are creating records procedurally
• The sequence number needs to start at a number other than 1
• The sequence number needs an increment greater than 1
• The sequence number is part of a code, for example a part number code

To store the sequence number by means of a method, create a long integer field in the
table and assign the sequence number to the field.

The sequence number is the same number assigned by using the #N symbol as the default
value for a field in a form. For information on assigning default values, see the
4th Dimension Design Reference .

If the sequence number needs to start at a number other than 1, just add the difference to
Sequence number. For example, if the sequence number must start at 1000, you would use
the following statement to assign the number:

⇒ [Table1]Seq Field := Sequence number ([Table1]) + 999

1198 4th Dimension Language Reference

Example
The following example is part of a form method. It tests to see if this is a new record; i.e.,
if the invoice number is an empty string. If it is a new record, the method assigns an
invoice number. The invoice number is formed from two pieces of information: the
sequence number, and the operator’s ID, which was entered when the database was
opened. The sequence number is formatted as a 5-character string:

` If this is a new part number, create a new invoice number
If ([Invoices]Invoice No = "")

` The invoice number is a string that ends with the operator’s ID.
[Invoices]Invoice No:=String(Sequence number;"00000")+[Invoices]OpID

End if

See Also
About Record Numbers, Record number, Selected record number.

4th Dimension Language Reference 1199

About Record Numbers Records

version 3
__

There are three numbers associated with a record:
• Record number
• Selected record number
• Sequence number

Record Number
The record number is the absolute/physical record number for a record. The record
number is automatically assigned to each new record and remains constant for the record
until the record is deleted or the file is permanently reordered using 4D Tools. Record
numbers start at zero. Record numbers are not unique because record numbers of deleted
records are reused for new records. Record numbers also change when the file is
permanently reordered using 4D Tools or when the database is compacted or repaired.
New records added in transaction are assigned temporary record numbers. They are
assigned final record numbers when the transaction is validated.

Selected Record Number
The selected record number is the position of the record in the current selection, and so
depends on the current selection. If the selection is changed or sorted, the selected record
number will probably change. Numbering for the selected record number starts at one
(1).

Sequence Number
The sequence number is a unique nonrepeating number that may be assigned to a field of
a record. It is not automatically stored with each record. It starts at 1 and is incremented
for each new record that is created. Unlike record numbers, a sequence number is not
reused when a record is deleted or when a table is compacted, repaired, or permanently
reordered using 4D Tools. Sequence numbers provide a way to have unique ID numbers
for records. If a sequence number is incremented during a transaction, the number is not
decremented if the transaction is canceled.

Record Number Examples
__

The following tables illustrate the numbers that are associated with records. Each line in
the table represents information about a record. The order of the lines is the order in
which records would be displayed in an output form.

1200 4th Dimension Language Reference

• Data column: The data from a field in each record. For our example, it contains a
person’s name.
• Record Number column: The record’s absolute record number. This is the number
returned by the Record number function.
• Selected Record Number column: The record’s position in the current selection. This is
the number returned by the Selected record number function.
• Sequence Number column: The record’s unique sequence number. This is the number
returned by the Sequence number function when the record was created. This number is
stored in a field.

After the Records Are Entered
The first table shows the records after they are entered.
• The default order for the records is by record number.
• The record number starts at 0.
• The selected record number and the sequence number start at 1.

Data Record Number Selected Record Number Sequence Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Sam 3 4 4
Lisa 4 5 5

Note: The records remain in the default order after a command changes the current
selection without reordering it; for example, after the Show All menu command is chosen
in the User environment, or after the ALL RECORDS command is executed.

After the Records Are Sorted
The next table shows the same records sorted by name.
• The same record number remains associated with each record.
• The selected record numbers reflect the new position of the records in the sorted
selection.
• The sequence numbers never change, since they were assigned when each record was
created and are stored in the record.

Data Record Number Selected Record Number Sequence Number
Lisa 4 1 5
Sabra 2 2 3
Sam 3 3 4
Terri 1 4 2
Tess 0 5 1

4th Dimension Language Reference 1201

After a Record Is Deleted
The following table shows the records after Sam is deleted.
• Only the selected record numbers have changed. Selected record numbers reflect the
order in which the records are displayed.

Data Record Number Selected Record Number Sequence Number
Lisa 4 1 5
Sabra 2 2 3
Terri 1 3 2
Tess 0 4 1

After a Record Is Added
The next table shows the records after a new record has been added for Liz.
• A new record is added to the end of the current selection.
• Sam’s record number is reused for the new record.
• The sequence number continues to increment.

Data Record Number Selected Record Number Sequence Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Lisa 4 4 5
Liz 3 5 6

After the Selection is Changed and Sorted
The following table shows the records after the selection was reduced to three records and
then sorted.
• Only the selected record number associated with each record changes.

Data Record Number Selected Record Number Sequence Number
Sabra 2 1 3
Liz 3 2 6
Terri 1 3 2

See Also
Record number, Selected record number, Sequence number.

1202 4th Dimension Language Reference

PUSH RECORD Records

version 3
__

PUSH RECORD {(table)}

Parameter Type Description
table Table → Table for which to push record, or

Default table, if omitted

Description
PUSH RECORD pushes the current record of table (and its subrecords, if any) onto the
table’s record stack. PUSH RECORD may be executed before a record is saved.

If you push a record that was unlocked, this record stays locked for all the other processes
and users until you pop and unload it.

Example
The following example pushes the record for the customer onto the record stack:

⇒ PUSH RECORD ([Customer]) ` Push customer’s record onto stack

See Also
POP RECORD, Using the Record Stack.

4th Dimension Language Reference 1203

POP RECORD Records

version 3
__

POP RECORD {(table)}

Parameter Type Description
table Table → Table for which to pop record, or

Default table, if omitted

Description
POP RECORD pops a record belonging to table from the table’s record stack, and makes
the record the current record.

If you push a record, change the selection to not include the pushed record, and then pop
the record, the current record is not in the current selection. To designate the popped
record as the current selection, use ONE RECORD SELECT. If you use any commands that
move the record pointer before saving the record, you will lose the copy in memory.

Example
The following example pops the record for the customer off the record stack:

⇒ POP RECORD ([Customers]) ` Pop customer’s record onto stack

See Also
PUSH RECORD, Using the Record Stack.

1204 4th Dimension Language Reference

Using the Record Stack Records

version 3
__

The commands PUSH RECORD and POP RECORD allow you to put (“push”) records onto
the record stack, and to remove (“pop”) them from the stack.

Each process has its own record stack for each table. 4th Dimension maintains the record
stacks for you. Each record stack is a last-in-first-out (LIFO) stack. Stack capacity is limited
by memory.

PUSH RECORD and POP RECORD should be used with discretion. Each record that is
pushed uses part of free memory. Pushing too many records can cause an out-of-memory
or stack full condition.

4th Dimension clears the stack of any unpopped records when you return to the menu at
the end of execution of your method.

PUSH RECORD and POP RECORD are useful when you want to examine records in the
same file during data entry. To do this, you push the record, search and examine records
in the file (copy fields into variables, for example), and finally pop the record to restore
the record.

Note to version 3 users: While entering a record, if you have to check a multiple field
unique value, use the new SET QUERY DESTINATION command. This will save you the calls
to PUSH RECORD and POP RECORD that you were making before and after the call to
QUERY in order to preserve the data entered in the current record. SET QUERY
DESTINATION allows you to make a query that does not change the selection nor the
current record.

See Also
POP RECORD, PUSH RECORD, SET QUERY DESTINATION.

4th Dimension Language Reference 1205

1206 4th Dimension Language Reference

44

Relations

4th Dimension Language Reference 1207

1208 4th Dimension Language Reference

Relations Relations

version 6.0
__

The commands in this theme, in particular RELATE ONE and RELATE MANY, establish and
manage the automatic and non-automatic relations between tables. Before using any of
the commands in this theme, refer to the 4th Dimension Design Reference manual for
information about creating relations between tables.

Using Automatic Table Relations with Commands
__

Two tables can be related with automatic table relations. In general, when an automatic
table relation is established, it loads or selects the related records in a related table. Many
operations cause the relation to be established.

These operations include:
• Data entry
• Listing records on the screen in output forms
• Reporting
• Operations on a selection of records, such as queries, sorts, and applying a formula

To optimize performance, when 4th Dimension establishes automatic relations, only one
record becomes the current record for a table. For each of the operations listed above, the
related record is loaded according to the following principles:
• If a relation selects only one record of a related table, that record is loaded from disk.
• If a relation selects more than one record of a related table, a new selection of records is
created for that table, and the first record in that selection is loaded from disk.

For example, using the database structure displayed here, if a record for the [Employees]
table is loaded and displayed for data entry, the related record from the [Companies] table
is selected and is loaded. Similarly, if a record for the [Companies] table is loaded and
displayed for data entry, the related records from the [Employees] table are selected.

4th Dimension Language Reference 1209

In this database structure, the [Employees] table is referred to as the Many table, and the
[Companies] table is referred to as the One table. To remember this concept, think of
“there are many employees related to one company” and “each company has many
employees.”

Similarly, the Company field in the [Employees] table is referred to as the Many field, and
the Name field in the [Companies] table is referred to as the One field.

It is not always possible to have the related field be unique. For example, the
[Companies]Name field may have several company records containing the same value.
This non-unique situation can be easily handled by creating a relation, which will always
be unique, on another field in the related table. This field could be a company ID field.

The following table lists commands that use automatic relations to load related records
during operation of the command. All of the commands will use existing automatic
Many-to-One relations. Only those commands with Yes in the One-to-Many established
column below will use automatic One-to-Many relations.

Command One-to-Many established
ADD RECORD Yes
ADD SUBRECORD No
APPLY TO SELECTION No
DISPLAY SELECTION No
EXPORT DIF No
EXPORT SYLK No
EXPORT TEXT No
EXPORT DATA No
MODIFY RECORD Yes
MODIFY SUBRECORD No
MODIFY SELECTION Yes (in data entry)
ORDER BY No
ORDER BY FORMULA No
QUERY BY FORMULA Yes
QUERY SELECTION Yes
QUERY Yes
PRINT LABEL No
PRINT SELECTION Yes
QR REPORT No
SELECTION TO ARRAY No
SELECTION RANGE TO ARRAY No

1210 4th Dimension Language Reference

Using Commands to Establish Table Relations
__

Automatic relations do not mean that the related record or records for a table will be
selected simply because a command loads a record. In some cases, after using a command
that loads a record, you must explicitly select the related records by using RELATE ONE or
RELATE MANY if you need to access the related data.

Some of the commands listed in the previous table (such as the query commands) load a
current record after the task is completed. In this case, the record that is loaded does not
automatically select the records related to it. Again, if you need to access the related data,
you must explicitly select the related records by using RELATE ONE or RELATE MANY.

See Also
CREATE RELATED ONE, GET SERIAL PORT MAPPING, GET SERIAL PORT MAPPING, GET
SERIAL PORT MAPPING, OLD RELATED MANY, OLD RELATED ONE, RELATE MANY, RELATE
MANY SELECTION, RELATE ONE, RELATE ONE SELECTION, SAVE OLD RELATED ONE, SAVE
RELATED ONE, SET AUTOMATIC RELATIONS.

4th Dimension Language Reference 1211

SET AUTOMATIC RELATIONS Relations

version 2004 (Modified)
__

SET AUTOMATIC RELATIONS (one{; many})

Parameter Type Description
one Boolean → Status of all Many-to-One relations
many Boolean → Status of all One-to-Many relations

Description
SET AUTOMATIC RELATIONS temporarily changes all the manual relations into automatic
relations for the entire database. The relations stay automatic unless a subsequent call to
SET AUTOMATIC RELATIONS is made.

• If one is true, then all manual Many-to-One relations will become automatic. If one is
false, all previously changed Many-to-One relations will revert to manual relations.

• The same is true for the many parameter, except that manual One-to-Many relations are
affected.

Relations that are set as automatic in the Design environment are not affected by this
command.

If all relations have been set as manual in the Design environment, this command makes
it possible to change them to be automatic, just before executing operations that need the
relation to be automatic (such as relational searches and sorts). After the operation is
finished, the relation can be changed back to manual.

Examples
1. The following example makes all manual Many-to-One relations automatic and reverts
any previously changed One-to-Many relations:

⇒ SET AUTOMATIC RELATIONS (True; False)

See Also
GET AUTOMATIC RELATIONS, GET RELATION PROPERTIES, Relations, SELECTION RANGE TO
ARRAY, SELECTION TO ARRAY, SET FIELD RELATION.

1212 4th Dimension Language Reference

GET AUTOMATIC RELATIONS Relations

version 2004
__

GET AUTOMATIC RELATIONS (one; many)

Parameter Type Description
one Boolean ← Status of all Many-to-One relations
many Boolean ← Status of all One-to-Many relations

Description
The GET AUTOMATIC RELATIONS command lets you know if the automatic/manual status
of all manual many-to-one and one-to-many relations of the database have been modified
in the current process.

• one: This parameter returns True if a previous calll from the SET AUTOMATIC RELATIONS
command made all manual many-to-one relations automatic — for example, SET
AUTOMATIC RELATIONS(True;False).
This parameter returns False if the SET AUTOMATIC RELATIONS command has not been
called or if its previous execution did not modify manual many-to-one relations — for
example, SET AUTOMATIC RELATIONS(False;False).

• many: This parameter returns True if a previous call from the SET AUTOMATIC
RELATIONS command made all manual one-to-many relations automatic — for example,
SET AUTOMATIC RELATIONS(True;True).
This parameter returns False if the SET AUTOMATIC RELATIONS command has not been
called or if its previous execution did not modify manual one-to-many relations — for
example, SET AUTOMATIC RELATIONS(True;False).

Example
Refer to the example of the GET FIED RELATION command.

See also
GET FIELD RELATION, GET RELATION PROPERTIES, SET AUTOMATIC RELATIONS.

4th Dimension Language Reference 1213

SET FIELD RELATION Relations

version 2004
__

SET FIELD RELATION (manyTable | manyField; one; many)

Parameter Type Description
manyTable | manyField Table | Field → Starting table of relations or

Starting field of a relation
one Longint → Status of the Many-to-One relation starting

from the field or the Many-to-One relations
of thetable

many Longint → Status of the One-to-Many relation starting
from the field or the One-to-Many relations
of the table

Description
The SET FIELD RELATION command lets you set the automatic/manual status of each
relation of the database separately, regardless of its initial status as defined in the Relation
properties window in the Design environment.

In the first parameter, pass a table or field name:
• If you pass a field name (manyField), the command will only apply to the relation
starting from the specified Many field.
• If you pass a table name (manyTable), the command will apply to all the relations
starting from the specified Many table.
• If there is no relation starting from the manyField field or manyTable table, the one and
many parameters return 0, the syntax error No. 16 (“The field has no relation”) is
generated and the system variable OK is set to 0.

In the one and many parameters, pass the values indicating the changing of the
automatic/manual status to be applied respectively to the specified Many-to-One and One-
to-Many relation(s). You can use the constants of the “Relations” theme:
• Do not modify (0) = Do not modify the current status of the relation(s).
• Structure configuration (1) = Use the configuration set for the relation(s) in the
Structure window of the application.
• Manual (2) = Makes the relation(s) manual for the current process.
• Automatic (3) = Makes the relation(s) automatic for the current process.

Note: Changes made using this command only apply to the current process. The
configuration of the relations set using the options in the Relation properties window is
not modified.

1214 4th Dimension Language Reference

Example
This command makes the management of relations easier in the Quick report editor. In
previous versions of 4th Dimension, it was necessary to set all relations as automatic to
use them in the editor. Now, the following code allows setting only useful relations as
automatic:

SET AUTOMATIC RELATIONS(False;False) `Reset of the relations
`Only the following relations will be used

⇒ SET FIELD RELATION([Invoices]Cust_IDt;Automatic;Automatic)
⇒ SET FIELD RELATION([Invoice_Row]Invoice_ID;Automatic;Automatic)

QR REPORT([Invoices];Char(1);True;True;True)

See also
GET AUTOMATIC RELATIONS, GET FIELD RELATION, GET RELATION PROPERTIES, SET
AUTOMATIC RELATIONS.

4th Dimension Language Reference 1215

GET FIELD RELATION Relations

version 2004
__

GET FIELD RELATION (manyField; one; many{; *})

Parameter Type Description
manyField Field → Starting field of a relation
one Longint ← Status of the Many-to-One relation
many Longint ← Status of the One-to-Many relation
* * → • If passed: one and many return the current status

of the relation (values 2 or 3 only)
• If omitted (default): one and many can return the
value 1 if the relation has not been modified through
programming

Description
The GET FIELD RELATION command lets you find out the automatic/manual status of the
relation starting from manyField for the current process. You can view any relation,
including automatic relations set in the Structure window.

• In manyField, pass the name of theMany table field from which the relation whose
status you want to find out originates. If no relation originates from the manyField field,
the one et many parameters return 0, an error is returned and the system variable OK is set
to 0 (see below).

• After the command is executed, the one parameter contains a value indicating whether
the Many-to-One relation specified is set as automatic:

0 = There is no relation originating from manyField. Syntax error No. 16 (“The field has
no relation”) is generated and the system variable OK is set to 0.

1 = The automatic/manual status of the Many-to-One relation specified is that set by
the Auto Relate One option in the Relation properties of the Design environment (it has
not been modified by programming).

2 = The Many-to-One relation is manual for the process.
3 = The Many-to-One relation is automatic for the process.

• After the command is executed, the many parameter contains a value indicating
whether the One-to-Many relation specified is set as automatic:

0 = There is no relation originating from manyField. Syntax error No. 16 (“The field has
no relation”) is generated and the system variable OK is set to 0.

1 = The automatic/manual status of the One-to-Many relation specified is that set by
the Auto One to Many option in the Relation properties of the Design environment (it
has not been modified by programming).

2 = The One-to-Many relation is manual for the process.
3 = The One-to-Many relation is automatic for the process.

1216 4th Dimension Language Reference

You can compare the values returned in the one and many parameters with the constants
of the “Relations” theme:
Constant Type Value
No relation Longint 0
Structure configuration Longint 1
Manual Longint 2
Automatic Longint 3

• The optional * parameter lets you “force” the reading of the current status of the
relation, even if it has not been modified by programming. In other words, when you
pass the * parameter, only the values 2 or 3 can be returned in the one and many
parameters.

Example
Given the following structure:

The properties of the relation linking the [Employees]Company field to the
[Companies]Name field are the following:

4th Dimension Language Reference 1217

The following code illustrates the various possibilities offered by the GET FIELD RELATION,
GET AUTOMATIC RELATIONS, SET FIELD RELATION and SET AUTOMATIC RELATIONS
commands along with their effects:

GET AUTOMATIC RELATIONS(one;many) `returns False, False
⇒ GET FIELD RELATION([Employees]Company;one;many) `returns 1,1
⇒ GET FIELD RELATION([Employees]Company;one;many;*) `returns 3,2

 `changes Many-to-One relation to manual
SET FIELD RELATION ([Employees]Company;2;0)

⇒ GET FIELD RELATION([Employees]Company;one;many) `returns 2,1
⇒ GET FIELD RELATION([Employees]Company;one;many;*) `returns 2, 2

SET FIELD RELATION ([Employees]Company;1;0) `re-establishes the parameters set in
`Design environment for Many-to-One relation

⇒ GET FIELD RELATION([Employees]Company;one;many) `returns 1,1
⇒ GET FIELD RELATION([Employees]Company;one;many;*) `returns 3,2

 `changes all relations of all tables to automatic
SET AUTOMATIC RELATIONS(True;True)

GET AUTOMATIC RELATIONS(one;many) `returns True, True
⇒ GET FIELD RELATION([Employees]Company;one;many) `returns 1,1
⇒ GET FIELD RELATION([Employees]Company;one;many;*) `returns 3,3

See also
GET AUTOMATIC RELATIONS, GET RELATION PROPERTIES, SET AUTOMATIC RELATIONS, SET
FIELD RELATION.

1218 4th Dimension Language Reference

RELATE ONE Relations

version 3
__

RELATE ONE (manyTable | Field{; choiceField})

Parameter Type Description
manyTable | Field Table | Field → Table for which to establish all automatic

relations,
or Field with manual relation to one table

choiceField Field → Choice field from the one table

Description
RELATE ONE has two forms.

The first form, RELATE ONE(manyTable), establishes all automatic Many-to-One relations
for manyTable in the current process. This means that for each field in manyTable that has
an automatic Many-to-One relation, the command will select the related record in each
related table. This changes the current record in the related tables for the process.

The second form, RELATE ONE(manyField{;choiceField}), looks for the record related to
manyField. The relation does not need to be automatic. If it exists, RELATE ONE loads the
related record into memory, making it the current record and current selection for its
table.

The optional choiceField can be specified only if manyField is an Alpha field. The choiceField
must be a field in the related table. The choiceField must be an Alpha, Numeric, Date,
Time, or Boolean field; it cannot be a text, picture, BLOB, or subtable field.

If choiceField is specified and more than one record is found in the related table, RELATE
ONE displays a selection list of records that match the value in manyField. In the list, the
left column displays related field values, and the right column displays choiceField values.

More than one record may be found if manyField ends with the wildcard character (@). If
there is only one match, the list does not appear. Specifying choiceField is the same as
specifying a wildcard choice when establishing the table relation. For information about
specifying a wildcard choice, refer to the 4th Dimension Design Reference.

RELATE ONE works with relations to subtables, but you must have a relation to the parent
table and to the subtable’s related field in order for the relation to be properly established.
When using a relation to a subrecord, you must first use RELATE ONE to load the related
record into memory, then use a second RELATE ONE command for the subtable.

4th Dimension Language Reference 1219

Example
Let’s say you have an [Invoice] table related to a [Customers] table with two non-automatic
relations. One relation is from [Invoice]Bill to to [Customers]ID, and the other relation is
from [Invoice]Ship to to [Customers]ID.

Since both relations are to the same table, [Customers], you cannot obtain the billing and
shipment information at the same time. Therefore, displaying both addresses in a form
should be performed using variables and calls to RELATE ONE. If the [Customers] fields
were displayed instead, data from only one of the relations would be displayed.

The following two methods are the object methods for the [Invoice]Bill to and [Invoice]Ship
to fields. They are executed when the fields are entered.

Here is the object method for the [Invoice]Bill to field:

⇒ RELATE ONE ([Invoice]Bill to)
vAddress1 := [Customers]Address
vCity1 := [Customers]City
vState1 := [Customers]State
vZIP1 := [Customers]ZIP

Here is the object method for the [Invoice]Ship to field:

⇒ RELATE ONE ([Invoice]Ship to)
vAddress2 := [Customers]Address
vCity2 := [Customers]City
vState2 := [Customers]State
vZIP2 := [Customers]ZIP

See Also
OLD RELATED ONE, RELATE MANY.

1220 4th Dimension Language Reference

RELATE MANY Relations

version 3
__

RELATE MANY (oneTable | Field)

Parameter Type Description
oneTable | Field Table | Field → Table to establish all one-to-many relations, or

One Field

Description
RELATE MANY has two forms.

The first form, RELATE MANY(oneTable), establishes all One-to-Many relations for
oneTable. It changes the current selection for each table that has a One-to-Many relation
to oneTable. The current selections in the Many tables depend on the current value of
each related field in the One table. Each time this command is executed, the current
selections of the Many tables will be regenerated.

The second form, RELATE MANY(oneField), establishes the One-to-Many relation for
oneField. It changes the current selection for only those tables that have relations with
oneField. This means that the related records become the current selection for the Many
table.

Note: If the current selection in the One table is empty while the RELATE MANY
command is executed, it has no effect.

Example
In the following example, three tables are related with automatic relations. Both the
[People] table and the [Parts] table have a Many-to-One relation to the [Companies] table.

4th Dimension Language Reference 1221

This form for the [Companies] table will display related records from both the [People]
and [Parts] tables.

When the People and Parts forms are displayed, the related records for both the [People]
table and the [Parts] table are loaded and become the current selections in those tables.

On the other hand, the related records are not loaded if a record for the [Companies] table
is selected programmatically. In this case, you must use the RELATE MANY command.

Notes:
• When the RELATE MANY command is applied to an empty selection, the command is
not executed and the selection for the MANY table does not change.
• For the command to work, the foreign key fields (Many fields) must be indexed.

For example, the following method moves through each record of the [Companies] table.
An alert box is displayed for each company. The alert box shows the number of people in
the company (the number of related [People] records), and the number of parts they
supply (the number of related [Parts] records). In the example, the argument to the
ALERTcommand is printed on multiple lines for clarity.

1222 4th Dimension Language Reference

Note that the RELATE MANY command is needed, even though the relations are
automatic.

ALL RECORDS ([Companies]) ` Select all records in the table
ORDER BY ([Companies]; [Companies]Name) ` Order records in alphabetical order
For ($i; 1; Records in table ([Companies])) ` Loop once for each record

⇒ RELATE MANY ([Companies]Name) ` Select the related records
ALERT ("Company: "+[Companies]Name+Char (13)+"People in company: "
+String (Records in selection ([People]))+Char(13)+ "Number of parts they supply: "

+ String (Records in selection ([Parts])))
NEXT RECORD ([Companies]) ` Move to the next record

End for

See Also
OLD RELATED MANY, RELATE ONE.

4th Dimension Language Reference 1223

CREATE RELATED ONE Relations

version 3
__

CREATE RELATED ONE (field)

Parameter Type Description
field Field → Many field

Description
CREATE RELATED ONE performs two actions. If a related record does not exist for field (that
is, if a match is not found for the current value of field), CREATE RELATED ONE creates a
new related record.

To save a value in the appropriate field, assign values to the One field from the Many
field. Call SAVE RELATED ONE to save the new record.

If a related record exists, CREATE RELATED ONE acts just like RELATE ONE and loads the
related record into memory.

See Also
SAVE RELATED ONE.

1224 4th Dimension Language Reference

SAVE RELATED ONE Relations

version 3
__

SAVE RELATED ONE (field)

Parameter Type Description
field Field → Many field

Description
SAVE RELATED ONE saves the record related to field. Execute a SAVE RELATED ONE
command to update a record created with CREATE RELATED ONE, or to save modifications
to a record loaded with RELATE ONE.

SAVE RELATED ONE does not apply to subtables, because saving the parent record
automatically saves the subrecords.

SAVE RELATED ONE will not save a locked record. When using this command, you must
first be sure that the record is unlocked. If the record is locked, the command is ignored,
the record is not saved, and no error is returned.

See Also
CREATE RELATED ONE, Locked, RELATE ONE, Triggers.

4th Dimension Language Reference 1225

OLD RELATED ONE Relations

version 3
__

OLD RELATED ONE (field)

Parameter Type Description
field Field → Many field

Description
OLD RELATED ONE operates the same way as RELATE ONE does, except that OLD RELATED
ONE uses the old value of field to establish the relation.

Note: OLD RELATED ONE uses the old value of the Many field as returned by the Old
function. For more information, see the description of the Old command.

OLD RELATED ONE loads the record previously related to the current record. The fields in
that record can then be accessed. If you want to modify this old related record and save it,
you must call SAVE RELATED ONE. Note that there is no old related record for a newly
created record.

See Also
Old, OLD RELATED MANY, RELATE ONE, SAVE RELATED ONE.

1226 4th Dimension Language Reference

OLD RELATED MANY Relations

version 3
__

OLD RELATED MANY (field)

Parameter Type Description
field Field → One field

Description
OLD RELATED MANY operates the same way RELATE MANY does, except that OLD RELATED
MANY uses the old value in the one field to establish the relation.

Note: OLD RELATED MANY uses the old value of the many field as returned by the Old
function. For more information, see the description of the Old command.

OLD RELATED MANY changes the selection of the related table, and selects the first record
of the selection as the current record.

See Also
OLD RELATED ONE, RELATE MANY.

4th Dimension Language Reference 1227

RELATE ONE SELECTION Relations

version 6.0 (Modified)
__

RELATE ONE SELECTION (manyTable; oneTable)

Parameter Type Description
manyTable Table → Many table name (from which the relation starts)
oneTable Table → One table name (to which the relation refers)

Description
The RELATE ONE SELECTION command creates a new selection of records for the table
oneTable, based on the selection of records in the table manyTable.

This command can only be used if there is a relation from manyTable to oneTable. RELATE
ONE SELECTION can work across several levels of relations. There can be several related
tables between manyTable and oneTable. The relations can be manual or automatic.

Example
The following example finds all the clients whose invoices are due today.

Here is one way of creating a selection in the [Customers] table, given a selection of
records in the [Invoices] table:

CREATE EMPTY SET([Customers];"Payment Due")
QUERY([Invoices];[Invoices]DueDate = Current date)
While(Not(End selection([Invoices])))

RELATE ONE ([Invoices]CustID)
ADD TO SET([Customers];"Payment Due")
NEXT RECORD([Invoices])

End while

The following technique uses RELATE ONE SELECTION to accomplish the same result:

QUERY([Invoices];[Invoices]DueDate = Current date)
⇒ RELATE ONE SELECTION([Invoices];[Customers])

See Also
QUERY, RELATE MANY SELECTION, RELATE ONE, Sets.

1228 4th Dimension Language Reference

RELATE MANY SELECTION Relations

version 6.0 (Modified)
__

RELATE MANY SELECTION (field)

Parameter Type Description
field Field → Many table field (from which the relation starts)

Description
The RELATE MANY SELECTION command generates a selection of records in the Many
table, based on a selection of records in the One table.

Note: RELATE MANY SELECTION changes the current record for the One table.

Example
This example selects all invoices made to the customers whose credit is greater than or
equal to $1,000. The [Invoices] table field [Invoices]Customer ID relates to the [Customer]
table field [Customers]ID Number.

` Select the Customers
QUERY ([Customers];[Customers]Credit>=1000)

` Find all invoices related to any of these customers
RELATE MANY SELECTION ([Invoices]Customer ID)

See Also
QUERY, RELATE ONE, RELATE ONE SELECTION.

4th Dimension Language Reference 1229

1230 4th Dimension Language Reference

45

Resources

4th Dimension Language Reference 1231

1232 4th Dimension Language Reference

Resources Resources

version 2004 (Modified)
__

A resource is data of any kind stored in a defined format in a separate file or in the
resource fork of a Macintosh file. Resources typically include data such as strings, pictures,
icons and so on. As a matter of fact, you can create and use your own kinds of resources
and store whatever data you want into them.

Data Fork, Resource Fork and Resource file
__

Originally, on Macintosh, data and resources were stored in the same file, made of a data
fork and a resource fork. The data fork of a Macintosh file is the equivalent of a file on
Windows and UNIX. The resource fork of a Macintosh file contains the Macintosh-based
resources of the file and has no direct equivalent on Windows or UNIX.
Although this feature is still supported by 4th Dimension, now under Mac OS as well as
under Windows, the resources are stored in a separate file (in the data fork on Mac OS).
This principle is managed transparently by 4th Dimension and allows direct exchange of
files between the different platforms without conversion. For example, when you create a
new database, 4th Dimension creates a file with the suffix .rsr to store the structure file
resources and a file with the suffix .4dr to store the data file resources.
Resource file management commands (Create resource file and Open resource file) can
work directly within the data fork for a better cross-platform compatibility.

Resource Files
__

No matter what platform you are using, a 4D database structure file is not the only type
of file with resources. The 4D application itself uses resources, stored in a file suffixed
“.RSR”.

4D Plug-ins like 4D Write can also use resources.

It is also the case for the data file of a 4D database. For example, you can lock a data file
for exclusive use with a particular structure file. This operation is done in the application
Preferences dialog box and results with the creation of the same WEDD (“WEDD” for
“wedding”) resource in both the structure and data resource files.

Creating Your Own Resource Files
In addition to the resource files provided by 4D, you can create and use your own resource
files using the 4D commands Create resource file and Open resource file. These two
commands return a resource file reference number that uniquely identifies the open
resource file. The resource file reference number is the equivalent of the document
reference number for regular files returned by System documents commands such as
Open document. All the 4D Resources commands optionally expect a resource file
reference number. After you have finished with a resource file, remember to close it using
the command CLOSE RESOURCE FILE.

4th Dimension Language Reference 1233

The Resource Files Chain
__

When you work with a 4D database, you can either work with all the currently open
resource files or with a specific resource file.

Multiple resource files can be open at the same time. This is always the case from within a
4D database. The following files are open:
• On Macintosh, the System resource file.
• On Windows, the ASIPORT.RSR file (it contains part of the Macintosh system resources).
• The 4D application resource file.
• The database structure resource file.
• The database data file resource file may be optionally open.
• Finally, you can open your own resource file using the command Open resource file.

This list of open resource files is called the resource files chain. You can search for a given
resource in two ways:
• If you pass a resource file reference number to a resource 4D command, the resource is
searched for in that resource file only.
• If you do not pass a resource file reference number to a 4D Resource command, the
resource is searched for in all currently open resource files, starting with the most recently
opened file and ending with the first opened file. The resource files chain is thus browsed
in the reverse order of opening—the last opened resource file is examined first.

Here is an example:

$vhResFile:=Create resource file("Just_a_file")
If (OK=1)

ARRAY STRING(63;asSomeStrings;0)
STRING LIST TO ARRAY(8;asSomeStrings;$vhResFile)
ALERT("The size of the array is "+String(Size of array(asSomeStrings))+" element(s).")
STRING LIST TO ARRAY(8;asSomeStrings)
ALERT("The size of the array is "+String(Size of array(asSomeStrings))+" element(s).")
CLOSE RESOURCE FILE($vhResFile)

End if

At execution of this method, the first alert will display “The size of the array is 0
element(s)” and the second alert will display “The size of the array is 634 element(s)”.

The first call:

STRING LIST TO ARRAY(8;asSomeStrings;$vhResFile)

looks for the resource "STR#" ID=8 only in the resource file just created and open by the
call to Create resource file. Because the file is new and therefore empty, the resource is not
found.

1234 4th Dimension Language Reference

The second call:

STRING LIST TO ARRAY(8;asSomeStrings)

looks for the resource "STR#" ID=8 in all the currently open resource files. Since the file
just created and opened (by the call to Create resource file) does not contain that resource,
STRING LIST TO ARRAY then looks for the resource in the database structure resource file.
This resource file does not contain that resource either, so STRING LIST TO ARRAY then
examines the 4D resource file, locates the resource in this file, and populates the array
with it.

Conclusion: When working with resource files, if you want to access a specific file, make
sure to pass the resource file reference number to a 4D Resources command. Otherwise,
the command assumes that you do not care which file is the source of the resources.

Resource Type
__

A resource file is highly structured. In addition to the data of each resource, it contains a
header and a map that fully describe its contents.

Resources are classified by types. A resource type is always denoted by a 4-character string.
A resource type is both case sensitive and diacritical sensitive. For example, the resource
types “Hi_!”, “hi_!” and “HI_!” are all different.

Important: Resource types with lowercase characters are reserved for use by the Operating
System. Avoid designating your own resource types with lowercase characters.

The following is a list of some commonly-used resource types:
• A resource of type “STR#” is a resource containing a list of Pascal strings. This resource is
called a string list resource.
• A resource of type “STR ” (note the space as fourth character) is a resource containing an
individual Pascal string. This resource is called a string resource.
• A resource of type “TEXT” is a resource containing a text string without length. This
resource is called a text resource.
• A resource of type “PICT” is a resource containing a Macintosh-based QuickDraw picture
that you can use and display on both Macintosh and Windows with 4D. This resource is
called a picture resource.

• A resource of type “cicn” is a resource containing a Macintosh-based color icon that you
can use and display with 4D on both Macintosh and Windows. This resource is called a
color icon resource. For example, a “cicn” resource can be associated with an item of a
hierarchical list, using the command SET LIST ITEM PROPERTIES.

In addition to the standard resource types, you can create you own types. For example,
you can decide to work with resources of type “MTYP” (for “My Type”).

4th Dimension Language Reference 1235

To obtain the list of resource types currently present in all open resource files or in a
particular resource file, use the command RESOURCE TYPE LIST. Then, to obtain the list of
a specified type of resource present in all open resource files or in a particular resource file,
use the command RESOURCE LIST. This command returns the IDs and Names (see next
section) of all resources of a given type.

WARNING: Many applications rely on the resource type for working with its contents. For
example, while accessing a “STR#” resource, applications expect to find a string list in the
resource. Do NOT store inconsistent data in resources of standard types; this may lead to
system errors in your 4D application or in other applications.

WARNING: A resource is a highly structured file—do NOT access the file with commands
other than Resources commands. Note that nothing prevents you from passing a resource
file reference number (formally a 4D time expression like the document reference
number) to a command such as SEND PACKET. However, if you do so, you will probably
damage the resource file.

WARNING: A resource file can contain about up to 2,700 individual resources. Do NOT
attempt to exceed this limit. Note that nothing prevents you from doing so; however,
this will damage the resource file and make it unusable.

Resource Name and Resource ID
__

A resource has a resource name. A resource name can be up to 255 characters, and is
diacritical sensitive but not case sensitive. Resource names are useful for describing a
resource, but you access a resource using its type and ID number. Resource names are not
unique; several resources can have the same name.

A resource has a resource ID number (for short, resource ID or ID). This ID is unique
within a resource type and a resource file. For example:
• One resource file can contain a resource “ABCD” ID=1 and a resource “EFGH” ID=1.
• Two resource files can contain a resource with the same type and ID.

When you access a resource using a 4D command, you indicate its type and ID. If you do
not specify the resource file in which you are looking for this resource, the command
returns the occurrence of the resource found in the first examined resource file.
Remember that resource files are examined in the reverse order in which they have been
opened.

The range of a resource ID is -32,768..32,767.

Important: Use the range 15,000..32,767 for your own resources. Do NOT use negative
resource IDs; these are reserved for use by the Operating System. Do NOT use resource IDs
in the range 0..14,999; this range is reserved for use by 4th Dimension.

To obtain the IDs and names of a given resource type, use the command RESOURCE LIST.

1236 4th Dimension Language Reference

To obtain the name of an individual resource, use the command Get resource name.

To change the name of and individual resource, use the command SET RESOURCE NAME.

To obtain the current (actual) number for a resource installed by a 4D component, use the
command Get component resource ID.

As each 4D command optionally accepts a resource file reference number, you can easily
deal with resources having the same type and ID in two different resource files. The
following example copies all the “PICT” resources from one resource file to another:

` Open an existing resource file
$vhResFileA:=Open resource file("")
If (OK=1)

` Create a new resource file
$vhResFileB:=Create resource file("")
If (OK=1)

` Get the ID and Name lists of all the resources of type "PICT"
` located in the resource file A

RESOURCE LIST("PICT";$aiResID;$asResName;$vhResFileA)
` For each resource:

For($vlElem;1;Size of array($aiResID))
$viResID:=$aiResID{$vlElem}

` Load the resource from file A
GET RESOURCE ("PICT";$viResID;vxResData;$vhResFileA)

` If the resource could be loaded
If (OK=1)

` Add and write the resource into file B
SET RESOURCE ("PICT";$viResID;vxResData;$vhResFileB)

` If the resource could be added and written
If (OK=1)

` Copy also the name of the resource
SET RESOURCE NAME("PICT";$viResID;$asResName{$vlElem};

$vhResFileB)
` As well as its properties (see Resource Properties below)

$vlResAttr:=Get resource properties("PICT";$viResID;$vhResFileA)
SET RESOURCE PROPERTIES("PICT";$viResID;$vlResAttr;$vhResFileB)

Else
ALERT("The resource PICT ID="+String($viResID)+" could not be

added.")
End if

Else
ALERT("The resource PICT ID="+String($viResID)+" could not be loaded.")

End if
End for
CLOSE RESOURCE FILE($vhResFileB)

End if
CLOSE RESOURCE FILE($vhResFileA)

End if

4th Dimension Language Reference 1237

Resource Properties
__

Besides its type, name and ID, a resource has additional properties (also called attributes).
For example, a resource may or may not be purged. This attribute tells the Operating
System whether or not a loaded resource can be purged from memory when free memory
is required for allocating another object. As shown in the previous example, when
creating or copying a resource, it can be important to not only copy the resource, but also
its name and properties. For a complete explanation of resource properties, see the
description of the commands Get resource properties and SET RESOURCE PROPERTIES.

Handling Resource Contents
__

To load a resource of any type into memory, call GET RESOURCE, which returns the
contents of the resource in a BLOB.

To add or rewrite a resource on disk, call SET RESOURCE, which sets the contents of the
resource to the contents of the BLOB you pass.

To delete an existing resource, use the command DELETE RESOURCE.

To simplify handling of standard resource types, 4D provides additional built-in
commands that save you from having to parse a BLOB in order to extract the resource
data:
• STRING LIST TO ARRAY populates a String or Text array with the strings contained in a
string list resource.
• ARRAY TO STRING LIST creates or rewrites a string list resource with the elements of a
String or Text array.
• Get indexed string returns a particular string from a string list resource.
• Get string resource returns the string from a string resource.
• SET STRING RESOURCE creates or rewrites a string resource.
• Get text resource returns the text of a text resource.
• SET TEXT RESOURCE creates or rewrites a text resource.
• GET PICTURE RESOURCE returns the picture of a picture resource.
• SET PICTURE RESOURCE creates or rewrites a picture resource.
• GET ICON RESOURCE returns a color icon resource as a picture.

Note that these commands are provided to simplify manipulation of standard resource
types; however, they do not prevent you from using GET RESOURCE and SET RESOURCE
using BLOBs. For example, this line of code:

ALERT(Get text resource(20000))

is the shorter equivalent of:

GET RESOURCE("TEXT";20000;vxData)
If (OK=1)

$vlOffset:=0
ALERT(BLOB to text(vxData;Text without length;$vlOffset;BLOB Size(vxData)))

End if

1238 4th Dimension Language Reference

4D Commands and Resources
__

In addition to the Resources commands described in this chapter, there are other 4D
commands that work with resources and resource files:
• On Macintosh, DOCUMENT TO BLOB and BLOB TO DOCUMENT can load and write the
whole resource fork of a Macintosh file.
• Using the commands SET LIST ITEM PROPERTIES and SET LIST PROPERTIES, you can
associate picture or color icon resources to the items of a list or use color icon resources as
nodes of a list.
• The PLAY command plays “snd ” resources on both Macintosh and Windows.
• The SET CURSOR command changes the appearance of the mouse using “CURS”
resources.

See Also
BLOB Commands, Get component resource ID, OS Resource Manager Errors, Resources and
4D Insider: an Example.

4th Dimension Language Reference 1239

Resources and 4D Insider: an Example Resources

version 6.0
__

Resources are a very convenient way to deal with localization issues when developing and
maintaining a 4D database in different languages for the international market.

Let’s look at an example. The following figure shows the menu bar of a database in
English:

The title and menu items of the File and Edit menus already refer to resources (they
appear in italics), while the Examples menu, that is composed of the menu items
Hierarchical Lists and Picture Menus, does not.

Using 4D Insider, it is possible to transform the literals of the menu bar into references to
strings stored in STR# resources. Let’s see how to perform this operation.

Note: 4D Insider is the 4D cross-reference, components and library management tool
delivered with 4D Developer Edition.

1240 4th Dimension Language Reference

1. Open the database using 4D Insider. The following figure shows the menu bar in the
4D Insider browser window:

2. At this point, the menu bar can be transformed to refer to a STR# resource. To do so,
select Text to STR# from the 4D Insider Tools Menu:

The TEXT to STR# resource dialog box appears and you can enter the resource name and
ID.

4th Dimension Language Reference 1241

For example, Examples Menu can be the resource name and 20000 the resource ID:

3. Click New then OK. The resource is created.

4. Select STR# in the pop-up menu of the browser window's main list:

5. Double-click the STR# 20000 list item. Its contents are displayed in the preview area.

Now that these strings are stored in a resource, it is possible to change their values
without tampering with the logic of your database development.

1242 4th Dimension Language Reference

6. To change the values, select Edit STR# from the 4D Insider Tools menu while the
Examples Menu resource is selected in the main list of the browser window:

 The STR# resource editing window appears:

7. Translate the strings to another language. In the following figure, the strings have
been translated to French:

4th Dimension Language Reference 1243

8. Once you have performed the translation, close the window. Click Yes in the confirm
dialog box:

9. At this point, quit 4D Insider and reopen the database with 4th Dimension. The 4D
Design environment Menu Bar editor now shows the menu bar with the references to the
resources in French:

Refer to the 4D Insider documentation for more information about this process. In
addition, for more information about using references to resources in menus bars as well
as objects in your database forms, refer to the 4th Dimension Design Reference manual.

1244 4th Dimension Language Reference

The 4D Resources commands enable you to use the resources created by 4D Insider.
The following method uses the STRING LIST TO ARRAY command to load the STR#
resource (created using 4D Insider) into an array:

In the Debugger window, you can see that the array is populated with the strings
translated in 4D Insider:

See Also
Resources.

4th Dimension Language Reference 1245

Open resource file Resources

version 2004 (Modified)
__

Open resource file (resFilename{; fileType}) → DocRef

Parameter Type Description
resFilename String → Short or long name of resource file, or

Empty string for standard Open File dialog box
fileType String → Mac OS file type (4-character string), or

Windows file extension (1- to 3-character string), or
All files, if omitted

Function result DocRef ← Resource file reference number

Description
The Open resource file command opens the resource file whose name or pathname you
pass in resFileName.

If you pass a filename, the file should be located in the same folder as the structure file of
the database. Pass a pathname to open a resource file located in another folder.

If you pass an empty string in resFileName, the Open File dialog box is presented. You can
then select the resource file to open. If you cancel the dialog, no resource file is open;
Open resource file returns a null DocRef and sets the OK variable to 0.

By default, the command opens the resource fork of the file passed as parameter. If it is
empty, the command opens the data fork of the file and accesses any resources found
there. For more information, refer to the Resources section.

If the resource file is opened correctly, Open resource file returns its resource file reference
number and sets the OK variable to 1. If the resource file does not exist, or if the file you
try to open is not a resource file, an error is generated.

On Macintosh, if you use the Open File dialog box, all files are presented by default. To
show a particular type of file, specify the file type in the optional fileType parameter.

On Windows, if you use the Open File dialog box, all files are presented by default. To
show a particular type of file, in fileType, pass a 1- to 3-character Windows file extension or
a Macintosh file type mapped using the command MAP FILE TYPES.

Remember to call CLOSE RESOURCE FILE for the resource file. Note, however, that when
you quit the application (or open another database), 4D automatically closes all the
resource files you opened using Open resource file or Create resource file .

1246 4th Dimension Language Reference

Unlike the Open document command, which opens a document with exclusive read-write
access by default, Open resource file does not prevent you from opening a resource file
already open from within the 4D session. For example, if you try to open the same
document twice using Open document, an I/O error will be returned at second attempt.
On the other hand, if you try to open a resource file already open from within the 4D
session, Open resource file will return the resource file reference number to the file already
open. Even if you open a resource file several times, you need to call CLOSE RESOURCE FILE
once in order to close that file. Note that this is permitted if the resource file is open from
within the 4D session; if you try open a resource file already opened by another
application, you will get an I/O error.

WARNING
• It is forbidden to access a 4D application resource file as well as a 4D Runtime merged
database resource file.
• Although it is technically possible, you are advised not to use the database structure
resource file because your code will not work if the database is compiled and merged with
4D Runtime.
However, if you access and intend to programmatically add, delete or modify its resources,
be sure to test the environment in which you are running. With 4D Server, this will
probably lead to serious issues. For example, if you modify a resource on the server
machine (via a database method or a stored procedure), you will definitely affect the built-
in 4D Server administration service that distributes resources (transparently) to the
workstations. Note that with 4D Client, you do not have direct access to the structure file;
it is located on the server machine.
• For these reasons, if you use resources, store them in your own files.
• When working with your own resources, do NOT use negative resource IDs; they are
reserved for use by the Operating System. Do NOT use resource IDs in the range
0..14,999; this range is reserved for use by 4th Dimension. Use the range 15,000..32,767
for your own resources. Remember that once you have opened a resource file, it will be
the first file to be searched in the resource files chain. If you store a resource in that file
with an ID in the range of system or 4D resources, this resource will be found by
commands such as GET RESOURCE and also by internal routines of the 4D application.
This may be the result you want to achieve, but if you are not sure, do NOT use these
ranges, as they may lead to system errors.
• Resource files are highly structured files and cannot accept more than 2,700 resources
per file. If you work with files containing a large number of resources, it is a good idea to
test that number before adding new resources to a file. See the Count resources examples
listed for the command RESOURCE TYPE LIST.

After you have opened a resource file, you can analyze the contents of the file using the
commands RESOURCE TYPE LIST and RESOURCE LIST.

4th Dimension Language Reference 1247

Examples
1. The following example tries to open, on Windows, the resource file “MyPrefs.res”
located in the database folder:

⇒ $vhResFile:=Open resource file("MyPrefs";"res ")

On Macintosh, the example tries to open the file “MyPrefs”.

2. The following example tries to open, on Windows. the resource file “MyPrefs.rsr”
located in the database folder:

⇒ $vhResFile:=Open resource file("MyPrefs";"rsr")

On Macintosh, the example tries to open the file “MyPrefs”.

3. The following example displays the Open file dialog box showing all types of files:

⇒ $vhResFile:=Open resource file("")

4. The following example displays the Open file dialog box showing files created by the
Create resource file command, using the default file type:

⇒ $vhResFile:=Open resource file("";"res ")
If (OK=1)

ALERT("You just opened “"+Document+"”.")
CLOSE RESOURCE FILE($vhResFile)

End if

See Also
CLOSE RESOURCE FILE, Create resource file, Resources.

System Variables and Sets
If the resource file is successfully opened, the OK variable is set to 1. If the resource file
could not be opened or if the user clicked Cancel in the Open file dialog box, the OK
variable is set to 0 (zero).

If the resource file is successfully opened using the Open file dialog box, the Document
variable is set to the pathname of the file.

Error Handling
If the resource file could not be opened due to a resource or I/O problem, an error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

1248 4th Dimension Language Reference

Create resource file Resources

version 2004 (Modified)
__

Create resource file (resFilename{; fileType{; *}}) → DocRef

Parameter Type Description
resFilename String → Short or long name of resource file, or

empty string for standard Save File dialog box
fileType String → Mac OS file type (4-character string), or

Windows file extension (1- to 3-character string), or
Resource ("res " / .RES) document, if omitted

* → If passed = Use data fork

Function result DocRef ← Resource file reference number

Description
The Create resource file command creates and opens a new resource file whose name or
pathname is passed in resFileName.

If you pass a filename, the file will be located in the same folder as the structure file of the
database. Pass a pathname to create a resource file located in another folder.

If the file already exists and is not currently open, Create resource file overrides it with a
new empty resource file. If the file is currently open, an I/O error is returned.

If you pass an empty string in resFileName, the Save File dialog box is presented. You can
then choose the location and the name of the resource file to be created. If you cancel
the dialog, no resource file is created; Create resource file returns a null DocRef and sets the
OK variable to 0.

If the resource file is correctly created and opened, Create resource file returns its resource
file reference number and sets the OK variable to 1. If the resource file cannot be created,
an error is generated.

On Macintosh, the default file type for a file created with Create resource file is “res ”.
On Windows, the default file extension is “.res”. To create a file of another type:
• On Macintosh, pass the file type in the optional parameter fileType.
• On Windows, in fileType, pass a 1- to 3-character Windows file extension or a Macintosh
file type mapped using the command MAP FILE TYPES.

By default, if the * parameter is omitted, the command creates and opens the file resource
fork. When this parameter is passed, the command creates and opens the file data fork
(readable on both Mac OS and Windows platforms). For more information, refer to the
Resources topic.

4th Dimension Language Reference 1249

Remember to call CLOSE RESOURCE FILE for the resource file. Note, however, when you
quit the application (or open another database), 4D automatically closes all the resource
files you opened using Create resource file or Open resource file.

Examples
1. The following example tries to create and open on Windows, the resource file
“MyPrefs.res” located in the database folder:

⇒ $vhResFile:=Create resource file("MyPrefs";*)

On Macintosh, the example tries to create and open the file “MyPrefs”.

2. The following example tries to create and open, on Windows, the resource file
“MyPrefs.rsr” located in the database folder:

⇒ $vhResFile:=Create resource file("MyPrefs";"rsr")

On Macintosh, the example tries to create and open the file “MyPrefs”.

3. The following example displays the Save File dialog box:

⇒ $vhResFile:=Create resource file("")
If (OK=1)

ALERT("You just created “"+Document+"”.")
CLOSE RESOURCE FILE($vhResFile)

End if

See Also
CLOSE RESOURCE FILE, ON ERR CALL, Open resource file, Resources.

System Variables and Sets
If the resource file is successfully created and opened, the OK variable is set to 1. If the
resource file could not be created or if the user clicked Cancel in the Save File dialog box,
the OK variable is set to 0 (zero).

If the resource file is successfully created and opened through the Save File dialog box, the
Document variable is set to the pathname of the file.

Error Handling
If the resource file could not be created or opened due to a resource or I/O problem, an
error is generated. You can catch this error with an error-handling method installed using
ON ERR CALL.

1250 4th Dimension Language Reference

CLOSE RESOURCE FILE Resources

version 6.0
__

CLOSE RESOURCE FILE (resFile)

Parameter Type Description
resFile DocRef → Resource file reference number

Description
The command CLOSE RESOURCE FILE closes the resource file whose reference number is
passed in resFile.

Even if you have opened the same resource file several times, you need to call CLOSE
RESOURCE FILE only once in order to close that file.

If you apply CLOSE RESOURCE FILE to the 4D application or database resource files, the
command detects it and does nothing.

If you pass an invalid resource file reference number, the command does nothing.

Remember to eventually call CLOSE RESOURCE FILE for a resource file that you have
opened using Open Resource file or Create resource file. Note that when you quit the
application (or open another database), 4D automatically closes all the resource files you
opened.

Example
The following example creates a resource file, adds a string resource and closes the file:

$vhDocRef:=Create resource file("Just a file")
If (OK=1)

SET STRING RESOURCE(20000;"Just a string";$vhDocRef)
⇒ CLOSE RESOURCE FILE($vhDocRef)

End if

See Also
Create resource file, Open resource file.

System Variables and Sets
None is affected.

4th Dimension Language Reference 1251

RESOURCE TYPE LIST Resources

version 6.0
__

RESOURCE TYPE LIST (resTypes{; resFile})

Parameter Type Description
resTypes String Array ← List of available resource types
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Description
The command RESOURCE TYPE LIST populates the array resTypes with the resource types
of the resources present in the resource files currently open.

If you pass a valid resource file reference number in the optional parameter resFile, only
the resources from that file are listed. If you do not pass the parameter resFile, all the
resources from the current open resource files are listed.

You can predeclare the array resTypes as a String or Text array before calling RESOURCE
TYPE LIST. If you do not predeclare the array, the command creates resTypes as a Text
array.

After the call, you can test the number of resource types found by applying the command
Size of array to the array resTypes.

Examples
1. The following example populates the array atResType with the resource types of the
resources present in all the resource files currently open:

⇒ RESOURCE TYPE LIST(atResType)

2. The following example tells you if the Macintosh 4D structure file you are using
contains old 4D plug-ins that will need to be updated in order to use the database on
Windows:

$vhResFile:=Open resource file(Structure file)
⇒ RESOURCE TYPE LIST(atResType;$vhResFile)

If (Find in array(atResType;"4DEX")>0)
 ALERT("This database contains old model Mac OS 4D plug-ins."+(Char(13)*2)+

"You will have to update them for using this database on Windows.")
End if

Note: The structure file is not the only file where old version plug-ins can be stored. The
database can also include a Proc.Ext file.

1252 4th Dimension Language Reference

3. The following project method returns the number of resources present in a resource
file:

` Count resources project method
` Count resources (Time) -> Long
` Count resources (DocRef) -> Number of resources

C_LONGINT($0)
C_TIME($1)

$0:=0
⇒ RESOURCE TYPE LIST($atResType;$1)

For ($vlElem;1;Size of array($atResType))
RESOURCE LIST($atResType{$vlElem};$alResID;$atResName;$1)
$0:=$0+Size of array($alResID)

End for

Once this project method is implemented in a database, you can write:

$vhResFile:=Open resource file("")
If (OK=1)

ALERT("The file “"+Document+"” contains "+String(Count resources ($vhResFile))
+" resource(s).")

CLOSE RESOURCE FILE($vhResFile)
End if

See Also
RESOURCE LIST.

4th Dimension Language Reference 1253

RESOURCE LIST Resources

version 6.0
__

RESOURCE LIST (resType; resIDs; resNames{; resFile})

Parameter Type Description
resType String → 4-character resource type
resIDs LongInt Array ← Resource ID numbers for resources of this type
resNames String Array ← Resource names for resources of this type
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Description
The command RESOURCE LIST populates the arrays resIDs and resNames with the resource
IDs and names of the resources whose type is passed in resType.

Important: You must pass a 4-character string in resType.

If you pass a valid resource file reference number in the optional parameter resFile, only
the resources from that file are listed. If you do not pass the parameter resFile, all resources
from the current open resource files are listed.

If you predeclare the arrays before calling RESOURCE LIST, you must predeclare resIDs as a
Longint array and resNames as a String or Text array. If you do not predeclare the arrays,
the command creates resIDs as a Longint array and resNames as a Text array.

After the call, you can test the number of resources found by applying the command Size
of array to the array resIDs or resNames.

Examples
1. The following example populates the arrays $alResID and $atResName with the IDs and
names of the string list resources present in the structure file of the database:

If (On Windows)
$vhStructureResFile:=Open resource file(Replace string(Structure file;".4DB";

".RSR"))
Else

$vhStructureResFile:=Open resource file(Structure file)
End if
If (OK=1)

⇒ RESOURCE LIST("STR#";$alResID;$atResName;$vhStructureResFile)
End if

1254 4th Dimension Language Reference

2. The following example copies the picture resources present in all currently open
resource files into the Picture Library of the database:

⇒ RESOURCE LIST("PICT";$alResID;$atResName)
Open window(50;50;550;120;5;"Copying PICT resources...")
For ($vlElem;1;Size of array($alResID))

GET PICTURE RESOURCE($alResID{$vlElem};$vgPicture)
If (OK=1)

$vsName:=$atResName{$vlElem}
If ($vsName="")

$vsName:="PICT resID="+String($alResID{$vlElem})
End if
ERASE WINDOW
GOTO XY(2;1)
MESSAGE("Adding picture “"+$vsName+"” to the DB Picture library.")
SET PICTURE TO LIBRARY($vgPicture;$alResID{$vlElem};$vsName)

End if
End for
CLOSE WINDOW

See Also
RESOURCE TYPE LIST.

4th Dimension Language Reference 1255

STRING LIST TO ARRAY Resources

version 6.0
__

STRING LIST TO ARRAY (resID; strings{; resFile})

Parameter Type Description
resID Number → Resource ID number
strings String array → String or Text array to receive the strings

← Strings from the STR# resource
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Description
The command STRING LIST TO ARRAY populates the array strings with the strings stored in
the string list ("STR#") resource whose ID is passed in resID.

If the resource is not found, the array strings is left unchanged and the OK variable is set
to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Before calling STRING LIST TO ARRAY, you can predeclare the array strings as a String or
Text array. If you do not predeclare the array, the command creates strings as a Text array.

Note: Each string of a string list resource can contain up to 255 characters.

Tip: Limit your use of string list resources to those up to 32K in total size, and a maximum
of a few hundred strings per resource.

Example
See example for the command ARRAY TO STRING LIST.

See Also
ARRAY TO STRING LIST, Get indexed string, Get string resource, Get text resource.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

1256 4th Dimension Language Reference

ARRAY TO STRING LIST Resources

version 6.0
__

ARRAY TO STRING LIST (strings; resID{; resFile})

Parameter Type Description
strings String array → String or Text array

(new contents for the STR# resource)
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The command ARRAY TO STRING LIST creates or rewrites the string list (“STR#”) resource
whose ID is passed in resID. The contents of the resource are created from the strings
passed in the array strings. The array can be a String or Text array.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: Each string of a string list resource can contain up to 255 characters.

Tip: Limit your use of string list resources to resources no more than 32K in total size, and
a maximum of a few hundred strings maximum per resource.

Example
Your database relies on a given set of fonts.

In the On Exit Database Method, you write:

` On Exit Database Method
If (◊vbFontsAreOK)

FONT LIST($atFont)
$vhResFile:=Open resource file("FontSet")
If (OK=1)

⇒ ARRAY TO STRING LIST($atFont;15000;$vhResFile)
CLOSE RESOURCE FILE($vhResFile)

End if
End if

4th Dimension Language Reference 1257

In the On Startup Database Method, you write:

` On Startup Database Method
◊vbFontsAreOK:=False
FONT LIST($atNewFont)
If (Test path name("FontSet")#Is a document)

$vhResFile:=Create resource file("FontSet")
Else

$vhResFile:=Open resource file("FontSet")
End if
If (OK=1)

STRING LIST TO ARRAY(15000;$atOldFont;$vhResFile)
If (OK=1)

◊vbFontsAreOK:=True
For($vlElem;1;Size of array($atNewFont))

If ($atNewFont{$vlElem}#$atOldFont{$vlElem}))
$vlElem:=MAXLONG
◊vbFontsAreOK:=False

End if
End for

Else
◊vbFontsAreOK:=True

End if
CLOSE RESOURCE FILE($vhResFile)

End if
If(Not(◊vbFontsAreOK))

CONFIRM("You are not using the same font set, OK?")
If(OK=1)

◊vbFontsAreOK:=True
Else

QUIT 4D
End if

End if

See Also
SET STRING RESOURCE, SET TEXT RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

1258 4th Dimension Language Reference

Get indexed string Resources

version 6.0
__

Get indexed string (resID; strID{; resFile}) → String

Parameter Type Description
resID Number → Resource ID number
strID Number → String number
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Function result String ← Value of the indexed string

Description
The command Get indexed string returns one of the strings stored in the string list
(“STR#”) resource whose ID is passed in resID.

You pass the number of the string in strID. The strings of a string list resource are
numbered from 1 to N. To get all the strings (and their numbers) of a string list resource,
use the command STRING LIST TO ARRAY.

If the resource or the string within the resource is not found, an empty string is returned
and the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A string of a string list resource can contain up to 255 characters.

Example
See example for the command Month of.

See Also
Get string resource, Get text resource, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1259

Get string resource Resources

version 6.0
__

Get string resource (resID{; resFile}) → String

Parameter Type Description
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Function result String ← Contents of the STR resource

Description
The command Get string resource returns the string stored in the string (“STR ”) resource
whose ID is passed in resID.

If the resource is not found, an empty string is returned and the OK variable is set to 0
(zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A string resource can contain up to 255 characters.

Example
The following example displays the contents of the string resource ID=20911, which
must be located in at least one of the currently open resource files:

⇒ ALERT (Get string resource(20911))

See Also
Get indexed string, Get text resource, SET STRING RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

1260 4th Dimension Language Reference

SET STRING RESOURCE Resources

version 6.0
__

SET STRING RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number → Resource ID number
resData String → New contents for the STR resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The command SET STRING RESOURCE creates or rewrites the string (“STR ”) resource
whose ID is passed in resID with the string passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: A string resource can contain up to 255 characters.

See Also
Get string resource, SET TEXT RESOURCE.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1261

Get text resource Resources

version 6.0
__

Get text resource (resID{; resFile}) → Text

Parameter Type Description
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Function result Text ← Contents of the TEXT resource

Description
The command Get text resource returns the text stored in the text (“TEXT”) resource
whose ID is passed in resID.

If the resource is not found, empty text is returned, and the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A text resource can contain up to 32,000 characters.

Example
The following example displays the contents of the text resource ID=20800, which must
be located in at least one of the currently open resource files:

⇒ ALERT (Get text resource(20800))

See Also
Get indexed string, Get string resource, SET TEXT RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

1262 4th Dimension Language Reference

SET TEXT RESOURCE Resources

version 6.0
__

SET TEXT RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number → Resource ID number
resData String → New contents for the TEXT resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The command SET TEXT RESOURCE creates or rewrites the text (“TEXT”) resource whose
ID is passed in resID with the text or string passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: A text resource can contain up to 32,000 characters.

See Also
Get text resource, SET STRING RESOURCE.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1263

GET PICTURE RESOURCE Resources

version 6.0
__

GET PICTURE RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number → Resource ID number
resData Field or Var. → Picture field or variable to receive the picture

← Contents of the PICT resource
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Description
The command GET PICTURE RESOURCE returns in the picture field or variable resData the
picture stored in the picture (“PICT”) resource whose ID is passed in resID.

If the resource is not found, the resData parameter is left unchanged, and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A picture resource can be at least several megabytes in size.

Example
See example for the command RESOURCE LIST.

See Also
GET ICON RESOURCE, ON ERR CALL, SET PICTURE RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

Error Handling
If there is not enough memory to load the picture, an error is generated. You can catch
this error with an error-handling method installed using ON ERR CALL.

1264 4th Dimension Language Reference

SET PICTURE RESOURCE Resources

version 6.0
__

SET PICTURE RESOURCE (resID; resData{; resFile})

Parameter Type Description

resID Number → Resource ID number
resData Picture → New contents for the PICT resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description

The command SET PICTURE RESOURCE creates or rewrites the picture (“PICT”) resource
whose ID is passed in resID with the picture passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top of the resource
files chain (the last resource file opened).

If you pass in resData an empty picture field or variable, the command has no effect and
the OK variable is set to 0.

Note: A picture resource can be several megabytes in size and even more.

See Also

GET PICTURE RESOURCE.

System Variables and Sets

If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1265

GET ICON RESOURCE Resources

version 6.0
__

GET ICON RESOURCE (resID; resData{; fileRef})

Parameter Type Description
resID Number → Icon resource ID number
resData Picture → Picture field or variable to receive the picture

← Contents of the cicn resource
fileRef Number → Resource file reference number, or

all open resource files, if omitted

Description
The command GET ICON RESOURCE returns, in the picture field or variable resData, the
icon stored in the color icon (“cicn”) resource whose ID is passed in resID.

If the resource is not found, the resData parameter is left unchanged and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Example
The following example loads, in a Picture array, the color icons located in the active 4D
application:

If (On Windows)
$vh4DResFile:=Open resource file(Replace string(Application file;".EXE";".RSR"))

Else
$vh4DResFile:=Open resource file(Application file)

End if
RESOURCE LIST("cicn";$alResID;$asResName;$vh4DResFile)
$vlNbIcons:=Size of array($alResID)
ARRAY PICTURE(ag4DIcon;$vlNbIcons)
For ($vlElem;1;$vlNbIcons)

⇒ GET ICON RESOURCE($alResID{$vlElem};ag4DIcon{$vlElem};$vh4DResFile)
End for

1266 4th Dimension Language Reference

After this code has been executed, the array looks like this when displayed in a form:

See Also
GET PICTURE RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1267

GET RESOURCE Resources

version 6.0
__

GET RESOURCE (resType; resID; resData{; resFile})

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resData BLOB → BLOB field or variable to receive the data

← Contents of the resource
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Description
The GET RESOURCE command returns in the BLOB field or variable resData the contents
of the resource whose type and ID is passed in resType and resID.

Important: You must pass a 4-character string in resType.

If the resource is not found, the resData parameter is left unchanged and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A resource can be at least several megabytes in size.

Platform independence: Remember that you are working with Mac OS-based resources.
No matter what the platform, internal resource data such as Long Integer is stored using
Macintosh byte ordering. On Windows, the data for standard resources (such as string list
and pictures resources) is automatically byte swapped when necessary. On the other hand,
if you create and use your own internal data structures, it is up to you to byte swap the
data you extract from the BLOB (i.e., passing Macintosh byte ordering to a command such
as BLOB to longint).

Example
See the example for the command SET RESOURCE.

1268 4th Dimension Language Reference

See Also
BLOB Commands, Resources, SET RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

Error Handling
If there is not enough memory to load the resource, an error is generated. You can catch
this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 1269

SET RESOURCE Resources

version 6.0
__

SET RESOURCE (resType; resID; resData{; resFile})

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resData BLOB → New contents for the resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The SET RESOURCE command creates or rewrites the resource whose type and ID is passed
in resType and resID with the data passed in the BLOB resData.

Important: You must pass a 4-character string in resType.

If the resource cannot be written, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top of the resource
files chain (the last resource file opened).

Note: A resource can be at least several megabytes in size.

Platform independence: Remember that you are working with Mac OS-based resources.
No matter what the platform, internal resource data such as Long Integer is stored using
Macintosh byte ordering. On Windows, the data for standard resources (such as string list
and pictures resources) is automatically byte swapped when necessary. On the other hand,
if you create and use your own internal data structures, it it up to you to byte swap the
data you write into the BLOB (i.e., passing Macintosh byte ordering to a command such as
LONGINT TO BLOB).

Example
During a 4D session you maintain some user preferences in interprocess variables. To save
these preferences from session to session, you can:
1. Use the commands SAVE VARIABLES and LOAD VARIABLES to store and retrieve the
variables in variable documents on disk.
2. Use the commands VARIABLE TO BLOB, BLOB TO DOCUMENT, DOCUMENT TO BLOB
and BLOB TO VARIABLE to store and retrieve the variables in BLOB documents on disk.
3. Use the commands VARIABLE TO BLOB, SET RESOURCE, GET RESOURCE and BLOB TO
VARIABLE to to store and retrieve the variables in resource files on disk.

1270 4th Dimension Language Reference

The following is an example of the third method. In the On Exit Database Method you
write:

` On Exit Database Method
If (Test path name("DB_Prefs")#Is a document)

$vhResFile:=Create resource file("DB_Prefs")
Else

$vhResFile:=Open resource file("DB_Prefs")
End if
If (OK=1)

VARIABLE TO BLOB(◊vbAutoRepeat;$vxPrefData)
VARIABLE TO BLOB(◊vlCurTable;$vxPrefData;*)
VARIABLE TO BLOB(◊asDfltOption;$vxPrefData;*)

` and so on...
⇒ SET RESOURCE("PREF";26500;$vxPrefData;$vhResFile)

CLOSE RESOURCE FILE($vhResFile)
End if

In the On Startup Database Method you write:
` On Startup Database Method

C_BOOLEAN(◊vbAutoRepeat)
C_LONGINT(◊vlCurTable)
$vbDone:=False
$vhResFile:=Open resource file("DB_Prefs")
If (OK=1)

⇒ GET RESOURCE("PREF";26500;$vxPrefData;$vhResFile)
If (OK=1)

$vlOffset:=0
BLOB TO VARIABLE($vxPrefData;◊vbAutoRepeat;$vlOffset)
BLOB TO VARIABLE($vxPrefData;◊vlCurTable;$vlOffset)
BLOB TO VARIABLE($vxPrefData;◊asDfltOption;$vlOffset)

` and so on...
$vbDone:=True

End if
CLOSE RESOURCE FILE($vhResFile)

End if
If(Not($vbDone))

◊vbAutoRepeat:=False
◊vlCurTable:=0
ARRAY STRING(127;◊asDfltOption;0)

End if

See Also
BLOB Commands, GET RESOURCE.

System Variables and Sets
If the resource is written, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 1271

Get resource name Resources

version 6.0
__

Get resource name (resType; resID{; resFile}) → String

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Function result String ← Name of the resource

Description
The command Get resource name returns the name of the resource whose type is passed
in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, Get resource name returns an empty string and sets the OK
variable to 0 (zero).

Example
The following project method copies a resource, and its resource name and attributes,
from one resource file to another:

` COPY RESOURCE Project Method
` COPY RESOURCE (String ; Long ; Time ; Time)
` COPY RESOURCE (resType ; resID ; srcResFile ; dstResFile)

C_STRING (4;$1)
C_LONGINT ($2)
C_TIME ($3;$4)
C_BLOB ($vxResData)
GET RESOURCE ($1;$2;$vxData;$3)
If (OK=1)

SET RESOURCE ($1;$2;$vxData;$4)
If (OK=1)

⇒ SET RESOURCE NAME ($1;$2; Get resource name ($1;$2;$3);$4)
SET RESOURCE PROPERTIES ($1;$2; Get resource properties ($1;$2;$3);$4)

End if
End if

1272 4th Dimension Language Reference

Once this project method is present in your application, you can write:
` Copy the resource 'DATA' ID = 15000 from file A to file B

COPY RESOURCE ("DATA";15000;$vhResFileA;$vhResFileB)

See Also
SET RESOURCE PROPERTIES.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

4th Dimension Language Reference 1273

SET RESOURCE NAME Resources

version 6.0
__

SET RESOURCE NAME (resType; resID; resName{; resFile})

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resName String → New name for the resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The command SET RESOURCE NAME changes the name of the resource whose type is
passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, SET RESOURCE NAME does nothing and sets the OK variable
to 0 (zero).

WARNING: DO NOT change the names of resources that belong to 4D or to any System
files. If you do so, you may provoke undesired system errors.

Note: Resource names can be up to 255 characters in length. They are not case sensitive,
but are diacritical sensitive.

Example
See example for the command Get resource name.

See Also
SET RESOURCE PROPERTIES.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist, otherwise it is set to 1.

1274 4th Dimension Language Reference

Get resource properties Resources

version 6.0
__

Get resource properties (resType; resID{; resFile}) → Number

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

all open resource files, if omitted

Function result Number ← Resource attributes

Description
The command Get resource properties returns the attributes of the resource whose type is
passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, Get resource properties returns 0 (zero) and sets the OK
variable to 0 (zero).

The numeric value returned by Get resource properties must be seen as a bit field value
whose bits have special meaning. For a description of the resource attributes and their
effects, please refer to the command SET RESOURCE PROPERTIES.

Example
See example for the command Get resource name.

See Also
SET RESOURCE NAME.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

4th Dimension Language Reference 1275

SET RESOURCE PROPERTIES Resources

version 6.0
__

SET RESOURCE PROPERTIES (resType; resID; resAttr{; resFile})

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resAttr Number → New attributes for the resource
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The command SET RESOURCE PROPERTIES changes the attributes of the resource whose
type is passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, SET RESOURCE PROPERTIES does nothing and sets the OK
variable to 0 (zero).

The numeric value you pass in resAttr must be seen as a bit field value whose bits have
special meaning. The following predefined constants are provided by 4th Dimension:

Constant Type Value
System heap resource mask Long Integer 64
System heap resource bit Long Integer 6
Purgeable resource mask Long Integer 32
Purgeable resource bit Long Integer 5
Locked resource mask Long Integer 16
Locked resource bit Long Integer 4
Protected resource mask Long Integer 8
Protected resource bit Long Integer 3
Preloaded resource mask Long Integer 4
Preloaded resource bit Long Integer 2
Changed resource mask Long Integer 2
Changed resource bit Long Integer 1

Using these constants, you can build any resource attributes value. See examples below.

1276 4th Dimension Language Reference

Resource Attributes and Their Effects

• System heap
If this attribute is set, the resource will be loaded into the system memory rather than
into 4D memory. You should not use this attribute, unless you really know what you are
doing.

• Purgeable
If this attribute is set, after the resource has been loaded, you can purge it from memory if
space is required for allocation of other data. Since you load resources into 4D BLOBs, it is
a good idea to have all your own resources purgeable in order to reduce memory usage.
However, if you frequently access this resource during a working session, you might want
to make it non-purgeable in order to reduce disk access due to frequent reloading of a
purged resource.

• Locked
If this attribute is set, you will not be able to relocate the resource (unmovable) after it is
loaded into memory. A locked resource cannot be purged even if it is purgeable. Locking a
resource has the undesirable effect of fragmenting the memory space. DO NOT use this
attribute, unless you really know what you are doing.

• Protected
If this attribute is set, you can no longer change the name, ID number or the contents of
a the resource. You can no longer delete this resource. However, you can call SET
RESOURCE PROPERTIES to clear this attribute; then you can again modify or delete the
resource. Most of the time, you will not use this attribute. Note: This attribute has no
effect on Windows.

• Preloaded
If this attribute is set, the resource is automatically loaded into memory if the resource file
where it is located is open. This attribute is useful for optimizing resource loading when a
resource file is opened. Most of the time, you will not use this attribute.

• Changed
If this attribute is set, the resource is marked as “must be saved on disk” when the
resource file where it is located is closed. Since the 4D command SET RESOURCE handles
the writing and rewriting of resources internally, you should not use this attribute, unless
you really know what you are doing.

You will usually use the attribute purgeable and, more rarely, Preloaded and Protected.

WARNING: DO NOT change the attributes of resources that belong to 4D or to any
System files. If you do so, you may provoke undesired system errors.

4th Dimension Language Reference 1277

Examples
1. See example for the command Get resource name.

2. The following example makes the resource 'STR#' ID=17000 purgeable, but leaves the
other attributes unchanged:

$vlResAttr:=Get resource properties ('STR#';17000;$vhResFile)
SET RESOURCE PROPERTIES('STR#';17000;$vlResAttr ?+ Purgeable resource bit;

$vhMyResFile)

3. The following example makes the resource 'STR#' ID=17000 preloaded and non
purgeable:

SET RESOURCE PROPERTIES('STR#';17000;Preloaded resource mask;$vhResFile)

4. The following example makes the resource 'STR#' ID=17000 preloaded but purgeable:

SET RESOURCE PROPERTIES('STR#';17000;Preloaded resource mask+
Purgeable resource mask;$vhResFile)

See Also
SET RESOURCE NAME.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

1278 4th Dimension Language Reference

DELETE RESOURCE Resources

version 6.0
__

DELETE RESOURCE (resType; resID{; resFile})

Parameter Type Description
resType String → 4-character resource type
resID Number → Resource ID number
resFile DocRef → Resource file reference number, or

current resource file, if omitted

Description
The DELETE RESOURCE command deletes the resource whose type is passed in resType and
whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass resFile, the resource is searched for
within the current open resource files.

If the resource does not exist, DELETE RESOURCE does nothing and sets the OK variable to
0 (zero). If the resource is found and deleted, the OK variable is set to 1.

WARNING: DO NOT delete resources that belong to 4D or to any System files. If you do
so, you may provoke undesired system errors.

Examples
1. The following example deletes the resource "STR#" ID=20000:

` Note that this example will delete the first "STR#" ID=20000 resource
` found in any resource file currently open:

⇒ DELETE RESOURCE ("STR#";20000)

2. The following example deletes the resource "STR#" ID=20000 if it is found in a specified
resource file:

` Note that this example will delete the resource "STR#" ID=20000
` only if it is present in the resource file specified by $vhResFile:

⇒ DELETE RESOURCE ("STR#";20000;$vhResFile)
` Note also that if there is such a resource in a currently open
` resource file other than that specified by $vhResFile, this resource
` is left untouched

4th Dimension Language Reference 1279

3. The project method DELETE RESOURCES OF TYPE deletes all the resources of the type
specified (as the second parameter) from the resource file specified (as the first
parameter):

` DELETE RESOURCES OF TYPE Project Method
` DELETE RESOURCES OF TYPE (Time ; String)
` DELETE RESOURCES OF TYPE (resFile ; resType)

C_TIME($1)
C_STRING(4;$2)

RESOURCE LIST($2;$aiResID;$asResName;$1)
If(OK=1)

For($vlElem;1;Size of array($aiResID))
⇒ DELETE RESOURCE($2;$aiResID{$vlElem};$1)

End for
End if

After this project method is present in a database, you can write:

` Delete all the resource of type "PREF" from the resource file $vhResFile
DELETE RESOURCES OF TYPE ($vhResFile;"PREF")

4. The project method DELETE RESOURCE BY NAME deletes a resource (of a specific type)
whose name is known:

` DELETE RESOURCE BY NAME Project Method
` DELETE RESOURCE BY NAME (Time ; String ; String)
` DELETE RESOURCE BY NAME (resFile ; resType ; resName)

C_TIME($1)
C_STRING(4;$2)
C_STRING(255;$3)

RESOURCE LIST($2;$aiResID;$asResName;$1)
If(OK=1)

$vlElem:=Find in array($asResName;$3)
If($vlElem>0)

⇒ DELETE RESOURCE($2;$aiResID{$vlElem};$1)
End for

End if

1280 4th Dimension Language Reference

After this project method is present in a database, you can write:

` Delete, from the resource file $vhResFile, the resource "PREF" whose name is
` “Standard Settings”:

DELETE RESOURCE BY NAME ($vhResFile;"PREF";"Standard Settings")

See Also
RESOURCE LIST, SET RESOURCE PROPERTIES.

System Variables and Sets
The OK variable is set to 0 if the resource does not exist. If the resource has been deleted,
the OK variable is set to 1.

4th Dimension Language Reference 1281

Get component resource ID Resources

version 6.7
__

Get component resource ID (compName; resType; originalResNum) → Number

Parameter Type Description
compName String (32) → Component name referencing the resource
resType String (4) → Resource type (4 characters), PICT or STR#
originalResNum Number → Resource original number before component

installation

Function result Number ← Current resource number

Description
The command Get component resource ID allows component developers to verify that
their customized PICT or STR# resource calls will be properly executed even though the
resource numbers have been modified while installing the component.
Indeed, when 4D Insider installs a component requiring its own resources, the application
can automatically renumber these new resources if some database resources already have
the same ID.

Note: For further information on components in 4th Dimension, refer to the 4D Insider
documentation.

The command Get component resource ID reveals the current (actual) number for each
resource used by a component, based on its type and its original number.

In compName, you put the component name using a given resource.

In resType, you put the resource type (4 characters only). The Get component resource ID
command only accepts resources of type PICT and STR#.

Note: Pictures stored in the Picture Library are NOT managed by the Get component
resource ID command. To use Picture Library pictures in a 4D component, you must call
the GET PICTURE FROM LIBRARY command and pass a String (picture name) as a first
parameter. For more information, refer to the GET PICTURE FROM LIBRARY command
description.

Put in originalResNum the original resource number, i.e. the number defined at the design
stage.

The function then returns the current resource ID used by the database.

If no resource matches originalResNum, Get component resource ID returns the value
entered for originalResNum.

1282 4th Dimension Language Reference

Example
The code below does not guarantee that the resource calls will be made properly:

` If the resources are renumbered, this call will not be correct
vResNumb := 15000
STRING LIST TO ARRAY(vResNumb; stringArray;resFile)

We strongly advise you to use the following portion of code:

` This call will be correct in any case
⇒ vResNumb :=Get component resource ID ("Mycomp";"STR#";15000)

STRING LIST TO ARRAY(vResNumb; stringArray; resFile)

See Also
GET SERIAL INFORMATION.

4th Dimension Language Reference 1283

1284 4th Dimension Language Reference

46

Secured Protocol

4th Dimension Language Reference 1285

1286 4th Dimension Language Reference

GENERATE ENCRYPTION KEYPAIR Secured Protocol

version 6.7
__

GENERATE ENCRYPTION KEYPAIR (privKey; pubKey{; length})

Parameter Type Description
privKey BLOB ← BLOB to contain the private key
pubKey BLOB ← BLOB to contain the public key
length Longint → Key length (bits) [386...1024]

Default value = 512

Description
The command GENERATE ENCRYPTION KEYPAIR generates a new pair of RSA keys. The
security system offered in 4D is based on keys designed to encrypt/decrypt information.
They can be used within the SSL protocol, with 4D Web server (encryption and secured
communications) and in all databases (for data encryption).

Once the command has been executed, the BLOBs passed in privKey and pubKey
parameters contain a new pair of encryption keys.

The optional parameter length can be used to set the key size (in bits). The larger the key,
the more difficult it is to break the encryption code.
However, large keys require longer execution or reply time, especially within a SSL
connection.
By default (if the length parameter is omitted), the generated key size is set to 512 bits,
which is a good compromise for the security/efficiency ratio. To increase the security
factor, you can change keys more often, for example every six months.
You can generate 1024 bits keys to increase the encryption security but the Web
application connections will be slowed down.

Notes:
• If you generate keys in order to establish a SSL certificate request, pay attention to the
fact that only 512 bits and 1024 bits key length are admitted.
• Many browsers will not accept keys with a length greater than 512 bits. Additionaly, the
"Export" version of the encryption system library which is provided by default by 4D,
Inc., does not provide support for key length greater than 512 bits. For more
information, please refer to the section Using SSL Protocol).

This command will generate keys at the PKCS standard format, which means that their
content can be copied/pasted in an email without any change. Once the pair of keys has
been generated, a text document can be produced (using the BLOB TO DOCUMENT
command for example) and the keys can be stored in a safe place.

Warning: The private key should always be kept secret.

4th Dimension Language Reference 1287

About RSA, private key and public key
The RSA cipher used by GENERATE ENCRYPTION KEYPAIR is based on a double key
encryption system: a private key and a public key. As indicated by its name, the public
key can be given to a third person and used to decrypt information. The public key is
matched with a unique private key, used to encrypt the information. Thus, the private
key is used for encryption; the public key for decryption (or vice versa). The information
encrypted with one key can only be decrypted with the other one.
The SSL protocol encryption functionalities are based on this principle, the public key
being included in the certificate sent to the browsers (for more information, see the
section Using SSL Protocol).

This encryption mode is also used by the first syntax of the ENCRYPT BLOB and DECRYPT
BLOB commands. The public key should be confidentially published.
It is possible to mix the public and private keys from two persons to encrypt information
so that the recipient is the only person to be able to decrypt them and the sender is the
only person to have encrypted them. This principle is given by the two commands
ENCRYPT BLOB and DECRYPT BLOB second syntax.

Example
See example for command ENCRYPT BLOB.

See Also
DECRYPT BLOB, ENCRYPT BLOB, GENERATE CERTIFICATE REQUEST.

1288 4th Dimension Language Reference

GENERATE CERTIFICATE REQUEST Secured Protocol

version 6.7
__

GENERATE CERTIFICATE REQUEST (privKey; certifRequest; codeArray; nameArray)

Parameter Type Description
privKey BLOB → BLOB containing the private key
certifRequest BLOB ← BLOB receiving the certificate request
codeArray Longint Array → Information code list
nameArray String Array → Name list

Description
The command GENERATE CERTIFICATE REQUEST generates a certificate request at the PKCS
format which can be directly used by certificate authorities such as Verisign(R). The
certificate plays an important part in the SSL secured protocol. It is sent to each browser
connecting in SSL mode. It contains the “ID card” of the Web site (made from the
information entered in the command), as well as its public key allowing the browsers to
decrypt the received information. Furthermore, the certificate contains various
information added by the certificate authority which guarantees its integrity.

Note: For more information on the SSL protocol use with 4D Web server, refer to the
section Using SSL Protocol.

The certificate request uses keypairs generated with the command GENERATE
ENCRYPTION KEYPAIR and contains various information. The certificate authority will
generate its certificate combining this request with other parameters.

Pass in privKey a BLOB containing the private key generated with the command
GENERATE ENCRYPTION KEYPAIR.

Pass in certifRequest an empty BLOB. Once the command has been executed, it contains
the certificate request at the PKCS format. You can store this request in a text file, for
example using the BLOB TO DOCUMENT command, to submit it to the certificate
authority.

Warning: The private key is used to generate the request but should NOT be sent to the
certificate authority.

4th Dimension Language Reference 1289

The arrays codeArray (long integer) and nameArray (string) should be filled respectively
with the code numbers and the information content required by the certificate authority.
The required codes and names may change according to the certificate authority and the
certificate use. However, within a normal use of the certificate (Web server connections
via SSL), the arrays should contain the following items:

Information to provide codeArray nameArray (Examples)
CommonName 13 www.4D.com
CountryName (two letters) 14 US
LocalityName 15 San Jose
StateOrProvinceName 16 California
OrganizationName 17 4D, Inc.
OrganizationUnit 18 Web Administrator

The code and information content entering order does not matter, however the two
arrays must be synchronized: if the third item of the codeArray contains the value 15
(locality name), the nameArray third item should contain this information, in our
example San Jose.

Example
A “Certificate request” form contains the six fields necessary for a standard certificate
request. The Generate button creates a document on disk containing the certificate
request. The “Privatekey.txt” document containing the private key (generated with the
GENERATE ENCRYPTION KEYPAIR command) should be on the disk:

1290 4th Dimension Language Reference

Here is the Generate button method:

` bGenerate Object Method

C_BLOB($vbprivateKey;$vbcertifRequest)
C_LONGINT($tableNum)
ARRAY LONGINT($tLCodes;6)
ARRAY STRING(80;$tSInfos;6)

$tableNum:=Table(Current form table)
For ($i;1;6)

$tSInfos{$i}:= Field($tableNum;$i)->
$tLCodes{$i}:=$i+12

End for
If (Find in array($tSInfos;"") # -1)

ALERT ("All fields should be filled.")
Else

ALERT ("Select your private key.")
$vhDocRef:=Open document("")
If(OK=1)

CLOSE DOCUMENT($vhDocRef)
DOCUMENT TO BLOB(Document;$vbprivateKey)

⇒ GENERATE CERTIFICATE REQUEST($vbPrivateKey;$vbcertifRequest;$tLCodes;
$tSInfos)

BLOB TO DOCUMENT ("Request.txt";$vbcertifRequest)
Else

ALERT ("Invalid private key.")
End if

End if

See Also
GENERATE ENCRYPTION KEYPAIR.

4th Dimension Language Reference 1291

1292 4th Dimension Language Reference

47

Selection

4th Dimension Language Reference 1293

1294 4th Dimension Language Reference

ALL RECORDS Selection

version 3
__

ALL RECORDS {(table)}

Parameter Type Description
table Table → Table for which to select all records, or

Default table, if omitted

Description
ALL RECORDS selects all the records of table for the current process. ALL RECORDS makes
the first record the current record and loads the record from disk. ALL RECORDS returns
the records to the default record order, which is the order in which the records are stored
on disk.

Example
The following example displays all the records from the [People] table:

⇒ ALL RECORDS ([People]) ` Select all the records in the table
DISPLAY SELECTION ([People]) ` Display records in output form

See Also
DISPLAY SELECTION, MODIFY SELECTION, ORDER BY, QUERY, Records in selection, Records
in table.

4th Dimension Language Reference 1295

Records in selection Selection

version 3
__

Records in selection {(table)} → Number

Parameter Type Description
table Table → Table for which to return number of selected records,

or Default table, if omitted

Function result Number ← Records in selection of table

Description
Records in selection returns the number of records in the current selection of table. In
contrast, Records in table returns the total number of records in the table.

Example
The following example shows a loop technique commonly used to move through all the
records in a selection. The same action can also be accomplished with the APPLY TO
SELECTION command:

FIRST RECORD ([People]) ` Start at first record in the selection
⇒ For ($vlRecord; 1; Records in selection ([People])) ` Loop once for each record

Do Something ` Do something with the record
NEXT RECORD ([People]) ` Move to the next record

End for

See Also
Records in table.

1296 4th Dimension Language Reference

DELETE SELECTION Selection

version 5
__

DELETE SELECTION {(table)}

Parameter Type Description
table Table → Table for which to delete the current selection, or

Default table, if omitted

Description
DELETE SELECTION deletes the current selection of records from table. If the current
selection is empty, DELETE SELECTION has no effect. After the records are deleted, the
current selection is empty. Records that are deleted during a transaction are locked to
other users and other processes until the transaction is validated or canceled.

Warning: Deleting a selection of records is a permanent operation, and cannot be undone.

The Completely Delete option in the Table Properties dialog box allows you to increase
the speed of deletions when DELETE SELECTION is used.

Examples
1. The following example displays all the records from the [People] table and allows the
user to select which ones to delete. The example has two sections. The first is a method to
display the records. The second is an object method for a Delete button. Here is the first
method:

ALL RECORDS ([People]) ` Select all records
OUTPUT FORM ([People]; "Listing") ` Set the form to list the records
DISPLAY SELECTION ([People]) ` Display all records

The following is the object method for the Delete button, which appears in the Footer
area of the output form. The object method uses the records the user selected (the
UserSet) to delete the selection. Note that if the user did not select any records, DELETE
SELECTION has no effect.

` Confirm that the user really wants to delete the records
CONFIRM("You selected "+String(Records in set ("UserSet"))+" people to delete."

+Char(13)+"Click OK to Delete them.")
If (OK=1)

USE SET ("UserSet") ` Use the records chosen by the user
⇒ DELETE SELECTION([People]) ` Delete the selection of records

End if
ALL RECORDS ([People]) ` Select all records

4th Dimension Language Reference 1297

2. If a locked record is encountered during the execution of DELETE SELECTION, that
record is not deleted. Any locked records are put into a set called LockedSet. After DELETE
SELECTION has executed, you can test the LockedSet to see if any records were locked. The
following loop will execute until all the records have been deleted:

Repeat ` Repeat for any locked records
⇒ DELETE SELECTION([ThisTable])

If (Records in set("LockedSet")#0) ` If there are locked records
USE SET ("LockedSet") ` Select only the locked records

End if
Until (Records in set("LockedSet")=0) ` Until there are no more locked records

See Also
DISPLAY SELECTION, MODIFY SELECTION, Record Locking, Sets.

1298 4th Dimension Language Reference

Selected record number Selection

version 3
__

Selected record number {(table)} → Number

Parameter Type Description
table Table → Table for which to return the selected record number

or Default table, if omitted

Function result Number ← Selected record number of current record

Description
Selected record number returns the position of the current record within the current
selection of table.

If the selection is not empty and if the current record is within the selection, Selected
record number returns a value between 1 and Records in selection. If the selection is empty,
of if there is no current record, it returns 0 (zero).

The selected record number is not the same as the number returned by Record number,
which returns the physical record number in the table. The selected record number
depends on the current selection and the current record.

Example
The following example saves the current selected record number in a variable:

⇒ CurSelRecNum:=Selected record number([People]) ` Get the selected record number

See Also
About Record Numbers, GOTO SELECTED RECORD, Records in selection.

4th Dimension Language Reference 1299

GOTO SELECTED RECORD Selection

version 2004 (Modified)
__

GOTO SELECTED RECORD ({table; }record)

Parameter Type Description
table Table → Table in which to go to the selected record, or

Default table, if omitted
record Number → Position of record in the selection

Description
GOTO SELECTED RECORD moves to the specified record in the current selection of table
and makes that record the current record. The current selection does not change. The
record parameter is not the same as the number returned by Record number; it represents
the record’s position in the current selection. The record’s position depends on how the
selection is made and whether or not the selection is sorted.

If there are no records in the current selection, or the number is not in the selection,
then GOTO SELECTED RECORD does nothing.

If you pass 0 in position, there will no longer be a current record in table. When the
“single” selection mode is chosen, this allows you to deselect all the records in a list, in
particular in the case of included subforms.

Example
The following example loads data from the field [People]Last Name into the atNames
array. An array of long integers, called alRecNum, is filled with numbers that will represent
the selected record numbers. Both arrays are then sorted:

` Make any selection for the [People] table here
` ...
` Get the names

SELECTION TO ARRAY ([People]Last Name;atNames)
` Create an array for the selected record numbers

$vlNbRecords:=Size of array (atNames)
ARRAY LONGINT (alRecNum;$vlNbRecords)
For ($vlRecord; 1; $vlNbRecords)

alRecNum{$vlRecord}:=$vlRecord
End for

` Sort the arrays in alphabetical order
SORT ARRAY (atNames; alRecNum; >)

1300 4th Dimension Language Reference

If the atNames array is displayed in a scrollable area, the user can click one of the items.
Since the sorting of the two arrays is synchronized, any element in alRecNum provides
the selected record number for the record whose name is stored in the corresponding
element in atNames.

The following object method for atNames selects the correct record in the [People]
selection, according to the name chosen in the scrollable area:

Case of
: (Form event=On Clicked)

If (atNames#0)
⇒ GOTO SELECTED RECORD (alRecNum{atNames})

End if
End case

See Also
Selected record number.

4th Dimension Language Reference 1301

FIRST RECORD Selection

version 3
__

FIRST RECORD {(table)}

Parameter Type Description
table Table → Table for which to move to the first selected record,

or Default table, if omitted

Description
FIRST RECORD makes the first record of the current selection of table the current record,
and loads the record from disk. All query, selection, and sorting commands also set the
current record to the first record. If the current selection is empty or if the current record
is already the first record of the selection, FIRST RECORD has no effect.

This command is most often used after the USE SET command to begin looping through a
selection of records from the first record. However, you can also call it from a subroutine
if you are not sure whether or not the current record is actually the first.

Example
The following example makes the first record of the [Customers] table the first record:

⇒ FIRST RECORD ([Customers])

See Also
Before selection, End selection, LAST RECORD, NEXT RECORD, PREVIOUS RECORD.

1302 4th Dimension Language Reference

Displayed line number Selection

version 2004
__

Displayed line number → Longint

Parameter Type Description
This command does not require any parameters

Function result Longint ← Number of row being displayed

Description
The Displayed line number command only works with the On Display Detail form event. It
returns the number of the row being processed while a list of records is displayed on
screen. If Displayed line number is called other than when displaying a list, it returns 0.

If the displayed row is not empty (when it is linked to a record), the value returned by
Displayed line number is identical to the value returned by Selected record number.

Like Selected record number, Displayed line number starts at 1.This command is useful if
you want to process each row of a list form displayed on screen, including empty rows.

Example
This example lets you apply an alternating color to a list form displayed on screen, even
for rows without records:

`List form method
If (Form event=On Display Detail)

⇒ If (Displayed line number % 2 = 0)
`Black on white for even row text

SET RGB COLORS([Table 1]Field1; -1; 0x00FFFFFF)
Else

`Black on light blue for odd row text
SET RGB COLORS([Table 1]Field1; -1; 0x00E0E0FF)

End if
End if

4th Dimension Language Reference 1303

NEXT RECORD Selection

version 3
__

NEXT RECORD {(table)}

Parameter Type Description
table Table → Table for which to move to the next selected

record, or Default table, if omitted

Description
NEXT RECORD moves the current record pointer to the next record in the current
selection of table for the current process. If the current selection is empty, or if Before
selection or End selection is TRUE, NEXT RECORD has no effect.

If NEXT RECORD moves the current record pointer past the end of the current selection,
End selection returns TRUE, and there is no current record. If End selection returns TRUE,
use FIRST RECORD, LAST RECORD, or GOTO SELECTED RECORD to move the current record
pointer back into the current selection.

Example
See the example for DISPLAY RECORD.

See Also
Before selection, End selection, FIRST RECORD, LAST RECORD, PREVIOUS RECORD.

1304 4th Dimension Language Reference

LAST RECORD Selection

version 3
__

LAST RECORD {(table)}

Parameter Type Description
table Table → Table for which to move to the last selected

record, or Default table, if omitted

Description
LAST RECORD makes the last record of the current selection of table the current record
and loads the record from disk. If the current selection is empty, LAST RECORD has no
effect.

Example
The following example makes the last record of the [People] table the current record:

⇒ LAST RECORD ([People])

See Also
Before selection, End selection, FIRST RECORD, NEXT RECORD, PREVIOUS RECORD.

4th Dimension Language Reference 1305

PREVIOUS RECORD Selection

version 3
__

PREVIOUS RECORD {(table)}

Parameter Type Description
table Table → Table for which to move to the

previous selected record, or
Default table, if omitted

Description
PREVIOUS RECORD moves the current record pointer to the previous record in the current
selection of table for the current process. If the current selection is empty, or if Before
selection or End selection is TRUE, PREVIOUS RECORD has no effect.

If PREVIOUS RECORD moves the current record pointer before the current selection, Before
selection returns TRUE, and there is no current record. If Before selection returns TRUE, use
FIRST RECORD, LAST RECORD, or GOTO SELECTED RECORD to move the current record
pointer back into the current selection.

See Also
Before selection, End selection, FIRST RECORD, LAST RECORD, NEXT RECORD.

1306 4th Dimension Language Reference

Before selection Selection

version 3
__

Before selection {(table)} → Boolean

Parameter Type Description
table Table → Table for which to test if record pointer

is before the first selected record, or
Default table, if omitted

Function result Boolean ← Yes (TRUE) or No (FALSE)

Description
Before selection returns TRUE when the current record pointer is before the first record of
the current selection of table. Before selection is commonly used to check whether or not
PREVIOUS RECORD has moved the current record pointer before the first record. If the
current selection is empty, Before selection returns TRUE.

To move the current record pointer back into the selection, use LAST RECORD, FIRST
RECORD, or GOTO SELECTED RECORD. NEXT RECORD does not move the pointer back
into the selection.

Before selection also returns TRUE in the first header when a report is being printed with
PRINT SELECTION or from the Print menu. You can use the following code to test for the
first header and print a special header for the first page:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
: (Form event=On Header)

` A header area is about to be printed
Case of

⇒ : (Before selection($vpFormTable->))
` Code for the first break header goes here
` ...

End case
End case

4th Dimension Language Reference 1307

Example
This form method is used during the printing of a report. It sets a variable, vTitle, to print
in the Header area on the first page:

` [Finances];"Summary" Form Method
Case of

` ...
: (Form event=On Header)

Case of
⇒ : (Before selection([Finances))

vTitle := "Corporate Report 1997" ` Set the title for the first page
Else

vTitle := "" ` Clear the title for all other pages
End case

End case

See Also
End selection, FIRST RECORD, Form event, PREVIOUS RECORD, PRINT SELECTION.

1308 4th Dimension Language Reference

End selection Selection

version 3
__

End selection {(table)} → Boolean

Parameter Type Description
table Table → Table for which to test if record pointer

is beyond the last selected record, or
Default table, if omitted

Function result Boolean ← Yes (TRUE) or No (FALSE)

Description
End selection returns TRUE when the current record pointer is beyond the last record of
the current selection of table. End selection is commonly used to check whether or not
NEXT RECORD has moved the current record pointer past the last record. If the current
selection is empty, End selection returns TRUE.

To move the current record pointer back into the selection, use LAST RECORD, FIRST
RECORD, or GOTO SELECTED RECORD. PREVIOUS RECORD does not move the pointer back
into the selection.

End selection also returns TRUE in the last footer when a report is being printed with
PRINT SELECTION or from the Print menu. You can use the following code to test for the
last footer and print a special footer for the last page:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
: (Form event=On Printing Footer)

` A footer is about to be printed
⇒ If(End selection($vpFormTable->))

` Code for the last footer goes here
Else

` Code for a footer goes here
End if

End case

4th Dimension Language Reference 1309

Example
This form method is used during the printing of a report. It sets the variable vFooter to
print in the Footer area on the last page:

` [Finances];"Summary" Form Method
Case of

` ...
: (Form event=On Printing Footer)

⇒ If(End selection([Finances]))
vFooter := "©2001 Acme Corp." ` Set the footer for the last page

Else
vFooter := "" ` Clear the footer for all other pages

End if
End case

See Also
Before selection, Form event, LAST RECORD, NEXT RECORD, PRINT SELECTION.

1310 4th Dimension Language Reference

DISPLAY SELECTION Selection

version 2004 (Modified)
__

DISPLAY SELECTION ({table}{; selectMode}{; enterList}{; *}{; *})

Parameter Type Description
table Table → Table to display, or

Default table, if omitted
selectMode Longint → Selection mode
enterList Boolean → Authorize Enter in list option
* → Use output form for one record selection

and hide scroll bars in the input form
* → Show scroll bars in the input form

(overrides second option of first optional *)

Description
DISPLAY SELECTION displays the selection of table, using the output form. The records are
displayed in a scrollable list similar to the User environment’s list. If the user double-clicks
a record, by default the record is displayed in the current input form. The list is displayed
in the frontmost window.

To display a selection and also modify a record in the current input form after you have
double-clicked on it (as you do in the User environment window), use MODIFY
SELECTION instead of DISPLAY SELECTION.
All of the following information applies to both commands, except for the information
on modifying records.

After DISPLAY SELECTION is executed, there may not be a current record. Use a command
such as FIRST RECORD or LAST RECORD to select one.

The selectMode parameter is used to set the possibilities for selecting records in the list
using the mouse. You can pass one of the constants of the “Form Options” theme in this
parameter:
• if you pass No Selection (0), it will not be possible to select a record in the list.
• if you pass Single Selection (1), only one record can be selected at a time.
• if you pass Multiple Selection (2), the user can select several records at once. To select
adjacent records, click on the first record to be selected, then press the Shift key before
clicking on the last record you want to include in the selection. To select non-adjacent
records, click on each record separately while holding down the Ctrl (under Windows) or
Command (under Mac OS) key.
If you do not pass the selectMode parameter, the “Multiple Selection” mode is used by
default.

4th Dimension Language Reference 1311

The enterList parameter lets you authorize the “Enter in List” mode for the displayed list.
This lets the user select and modify the record values directly in the output form. Pass
True to enable this mode or False to disable it. By default, if you do not pass the enterList
parameter, the “Enter in List” mode is disabled.
Keep in mind that with the DISPLAY SELECTION command, this parameter only allows the
selection of the values in the list and not their modification. In fact, the DISPLAY
SELECTION command makes the current table Read only. Only the MODIFY SELECTION
command allows the actual entry of values.

Note: The SET ENTERABLE command can be used to enable or disable the Enter in list
mode on the fly.

Some rules regarding the optional * parameter:
- If the selection contains only one record and the first optional * is not used, the record
appears in the input form instead of the output form.
- If the first optional * is specified, a one-record selection is displayed, using the output
form.
- If the first optional * is specified and the user displays the record in the input form by
double-clicking on it, the scroll bars will be hidden in the input form. To reverse this
effect, pass the second optional *.

Custom buttons may be put in the Footer or Header area of the output form in order to
terminate the execution of the DISPLAY SELECTION command. You can use automatic
Accept or Cancel buttons to exit, or use an object method that calls ACCEPT or CANCEL.
When an output form called by the DISPLAY SELECTION command has no buttons, only
the Escape (Windows) or Esc (Mac OS) key can be used to exit the list.

During and after execution of DISPLAY SELECTION, the records that the user highlighted
(selected) are kept in a set named UserSet. The UserSet is available within the selection
display for object methods when a button is clicked or a menu item is chosen. It is also
available to the project method that called DISPLAY SELECTION after the command was
completed.

Examples
1. The following example selects all the records in the [People] table. It then uses DISPLAY
SELECTION to display the records, and allows the user to select the records to print.
Finally, it selects the records with USE SET, and prints them with PRINT SELECTION:

ALL RECORDS([People]) ` Select all records
⇒ DISPLAY SELECTION ([People]; *) ` Display the records

USE SET ("UserSet") ` Use only records picked by user
PRINT SELECTION ([People]) ` Print the records that the user picked

2. See example #6 for the Form event command. This example shows all the tests you may
need to check in order to fully monitor the events that occur during a DISPLAY
SELECTION.

1312 4th Dimension Language Reference

3. To reproduce the functionality provided by, for example, the Queries menu of the User
environment when you use DISPLAY SELECTION or MODIFY SELECTION in the Custom
Menus environment, proceed as follows:
a. In the Design environment, create a menu bar with the menu commands you want,
for example, Show All, Query and Order By.
b. Associate this menu bar (using the “Associated menu bar” menu in the form properties
dialog box) with the output form used with DISPLAY SELECTION or MODIFY SELECTION.
c. Associate the following project methods to your menu commands:

` M_SHOW_ALL (attached to menu item Show All)
$vpCurTable:=Current form table
ALL RECORDS($vpCurTable->)

` M_QUERY (attached to menu item Query)
$vpCurTable:=Current form table
QUERY($vpCurTable->)

` M_ORDER_BY (attached to menu item Order By)
$vpCurTable:=Current form table
ORDER BY($vpCurTable->)

You can also use other commands, such as PRINT SELECTION, QR REPORT, and so on, to
provide all the “standard” menu options you may want each time you display or modify
a selection in the Custom Menus environment. Thanks to the Current form table
command, these methods are generic, and the menu bar they support can be attached to
any output form of any table.

See Also
Form event, MODIFY SELECTION, Sets.

4th Dimension Language Reference 1313

MODIFY SELECTION Selection

version 2004 (Modified)
__

MODIFY SELECTION ({table}{; selectMode}{; enterList}{; *}{; *})

Parameter Type Description
table Table → Table to display and modify, or

Default table, if omitted
selectMode Longint → Selection mode
enterList Boolean → Authorize Enter in list option
* → Use output form for one record selection

and hide scroll bars in the input form
* → Show scroll bars in the input form

(overrides second option of first optional *)

Description
MODIFY SELECTION does almost the same thing as DISPLAY SELECTION. Refer to the
description of DISPLAY SELECTION for details. The differences between the two commands
are:

1. DISPLAY SELECTION enables you to display the current selected records in list mode, or
in the input form when you double-click on a record. Using MODIFY SELECTION, you can
modify a record when you double-click on it, if it is not already in use by another process
or user, or in “Enter in List” mode (if it is authorized).

2. DISPLAY SELECTION automatically switches the table to read-only. MODIFY SELECTION
automatically switches the table to read-write. Both commands restore the table state after
they have completed execution.

See Also
DISPLAY SELECTION, Form event, Sets.

1314 4th Dimension Language Reference

APPLY TO SELECTION Selection

version 3
__

APPLY TO SELECTION ({table; }statement)

Parameter Type Description
table Table → Table for which to apply statement, or

Default table, if omitted
statement Statement → One line of code or a method

Description
APPLY TO SELECTION applies statement to each record in the current selection of table.
The statement can be a statement or a method. If statement modifies a record of table, the
modified record is saved. If statement does not modify a record, the record is not saved. If
the current selection is empty, APPLY TO SELECTION has no effect. If the relation is
automatic, the statement can contain a field from a related table.

APPLY TO SELECTION can be used to gather information from the selection of records (for
example, a total), or to modify a selection (for example, changing the first letter of a field
to uppercase). If this command is used within a transaction, all changes can be undone if
the transaction is canceled.

4D Server: The server does not execute any of the commands that may be passed in
statement. Every record in the selection will be sent back to the local workstation to be
modified.

The progress thermometer is displayed while APPLY TO SELECTION is executing. To hide it,
use MESSAGES OFF prior to the call to APPLY TO SELECTION. If the progress thermometer
is displayed, the user can cancel the operation.

Examples
1. The following example changes all the names in the table [Employees] to uppercase:

⇒ APPLY TO SELECTION([Employees];[Employees]Last Name:=
Uppercase([Employees]Last Name))

4th Dimension Language Reference 1315

2. If a record is locked during execution of APPLY TO SELECTION and that record is
modified, the record will not be saved. Any locked records that are encountered are put in
a set called LockedSet. After APPLY TO SELECTION has executed, test LockedSet to see if any
records were locked. The following loop will execute until all records have been modified:

Repeat
⇒ APPLY TO SELECTION([Employees];[Employees]Last Name:=

Uppercase([Employees]Last Name))
USE SET ("LockedSet") ` Select only locked records

Until (Records in set ("LockedSet") = 0) ` Done when there are no locked records

3. This example uses a method:

ALL RECORDS ([Employees])
⇒ APPLY TO SELECTION([Employees];M_Cap)

System Variables or Sets
If the user clicks the Stop button in the progress thermometer, the OK system variable is
set to 0. Otherwise, the OK system variable is set to 1.

See Also
Sets.

1316 4th Dimension Language Reference

REDUCE SELECTION Selection

version 3
__

REDUCE SELECTION ({table; }number)

Parameter Type Description
table Table → Table for which to reduce the selection, or

Default table, if omitted
number Number → Number of records to keep selected

Description
REDUCE SELECTION creates a new selection of records for table. The command returns the
first number of records from the current selection table. REDUCE SELECTION is applied to
the current selection of table in the current process. It changes the current selection of
table for the current process; the first record of the new selection is the current record.

Note: If the statement REDUCE SELECTION(0) is executed, there is no longer any selection
nor any current records in the table.

Examples
The following example first finds the correct statistics for a worldwide contest among the
dealers in over 20 countries. For each country, the 3 best dealers who have sold product
worth more than $50,000 and who are among the 100 best dealers in the world are
awarded a prize. With a few lines of code, this complex request can be executed by using
indexed searches:

CREATE EMPTY SET([Dealers];"Winners") ` Create an empty set
SCAN INDEX([Dealers]Sales amount;100;<) ` Scan from the end of the index
CREATE SET([Dealers];"100 best Dealers") ` Put the selected records in a set
For ($Country;1;Records in table([Countries])) ` For each Country

` Search for the dealers in this country
QUERY([Dealers];[Dealers]Country=[Countries]Name;*)

 ` ...who sold for more than $50000
QUERY(&;[Dealers];[Dealers]Sales amount>=50000)
CREATE SET([Dealers];"WinnerDealers") ` Put them in a set

` They should be in the group of 100 best dealers
INTERSECTION("WinnerDealers";"100 best Dealers";"WinnerDealers")
USE SET("WinnerDealers") ` Potential winners for the country

` Sort them by the results in descending order
ORDER BY([Dealers];[Dealers]Sales amount;<)

⇒ REDUCE SELECTION([Dealers];3) ` Take the 3 best Dealers
CREATE SET([Dealers];"WinnerDealers") ` The winners for the country
` Put them in the worldwide winners list
UNION("WinnerDealers";"TheWinners";"TheWinners")

End for

4th Dimension Language Reference 1317

CLEAR SET("100 best Dealers") ` Don't need this set anymore
CLEAR SET("WinnerDealers") ` Don't need this set anymore
USE SET("The Winners") ` Here you have the Winners
CLEAR SET("The Winners") ` Don't need this set anymore
OUTPUT FORM([Dealers];"Prize letter") ` Select the letter
PRINT SELECTION([Dealers]) ` Print the letters

See Also
ORDER BY, QUERY, SCAN INDEX, Sets.

1318 4th Dimension Language Reference

SCAN INDEX Selection

version 3
__

SCAN INDEX (field; number{; > or <})

Parameter Type Description
field Field → Indexed field on which to scan index
number Number → Number of records to return
> or < → > from beginning of index

< from end of index

Description
SCAN INDEX returns a selection of number records for table. If you pass <, SCAN INDEX
returns the number of records from the end of the index (high values). If you pass >,
SCAN INDEX returns the number of records from the beginning of the index (low values).
This command is very efficient because it uses the index to perform the operation.

Note: The selection obtained is not sorted.

SCAN INDEX only works on indexed fields. This command changes the current selection
of the table for the current process, but there is no current record.

If you specify more records than exist in the table, SCAN INDEX will return all the records.

Example
The following example mails letters to 50 of the worst customers and then to 50 of the
best customers:

⇒ SCAN INDEX([Customers]TotalDue;50;<) ` Get the 50 worst customers
ORDER BY([Customers]Zipcode;>) ` Sort by Zip codes
OUTPUT FORM([Customers];"ThreateningMail")
PRINT SELECTION([Customers]) ` Print the letters

⇒ SCAN INDEX([Customers]TotalDue;50;>) ` Get the 50 best customers
ORDER BY([Customers]Zipcode;>) ` Sort by Zip codes
OUTPUT FORM([Customers];"Thanks Letter")
PRINT SELECTION([Customers]) ` Print the letters

See Also
ORDER BY, QUERY, REDUCE SELECTION.

4th Dimension Language Reference 1319

ONE RECORD SELECT Selection

version 3
__

ONE RECORD SELECT {(table)}

Parameter Type Description
table Table → Table in which to reduce the

selection to the current record, or
Default table, if omitted

Description
ONE RECORD SELECT reduces the current selection of table to the current record. If no
current record exists or if the current record is not loaded into memory (special case), ONE
RECORD SELECT has no effect.

Historical Note: This command was useful to “return” a record that had been pushed and
popped from the record stack back to the selection while the selection for the table was
changed. In version 6, SET QUERY DESTINATION allows you to make a query without
changing the selection or the current record of a table; therefore, you no longer need to
push and pop a current record in order to query its table. Consequently, ONE RECORD
SELECT is less useful, unless you actually want to reduce the selection of a table to the
current record.

1320 4th Dimension Language Reference

HIGHLIGHT RECORDS Selection

version 2004 (Modified)
__

HIGHLIGHT RECORDS ({table}{; setName{; *}})

Parameter Type Description
table Table → Table where records will be highlighted

If omitted, table of current form
setName String → Set of records to highlight or

Userset if omitted
* * → Disable the automatic scroll of the list

Description
The HIGHLIGHT RECORDS command allows you to highlight records in a list form. This
operation is identical to manually selecting records in list mode by using the mouse or the
Shift+Click or Ctrl+Click (Windows) or Command+Click (Mac OS) key combinations.
The current selection is not modified.

Note: The set of “selected” records is updated after redrawing the records; that is, after
executing the entire calling method — and not just immediately after executing
HIGHLIGHT RECORDS.

The table parameter lets you designate the table where records will be “highlighted.” This
parameter can be used, in particular, to highlight the records of included subforms —
which do not belong to the current table (see below).

• If you pass a valid set name to setName, the command will be applied to the records in
that set for the table defined.
• If you omit the setName parameter, the command will only highlight the records in the
current UserSet set. This set is only managed in User mode or when calling the MODIFY
SELECTION / DISPLAY SELECTION commands. If you want to highlight the records of a
subform, you must pass a table name and set name. For more information about the
UserSet set, refer to the Sets section.

The * parameter, when passed, causes the disabling of the automatic scroll function of
the list if the highlighted records are not visible. This mechanism authorizes customized
scroll management using the new SCROLL LINES command.

Note: Regarding included subforms, the HIGHLIGHT RECORDS command does nothing if
the Selection Mode property Multiple is not selected for the subform. In this case, to
highlight a line, you should use the GOTO SELECTED RECORD command.

4th Dimension Language Reference 1321

Example
In an output form displayed by the MODIFY SELECTION command, you want the user to
be able to perform searches without the current selection being modified. To do this,
place a Search button in the form and associate it with the following method:

SET QUERY DESTINATION(Into Set;"UserSet")
QUERY
SET QUERY DESTINATION(Into Current Selection)

⇒ HIGHLIGHT RECORDS

When the user clicks the button, the standard query dialog box appears. Once the search
has been validated, the records found will be highlighted without the current selection
being modified.

See also
GET HIGHLIGHTED RECORDS, SCROLL LINES.

1322 4th Dimension Language Reference

GET HIGHLIGHTED RECORDS Selection

version 2004
__

GET HIGHLIGHTED RECORDS ({table; }setName)

Parameter Type Description
table Table → Table where the highlighted records will be read

If omitted, table of the current form
setName String → Set where the highlighted records will be stored

Description
The GET HIGHLIGHTED RECORDS command stores in the set designated by the setName
parameter the highlighted records (i.e., the records highlighted by the user in the list
form) in the table passed as parameter. If the table parameter is omitted, the table of the
current form or subform is used.

In User mode or when executing the DISPLAY SELECTION / MODIFY SELECTION
commands, this command can be replaced by calling the UserSet system set which is
automatically maintained by 4D. However, since this command allows you to pick the
table that will receive highlighted records, the GET HIGHLIGHTED RECORDS command
can also manage record selections in subforms as well. In this case, subform selections can
also come from different tables. For more information about the UserSet set, refer to the
Sets section.

The GET HIGHLIGHTED RECORDS command can also be called in a non-form context;
however, the returned set is empty.
The set designated by setName can be local/client, process or interprocess.

Note: In included subforms, the GET HIGHLIGHTED RECORDS command returns an empty
set if the subform does not have the Multiple Selection Mode property. In this case, to
find out the selected row, you must use the Selected record number command.

Example
This method indicates how many records are selected in the subform displaying the
records of the [CDs] table:

⇒ GET HIGHLIGHTED RECORDS ([CDs];"$highlight")
ALERT(String(Records in set("$highlight"))"+" selected records.")
CLEAR SET("$highlight")

See also
HIGHLIGHT RECORDS.

System Variables or Sets
If the command was executed properly, the system variable OK is set to 1. Otherwise, it is
set to 0.

4th Dimension Language Reference 1323

1324 4th Dimension Language Reference

48

Sets

4th Dimension Language Reference 1325

1326 4th Dimension Language Reference

Sets Sets

version 2004 (Modified)
__

Sets offer you a powerful, swift means for manipulating record selections. Besides the
ability to create sets, relate them to the current selection, and store, load, and clear sets,
4th Dimension offers three standard set operations:
• Intersection
• Union
• Difference.

Sets and the Current Selection
__

A set is a compact representation of a selection of records. The idea of sets is closely bound
to the idea of the current selection. Sets are generally used for the following purposes:
• To save and later restore a selection when the order does not matter
• To access the selection a user made on screen (the UserSet)
• To perform a logical operation between selections.

The current selection is a list of references that points to each record that is currently
selected. The list exists in memory. Only currently selected records are in the list. A
selection doesn’t actually contain the records, but only a list of references to the records.
Each reference to a record takes 4 bytes in memory. When you work on a table, you
always work with the records in the current selection. When a selection is sorted, only the
list of references is rearranged. There is only one current selection for each table inside a
process.

Like a current selection, a set represents a selection of records. A set does this by using a
very compact representation for each record. Each record is represented by one bit (one-
eighth of a byte). Operations using sets are very fast, because computers can perform
operations on bits very quickly. A set contains one bit for every record in the table,
whether or not the record is included in the set. In fact, each bit is equal to 1 or 0,
depending on whether or not the record is in the set.

Sets are very economical in terms of RAM space. The size of a set, in bytes, is always equal
to the total number of records in the table divided by 8. For example, if you create a set
for a table containing 10,000 records, the set takes up 1,250 bytes, which is about 1.2K in
RAM.

There can be many sets for each table. In fact, sets can be saved to disk separately from
the database. To change a record belonging to a set, first you must use the set as the
current selection, then modify the record or records. The name of an interprocess set
must be unique in the database.

4th Dimension Language Reference 1327

A set is never in a sorted order—the records are simply indicated as belonging to the set or
not. On the other hand, a named selection is in sorted order, but it requires more
memory in most cases. For more information about named selections, see the Named
Selections section.

A set “remembers” which record was the current record at the time the set was created.
The following table compares the concepts of the current selection and of sets:

Comparison Current Selection Sets
Number per table 1 0 to many
Sortable Yes No
Can be saved on disk No Yes
RAM per record(in bytes) Number of Total number of

selected records * 4 records/8
Combinable No Yes
Contains current record Yes Yes, as of the time the set

was created

When you create a set, it belongs to the table from which you created it. Set operations
can be performed only between sets belonging to the same table.

Sets are independent from the data. This means that after changes are made to a file, a set
may no longer be accurate. There are many operations that can cause a set to be
inaccurate. For example, if you create a set of all the people from New York City, and
then change the data in one of those records to “Boston” the set would not change,
because the set is just a representation of a selection of records. Deleting records and
replacing them with new ones also changes a set. Sets can be guaranteed to be accurate
only as long as the data in the original selection has not been changed.

Process and Interprocess Sets
__

You can have the following three types of sets:

• Process sets: A process set can only be accessed by the process in which it has been
created. UserSet and LockedSet are process sets. Process sets are cleared as soon as the
process method ends. Process sets do not need any special prefix in the name.
• Interprocess sets: A set is an interprocess set if the name of the set is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign. Note: This syntax
can be used on both Windows and Macintosh. Also, on Macintosh only, you can use the
diamond (Option-Shift-V on a US keyboard).
• Local Sets/Client Sets: Version 6 introduces local/client sets. The name of a local/client
set is preceded by the dollar sign ($).

1328 4th Dimension Language Reference

Sets and Transactions
__

A set can be created inside a transaction. It is possible to create a set of the records created
inside a transaction and a set of records created or modified outside of a transaction.
When the transaction ends, the set created during the transaction should be cleared,
because it may not be an accurate representation of the records, especially if the
transaction was canceled.

Set Example
__

The following example deletes duplicate records from a table which contains information
about people. A For...End for loop moves through all the records, comparing the current
record to the previous record. If the name, address, and zip code are the same, then the
record is added to a set. At the end of the loop, the set is made the current selection and
the (old) current selection is deleted:

CREATE EMPTY SET([People];"Duplicates")
` Create an empty set for duplicate records

ALL RECORDS([People])
` Select all records
` Sort the records by ZIP, address, and name so
` that the duplicates will be next to each other

ORDER BY ([People];[People]ZIP;>;[People]Address;>;[People]Name;>)
` Initialize variables that hold the fields from the previous record

$Name:=[People]Name
$Address:=[People]Address
$ZIP:=[People]ZIP

` Go to second record to compare with first
NEXT RECORD ([People])
For ($i; 2; Records in table ([People]))

` Loop through records starting at 2
` If the name, address, and ZIP are the same as the
` previous record then it is a duplicate record.

If (([People]Name=$Name) & ([People]Address=$Address) & ([People]ZIP=$ZIP))
` Add current record (the duplicate) to set

ADD TO SET ([People]; "Duplicates")
Else

` Save this record’s name, address, and ZIP for comparison
` with the next record

$Name:=[People]Name
$Address:=[People]Address
$ZIP:=[People]ZIP

End if

4th Dimension Language Reference 1329

` Move to the next record
NEXT RECORD ([People])

End for
` Use duplicate records that were found

USE SET ("Duplicates")
` Delete the duplicate records

DELETE SELECTION ([People])
` Remove the set from memory

CLEAR SET ("Duplicates")

As an alternative to immediately deleting records at the end of the method, you could
display them on screen or print them, so that a more detailed comparison can be made.

The UserSet System Set
__

4th Dimension maintains a system set named UserSet, which automatically stores the
most recent selection of records highlighted on screen by the user. Thus, you can display
a group of records with MODIFY SELECTION or DISPLAY SELECTION, ask the user to select
from among them and turn the results of that manual selection into a selection or into a
set that you name.

4D Server: Although its name does not begin with the character "$", the UserSet system
set is a client set. So, when using INTERSECTION, UNION and DIFFERENCE, make sure you
compare UserSet only to client sets.

There is only one UserSet for a process. Each table does not have its own UserSet. UserSet
becomes “owned” by a table when a selection of records is displayed for the table.

4th Dimension manages the UserSet set for list forms displayed in User mode or using the
MODIFY SELECTION or DISPLAY SELECTION commands. However, this mechanism is not
active for subforms.

The following method illustrates how you can display records, allow the user to select
some of them, and then use UserSet to display the selected records:

` Display all records and allow user to select any number of them.
` Then display this selection by using UserSet to change the current selection.

OUTPUT FORM ([People]; "Display") ` Set the output layout
ALL RECORDS ([People]) ` Select all people
ALERT ("Press Ctrl or Command and Click to select the people required.")
DISPLAY SELECTION ([People]) ` Display the people
USE SET ("UserSet") ` Use the people that were selected
ALERT ("You chose the following people.")
DISPLAY SELECTION ([People]) ` Display the selected people

1330 4th Dimension Language Reference

The LockedSet System Set
__

The APPLY TO SELECTION, ARRAY TO SELECTION and DELETE SELECTION commands create
a set named LockedSet when used in a multi-processing environment. LockedSet indicates
which records were locked during the execution of the command.

See Also
ADD TO SET, CLEAR SET, COPY SET, CREATE EMPTY SET, CREATE SET, DIFFERENCE,
INTERSECTION, Is in set, LOAD SET, Records in set, REMOVE FROM SET, SAVE SET, UNION,
USE SET.

4th Dimension Language Reference 1331

CREATE EMPTY SET Sets

version 3
__

CREATE EMPTY SET ({table; }set)

Parameter Type Description

table Table → Table for which to create an empty set, or
Default table, if omitted

set String → Name of the new empty set

Description

CREATE EMPTY SET creates a new empty set, set, for table. You can add records to this set
with the ADD TO SET command. If a set with the same name already exists, the existing
set is cleared by the new set.

Note: You do not need to use CREATE EMPTY SET before using CREATE SET.

Example

Please refer to the examples of the Sets section.

See Also

CLEAR SET, CREATE SET.

1332 4th Dimension Language Reference

CREATE SET Sets

version 3
__

CREATE SET ({table; }set)

Parameter Type Description
table Table → Table for which to create a set from the selection, or

Default table, if omitted
set String → Name of the new set

Description
CREATE SET creates a new set, set, for table, and places the current selection in set. The
current record pointer for the table is saved with set. If set is used with USE SET, the
current selection and current record are restored. As with all sets, there is no sorted order;
when set is used, the default order is used. If a set with the same name already exists, the
existing set is cleared by the new set.

Example
The following example creates a set after doing a search, in order to save the set to disk:

QUERY ([People]) ` Let the user do a search
⇒ CREATE SET ([People]; "SearchSet") ` Create a new set

SAVE SET ("SearchSet"; "MySearch") ` Save the set on disk

See Also
CLEAR SET, CREATE EMPTY SET.

4th Dimension Language Reference 1333

CREATE SET FROM ARRAY Sets

version 6.7 (Modified)
__

CREATE SET FROM ARRAY (table; recordsArray{; setName})

Parameter Type Description
table Table → Table of the set
recordsArray Longint | Boolean array → Array of record numbers, or

Array of booleans (True = the record is in the
set, False = the record is not in the set)

setName String → Name of the set to create, or
Apply the command to the Userset if omitted

Description
The command CREATE SET FROM ARRAY creates setName from:

• either an array of absolute record numbers recordsArray from table,

• or an array of booleans recordsArray. In this case, the values of the array indicate if each
record in the table belongs (True) or not (False) to setName.

When you use this command and pass a Longint array in recordsArray, all the numbers in
the array represent the list of record numbers that are in setName. If a number is invalid
(for example, if a record has not been created), the error -10503 is generated.

When you use this command and pass a Boolean array in recordsArray, the Nth element
of the array indicates whether the "Nth" record is contained (True) or not (False) in
setName. Usually, the number of elements in the array must equal the number of records
in the table. If the array is smaller than the number of records, only the records defined
by the array will be in the set.

Note: With a Boolean array, this command uses the elements from 0 to N-1.

If you do not pass the setName parameter or if you pass an empty string, the command
will be applied to the Userset system set.

See Also
BOOLEAN ARRAY FROM SET, CREATE SELECTION FROM ARRAY.

1334 4th Dimension Language Reference

USE SET Sets

version 3
__

USE SET (set)

Parameter Type Description
set String → Name of the set to use

Description
USE SET makes the records in set the current selection for the table to which the set
belongs.

When you create a set, the current record is “remembered” by the set. USE SET retrieves
the position of this record and makes the it the new current record. If you delete this
record before you execute USE SET, 4th Dimension selects the first record in the set as the
current record. The set commands INTERSECTION, UNION, DIFFERENCE, and ADD TO SET
reset the current record. Also, if you create a set that does not contain the position of the
current record, USE SET selects the first record in the set as the current record.

WARNING: Remember that a set is a representation of a selection of records at the
moment that the set is created. If the records represented by the set do change, the set
may no longer be accurate. Therefore, a set saved to disk should represent a group of
records that does not change frequently. A number of things can invalidate a set invalid:
modifying a record of the set, deleting a record of the set, or changing the criteria that
determined the set.

Example
The following example uses LOAD SET to load a set of the Acme locations in New York. It
then uses USE SET to make the loaded set the current selection:

LOAD SET ([Companies]; "NY Acme"; "NYAcmeSt") ` Load the set into memory
⇒ USE SET ("NY Acme") ` Change current selection to NY Acme

CLEAR SET ("NY Acme") ` Clear the set from memory

See Also
CLEAR SET, LOAD SET.

4th Dimension Language Reference 1335

ADD TO SET Sets

version 3
__

ADD TO SET ({table; }set)

Parameter Type Description
table Table → Current record's table, or

Default table, if omitted
set String → Name of the set to which to add the current

record

Description
ADD TO SET adds the current record of table to set. The set must already exist; if it does
not, an error occurs. If a current record does not exist for Table, ADD TO SET has no effect.

See Also
REMOVE FROM SET.

1336 4th Dimension Language Reference

REMOVE FROM SET Sets

version 6.0
__

REMOVE FROM SET ({table; }set)

Parameter Type Description
table Table → Current record's table, or

Default table, if omitted
set String → Name of the set from which to remove

the current record

Description
REMOVE FROM SET removes the current record of table from set. The set must already
exist; if it does not, an error occurs. If a current record does not exist for Table, REMOVE
FROM SET has no effect.

See Also
ADD TO SET.

4th Dimension Language Reference 1337

CLEAR SET Sets

version 3
__

CLEAR SET (set)

Parameter Type Description
set String → Name of the set to clear from memory

Description
CLEAR SET clears set from memory and frees the memory used by set. CLEAR SET does not
affect tables, selections, or records. To save a set before clearing it, use the SAVE SET
command. Since sets use memory, it is good practice to clear them when they are no
longer needed.

Example
See the example for USE SET.

See Also
CREATE EMPTY SET, CREATE SET, LOAD SET.

1338 4th Dimension Language Reference

Is in set Sets

version 3
__

Is in set (set) → Boolean

Parameter Type Description
set String → Name of the set to test

Function result Boolean ← Current record of set's table is in set (True) or
Current record of set's table is not in set (False)

Description
Is in set tests whether or not the current record for the table is in set. The Is in set function
returns TRUE if the current record of the table is in set, and returns FALSE if the current
record of the table is not in set.

Example
The following example is a button object method. It tests to see whether or not the
currently displayed record is in the set of best customers:

⇒ If (Is in set ("Best")) ` Check if it is a good customer
ALERT ("They are one of our best customers.")

Else
ALERT ("They are not one of our best customers.")

End if

See Also
ADD TO SET, REMOVE FROM SET.

4th Dimension Language Reference 1339

Records in set Sets

version 3
__

Records in set (set) → Number

Parameter Type Description
set String → Name of the set to test

Function result Number ← Number of records in test

Description
Records in set returns the number of records in set. If set does not exist, or if there are no
records in set, Records in set returns 0.

Example
The following example displays an alert telling what percentage of the customers are rated
as the best:

` First calculate the percentage
⇒ $Percent := (Records in set ("Best") / Records in table ([Customers])) * 100

` Display an alert with the percentage
ALERT (String ($Percent; "##0%") + " of our customers are the best.")

See Also
Records in selection, Records in table.

1340 4th Dimension Language Reference

SAVE SET Sets

version 3
__

SAVE SET (set; document)

Parameter Type Description
set String → Name of the set to save
document String → Name of the disk file to which to save the set

Description
SAVE SET saves Set to document, a document on disk.

The document need not have the same name as the set. If you supply an empty string for
document, a Create File dialog box appears so that the user can enter the name of the
document. You can load a saved set with the LOAD SET command.

If the user clicks Cancel in the Save File dialog box, or if there is an error during the save
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

SAVE SET is often used to save to disk the results of a time-consuming search.

WARNING: Remember that a set is a representation of a selection of records at the
moment that the set is created. If the records represented by the set change, the set may
no longer be accurate. Therefore, a set saved to disk should represent a group of records
that does not change frequently. A number of things can invalidate a set invalid:
modifying a record of the set, deleting a record of the set, or changing the criteria that
determined the set. Also remember that sets do not save field values.

Example
The following example displays the Save File dialog box, wihch the user can enter the
name of the document that contains the set:

⇒ SAVE SET ("SomeSet"; "")

System Variables or Sets
If the user clicks Cancel in the Save File dialog box, or if there is an error during the load
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

See Also
LOAD SET.

4th Dimension Language Reference 1341

LOAD SET Sets

version 3
__

LOAD SET ({table; }set; document)

Parameter Type Description
table Table → Table to which the set belongs, or

Default table, if omitted
set String → Name of the set to be created in memory
document String → Document holding the set

Description
LOAD SET loads a set from document that was saved with the SAVE SET command.

The set that is stored in document must be from table. The set created in memory is
overwritten if it already exists.

The document parameter is the name of the disk document containing the set. The
document need not have the same name as the set. If you supply an empty string for
document, an Open File dialog box appears so that the user can choose the set to load.

Remember that a set is a representation of a selection of records at the moment that the
set is created. If the records represented by the set change, the set may no longer be
accurate. Therefore, a set loaded from disk should represent a group of records that does
not change frequently. A number of things can make a set invalid: modifying a record of
the set, deleting a record of the set, or changing the criteria that determined a set.

Example
The following example uses LOAD SET to load a set of the Acme locations in New York:

⇒ LOAD SET ([Companies]; "NY Acme"; "NYAcmeSt") ` Load the set into memory
USE SET ("NY Acme") ` Change current selection to NY Acme
CLEAR SET ("NY Acme") ` Clear the set from memory

System Variables or Sets
If the user clicks Cancel in the Open File dialog box, or there is an error during the load
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

See Also
SAVE SET.

1342 4th Dimension Language Reference

DIFFERENCE Sets

version 3
__

DIFFERENCE (set; subtractSet; resultSet)

Parameter Type Description
set String → Set
subtractSet String → Set to subtract
resultSet String → Resulting set

Description
DIFFERENCE compares set1 and set2 and excludes all records that are in set2 from the
resultSet. In other words, a record is included in the resultSet only if it is in set1, but not
in set2. The following table shows all possible results of a set Difference operation.

Set1 Set2 Result Set
Yes No Yes
Yes Yes No
No Yes No
No No No

The result of a Difference operation is depicted here. The shaded area is the result set.

The resultSet is created by DIFFERENCE. The resultSet replaces any existing set having the
same name, including set1 and set2. Both set1 and set2 must be from the same table. The
resultSet belongs to the same table as set1 and set2.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. DIFFERENCE requires the
three sets to be on the same machine. Consequently, all or none of the sets must be local.
See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

4th Dimension Language Reference 1343

Example
This example excludes the records that a user selects from a displayed selection. The
records are displayed on screen with the following line:

DISPLAY SELECTION ([Customers]) ` Display the customers in a list

At the bottom of the list of records is a button with an object method. The object method
excludes the records that the user has selected (the set named “UserSet”), and displays the
reduced selection:

CREATE SET ([Customers]; "$Current") ` Create a set of current selection
⇒ DIFFERENCE ("$Current";"UserSet";"$Current") ` Exclude selected records

USE SET ("$Current") ` Use the new set
CLEAR SET ("$Current") ` Clear the set

See Also
INTERSECTION, UNION.

1344 4th Dimension Language Reference

INTERSECTION Sets

version 3
__

INTERSECTION (set1; set2; resultSet)

Parameter Type Description
set1 String → First set
set2 String → Second set
resultSet String → Resulting set

Description
INTERSECTION compares set1 and set2 and selects only the records that are in both. The
following table lists all possible results of a set Intersection operation.

Set1 Set2 Result Set
Yes No No
Yes Yes Yes
No Yes No
No No No

The graphical result of an Intersection operation is displayed here. The shaded area is the
result set.

The resultSet is created by INTERSECTION. The resultSet replaces any existing set having
the same name, including set1 and set2. Both set1 and set2 must be from the same table.
The resultSet belongs to the same table as set1 and set2.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. INTERSECTION requires
the three sets to be on the same machine. Consequently, all or none of the sets must be
local. See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

4th Dimension Language Reference 1345

Example
The following example finds the customers who are served by two sales representatives,
Joe and Abby. Each sales representative has a set that represents his or her customers. The
customers that are in both sets are represented by both Joe and Abby:

⇒ INTERSECTION ("Joe"; "Abby"; "Both") ` Put customers in both sets in Both
USE SET ("Both") ` Use the set
CLEAR SET ("Both") ` Clear this set but save the others
DISPLAY SELECTION ([Customers]) ` Display customers served by both

See Also
DIFFERENCE, UNION.

1346 4th Dimension Language Reference

UNION Sets

version 3
__

UNION (set1; set2; resultSet)

Parameter Type Description
set1 String → First set
set2 String → Second set
resultSet String → Resulting set

Description
UNION creates a set that contains all records from set1 and set2. The following table
shows all possible results of a set Union operation.

Set1 Set2 Result Set
Yes No Yes
Yes Yes Yes
No Yes Yes
No No No

The result of a Union operation is depicted here. The shaded area is the result set.

The resultSet is created by UNION. The resultSet replaces any existing set having the same
name, including set1 and set2. Both set1 and set2 must be from the same table. The
resultSet belongs to the same table as set1 and set2. The current record for the resultSet is
the current record from Set1.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. UNION requires the
three sets to be on the same machine. Consequently, all or none of the sets must be local.
See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

4th Dimension Language Reference 1347

Example
This example adds records to a set of best customers. The records are displayed on screen
with the first line. After the records are displayed, a set of the best customers is loaded
from disk, and any records that the user selected (the set named “UserSet”) are added to
the set. Finally, the new set is saved on disk:

ALL RECORDS ([Customers]) ` Select all the customers
DISPLAY SELECTION ([Customers]) ` Display all the customers in a list
LOAD SET ("$Best"; "$SaveBest") ` Load the set of best customers

⇒ UNION ("$Best"; "UserSet"; "$Best") ` Add any selected to the set
SAVE SET ("$Best"; "$SaveBest") ` Save the set of best customers

See Also
DIFFERENCE, INTERSECTION.

1348 4th Dimension Language Reference

COPY SET Sets

version 6.0
__

COPY SET (srcSet; dstSet)

Parameter Type Description
srcSet String → Source set name
dstSet String → Destination set name

Description
The command COPY SET copies the contents of the set srcSet into the set dstSet.

Both sets can be process, interprocess or local sets.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. COPY SET allows you to
copy sets between the two machines. See the discussion 4D Server and Sets in the 4D
Server Reference manual for more information.

Examples
1. The following example, in Client/Server, copies the local set "$SetA", maintained on the
client machine, to the process set "SetB", maintained on the server machine:

⇒ COPY SET("$SetA";"SetB")

(1) The following example, in Client/Server, copies the process set "SetA", maintained on
the server machine, to the local process set "$SetB", maintained on the client machine:

⇒ COPY SET("SetA";"$SetB")

See Also
Sets.

4th Dimension Language Reference 1349

1350 4th Dimension Language Reference

49

String

4th Dimension Language Reference 1351

1352 4th Dimension Language Reference

String String

version 3
__

String (expression{; format}) → String

Parameter Type Description
expression → Expression for which to return the string form

(can be Real, Integer, Long Integer,
Date, or Time)

format String | Number → Display format

Function result String ← String form of the expression

Description
The command String returns the string form of the numeric, Date, or Time expression
you pass in expression.

If you do not pass the optional format parameter, the string is returned with the
appropriate default format. If you pass format, you can force the result string to be of a
specific format.

Numeric Expressions
If expression is a numeric expression (Real, Integer, Long Integer), you can pass an
optional string format. Following are some examples:

Example Result
String(2^15) ` Use default format 32768 (Default format used here)
String(2^15;"###,##0 Inhabitants") 32,768 Inhabitants
String(1/3;"##0.00000") 0.33333
String(1/3) ` Use default format 0.3333333333333333 (Default format used here)
String(Arctan(1)*4) 3.1415926535897931 (Default format used here)
String(Arctan(1)*4;"##0.00") 3.14
String(-1;"&x") 0xFFFFFFFF
String(-1;"&$") $FFFFFFFF
String(0 ?+ 7;"&x") 0x80
String(0 ?+ 7;"&$") $80
String(0 ?+ 14;"&x") 0x4000
String(0 ?+ 14;"&$") $4000
String(Num(1=1);"True;;False") True
String(Num(1=2);"True;;False") False

The format is specified in the same way as it would be for a number field on a form. See
the 4th Dimension Design Reference for more information about formatting numbers. You
can also pass the name of a custom style in format. The name of the custom style must be
preceded by the “|” character.

4th Dimension Language Reference 1353

Date Expressions
If expression is a Date expression, the string is returned using the default country format
(i.e., MM/DD/YY for the U.S. English language version).
You can pass an optional numeric format from the following table:

Format Name Example
1 Short 12/29/96
2 Abbreviated Sun, Dec 29, 1996
3 Long Sunday, December 29, 1996
4 MM/DD/YYYY 12/29/96 or 12/29/1896 or 12/29/2096
5 Month Date, Year December 29, 1996
6 Abbr: Month Date, Year Dec 29, 1996
7 MM/DD/YYYY Forced 12/29/1996

4D provides the following predefined constants:

Constant Type Value
Short Long Integer 1
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
Month Date Year Long Integer 5
Abbr Month Date Long Integer 6
MM DD YYYY Forced Long Integer 7

These examples assume that the current date is 12/29/96):

` $vsResult gets "12/29/96"
$vsResult:=String(Current date)

` $vsResult gets "December 29, 1996"
$vsResult:=String(Current date;Month Date Year)

Time Expressions
If expression is a Time expression, the string is returned using the default HH:MM:SS
format. You can pass an optional numeric format from the following table:

Format Name Example
1 HH:MM:SS 01:02:03
2 HH:MM 01:02
3 hour min sec 1 hour 2 minutes 3 seconds
4 hour min 1 hour 2 minutes
5 H:MM AM/PM 1:02 AM

1354 4th Dimension Language Reference

4D provides the following predefined constants:

Constant Type Value
HH MM SS Long Integer 1
HH MM Long Integer 2
Hour Min Sec Long Integer 3
Hour Min Long Integer 4
HH MM AM PM Long Integer 5

These examples assume that the current time is 5:30 PM and 45 seconds):

$vsResult:=String(Current time) ` $vsResult gets "17:30:45"
$vsResult:=String(Current time;Hour Min Sec) ` $vsResult gets "17 hours 30 minutes

45 seconds"

See Also
Date, Num, Time string.

4th Dimension Language Reference 1355

Num String

version 5
__

Num (expression) → Number

Parameter Type Description
expression String | Boolean → String for which to return the numeric form, or

Boolean to return 0 or 1

Function result Number ← Numeric form of the string or Boolean

Description
The Num command returns the numeric form of the String or Boolean expression you
pass in expression.

String Expressions
If string consists only of one or more alphabetic characters, Num returns a zero. If string
includes alphabetic and numeric characters, Num ignores the alphabetic characters. Thus,
Num transforms the string "a1b2c3" into the number 123.

Note: Only the first 32 characters of string are evaluated.

There are three reserved characters that Num treats specially: the decimal separator in the
US English version (i.e., the period “.”) , the hyphen “-”, and “e” or “E”. These characters
are interpreted as numeric format characters.

• The decimal separator is interpreted as a decimal place and must appear embedded in a
numeric string.
• The hyphen causes the number or exponent to be negative. The hyphen must appear
before any negative numeric characters or after the “e” for an exponent. Except for the
“e” character, if a hyphen is embedded in a numeric string, the portion of the string after
the hyphen is ignored. For example, Num("123-456") returns 123, but Num("-9") returns
-9.
• The e or E causes any numeric characters to its right to be interpreted as the power of an
exponent. The “e” must be embedded in a numeric string. Thus, Num("123e–2") returns
1.23.

Note that when the string includes more than on "e", conversion might give different
results under Mac OS and under Windows.

Boolean Expressions
If you pass a Boolean expression, Num returns 1 if the expression is True; otherwise, it
returns 0 (zero).

1356 4th Dimension Language Reference

Examples
1. The following example illustrates how Num works when passed a string argument. Each
line assigns a number to the vResult variable. The comments describe the results:

⇒ vResult := Num ("ABCD") ` vResult gets 0
⇒ vResult := Num ("A1B2C3") ` vResult gets 123
⇒ vResult := Num ("123") ` vResult gets 123
⇒ vResult := Num ("123.4") ` vResult gets 123.4
⇒ vResult := Num ("–123") ` vResult gets –123
⇒ vResult := Num ("–123e2") ` vResult gets –12300

2. Here, [Client]Debt is compared with $1000. The Num command applied to these
comparisons returns 1 or 0. Multiplying 1 or 0 with a string repeats the string once or
returns the empty string. As a result, [Client]Risk gets either “Good” or “Bad”:

` If client owes less than 1000, a good risk.
` If client owes more than 1000, a bad risk.

⇒ [Client]Risk:=("Good"*Num ([Client]Debt<1000))+("Bad"*Num([Client]Debt>=1000))

See Also
Logical Operators, String, String Operators.

4th Dimension Language Reference 1357

Position String

version 3
__

Position (find; string) → Number

Parameter Type Description
find String → String to find
string String → String in which to search

Function result Number ← Position of first occurrence

Description
Position returns the position of the first occurrence of find in string.

If string does not contain find, it returns a zero (0).

If Position locates an occurrence of find, it returns the position of the first character of the
occurrence in string.

If you ask for the position of an empty string within an empty string, Position returns
zero (0).

Warning: You cannot use the @ wildcard character with Position. For example, if you pass
"abc@" in find, the command will actually look for "abc@" and not for "abc" plus any
character.

Examples
1. This example illustrates the use of Position. The results, described in the comments, are
assigned to the variable vlResult.

⇒ vlResult := Position ("ll"; "Willow") ` vlResult gets 3
⇒ vlResult := Position (vtText1; vtText2) ` Returns first occurrence of vtText1 in vtText2

2. See example for the command Substring.

See Also
Comparison Operators, Substring.

1358 4th Dimension Language Reference

Substring String

version 3
__

Substring (source; firstChar{; numChars}) → String

Parameter Type Description
source String → String from which to get substring
firstChar Number → Position of first character
numChars Number → Number of characters to get

Function result String ← Substring of source

Description
The command Substring returns the portion of source defined by firstChar and numChars.

The firstChar parameter points to the first character in the string to return, and numChars
specifies how many characters to return.

If firstChar plus numChars is greater than the number of characters in the string, or if
numChars is not specified, Substring returns the last character(s) in the string, starting
with the character specified by firstChar. If firstChar is greater than the number of
characters in the string, Substring returns an empty string ("").

Examples
1. This example illustrates the use of Substring. The results, described in the comments, are
assigned to the variable vsResult.

⇒ vsResult := Substring ("08/04/62"; 4; 2) ` vsResult gets "04"
⇒ vsResult := Substring ("Emergency"; 1; 6) ` vsResult gets "Emerge"
⇒ vsResult := Substring (var; 2) ` vsResult gets all characters except the first

4th Dimension Language Reference 1359

2. The following project method appends the paragraphs found in the text (passed as first
parameter) to a string or text array (the pointer of which is passed as second parameter):

` EXTRACT PARAGRAPHS
` EXTRACT PARAGRAPHS (text ; Pointer)
` EXTRACT PARAGRAPHS (Text to parse ; -> Array of ¶s)

C_TEXT ($1)
C_POINTER ($2)

$vlElem:=Size of array($2->)
Repeat

$vlElem:=$vlElem+1
INSERT ELEMENT($2->;$vlElem)
$vlPos:=Position(Char(Carriage return);$1)
If ($vlPos>0)

⇒ $2->{$vlElem}:=Substring($1;1;$vlPos-1)
⇒ $1:=Substring($1;$vlPos+1)

Else
$2->{$vlElem}:=$1

End if
Until ($1="")

See Also
Position.

1360 4th Dimension Language Reference

Length String

version 3
__

Length (string) → Number

Parameter Type Description
string String → String for which to return length

Function result Number ← Length of string

Description
Length is used to find the length of string. Length returns the number of characters that
are in string.

Note: The test If (vtAnyText="") is equivalent to the test If(Length(vtAnyText)=0).

Examples
This example illustrates the use of Length. The results, described in the comments, are
assigned to the variable vlResult.

⇒ vlResult := Length ("Topaz") ` vlResult gets 5
⇒ vlResult := Length ("Citizen") ` vlResult gets 7

4th Dimension Language Reference 1361

Ascii String

version 3
__

Ascii (character) → Number

Parameter Type Description
character String → Character to return as an ASCII code

Function result Number ← ASCII code for the character

Description
The Ascii command returns the ASCII code of character.

If there is more than one character in the string, Ascii returns the code of the first
character.

The Char function is the counterpart of Ascii. It returns the character that an ASCII code
represents.

Important: Within 4D, all the text values, fields, or variables that you have not yet
converted to another ASCII map are Mac OS-encoded on both Macintosh and Windows.
For more information, see the section ASCII Codes.

Examples
1. Uppercase and lowercase characters are considered equal within a comparison. You can
use Ascii to differentiate between uppercase and lowercase characters. Thus, this line
returns True:

("A" = "a")

On the other hand, this line returns False:

⇒ (Ascii("A")=Ascii("a"))

2. This example returns the ASCII value of the first character of the string "ABC":

⇒ vlAscii:=Ascii("ABC") ` vlAscii gets 65, the ASCII code of A

1362 4th Dimension Language Reference

3. The following example tests for carriage returns and tabs:

For($vlChar;1;Length(vtText))
Case of

: (vtText[[$vlChar]]=Char(Carriage return))
` Do something

: (vtText[[$vlChar]]=Char(Tab))
` Do something else

: (...)
` ...

End case
End for

When executed multiple times on large texts, this test will run faster when compiled if it
is written this way:

For($vlChar;1;Length(vtText))
⇒ $vlAscii:=Ascii(vtText[[$vlChar]])

Case of
: ($vlAscii=Carriage return)

` Do something
: ($vlAscii=Tab)

` Do something else
: (...)

` ...
End case

End for

The second piece of code runs faster for two reasons: it does only one character reference
by iteration and uses LongInt comparisons instead of string comparisons to test for
carriage returns and tabs. Use this technique when working with common ASCII codes
such as CR and TAB.

See Also
ASCII Codes, Char, Character Reference Symbols.

4th Dimension Language Reference 1363

Char String

version 3
__

Char (asciiCode) → String

Parameter Type Description
asciiCode Number → ASCII code from 0 to 255

Function result String ← Character represented by the ASCII code

Description
The Char command returns the character whose ASCII code is asciiCode.

Tip: In editing a method, the command Char is commonly used to specify characters that
cannot be entered from the keyboard or that would be interpreted as an editing
command in the Method editor.

Important: Within 4D, all the text values, fields, or variables that you have not yet
converted to another ASCII map are Mac OS-encoded on both Macintosh and Windows.
For more information, see the section ASCII Codes.

Example
The following example uses Char to insert a carriage return within the text of an alert
message:

⇒ ALERT("Employees: "+String(Records in table([Employees]))+
Char(13)+"Press OK to continue.")

See Also
Ascii, ASCII Codes, Character Reference Symbols.

1364 4th Dimension Language Reference

Character Reference Symbols String

version 3
__

Introduction
The character reference symbols:

are used to refer to a single character within a string. This syntax allows you to
individually address the characters of a text variable, string variable, or field.

Note: On Macintosh, you obtain the first two symbols by typing Option+"<" and
Option+">".

If the character reference symbols appear on the left side of the assignment operator (:=),
a character is assigned to the referenced position in the string. For example, if vsName is
not an empty string, the following line sets the first character of vsName to uppercase:

If (vsName#"")
vsName[[1]]:=Uppercase(vsName[[1]])

End if

Otherwise, if the character reference symbols appear within an expression, they return
the character (to which they refer) as a 1-character string. For example:

` The following example tests if the last character of vtText is an At sign "@"
If (vtText # "")

If (Ascii(Substring(vtText;Length(vtText);1))=At Sign)
` ...

End if
End if

` Using the character reference syntax, you would write in a simpler manner:
If (vtText # "")

If (Ascii(vtText[[Length(vtText)]])=At Sign)
` ...

End if
End if

4th Dimension Language Reference 1365

Advanced note about invalid character reference
When you use the character reference symbols, you must address existing characters in
the string in the same way you address existing elements of an array. For example if you
address the 20th character of a string variable, this variable MUST contain at least 20
characters.

• Failing to do so, in interpreted mode, does not cause a syntax error.
• Failing to do so, in compiled mode (with no options), may lead to memory corruption,
if, for instance, you write a character beyond the end of a string or a text.
• Failing to do so, in compiled mode, causes an error with the option Range Checking
On. For example, executing the following code:

vsAnyText:=""
vsAnyText[[1]]:="A" ` Very bad and nasty thing to do, boo!

will trigger the Runtime Error shown here:

Example
The following project method capitalizes the first character of each word of the text
received as parameter and returns the resulting capitalized text:

` Capitalize text project method
` Capitalize text (Text) -> Text
` Capitalize text (Source text) -> Capitalized text

$0:=$1
$vlLen:=Length($0)
If ($vlLen>0)

$0[[1]]:=Uppercase($0[[1]])
For ($vlChar;1;$vlLen-1)

If (Position($0[[$vlChar]];" !&()-{}:;<>?/,.=+*")>0)
$0[[$vlChar+1]]:=Uppercase($0[[$vlChar+1]])

End if
End for

End if

1366 4th Dimension Language Reference

For example, the line:

ALERT(Capitalize text ("hello, my name is jane doe and i'm running for president!"))

displays the alert shown here:

See Also
Ascii, ASCII Codes, Char.

4th Dimension Language Reference 1367

Uppercase String

version 3
__

Uppercase (string) → String

Parameter Type Description
string String → String to convert

Function result String ← String in uppercase

Description
Uppercase takes string and returns the string with all alphabetic characters in uppercase.

Examples
See the example for Lowercase.

See Also
Lowercase.

1368 4th Dimension Language Reference

Lowercase String

version 3
__

Lowercase (string) → String

Parameter Type Description
string String → String to convert to lowercase

Function result String ← String in lowercase

Description
Lowercase takes string and returns the string with all alphabetic characters in lowercase.

Example
The following project method capitalizes the string or text received as parameter. For
instance, Caps ("john") would return "John".

` Caps project method
` Caps (String) -> String
` Caps (Any text or string) -> Capitalized text

⇒ $0:=Lowercase($1)
If (Length($0)>0)

$0[[1]]:=Uppercase($0[[1]])
End if

See Also
Uppercase.

4th Dimension Language Reference 1369

Change string String

version 3
__

Change string (source; newChars; where) → String

Parameter Type Description
source String → Original string
newChars String → New characters
where Number → Where to start the changes

Function result String ← Resulting string

Description
Change string changes a group of characters in source and returns the resulting string.
Change string overlays source, with the characters in newChars, at the character described
by where.

If newChars is an empty string (""), Change string returns source unchanged. Change string
always returns a string of the same length as source. If where is less than one or greater
than the length of source, Change string returns source.

Change string is different from Insert string in that it overwrites characters instead of
inserting them.

Example
The following example illustrates the use of Change string. The results are assigned to the
variable vtResult.

⇒ vtResult := Change string ("Acme"; "CME"; 2) ` vtResult gets "ACME"
⇒ vtResult := Change string ("November";"Dec"; 1) ` vtResult gets "December"

See Also
Delete string, Insert string, Replace string.

1370 4th Dimension Language Reference

Insert string String

version 3
__

Insert string (source; what; where) → String

Parameter Type Description
source String → String in which to insert the other string
what String → String to insert
where Number → Where to insert

Function result String ← Resulting string

Description
Insert string inserts a string into source and returns the resulting string. Insert string inserts
the string what before the character at position where.

If what is an empty string (""), Insert string returns source unchanged.

If where is greater than the length of source, then what is appended to source. If where is
less than one (1), then what is inserted before source.

Insert string is different from Change string in that it inserts characters instead of
overwriting them.

Example
The following example illustrates the use of Insert string. The results are assigned to the
variable vtResult.

⇒ vtResult := Insert string ("The tree"; " green"; 4) ` vtResult gets "The green tree"
⇒ vtResult := Insert string ("Shut"; "o"; 3) ` vtResult gets "Shout"
⇒ vtResult := Insert string ("Indention"; "ta"; 6) ` vtResult gets "Indentation"

See Also
Change string, Delete string, Replace string.

4th Dimension Language Reference 1371

Delete string String

version 3
__

Delete string (source; where; numChars) → String

Parameter Type Description
source String → String from which to delete characters
where Number → First character to delete
numChars Number → Number of characters to delete

Function result String ← Resulting string

Description
Delete string deletes numChars from source, starting at where, and returns the resulting
string.

Delete string returns the same string as source when:
• source is an empty string
• where is greater than the length of Source
• numChars is zero (0)

If where is less than one, the characters are deleted from the beginning of the string.

If where plus numChars is equal to or greater than the length of source, the characters are
deleted from where to the end of source.

Example
The following example illustrates the use of Delete string. The results are assigned to the
variable vtResult.

⇒ vtResult:=Delete string("Lamborghini"; 6; 6) ` vtResult gets "Lambo"
⇒ vtResult:=Delete string("Indentation"; 6; 2) ` vtResult gets "Indention"

 ` vtResult gets the first two characters of vtOtherVar
⇒ vtResult:=Delete string(vtOtherVar;3;32000)

See Also
Change string, Insert string, Replace string.

1372 4th Dimension Language Reference

Replace string String

version 3
__

Replace string (source; oldString; newString{; howMany}) → String

Parameter Type Description
source String → Original string
oldString String → Characters to replace
newString String → Replacement string

(if empty string, occurrences are deleted)
howMany Number → How many times to replace

If omitted, all occurrences are replaced

Function result String ← Resulting string

Description
Replace string replaces howMany occurrences of oldString in source with newString.

If newString is an empty string (""), Replace string deletes each occurrence of oldString in
source.

If howMany is specified, Replace string will replace only the number of occurrences of
oldString specified, starting at the first character of source. If howMany is not specified,
then all occurrences of oldString are replaced.

If oldString is an empty string, Replace string returns the unchanged source.

Examples
1. The following example illustrates the use of Replace string. The results, described in the
comments, are assigned to the variable vtResult.

⇒ vtResult:=Replace string("Willow";" ll";"d") ` Result gets "Widow"
⇒ vtResult:=Replace string("Shout"; "o";"") ` Result gets "Shut"

 ` Replaces all tabs in vtOtherVar with commas
⇒ vtResult:=Replace string(vtOtherVar;Char(9);",")

2. The following example eliminates CRs and TABs from the text in vtResult:

⇒ vtResult:=Replace string(Replace string(vtResult;Char(13);"");Char(9);"")

See Also
Change string, Delete string, Insert string.

4th Dimension Language Reference 1373

Mac to Win String

version 6.0
__

Mac to Win (text) → String

Parameter Type Description
text String → Text expressed using Mac OS ASCII map

Function result String ← Text expressed using Windows ANSI map

Description
The Mac to Win command returns the text, expressed using the Windows ANSI map,
equivalent to the text you pass in Text, expressed using the Mac OS ASCII map.

This command expects a text parameter expressed using the Mac OS ASCII map.

Generally, when running on Windows, you do not need to use this command to convert
ASCII codes. When you copy or paste text between 4D and Windows or when you import
or export data, 4D automatically performs these conversions. However, when you use disk
read/write commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly
invoke ASCII conversions. This is the main purpose of the Mac to Win command.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are Mac OS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

Note: This command replaces the CR (Carriage return) characters with CRLF (Carriage
return + Line feed, ASCII codes 13 and 17) characters. Consequently, the text returned
may be longer than the original text.

Example
On Windows, when you write characters into a document using SEND PACKET, if you do
not use an output ASCII map for filtering characters from Mac OS to Windows (see USE
ASCII MAP), you need to convert the text from Mac OS to Windows yourself. You can do
it this way:

` ...
⇒ SEND PACKET ($vhDocRef;Mac to Win(vtSomeText))

` ...

See Also
ASCII Codes, SEND PACKET, USE ASCII MAP, Win to Mac.

1374 4th Dimension Language Reference

Win to Mac String

version 6.0
__

Win to Mac (text) → String

Parameter Type Description
text String → Text expressed using Windows ANSI map

Function result String ← Text expressed using Macintosh ASCII map

Description
The Win to Mac command returns text, expressed using the Mac OS ASCII map,
equivalent to the text you pass in Text, expressed using the Windows ANSI map.

This command expects a text parameter expressed using the Windows ANSI map.

Generally, when running on Windows, you do not need to use this command to convert
ASCII codes. When you copy or paste text between 4D and Windows or when you import
or export data, 4D automatically performs these conversions. However, when you use disk
read/write commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly
invoke ASCII conversions. This is the main purpose of the Win to Mac command.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are Mac OS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

Note: This command replaces the CR (Carriage return) characters with CRLF (Carriage
return + Line feed, ASCII codes 13 and 17) characters. Consequently, the text returned
may be longer than the original text.

Example
When you read characters from a Windows document using RECEIVE PACKET, if you do
not use an input ASCII map for filtering characters from Windows to Mac OS (see USE
ASCII MAP), you need to convert the text from Windows to Mac OS yourself. You can do
it this way:

` ...
RECEIVE PACKET ($vhDocRef;vtSomeText;16*1024)

⇒ vtSomeText:=Win to Mac(vtSomeText)
` ...

See Also
ASCII Codes, Mac to Win, RECEIVE PACKET, USE ASCII MAP.

4th Dimension Language Reference 1375

Mac to ISO String

version 2003 (Modified)
__

Mac to ISO (text) → String

Parameter Type Description
text String → Text expressed using Mac OS ASCII map

Function result String ← Text expressed using ISO Latin-1 character map

Description
The Mac to ISO command returns text equivalent to that passed in text, but expressed
using the Web characters table found in the Standard Set menu of the
Web/Configuration page in the application Preferences. By default, the ISO Latin-1 (ISO-
8859-1) character set is used:

You will generally not need to use this command.

This command expects a text parameter expressed using the Mac OS ASCII map.

1376 4th Dimension Language Reference

4D converts characters received from and sent to a Web Browser. As a result, the text
values you deal with, inside a Web Connection process, are always expressed using the
Mac OS ASCII map.

Generally, when running on Windows, you do not need to convert ASCII codes. When
you copy or paste text between 4D and Windows or when you import or export data, 4D
automatically performs these conversions. However, when you use disk read/write
commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly invoke ASCII
conversions.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are Mac OS-encoded on both Macintosh and Windows. For more
information, see the ASCII Codes section.

On Windows, it is necessary that, in this case, you do not filter the characters using an
output filter ASCII map.

Consequently, no matter what the platform, if you want to write ISO Latin-1 HTML
documents or documents using other Web character sets on disk, you just need to
convert the text using Mac to ISO. This is the main purpose of the Mac to ISO command.

Examples
1. The following line of code converts by default the (assumed) Mac OS encoded text
stored in vtSomeText into an ISO-Latin 1 encoded text:

⇒ vtSomeText:=Mac to ISO(vtSomeText)

2. While developing a 4D Web Server application, you build HTML documents that you
later send over Intranet or Internet, using the SEND HTML FILE command. Some of these
documents have references or links to other documents.

The following project method calculates an HTML-based pathname from the Windows or
Macintosh pathname received as parameter:

` HTML Pathname project method
` HTML Pathname (Text) -> Text
` HTML Pathname (Native File Manager Pathname) -> HTML Pathname

C_TEXT($0;$1)
C_LONGINT($vlChar;$vlAscii)
C_STRING(31;$vsChar)

$0:=""
If (On Windows)

$1:=Replace string($1;"\";"/")
Else

$1:=Replace string($1;":";"/")
End if

4th Dimension Language Reference 1377

⇒ $1:=Mac to ISO($1)
For ($vlChar;1;Length($1))

$vlAscii:=Ascii($1≤$vlChar≥)
Case of

: ($vlAscii>=127)
$vsChar:="%"+Substring(String($vlAscii;"&$");2)

: (Position(Char($vlAscii);":<>&%= "+Char(34))>0)
$vsChar:="%"+Substring(String($vlAscii;"&$");2)

Else
$vsChar:=Char($vlAscii)

End case
$0:=$0+$vsChar

End for

Note: The On Windows project method is listed in the System Documents section.

Once this project method is present in your database, if you want to include a list of FTP
links to documents present in a particular directory, you can write:

` Interprocess variables set, for instance, in the On Startup database method
◊vsFTPURL:="ftp://123.4.56.78/Spiders/"
◊vsFTPDirectory:="APS500:Spiders:" ` Here, a Mac OS File Manager pathname

` ...

` ...
ARRAY STRING(31;$asDocuments;0)
DOCUMENT LIST(...;$asDocuments)
$vlNbDocuments:=Size of array($asDocuments)
jsHandler:=...
For ($vlDocument;1;$vlNbDocuments)

vtHTMLCode:=vtHTMLCode+"<P><A HREF="+Char(34)+◊vsFTPURL
+HTML Pathname (Substring($1+$asDocuments{$vlDocument};

Length(◊vsFTPDirectory)+1))+Char(34)+jsHandler+">
 "+$asDocuments{$vlDocument}+"</P>"+Char(13)

End for
` ...

See Also
ASCII Codes, ISO to Mac, SEND HTML FILE, SEND PACKET, USE ASCII MAP.

1378 4th Dimension Language Reference

ISO to Mac String

version 6.0
__

ISO to Mac (text) → String

Parameter Type Description
text String → Text expressed using ISO Latin-1 character map

Function result String ← Text expressed using Mac OS ASCII map

Description
The ISO to Mac command returns text, expressed using the Mac OS ASCII map,
equivalent to the text you pass in text, expressed using the ISO Latin-1 character map.

You will generally not need to use this command.

This command expects a text parameter expressed using the ISO Latin-1 character map.

4D converts characters received from and sent to a Web Browser. As a result, the text
values you deal with, inside a Web Connection process, are always expressed using the
Mac OS ASCII map.

Generally, when running on Windows, you do not need to convert ASCII codes. When
you copy or paste text between 4D and Windows or when you import or export data, 4D
automatically performs these conversions. However, when you use disk read/write
commands such as SEND PACKET or RECEIVE PACKET, 4D does not perform any ASCII
code conversion.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are Mac OS-encoded on both Macintosh and Windows. For more
information, see the ASCII Codes section.

On Windows, it is necessary that, in this case, you do not filter the characters using an
output filter ASCII map.

Consequently, no matter what the platform, if you want to use RECEIVE PACKET to read
ISO Latin-1 HTML documents from the disk, you just need to convert the text using ISO
to Mac. This is the main purpose of the ISO to Mac command.

Note: The ISO to Mac command uses the "Conversion" resource (MapC), if any.

4th Dimension Language Reference 1379

Example
The following line of code converts the (assumed) ISO Latin-1 encoded text stored in
vtSomeText into a Mac OS encoded text:

 ` Read some text from an ISO Latin-1 HTML document
RECEIVE PACKET ($vhDocRef;vtSomeText;16*1024)

⇒ vtSomeText:=ISO to Mac(vtSomeText)

See Also
ASCII Codes, Mac to ISO, RECEIVE PACKET, USE ASCII MAP.

1380 4th Dimension Language Reference

50

Structure Access

4th Dimension Language Reference 1381

1382 4th Dimension Language Reference

Structure Access Structure Access

version 6.0
__

The commands in this theme return a description of the database structure. They return
the number of tables, the number of fields in each table, the names of the tables and
fields, and the type and properties of each field.

Determining the database structure is extremely useful when you are developing and
using groups of project methods and forms that can be copied into different databases.

The ability to read the database structure allows you to develop and use portable code.

See Also
Count fields, Count tables, Field, GET FIELD PROPERTIES, Pointers, SET INDEX, Table, Table
name.

4th Dimension Language Reference 1383

Count tables Structure Access

version 3
__

Count tables → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Number of tables in the database

Description
Count tables returns the number of tables in the database. Tables are numbered in the
order in which they are created.

Example
The following example builds an array, named asTables, with the names of tables defined
in the database. This array can be used as a drop-down list (or tab control, scrollable area,
and so on) to display the list of the tables, within a form:

⇒ ARRAY STRING (31;asTables;Count tables)
For ($vlTable; 1; Size of array(asTables))

asTables {$vlTable}:=Table name ($vlTable)
End for

See Also
Arrays, Count fields, Table name.

1384 4th Dimension Language Reference

Count fields Structure Access

version 3
__

Count fields (tableNum | tablePtr) → Number

Parameter Type Description
tableNum | tablePtr Number | Pointer → Table number or Pointer to table

Function result Number ← Number of fields in table

Description
The command Count fields returns the number of fields in the table whose number or
pointer you pass in TableNum or TablePtr.

Fields are numbered in the order in which they are created.

Example
The following project method builds the array asFields, consisting of the field names, for
the table whose pointer is received as first parameter:

$vlTable:=Table($1)
⇒ ARRAY STRING(31;asFields;Count fields($vlTable))

For ($vlField;1;Size of array(asFields))
asFields{$vlField}:=Field name($vlTable;$vlField)

End for

See Also
Arrays, Count tables, Field name, GET FIELD PROPERTIES.

4th Dimension Language Reference 1385

Table name Structure Access

version 3
__

Table name (tableNum | tablePtr) → String

Parameter Type Description
tableNum | tablePtr Number | Pointer → Table number or Table pointer

Function result String ← Name of the table

Description
The command Table name returns the name of the table whose number of pointer you
pass in tableNum or tablePtr.

Example
The following is an example of a generic method that displays the records of a table. The
reference to the table is passed as a pointer to the table. The Table name command is used
to include the name of the table in the title bar for the window:

` SHOW CURRENT SELECTION Project method
` SHOW CURRENT SELECTION (Pointer)
` SHOW CURRENT SELECTION (->[Table])

⇒ SET WINDOW TITLE("Records for "+Table name($1)) ` Sets the window title
DISPLAY SELECTION($1->) ` Displays the selection

See Also
Count tables, Field name, Table.

1386 4th Dimension Language Reference

Field name Structure Access

version 3
__

Field name (fieldPtr | tableNum{; fieldNum}) → String

Parameter Type Description
fieldPtr | tableNum Number → Field pointer or Table number
fieldNum Number → Field number if a table number is passed

as first parameter

Function result String ← Name of the field

Description
The command Field name returns the name of the field whose pointer you pass in fieldPtr
or whose table and field number you pass in tableNum and fieldNum.

Examples
1. This example sets the second element of the array FieldArray{1} to the name of the
second field in the first table. FieldArray is a two-dimensional array:

⇒ FieldArray{1}{2}:=Field name(1;2)

2. This example sets the second element of the array FieldArray{1} to the name of the field
[MyTable]MyField. FieldArray is a two-dimensional array:

⇒ FieldArray{1}{2}:=Field name(->[MyTable]MyField)

3. This example displays an alert. This method passes a pointer to a field:

⇒ ALERT("The ID number for the field "+Field name($1)+" in the table "
+Table name(Table($1))+" has to be longer than five characters.")

See Also
Count fields, Field, Table name.

4th Dimension Language Reference 1387

Table Structure Access

version 3
__

Table (tableNum | aPtr) → Pointer | Number

Parameter Type Description
tableNum | aPtr Number | Pointer → Table number, or

Table pointer, or
Field pointer

Function result Pointer | Number ← Table pointer, if a Table number is passed
Table number, if a Table pointer is passed
Table number, if a Field pointer is passed

Description
The command Table has three forms:
• If you pass a table number in tableNum, Table returns a pointer to the table.
• If you pass a table pointer in aPtr, Table returns the table number of the table.
• If you pass a field pointer in aPtr, Table returns the table number of the field.

Examples
1. This example sets the tablePtr variable to a pointer to the third table of the database:

⇒ TablePtr:=Table(3)

2. Passing tablePtr (a pointer to the third table) to Table returns the number 3. The
following line sets TableNum to 3:

⇒ TableNum:=Table(TablePtr)

3. This example sets the tableNum variable to the table number of [Table3]:

⇒ TableNum:=Table(->[Table3])

4. This example sets the tableNum variable to the table number of the table to which the
[Table3]Field1 field belongs:

⇒ TableNum:=Table (->[Table3]Field1)

See Also
Count tables, Field, Pointers, Table name.

1388 4th Dimension Language Reference

GET TABLE PROPERTIES Structure Access

version 6.7
__

GET TABLE PROPERTIES (tablePtr|tableNum; invisible{; trigSaveNew{; trigSaveRec{;
trigDelRec{; trigLoadRec}}}})

Parameter Type Description
tablePtr | tableNum Pointer | Longint → Table pointer or Table number
invisible Boolean ← True = Invisible, False = Visible
trigSaveNew Boolean ← True = Trigger “On saving new record”

activated, else False
trigSaveRec Boolean ← True = Trigger “On saving an existing record”

activated, else False
trigDelRec Boolean ← True = Trigger “On deleting a record”

activated, else False
trigLoadRec Boolean ← True = Trigger “On loading a record”

activated, else False

Description
The command GET TABLE PROPERTIES returns the properties for the table passed in
tablePtr or tableNum. The table number or a pointer to the table can be passed as first
parameter.

Once the command has been executed:
• The invisible parameter returns True if the “Invisible” attribute has been set for the table,
else False. The Invisible attribute allows to hide the table when using 4D standard editors
(label, charts...).
• The trigSaveNew parameter returns True if the “On saving new record” trigger has been
set for the table, else False.
• The trigSaveRec parameter returns True if the “On saving an existing record” trigger has
been set for the table, else False.
• The trigDelRec parameter returns True if the “On deleting a record” trigger has been set
for this table, else false.
• The trigLoadRec parameter returns True if the “On loading a record” trigger has been set
for this table, else False.

See Also
GET FIELD ENTRY PROPERTIES, GET FIELD PROPERTIES, GET RELATION PROPERTIES.

4th Dimension Language Reference 1389

Field Structure Access

version 3
__

Field (tableNum | fieldPtr{; fieldNum}) → Number | Pointer

Parameter Type Description
tableNum | fieldPtr Number | Pointer → Table number or Field pointer
fieldNum Number → Field number, if Table number is passed

Function result Number | Pointer ← Field number, if Field pointer is passed
Field pointer, if Table and Field numbers
are passed

Description
The command Field has two forms:
• If you pass a table number in tableNum and a field number in fieldNum, Field returns a
pointer to the field.
• If you pass a field pointer in fieldPtr, Field returns the field number of the field.

Examples
1. The following example sets the fieldPtr variable to a pointer to the second field in the
third table:

⇒ FieldPtr:=Field(3; 2)

2. Passing fieldPtr (a pointer to the second field of a table) to Field returns the number 2.
The following line sets FieldNum to 2:

⇒ FieldNum:=Field(FieldPtr)

3. The following example sets the FieldNum variable to the field number of [Table3]Field2:

⇒ FieldNum:=Field(->[Table3]Field2)

See Also
Count fields, Field name, GET FIELD PROPERTIES, Table.

1390 4th Dimension Language Reference

GET FIELD PROPERTIES Structure Access

version 6.7.1 (Modified)
__

GET FIELD PROPERTIES (fieldPtr | tableNum{; fieldNum}; fieldType{; fieldLength{; indexed
{; unique{; invisible}}}})

Parameter Type Description
fieldPtr | tableNum Pointer | Number → Table number or Field pointer
fieldNum Number → Field number if Table number is passed
fieldType Number ← Type of field
fieldLength Number ← Length of field, if Alphanumeric
indexed Boolean ← True = Indexed, False = Non indexed
unique Boolean ← True = Unique, False = Non unique
invisible Boolean ← True = Invisible, False = Visible

Description
The command GET FIELD PROPERTIES returns information about the field specified by
fieldPtr or by tableNum and fieldNum.

You either pass:
• the table and field numbers in tableNum and fieldNum, or
• a pointer to the field in fieldPtr.

After the call:

• fieldType returns the type of the field. The fieldType variable parameter can take a value
provided by the following predefined constants:

Constant Type Value
Is Alpha Field Long Integer 0
Is Text Long Integer 2
Is Real Long Integer 1
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Date Long Integer 4
Is Time Long Integer 11
Is Boolean Long Integer 6
Is Picture Long Integer 3
Is Subtable Long Integer 7
Is BLOB Long Integer 30

• The fieldLen parameter returns the length of the field, if the field is Alphanumeric (i.e.,
fieldType=Is Alpha Field). The value of fieldLen is meaningless for the other field types.

4th Dimension Language Reference 1391

• The indexed parameter returns True is the field is indexed, and False if not. The value of
indexed is meaningful only for Alphanumeric, Integer, Long Integer, Real, Date, Time,
and Boolean fields.

• The unique parameter returns True if the field is set to “Unique”, else False. The Unique
attribute can be set only to indexed fields.

• The invisible parameter returns True if the field is set to “Invisible”, else False. The
Invisible attribute can be used to hide a given field in 4D standard editor (label, charts...).

Examples
1. This example sets the variables vType, vLength, vIndex, vUnique and vInvisible to the
properties for the third field of the first table:

⇒ GET FIELD PROPERTIES(1; 3;vType;vLength;vIndex;vUnique;vInvisible)

2. This example sets the variables vType, vLength, vIndex, vUnique and vInvisible to the
properties for the field named [Table3]Field2:

⇒ GET FIELD PROPERTIES(->[File3]Field2;vType;vLength;vIndex;vUnique;vInvisible)

See Also
Field, Field name, SET INDEX.

1392 4th Dimension Language Reference

GET FIELD ENTRY PROPERTIES Structure Access

version 6.7
__

GET FIELD ENTRY PROPERTIES (fieldPtr | tableNum{; fieldNum}; list{; mandatory{;
nonEnterable{; nonModifiable}}})

Parameter Type Description
fieldPtr | tableNum Pointer | Longint → Field pointer or table number
fieldNum Longint → Field number if the table number is passed as

first parameter
list String ← Associated choice list name or empty string
mandatory Boolean ← True = Mandatory, False = Optional
nonEnterable Boolean ← True = Non-enterable, False = Enterable
nonModifiable Boolean ← True = Non-modifiable, False = Modifiable

Description
The GET FIELD ENTRY PROPERTIES command returns the data entry properties for the field
specified by tableNum and fieldNum or by fieldPtr.
You can either pass:
• table and field numbers in tableNum and fieldNum, or
• a pointer to the field in fieldPtr.

Note: This command returns the properties defined at the structure window level. Similar
properties can be defined at the form level.

Once the command has been executed:
• The list parameter returns the choice list name associated to the field (if any). A list can
be associated to the following field types: String, Text, Real, Integer, Long Integer, Date,
Time and Boolean.
If there is no choice list associated to the field or if the field type is not suitable for a
choice list, an empty string is returned ("").
• The mandatory parameter returns True if the field is “Mandatory”; else False. The
Mandatory attribute can be set for all field types, except Subtable and BLOB.
• The nonEnterable parameter returns True if the field is “Non-enterable”, else False. A non-
enterable field can only be read, no data can be entered. The non-enterable attribute can
be set for all field types, except for subtable and BLOB.
• The nonModifiable parameter returns True if the field is “Non-modifiable”, else False. A
non-modifiable field can be entered just once and cannot be modified anymore. The Non-
modifiable attribute can be set for all field types, except for subtable and BLOB.

See Also
GET FIELD PROPERTIES, GET RELATION PROPERTIES, GET TABLE PROPERTIES.

4th Dimension Language Reference 1393

GET RELATION PROPERTIES Structure Access

version 6.7
__

GET RELATION PROPERTIES (fieldPtr|tableNum{; fieldNum}; oneTable; oneField{;
choiceField{; autoOne{; autoMany}}})

Parameter Type Description
fieldPtr|tableNum Pointer|Longint → Field pointer or table number
fieldNum Longint → Field number if the table number is passed as

first parameter
oneTable Longint ← One table number or 0 if no relation is defined

from the field
oneField Longint ← One field number or 0 if no relation is defined

from the field
choiceField Longint ← Choice field number or 0 if no choice field
autoOne Boolean ← True = Auto relate one,

False = Manual relate one
autoMany Boolean ← True = Auto one to many,

False = Manual one to many

Description
The GET RELATION PROPERTIES command returns the properties of the relation (if any)
which starts from the source field defined by tableNum and fieldNum or by fieldPtr.

You can pass:
• Either table and field numbers in tableNum and fieldNum,
• Or a pointer to the field in fieldPtr.

Once the command has been executed:
• The oneTable and oneField parameters contain respectively the table and field number to
which the relation (from the source field) is pointing. If there is no relation starting from
the field, these parameters return 0.
• The choicefield parameter contains the choice field number (from the target table)
defined within this relation. If no choice field has been set for this relation, or if no
relation starts from the source field, this parameter returns 0.
• The autoOne and autoMany parameters return True if, respectively, the “Auto Relate
One” and “Auto One to Many” boxes has been checked for this relation; otherwise, they
return False.

Note: The autoOne and autoMany parameters will also return True if no relation starts
from the source field (in this case they return non-significant values). The value of both
the oneTable and oneField parameters allows you to make sure that a relation exists.

See Also
GET FIELD ENTRY PROPERTIES, GET FIELD PROPERTIES, GET TABLE PROPERTIES, SET
AUTOMATIC RELATIONS, SET FIELD RELATION.

1394 4th Dimension Language Reference

SET INDEX Structure Access

version 3
__

SET INDEX (field; index{; mode{; *}})

Parameter Type Description
field Field or Subfield → Field for which to create or delete the index
index Boolean → Create index (TRUE) or Delete index (FALSE)
mode Longint → Indexing mode (in percentage)
* → Asynchronous indexing if * is passed

Description
The SET INDEX command creates or removes the index for the field or subfield you pass in
field.

To index the field or subfield, pass TRUE in index. If the index already exists, the call has
no effect. To delete the index, pass FALSE. If the index does not exist, the call has no
effect.

SET INDEX will not index locked records; it will wait until the record becomes unlocked.

Starting from version 6.5, 4D allows you to now choose between two index modes: the
“traditional” mode, which is the mode used in previous versions of 4D, and the new
“fast” mode, which in most cases allows for a significant increase in speed. For more
information, refer to the 4D Design Reference manual.
You select the index mode to use by choosing whether to pass the optional mode
parameter. The mode parameter is only used if the command is able to actually create the
index (that is if the index parameter is True).

• If you don't pass the mode parameter, the indexing will be performed in traditional
mode. In this case, since indexing is done in a separate process, the database remains
available for use during this time. If an operation that uses the index is executed while the
index is being built, the index will not be used. To determine if a field has been indexed,
use the GET FIELD PROPERTIES command.

• If you pass the mode parameter, the command will use the fast mode. In this case, it
will not be possible to modify the data of the table during the indexing process.
You must pass an Integer value that represents a percentage to the mode parameter. This
value allows you to indicate the usage type for which you want the index to be most
efficient. It must be between the following limits:
- mode = 0: the index will be most efficient when adding or inserting records.
- mode = 100: the index will be most efficient when performing queries.

4th Dimension Language Reference 1395

The optional * parameter indicates an asynchronous (simultaneous) indexing.
Asynchronous indexing allows the execution of the calling method to continue
immediately, whether or not indexing is completed. However, execution will halt at any
command that requires the index.

Examples
1. The following example indexes the field [Customers]ID with the classical mode:

UNLOAD RECORD([Customers])
⇒ SET INDEX ([Customers]ID; True)

2. You want to index the [Customers]Name field with the fast mode. This field is mainly
used for queries:

⇒ SET INDEX ([Customers]Name; True;100)

2. You want to index the [Contacts]Name field with the fast mode. This field is mainly
used for adding and inserting names, but also for queries:

⇒ SET INDEX ([Contacts]Name; True;30)

See Also
GET FIELD PROPERTIES, ORDER BY, QUERY.

1396 4th Dimension Language Reference

Get database parameter Structure Access

version 2004.3 (Modified)
__

Get database parameter ({table; }selector) → Longint

Parameter Type Description
table Table → Table number or,

Default table if this parameter is omitted
selector Longint → Code of the database’s parameter

Function result Longint ← Current value of the parameter

Description
The Get database parameter command allows you to read the current value of a 4D
database parameter.

The selector parameter designates the parameter to read. 4th Dimension offers you the
following predefined constants, which are in the “Database Parameters” theme:

Constant Type Value
Seq Order Ratio Longint 1
Seq Access Optimization Longint 2
Seq Distinct Values Ratio Longint 3
Index Compacting Longint 4
Seq Query Select Ratio Longint 5
Minimum Web Process Longint 6
Maximum Web Process Longint 7
Web conversion mode Longint 8
Database Cache Size Longint 9
4th Dimension Scheduler Longint 10
4D Server Scheduler Longint 11
4D Client Scheduler Longint 12
4D Server Timeout Longint 13
4D Client Timeout Longint 14
Port ID Longint 15
IP Address to listen Longint 16
Character set Longint 17
Max Concurrent Web Processes Longint 18
Client Minimum process Web Longint 19
Client Maximum process Web Longint 20
Client Maximum Web requests size Longint 21
Client Port ID Longint 22
Client IP Address to listen Longint 23
Client Character set Longint 24
Client Max Concurrent Web Proc Longint 25

4th Dimension Language Reference 1397

Cache Writing Mode Longint 26
Maximum Web requests size Longint 27
4D Server Log Recording Longint 28
Web Log Recording Longint 29
Client Web Log Recording Longint 30
Table Sequence Number Longint 31
Real Display Precision Longint 32
Debug Log Recording Longint 34

To know the values that could be returned by this function for the selectors 1 to 8 and 10
to 34, as well as the scope of each selector, please refer to the description of the SET
DATABASE PARAMETER command.

The Database Cache Size (9) selector allows you to get the current database memory cache
size. The returned value is expressed in bytes.
The Maximum Cache size is set on the “Database/Data Management” page of the
Preferences. The actual size allocated to the database cache will however depend on both
the settings and the current system resources. The Get database parameter command
allows you to get the actual size of the memory allocated to the database cache by 4D.

Note: You cannot set the database cache memory size using the language. In other words,
the Database Cache Size selector cannot be set using the SET DATABASE PARAMETER
command.

Examples
(1) The following method allows you to get 4D scheduler current values:

C_LONGINT($ticksbtwcalls;$maxticks;$minticks;$lparams)
If (Application type=4th Dimension) ` 4D single user is used

⇒ $lparams:=Get database parameter(4th Dimension scheduler)
$ticksbtwcalls:=$lparams & 0x00ff
$maxticks:=($lparams>>8) & 0x00ff
$minticks:=($lparams>>16) & 0x00ff

End if

(2) The selector 16 (IP Address to listen) allows you to obtain the IP address on which the
4D Web server receives HTTP requests. The following example splits up the hexadecimal
value:

C_LONGINT($a;$b;$c;$d)
C_LONGINT($addr)

⇒ $addr:=Get database parameter(IP Address to listen)
$a:=($addr>>24)&0x000000ff
$b:=($addr>>16)&0x000000ff
$c:=($addr>>8)&0x000000ff
$d:=$addr&0x000000ff

See Also
DISTINCT VALUES, QUERY SELECTION, SET DATABASE PARAMETER.

1398 4th Dimension Language Reference

SET DATABASE PARAMETER Structure Access

version 2004.3 (Modified)
__

SET DATABASE PARAMETER ({table; }selector; value)

Parameter Type Description
table Table → Table for which to set the parameters or,

Default table if this parameter is omitted
←

selector Longint → Code of the database parameter to modify
value Longint → Value of the parameter

Description
The SET DATABASE PARAMETER command allows you to modify various internal
parameters of the 4D database.

selector designates the database parameter to modify. 4th Dimension offers predefined
constants, which are located in the “Database Parameters” theme. The following table lists
each constant and describes its scope:

Constant for selector Value Scope
Seq Order Ratio 1 Current table and process
Seq Access Optimization 2 Current table and process
Seq Distinct Values Ratio 3 Current table and process
Index Compacting 4 4D application (*)
Seq Query Select Ratio 5 Current table and process
Minimum Web Process 6 4th Dimension, 4D Server (*)
Maximum Web Process 7 4th Dimension, 4D Server (*)
Web conversion mode 8 Current process
Database cache size 9 4D application (*) (**)
4th Dimension Scheduler 10 4D application (*)
4D Server Scheduler 11 4D application (*)
4D Client Scheduler 12 4D application (*)
4D Server Timeout 13 4D application if positive value (***)
4D Client Timeout 14 4D application if positive value (***)
Port ID 15 4th Dimension, 4D Server (*)
IP Address to listen 16 4th Dimension, 4D Server (*)
Character set 17 4th Dimension, 4D Server (*)
Max Concurrent Web Processes 18 4th Dimension, 4D Server (*)
Client Minimum process Web 19 All 4D Client machines (*)
Client Maximum process Web 20 All 4D Client machines (*)
Client Max Web requests size 21 All 4D Client machines (*)
Client Port ID 22 All 4D Client machines (*)
Client IP Address to listen 23 All 4D Client machines (*)
Client Character set 24 All 4D Client machines (*)

4th Dimension Language Reference 1399

Client Max Concurrent Web Proc 25 All 4D Client machines (*)
Cache writing mode 26 4D application (*)
Maximum Web requests size 27 4th Dimension, 4D Server (*)
4D Server Log Recording 28 4D Server, 4D Client (*)
Web Log Recording 29 4th Dimension, 4D Server (*)
Client Web Log Recording 30 All 4D Client machines (*)
Table Sequence Number 31 4D Application
Real Display Precision 32 4D Application
Debug Log Recording 34 4D Application (*)

(*) The table parameter is ignored in this case.
(**) This selector can only be read (see Get database parameter command).
(***) If the value parameter is negative, the setting is local to the current process and is
reset for the next request.

value designates the value of the parameter. The value passed depends on the parameter
that you want to modify. Here are the possible values for each selector:

Selector = 1 (Seq Order Ratio)
• Values: 0 -> 100,000
• Description: Ratio (between the number of selected records and the total number of
records) below which the sorts are executed in sequential mode. This ratio must be
multiplied by one hundred thousand. The default value is 9,000 (= 9 %).

Selector = 2 (Seq Access Optimization)
• Values: 0 or 1 (0 = not optimized, 1 = optimized)
• Description: Optimization mode for sequential accesses (sorts, searches or selection to
array). In optimized mode, 4D will read numerous records at a time from the disk but will
not place them in the cache. This mode is especially useful if the size of the cache is low.
By default, the value is 1 (optimized mode).

Selector = 3 (Seq Distinct Values Ratio)
• Values: 0 -> 100,000
• Description: Ratio (between the number of selected records and the total number of
records) below which the DISTINCT VALUES command will be executed in sequential
mode. This ratio must be multiplied by one hundred thousand.

Selector = 4 (Index Compacting)
• Values: 0 or 1 (0 = no compacting, 1 = compacting)
• Description: This selector allows you to enable or disable the compacting of the index
pages. By default, the value is 1 (indexes are compacted when necessary).
Index pages can, in databases containing a lot of indexes and records, use a lot of space in
the memory cache of 4D. When the cache is full and 4D needs additional space, the data
in the cache is not directly unloaded. Before unloading data to gain space, the program is
going to check if it can gain space by compacting the index pages. This alternative allows
you to avoid reloading the data later.

1400 4th Dimension Language Reference

Selector = 5 (Seq Query Select Ratio)
• Values: 0 -> 100,000
• Description: Ratio (between the number of selected records and the total number of
records) below which the QUERY SELECTION command will be executed in sequential
mode. This ratio must be multiplied by one hundred thousand.

Selector = 6 (Minimum Web Process)
• Values: 0 -> 32,767
• Description: Minimum number of Web processes to maintain in non-contextual mode
with 4th Dimension and 4D Server. By default, the value is 0 (see below).

Selector = 7 (Maximum Web Process)
• Values: 0 -> 32,767
• Description: Maximum number of Web processes to maintain in non-contextual mode
with 4th Dimension and 4D Server. By default, the value is 10.
In non-contextual mode, for the Web server to be reactive, 4D delays the Web processes
for 5 seconds and reuses them to execute any possible future HTTP queries. In terms of
performance, this is actually more advantageous than creating a new process for each
query. Once a Web process is reused, it is delayed again for 5 seconds. When the
maximum number of Web processes has been reached, the web process is then aborted. If
no query has been attributed to a Web process within the 5 second delay, the process is
aborted, except if the minimum number of Web processes has been reached (in which
case the process is delayed again).
These parameters allow you to adjust how your Web server operates in relation to the
number of requests and the memory available as well as other parameters.

Selector = 8 (Web conversion mode)
• Values: 0, 1, 2 or 3
0= (Default mode) Conversion to the HTML 4.0 format if it is allowed by the browser.
Otherwise, HTML 3.2 format + array use.
1= 6.0.x conversion mode
2= 6.5 conversion mode
3= Conversion to the HTML 4.0 format + CSS-P (since version 6.5.2)
• Description: Conversion mode of 4D forms for the Web with 4th Dimension and 4D
Server. By default, the 4D Web Server uses the cascading style sheets (CSS1) to generate
HTML pages similar to the 4D forms displayed in 4th Dimension. With this feature, the
forms might not convert correctly for databases created with versions of 4D prior to 6.7.
Consequently, you have the possibility of setting the form conversion mode.
This mode is set only for the process (Web context) within which the SET DATABASE
PARAMETER was called. It can be called from within the On Web Connection Database
Method to ensure the compatibility of all the forms of a database, or just before a single
form is displayed. If the command is called outside either the contextual mode or a Web
process, it has no effect.

Note: An additional selector can be used with the Get database parameter command:
Database Cache Size (9). This selector cannot be used with the SET DATABASE PARAMETER
command. For more information, please refer to the description of the Get database
parameter command.

4th Dimension Language Reference 1401

Selector = 10 (4th Dimension Scheduler)
Selector = 11 (4D Server Scheduler)
Selector = 12 (4D Client Scheduler)
• Values: For these three selectors, the value parameter is expressed in hexadecimal
0x00aabbcc detailed as follows:
aa = minimum number of ticks per call to the system (0 to 100 included).
bb = maximum number of ticks per call to the system (0 to 100 included).
cc = number of ticks between calls to the system (0 to 20 included).
If one of the values is out of range, 4D sets it to its maximum. You can pass one of the
following preset standard values in the value parameter:
value = -1: maximum priority allocated to 4D,
value = -2: average priority allocated to 4D,
value = -3: minimum priority allocated to 4D.
• Description: This parameter allows you to dynamically set the 4D system internal calls.
Depending on the selector, the scheduler value will be set for:
- 4th Dimension (single user) and 4D Tools, when the command is called from 4th
Dimension (selector=10).
- 4D Server when the command is called from 4D Server (selector=11).
- 4D Client when the command is called from 4D Client (selector=12).
(See example 1).

Note: The operation of selector 12 (4D Client Scheduler) differs according to whether the
SET DATABASE PARAMETER command is executed on the server machine or on the client
machine:
- If the command is executed on the server machine, the new value will be applied to all
the client machines that connect to it subsequently.
- If the command is executed on the client machine, the new value is applied to the client
machine immediately as well as to all the client machines that connect to the server
subsequently.
You can use this operation to implement a dynamic and individualized management of
priority for each client machine. This consists in executing the command initially on the
client machine to be configured, then a second time on the server machine using the
default value, which will then be used for the client machines that connect to it
subsequently.
This operation is in effect in 4th Dimension starting with versions 6.8.6, 2003.3 and
2004.

Selector = 13 (4D Server Timeout)
• Description: This parameter allows changing the value of the 4D Server timeout. The
default 4D Server timeout value is defined on the “Client-Server/Configuration” page of
the Preferences dialog box on the server side.
The 4D Server Timeout selector allows you to set in the corresponding value parameter a
new timeout, expressed in minutes. This feature is particularly useful to increase the
timeout before executing a blocking and time-consuming operation on the client, such as
printing a large number of pages, which can cause an unexpected timeout.

1402 4th Dimension Language Reference

You also have two options:
- If you pass a positive value in the value parameter, you set a global and permanent
timeout: the new value is applied to all process and is stored in the preferences of the 4D
application (equivalent to change in the Preferences dialog box).
- If you pass a negative value in the value parameter, you set a local and temporary
timeout: The new value is applied to the calling process only (the other processes keep the
default values) and is reset to default as soon as the server receives any signal of activity
from the client — for example, when the operation is finished. This option is useful for
managing long operations initiated by 4D plug-ins.
To set the “No timeout” option, pass 0 in value.
(See example 2).

Selector = 14 (4D Client Timeout)
• Description: This parameter allows changing the value of the 4D Client timeout. The
default 4D Client timeout value is defined on the “Client-Server/Configuration” page of
the Preferences dialog box on the client side.
For more information about this selector, refer to 4D Server Timeout selector description
(13).
The 4D Client Timeout selector can be used in very specific cases.

Selector = 15 (Port ID)
• Description: This parameter allows changing on the fly the TCP port ID used by the 4D
Web server with 4th Dimension and 4D Server. The default value, which can be set on
the “Web/Configuration” page of the Preferences dialog box, is 80.
The Port ID selector is useful for 4D Web Servers compiled and merged with 4D Runtime
(in which there is no access to the Design mode). For more information about the TCP
port ID, refer to the Web Services, Configuration section.

Selector = 16 (IP Address to listen)
• Description: This parameter allows the user to change on the fly the IP address on
which the 4D Web server will receive HTTP requests with 4th Dimension and 4D Server.
By default, no specific address is defined (value = 0). This parameter can be set in the
Preferences of the database.
The IP Address to listen selector is useful for 4D Web Servers compiled and merged with 4D
Runtime (in which there is no access to the Design mode).
You will pass in the value parameter a hexadecimal IP address. That is, to designate a IP
address such as “a.b.c.d”, you should write:

C_LONGINT($addr)
$addr:=($a<<24)|($b<<16)|($c<<8)|$d

⇒ SET DATABASE PARAMETER(IP Address to listen;$addr)

See also example 3. For more information on how to designate the IP address, refer to the
Web Services, Web Server Settings section.

4th Dimension Language Reference 1403

Selector = 17 (Character set)
• Values:
0: Western European
1: Japanese
2: Chinese
3: Korean
4: User-defined
5: Reserved
6: Central European
7: Cyrillic
8: Arabic
9: Greek
10: Hebrew
11: Turkish
12: Baltic
• Description: This parameter allows the user to change on the fly the character set that
the 4D Web Server (with 4th Dimension and 4D Server) should use to communicate with
browsers connecting to the database. The default value actually depends on the language
of the operating system.
This parameter can be set in Preferences of the database. The Character set selector is
useful for 4D Web Servers compiled and merged with 4D Runtime (in which there is no
access to the Design mode).

Selector = 18 (Max Concurrent Web Processes)
• Values: You can pass any value between 10 and 32 000. The default value is 32 000.
• Description: This parameter allows setting the strictly high limit of concurrent Web
processes of any type (contextual, non-contextual or belonging to the “pool of
processes”— see selector 7, Maximum Web Process) supported by the 4D Web Server with
4th Dimension and 4D Server. When this number (minus one) is reached, 4D will not
create any other processes and returns the HTTP status 503 - Service Unavailable to all new
requests.
This parameter can prevent the 4D Web Server from saturation, which can occur when an
exceedingly large number of concurrent requests are sent, or when too many context
creations are requested. This parameter can also be set in the Preferences dialog box (see
the Web Services, Web Server Settings section).
In theory, the maximum number of Web processes is the result of the following formula:
Available memory/Web process stack size. Another solution is to visualize the information
on Web processes displayed in the Runtime Explorer: the current number of Web
processes and the maximum number reached since the Web server boot are indicated.

Note: If you pass a value inferior to the high limit of the “pool of processes,” this limit is
reduced in order to match the value of the selector 18. If necessary, the low limit of the
pool (see selector 6, Minimum Web Process) is also modified.

Selector = 19 (Client Minimum process Web)
Selector = 20 (Client Maximum process Web)
Selector = 21 (Client Max Web requests size)
Selector = 22 (Client Port ID)

1404 4th Dimension Language Reference

Selector = 23 (Client IP Address to listen)
Selector = 24 (Client Character set)
Selector = 25 (Client Max Concurrent Web Proc)
• Values: Identical to those of the corresponding 4th Dimension or 4D Server selectors
(see selectors 6 to 8, 15 to 18 and 27).
• Description: These selectors are used to specify the operating parameters of 4D Client
machines used as Web servers.
The values defined using these selectors are applied to all the 4D Client machines used as
Web servers. If you want to define values only for certain 4D Client machines, use the 4D
Client Preferences dialog box.

Selector = 26 (Cache writing mode)
• Values: 0 or 1 (0 = disable, 1 = enable).
• Description: Enabling or disabling of the optimized cache writing mode. By default, the
value is 1 (enabled).
The optimized cache writing mode, enabled by default in 4th Dimension starting with
version 2003, considerably accelerates 4D applications, in particular under Mac OS.

Selector = 27 (Maximum Web requests size)
• Values: 500 000 to 2 147 483 648.
• Description: Maximum size (in bytes) of incoming HTTP requests (POST) that the Web
server is authorized to process. By default, the value is 2 000 000, i.e. a little less than 2
MB. Passing the maximum value (2 147 483 648) means that, in practice, no limit is set.
This limit is used to avoid Web server saturation due to incoming requests that are too
large. When a request reaches this limit, the 4D Web server refuses it.

Selector = 28 (4D Server Log Recording)
• Values: 0 or from 1 to X (0 = do not record, 1 to X = sequential number, added to the
file name).
• Description: Starts or stops the recording of standard requests received by 4D Server
(excluding Web requests). By default, the value is 0 (requests not recorded).
4D Server lets you record each request received by the server machine in a log file. When
this mechanism is enabled, the log file is created next to the database structure file. Its
name is “4DRequestsLogX,” where X is the sequential number of the log. Once the file
reaches a size of 10 MB, it is closed and a new file is generated, with an incremented
sequential number. If a file of the same name already exists, it is replaced directly. You
can set the starting number of the sequence using the value parameter.
This text file stores various information concerning each request in a simple tabulated
format: time, process number, user, size of request, processing duration, etc. This
information can be particularly useful when fine tuning the application or for statistical
purposes. It can be imported, for example, into a spreadsheet software in order to be
processed.

Note: It is possible to manually enable or disable the recording of requests using the
Ctrl+Alt+L shortcut under Windows or the Command+Option+L shortcut under Mac OS.

4th Dimension Language Reference 1405

Selector = 29 (Web Log Recording)
• Values: 0 or 1 (0 = do not record, 1 = record).
• Description: Starts or stops the recording of Web requests received by the Web server of
4th Dimension or 4D Server. By default, the value is 0 (requests not recorded).
The log of Web requests is stored as a text file named “logweb.txt” that is automatically
placed next to the database structure file. This file is in CLF (Common LogFile Format) or
NCSA format, which is recognized by most Web site analysis tools.
This file can also be activated on the “Web/Advanced” page of the 4th Dimension
Preferences.

Selector = 30 (Client Web Log Recording)
• Values: 0 or 1 (0 = do not record, 1 = record).
• Description: Starts or stops the recording of Web requests received by the Web servers of
all the client machines. By default, the value is 0 (requests not recorded).
The operation of this selector is identical to that of selector 29; however, it applies to all
the 4D Client machines used as Web servers. If you only want to set values for certain
client machines, use the Preferences dialog box of 4D Client.

Selector = 31 (Table Sequence Number)
• Values: Any longint value.
Description: This selector is used to modify or get the current unique number for records
of the table passed as parameter. “Current number” means “last number used”: if you
modify this value using SET DATABASE PARAMETER, the next record will be created with a
number that consists of the value passed + 1 (this new number is the one returned by the
Sequence number command).
By default, this unique number is set by 4th Dimension and corresponds to the order of
record creation. For additional information, refer to the documentation of the Sequence
number command.

Selector = 32 (Real Display Precision)
• Values: Any positive longint value.
• Description: This selector lets you modify or get the number of non-significant digits
truncated from the right by the real screen display algorithm. This value is set for the
current application and session.
By default, the value of this option is 4. The value 0 indicates that the default value is used
and that the parameter has not been modified during the session.
For historical reasons, 4th Dimension works with real numbers stored on 10 bytes and
converts them to 8 bytes during processing (see the Display of Real Numbers section). This
is entirely transparent and does not affect calculations; however certain results may not
be displayed as anticipated. For example, the operation 4,1-4,09 displays the result
0.009999999999999780000, but searching for 0.01 finds the correct value.
Here is how 4D goes about displaying a real number: let's take the value
8.97499999999996158 obtained by a calculation as an example (the expected result
would normally be 8.975). The algorithm which rounds off most accurately removes the
last four digits (6158) by default and then checks whether the last remaining digit is a 0
or a 9. If it is 0, the algorithm goes back to the first 0 and removes all the others. If the
value is 9, the algorithm goes back to the first 9 and rounds the decimal up to the next
value. In our example, the value 8.974999999999996158 is thus transformed into 8.975.

1406 4th Dimension Language Reference

It may happen that certain results end with 5 non-significant digits, like
8.9749999999999986158 for instance. In this case, the algorithm cannot round the value
off correctly because the last remaining digit (after removing the last four) is neither 0
nor 9 and it will thus do nothing.
You may want for the precision algorithm to truncate more or less digits according to the
specific characteristics of your database. In this case, pass a custom value. Except for zero
(4D internal value choice), this value will indicate the number of digits truncated by the
precision algorithm.
Keep in mind that this setting does not affect the display of numbers, nor their internal
processing.

• Selector = 34 (Debug Log Recording)
• Possible values: 0, 1 or 2 (0 = do not record, 1 = record, 2 = record in detailed mode)
• Description: Starts or stops the sequential recording of events occurring at the 4D
programming level, intended for debugging the application. By default, the value is 0
(events are not saved).
When this mode is enabled, various types of information can be recorded, more
particularly:
- For each event, the number of milliseconds since the creation of the file and the process
number ([n]),
- The execution of each 4D command (cmd) and each calling of a plug-in (plugInName); in
this case, the stack level is indicated (n),
- Each calling of project methods (meth), object methods (obj) and form methods (form),
- When the detailed mode is activated (value = 2), additional information concerning the
plug-ins are recorded: events in the plug-in areas (EventCode) and calls to 4D by the plug-
ins (externCall).
The events are stored in a file named “4DDebugLog.txt” that is automatically placed next
to the database structure file. Each event is systematically recorded in the file before its
execution, which guarantees its presence in the file even when the application quits
unexpectedly. Be careful, this file is erased and rewritten each time the application is
launched.
This option can be activated for any type of 4D application (4th Dimension single user,
4D Server, 4D Client, 4D Runtime), in interpreted or compiled mode).

Note: This option is provided solely for the purpose of debugging and must not be put
into production since it may lead to deterioration of the application performance and
saturation of the hard disk.

4th Dimension Language Reference 1407

Examples
(1) The following method allows you to define the scheduler values if 4D single user is
running:

C_LONGINT($ticksbtwcalls;$maxticks;$minticks;$lparams)
If(Application type=4th Dimension) ` if 4D single user is used

$ticksbtwcalls:=12
$maxticks:=20
$minticks:=7
$lparams:=($minticks<<16)|($maxticks<<8)|$ticksbtwcalls

⇒ SET DATABASE PARAMETER (4th Dimension scheduler;$lparams)
End if

(2) The following statement will avoid any unexpected timeout:

`Increasing the timeout to 3 hours for the current process
SET DATABASE PARAMETER(4D Server Timeout;-60*3)

`Executing a time-consuming operation with no control from 4D
...
WR PRINT MERGE (Area;3;0)
...

(3) The IP address 192.193.194.195 will be set with the following statement:

⇒ SET DATABASE PARAMETER(IP Address to listen;0xC0C1C2C3)

See Also
DISTINCT VALUES, Get database parameter, QUERY SELECTION.

1408 4th Dimension Language Reference

51

Subrecords

4th Dimension Language Reference 1409

1410 4th Dimension Language Reference

CREATE SUBRECORD Subrecords

version 3
__

CREATE SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable for which to create a new subrecord

Description
CREATE SUBRECORD creates a new subrecord for subtable and makes the new subrecord
the current subrecord. The new subrecord is saved only when the parent record is saved.
The parent record can be saved by a command such as SAVE RECORD or by the user
accepting the record. If there is no current record, CREATE SUBRECORD has no effect. To
add a new subrecord through a subrecord input form, use ADD SUBRECORD.

Example
The following example is an object method for a button. When it is executed (that is,
when the button is clicked), it creates new subrecords for children in the [People] table.
The Repeat loop lets the user add children until the Cancel button is clicked. The form
displays the children in an subform, but will not allow direct data entry into the subtable
because the Enterable option has been turned off:

Repeat
` Get the child’s name

vChild := Request("Name (cancel when done):")
` If the user clicked OK

If (OK = 1)
` Add a new subrecord for a child

⇒ CREATE SUBRECORD([People]Children)
` Assign child’s name to the subfield

[People]Children'Name:=vChild
End if

Until (OK=0)

See Also
ADD SUBRECORD, DELETE SUBRECORD, SAVE RECORD.

4th Dimension Language Reference 1411

DELETE SUBRECORD Subrecords

version 3
__

DELETE SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable from which to delete the current subrecord

Description
DELETE SUBRECORD deletes the current subrecord of subtable. If there is no current
subrecord, DELETE SUBRECORD has no effect. After the subrecord is deleted, the current
subselection for subtable is empty. As a result, DELETE SUBRECORD can’t be used to scan
through a subselection and delete selected subrecords.

The deletion of subrecords is not permanent until the parent record is saved. Deleting a
parent record automatically deletes all its subrecords.

To delete a subselection, create the subselection you want to delete, delete the first
subrecord, create the subselection again, delete the first subrecord, and so on.

Examples
1. The following example deletes all the subrecords of a subtable:

ALL SUBRECORDS([People]Children)
While (Records in subselection([People]Children)>0)

⇒ DELETE SUBRECORD([People]Children)
ALL SUBRECORDS([People]Children)

End while

2. The following example deletes the subrecords in which the age of the child is greater
than or equal to 12, from the [People]Children subtable :

ALL RECORDS([People]) ` Select all the records
For ($vlRecord;1;Records in selection([People])) ` For all the records in the table

` Query all records that have subrecords with the criteria
QUERY SUBRECORDS([People]Children;[People]Children'Age>=12)

` Loop until no subrecords are left by the query
While (Records in subselection([People]Children)>0)

⇒ DELETE SUBRECORD([People]Children) ` Delete the subrecord
QUERY SUBRECORDS([People]Children;[People]Children'Age>=12) ` Query again

End while
SAVE RECORD([People]) ` Save the parent record
NEXT RECORD([People])

End for

See Also
ALL SUBRECORDS, QUERY SUBRECORDS, Records in subselection, SAVE RECORD.

1412 4th Dimension Language Reference

ALL SUBRECORDS Subrecords

version 3
__

ALL SUBRECORDS (subtable)

Parameter Type Description
subtable Subtable → Subtable in which to select all subrecords

Description
ALL SUBRECORDS makes all the subrecords of subtable the current subselection. If a
current parent record does not exist, ALL SUBRECORDS has no effect. When a parent
record is first loaded, the subselection contains all subrecords. A subselection may not
contain all subrecords after ADD SUBRECORD, QUERY SUBRECORDS, or DELETE
SUBRECORD is executed.

Example
The following example selects all subrecords to ensure that they are all included in the
sum:

⇒ ALL SUBRECORDS ([Stats]Sales)
TotalSales := Sum ([Stats]Sales'Dollars)

See Also
QUERY SUBRECORDS, Records in subselection.

4th Dimension Language Reference 1413

Records in subselection Subrecords

version 3
__

Records in subselection (subtable) → Number

Parameter Type Description
subtable Subtable → Subtable for which to count the number

of selected subrecords

Function result Number ← Number of subrecords in current subselection

Description
Records in subselection returns the number of subrecords in the current subselection of
subtable. Records in subselection applies only to subrecords in the current record. It is the
subrecord equivalent of Records in selection. The result is undefined if no parent record
exists.

Example
The following example selects all the subrecords and displays the number of children for
the parent record:

` Select all children, then display how many
ALL SUBRECORDS ([People]Children)

⇒ ALERT ("Number of children: "+String(Records in subselection ([People]Children)))

See Also
ALL SUBRECORDS, QUERY SUBRECORDS.

1414 4th Dimension Language Reference

APPLY TO SUBSELECTION Subrecords

version 3
__

APPLY TO SUBSELECTION (subtable; statement)

Parameter Type Description
subtable Subtable → Subtable to which to apply the formula
statement Statement → One line of code or a method

Description
APPLY TO SUBSELECTION applies statement to each subrecord in the current subselection
of subtable. The statement may be a statement or a method. If the statement modifies a
subrecord, the modified subrecord is written to disk only when the parent record is
written. If the subselection is empty, APPLY TO SUBSELECTION has no effect.

APPLY TO SUBSELECTION can be used to gather information from the subselection or to
modify the subselection.

Example
The following example capitalizes the first names in [People]Children:

ALL SUBRECORDS ([People]Children)
⇒ APPLY TO SUBSELECTION([People]Children;[People]Children'Name:=

Uppercase(Substring([People]Children'Name;1;1))
+Lowercase(Substring([People]Children'Name;2)))

Note: The statement has been put on several lines for clarity in documentation only.

See Also
ALL SUBRECORDS, QUERY SUBRECORDS, SAVE RECORD.

4th Dimension Language Reference 1415

FIRST SUBRECORD Subrecords

version 3
__

FIRST SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable in which to move

to the first selected subrecord

Description
FIRST SUBRECORD makes the first subrecord of the current subselection of subtable the
current subrecord. All query, selection, and order by commands also set the current
subrecord to the first subrecord. If the current subselection is empty, FIRST SUBRECORD
has no effect.

Example
The following example concatenates the first and last names in child records stored in a
subtable. It copies the names into the array atNames:

` Create an array to hold the names
ARRAY TEXT (atNames; Records in subselection ([People]Children))

⇒ FIRST SUBRECORD ([People]Children)
` Start at the first subrecord and loop once for each child

For ($vlSub; 1; Records in subselection ([People]Children))
atNames{$vlSub} := [People]Children'First Name+" "+ [People]Children'Last Name
NEXT SUBRECORD ([People]Children)

End for

See Also
LAST SUBRECORD, NEXT SUBRECORD, PREVIOUS SUBRECORD.

1416 4th Dimension Language Reference

LAST SUBRECORD Subrecords

version 3
__

LAST SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable in which to move

to the last selected subrecord

Description
LAST SUBRECORD makes the last subrecord of the current subselection of subtable the
current subrecord. If the current subselection is empty, LAST SUBRECORD has no effect.

Example
The following example concatenates the first and last names in child records stored in a
subtable. It copies the names into an array, called atNames. It is the same as the example
for FIRST SUBRECORD except that it moves through the subrecords from last to first:

` Create an array to hold the names
ARRAY TEXT (atNames; Records in subselection ([People]Children))

` Start at the last subrecord and loop once for each child
⇒ LAST SUBRECORD ([People]Children)

For ($vlSub;1;Records in subselection ([People]Children))
atNames{$vlSub}:=[People]Children First Names + " " + [People]Children Last Names
PREVIOUS SUBRECORD ([People]Children)

End for

See Also
FIRST SUBRECORD, NEXT SUBRECORD, PREVIOUS SUBRECORD.

4th Dimension Language Reference 1417

NEXT SUBRECORD Subrecords

version 3
__

NEXT SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable in which to move

to the next selected subrecord

Description
NEXT SUBRECORD moves the current subrecord pointer to the next subrecord in the
current subselection of subtable. If NEXT SUBRECORD moves the pointer past the last
subrecord, End subselection returns TRUE, and there is no current subrecord. If End
subselection returns TRUE, use FIRST SUBRECORD or LAST SUBRECORD to move the pointer
back into the current subselection. If the current subselection is empty, or Before
subselection returns TRUE, NEXT SUBRECORD has no effect.

Example
See the example for FIRST SUBRECORD.

See Also
FIRST SUBRECORD, LAST SUBRECORD, PREVIOUS SUBRECORD.

1418 4th Dimension Language Reference

PREVIOUS SUBRECORD Subrecords

version 3
__

PREVIOUS SUBRECORD (subtable)

Parameter Type Description
subtable Subtable → Subtable in which to move to

the previous selected subrecord

Description
PREVIOUS SUBRECORD moves the current subrecord pointer to the previous subrecord in
the current subselection of subtable. If PREVIOUS SUBRECORD moves the pointer before
the first subrecord, Before subselection returns TRUE, and there is no current subrecord. If
Before subselection returns TRUE, use FIRST SUBRECORD or LAST SUBRECORD to move the
pointer back into the current subselection. If the current subselection is empty, or End
subselection returns TRUE, PREVIOUS SUBRECORD has no effect.

Example
See the example for LAST SUBRECORD.

See Also
FIRST SUBRECORD, LAST SUBRECORD, NEXT SUBRECORD.

4th Dimension Language Reference 1419

Before subselection Subrecords

version 3
__

Before subselection (subtable) → Boolean

Parameter Type Description
subtable Subtable → Subtable for which to test if subrecord pointer

is before the first selected subrecord

Function result Boolean ← Yes (TRUE) or No (FALSE)

Description
Before subselection returns True when the current subrecord pointer is before the first
subrecord of subtable. Before subselection is used to check whether or not PREVIOUS
SUBRECORD has moved the pointer before the first subrecord. If the current subselection
is empty, Before subselection returns True.

Example
The following example is an object method for a button. When the button is clicked, the
pointer moves to the previous subrecord. If the pointer is before the first subrecord, it
moves to the last subrecord:

PREVIOUS SUBRECORD ([People]Children) ` Move to the previous subrecord
⇒ If (Before subselection ([People]Children) ` If we have gone too far...

LAST SUBRECORD ([People]Children) ` move to the last subrecord
End if

See Also
PREVIOUS SUBRECORD.

1420 4th Dimension Language Reference

End subselection Subrecords

version 3
__

End subselection (subtable) → Boolean

Parameter Type Description
subtable Subtable → Subtable for which to test if subrecord pointer

is after the last selected subrecord

Function result Boolean ← Yes (TRUE) or No (FALSE)

Description
End subselection returns True when the current subrecord pointer is after the end of the
current subselection of subtable. End subselection is used to check whether or not NEXT
SUBRECORD has moved the pointer after the last subrecord. If the current subselection is
empty, End subselection returns True.

Example
The following example is an object method for a button. When the button is clicked, the
pointer moves to the next subrecord. If the pointer is after the last subrecord, it moves to
the first subrecord:

NEXT SUBRECORD ([People]Children) ` Move to the next subrecord
⇒ If (End subselection ([People]Children)) ` If we have gone too far...

FIRST SUBRECORD ([People]Children) ` move to the first subrecord
End if

See Also
NEXT SUBRECORD.

4th Dimension Language Reference 1421

ORDER SUBRECORDS BY Subrecords

version 3
__

ORDER SUBRECORDS BY (subtable; subfield{; > or <}{; subfield2; > or <2; ...; subfieldN;
> or <N})

Parameter Type Description
subtable Subtable → Subtable by which to order the selected subrecords
subfield Subfield → Subfield on which to order by for each level
> or < → Ordering direction for each level:

> to order in ascending order or
< to order in descending order

Description
ORDER SUBRECORDS BY sorts the current subselection of subtable. It sorts only the
subselection of the subtable contained in the current parent record.

The direction parameter specifies whether to sort subfield in ascending or descending
order. If direction is the “greater than” symbol (>), the subrecords are ordered in
ascending order. If direction is the “less than” symbol (<), the subrecords are ordered in
descending order.

You can specify more than one level of sort by including more subfields and sort symbols.
After the sort is completed, the first subrecord of the sorted subselection is the current
subrecord. Sorting subrecords is a dynamic process. Subrecords are never saved in their
sorted order. If neither a current record nor a higher-level subrecord exists, ORDER
SUBRECORDS BY has no effect.
If a form contains a subform that is to be printed in a fixed frame, this command needs
to be called just once before printing in the Before phase of the parent form method.

Example
The following example sorts the [Stats]Sales subtable into ascending order, based on the
SalesDollars subfield:

⇒ ORDER SUBRECORDS BY ([Stats]Sales; [Stats]Sales'Dollars; >)

See Also
QUERY SUBRECORDS.

1422 4th Dimension Language Reference

QUERY SUBRECORDS Subrecords

version 3
__

QUERY SUBRECORDS (subtable; queryFormula)

Parameter Type Description
subtable Subtable → Subtable to search
queryFormula Boolean → Query formula

Description
QUERY SUBRECORDS queries subtable and creates a new subselection. This is the only
command that queries subrecords and returns a selection of subrecords. The queryFormula
is applied to each subrecord in subtable. If the formula evaluates as TRUE, the subrecord is
added to the new subselection. When the query is complete, QUERY SUBRECORDS makes
the first subrecord the current subrecord of subtable.

Remember that QUERY SUBRECORDS queries only the subrecords of the subtable
contained in the currently selected parent record, and not all the subrecords associated
with the records of the parent table. QUERY SUBRECORDS does not change the current
parent record.

Typically, queryFormula tests a subfield against a variable or a constant, using a relational
operator. The queryFormula can contain multiple tests that are joined by AND
conjunctions (&) or OR conjunctions (|). Also, the queryFormula can be a function or
contain a function. The wildcard character (@) can be used with string arguments.

If neither a current record nor a higher-level subrecord exists, QUERY SUBRECORDS has no
effect.

Example
The following example queries for children older than 10 years:

⇒ QUERY SUBRECORDS ([People]Children; [People]Children'Age>10)

See Also
ALL SUBRECORDS, ORDER SUBRECORDS BY, Records in subselection.

4th Dimension Language Reference 1423

1424 4th Dimension Language Reference

52

System Documents

4th Dimension Language Reference 1425

1426 4th Dimension Language Reference

System Documents System Documents

version 2003 (Modified)
__

Introduction
All the documents and applications you use on your computer are stored as files on the
hard disk(s) connected to or mounted on your machine, or floppy disk(s) or other similar
permanent storage devices. Within 4th Dimension, we use the terms file or document to
refer to these documents and applications. However, most commands in this theme use
the term "document" because most of the time you will use them to access documents
(rather than application or system files) on disk.

A hard disk can be formatted as one or several partitions, each of which is called a
volume. It does not matter if two volumes are physically present on the same hard disk;
at the 4D First level, you will usually treat these volumes as separate and equal entities.

A volume can be located on a hard disk physically connected to your machine or
mounted over the network through a file sharing protocol such as NetBEUI (Windows) or
AFP (Macintosh). Whatever the case, when using the System Documents commands at
the 4D level, you treat all these volumes in the same way (unless you know what you are
doing and use Plug-ins to extend the capability of your application in that domain).

Each volume has a volume name. On Windows, volumes are designated by a letter
followed by a colon. Usually A: and B: are used to designate the 5 1/4 or 3 1/2 floppy
drives. Usually C: designates the volume you use for booting your system (unless you
configure your PC otherwise). Then the letters D: through Z: are used for the additional
volumes connected or mounted to your PC (CD-ROM drives, additional drives, network
drives, and so on). On Macintosh, volumes have natural names whose maximal length is
31 characters; these are the names you see on the desktop at the Finder level.

Normally, you classify your documents into folders, which themselves can contain other
folders. It is not a good idea to accumulate hundreds or thousands of files at the same
level of a volume; it is messy and it slows down your system. On Windows, a folder is (or
was) called a directory. Folders have always been called so on the Macintosh.

To uniquely identify a document, you need to know the name of the volume and the
name(s) of the folder(s) where the document is located as well as the name of the
document itself. If you concatenate all these names, you get the pathname to the
document. Within this pathname, folder names are separated by a special character called
the directory (separator) symbol. On Windows, this character is the backslash (\); on
Macintosh it is the colon (:).

Let's look at an example. You have a document Important Memo located in the Memos
folder, which is located in the Documents folder, which is located in the Current Work
folder.

4th Dimension Language Reference 1427

On Windows, if the whole thing is located on the C: drive (volume), the pathname of the
document is:

C:\Current Work\Documents\Memos\Important Memo.TXT

Note: The \ character is also used by the method editor of 4th Dimension to designate
escape sequences. In order to avoid any interpretation problems, the editor automatically
transforms pathnames such as C:\Disk into C:\\Disk. For more information, refer to the
paragraph below titled “Specifying Document names or Document pathnames”.

On Macintosh, if the whole thing is located on the disk (volume) Internal Drive, the
pathname of the document is:

Internal Drive:Current Work:Documents:Memos:Important Memo

On Windows, the name of the document is suffixed with .TXT; we will see why in the
next section.

Whatever the platform, the full pathname of a document can be expressed as follows:
VolName DirSep { DirName DirSep { DirName DirSep { ... } } } DocName

All the documents (files) located on volumes have several characteristics, usually called
attributes or properties: the name of the document itself, the type and the creator.

Document Type and Creator
__

On Windows, a document has a type. On Macintosh, a document has a type and a
creator. The type of a document generally indicates what the document is or what it
contains. For instance, a text document contains some text (without style variations).

On Windows, the type of a document is determined by the suffix (called the file
extension) attached to the document name. For instance, .TXT is the Windows file
extension for text documents. On Macintosh, the type of a document is determined by
the file type property, which is a 4-character signature (not displayed at the Finder level).
For instance, the file type of a text document is "TEXT".

In addition, on Macintosh, a document has a creator, which designates the application
that created the document. This concept does not exist on Windows. The creator of a
document is determined by the file creator property, which is a 4-character signature
(not displayed at the Finder level). For instance, the file creator of a document created by
4D V6 is "4D06".

1428 4th Dimension Language Reference

DocRef: Document reference number
__

A document is open or closed. Using the built-in 4D commands, a document can be
opened by only one process at a time. One process can open several documents, several
processes can open multiple documents, but you cannot open the same document twice
at a time.

You open a document with the Open document, Create document and Append document
commands.
Once a document is open, you can read and write characters from and to the document
(see the RECEIVE PACKET and SEND PACKET commands). When you are finished with the
document, you usually close it using the CLOSE DOCUMENT command.

All open documents are referred to using the DocRef expression returned by the Open
document, Create document and Append document commands. A DocRef uniquely
identifies an open document. It is formally an expression of the Time type. All commands
working with open documents expect DocRef as a parameter. If you pass an incorrect
DocRef to one of these commands, a file manager error occurs.

Handling I/O errors
__

When you access (open, close, delete, rename, copy) documents, when you change the
properties of a document or when you read and write characters in a document, I/O errors
may occur. A document might not be found; it may be locked; it may be already open.
You can catch these errors with an error-handling method installed with ON ERR CALL.
Most of the errors that can occur while using system documents are described in the
section OS File Manager Errors.

The Document system variable
__

The commands Open document, Create document, Append document and Select document
enable you to access a document using the standard Open or Save file dialog boxes. When
you access a document through a standard dialog, 4D returns the full pathname of the
document in the Document system variable. This system variable has to be distinguished
from the document parameter that appears in the parameter list of the commands.

4th Dimension Language Reference 1429

Specifying Document names or Document pathnames
__

Most of the routines of this section expecting a document name accept both a name or a
pathname to the document (except when signaled otherwise). If you pass a name, the
command looks for the document within the folder of the database. If you pass a
pathname, it must be valid.

If you pass a wrong name or a wrong pathname, the command generates a file manager
error that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the document parameter is 255 characters. If you pass
a longer name, it will be truncated and a File manager error will be generated.

Entering Windows pathnames and escape sequences
The method editor of 4th Dimension allows the use of escape sequences. An escape
sequence is a set of characters that are used to replace a “special” character. The sequence
begins with a backslash \, followed by a character. For example, \t is the escape sequence
for the Tab character.
The \ character is also used as the separator in pathnames under Windows. In general, 4th
Dimension will correctly interpret Windows pathnames that are entered in the method
editor by replacing single backslashes \ with double backslashes \\. For example,
C:\Folder will become C:\\Folder.
However, if you write C:\MyDocuments\New, 4th Dimension will display
C:\\MyDocuments\New. In this case, the second \is incorrectly interpreted as \N (an
existing escape sequence). You must therefore enter a double \\ when you want to insert
a backslash before a character that is used in one of the escape sequences recognized by
4th Dimension.

The following escape sequences are recognized by 4th Dimension:
Escape sequence Character replaced
\n LF (New line)
\t HT (Horizontal tab)
\r CR (Carriage return)
\\ \ (Backslash)
\" " (Quotes)

Useful Project Methods when handling documents on disk
__

• Detecting on which platform you're running
Although 4th Dimension provides commands, such as MAP FILE TYPES, for eliminating
coding variations due to platform specificities, once you start to work at a lower level
when handling documents on disk (such as programmatically obtaining pathnames), you
need to know if you are running on a Macintosh or a Windows platform.

1430 4th Dimension Language Reference

The On Windows project method listed here tells whether your database is running on
Windows:

` On windows Project Method
` On windows -> Boolean
` On windows -> True if on Windows

C_BOOLEAN($0)
C_LONGINT($vlPlatform;$vlSystem;$vlMachine)

PLATFORM PROPERTIES($vlPlatform;$vlSystem;$vlMachine)
$0:=($vlPlatform=Windows)

• Using the right directory separator symbol

On Windows, a directory level is symbolized by an backslash (\). On Macintosh, a folder
level is symbolized by a colon (:). Depending on which platform you are running, the
Directory symbol project method listed here returns the ASCII code of the correct directory
symbol (character).

` Directory symbol Project Method
` Directory symbol -> Integer
` Directory symbol -> ASCII of "\" (Windows) or ":" (Mac OS)

C_INTEGER($0)

If (On Windows)
$0:=Ascii("\\")

Else
$0:=Ascii(":")

End if

• Extracting the file name from a long name
Once you have obtained the long name (pathname + file name) of a document, you may
need to extract the file name of the document from that long name in order, for
example, to display it in the title of a window. The Long name to file name project method
does this on both Windows and Macintosh.

` Long name to file name Project Method
` Long name to file name (String) -> String
` Long name to file name (Long file name) -> file name

C_STRING(255;$1;$0)
C_INTEGER($viLen;$viPos;$viChar;$viDirSymbol)

4th Dimension Language Reference 1431

$viDirSymbol:=Directory symbol
$viLen:=Length($1)
$viPos:=0
For ($viChar;$viLen;1;-1)

If (Ascii($1≤$viChar≥)=$viDirSymbol)
$viPos:=$viChar
$viChar:=0

End if
End for
If ($viPos>0)

$0:=Substring($1;$viPos+1)
Else

$0:=$1
End if
If (◊vbDebugOn) ` Set this variable to True or False in the On Startup database method

If ($0="")
TRACE

End if
End if

• Extracting the pathname from a long name
Once you have obtained the long name (pathname + file name) of a document, you may
need to extract the pathname of the directory where the document is located from that
long name; for instance, you may want to save additional documents at the same
location. The Long name to path name project method does this on both Windows and
Macintosh.

` Long name to path name Project Name
` Long name to path name (String) -> String
` Long name to path name (Long file name) -> Path name

C_STRING(255;$1;$0)
C_STRING(1;$vsDirSymbol)
C_INTEGER($viLen;$viPos;$viChar;$viDirSymbol)

$viDirSymbol:=Directory symbol
$viLen:=Length($1)
$viPos:=0
For ($viChar;$viLen;1;-1)

If (Ascii($1≤$viChar≥)=$viDirSymbol)
$viPos:=$viChar
$viChar:=0

End if
End for

1432 4th Dimension Language Reference

If ($viPos>0)
$0:=Substring($1;1;$viPos)

Else
$0:=$1

End if
If (◊vbDebugOn) ` Set this variable to True or False in the On Startup database method

If ($0="")
TRACE

End if
End if

See Also
Append document, CLOSE DOCUMENT, COPY DOCUMENT, Create document, CREATE
FOLDER, DELETE DOCUMENT, Document creator, DOCUMENT LIST, Document type,
FOLDER LIST, Get document position, GET DOCUMENT PROPERTIES, Get document size,
MAP FILE TYPES, MOVE DOCUMENT, Open document, Select document, SET DOCUMENT
CREATOR, SET DOCUMENT POSITION, SET DOCUMENT PROPERTIES, SET DOCUMENT SIZE,
SET DOCUMENT TYPE, Test path name, VOLUME ATTRIBUTES, VOLUME LIST.

4th Dimension Language Reference 1433

Document type System Documents

version 6.0
__

Document type (document) → String

Parameter Type Description
document String → Document name

Function result String ← Windows file extension (1 to 3-character string)
or Mac OS file type (4-character string)

Description
The Document type command returns the type of the document whose name or
pathname you pass in document.

On Windows, Document type returns the file extension of the document (i.e. 'DOC' for a
Microsoft Word document, 'EXE' for an executable file, and so on) or the corresponding
Mac OS-based 4 characters file type if this latter has been mapped with its equivalent
Windows file extension by 4th Dimension (i.e. 'TEXT' for the 'TXT' file extension) or by a
prior call to MAP FILE TYPES.

On Macintosh, Document type returns the 4-characters file type of the document (i.e.
'TEXT' for a Text document, 'APPL' for a double-clickable application and so on).

See Also
Document creator, GET DOCUMENT PROPERTIES, MAP FILE TYPES, SET DOCUMENT TYPE.

1434 4th Dimension Language Reference

SET DOCUMENT TYPE System Documents

version 6.0
__

SET DOCUMENT TYPE (document; fileType)

Parameter Type Description
document String → Document name or

full document pathname
fileType String → Windows file extension (1 to 3-character string)

or Mac OS file type (4-character string)

Description
The SET DOCUMENT TYPE command sets the type of the document whose name or
pathname you pass in document.

You pass the new type of the document in fileType.

See the discussion of file types in System Documents and Document type.

On Windows, this command modifies the file extension and therefore the value of
document. For example, the instruction:

⇒ SET DOCUMENT TYPE("C:\\Docs\\Invoice.asc";"TEXT")

renames the file "Invoice.asc" to "Invoice.txt". In 4D, the Macintosh "TEXT" type
corresponds to the Windows "txt" type.

If the type has no equivalent provided by 4D, you will have to pass the extension. For
example, the following instruction renames the file "Invoice.asc" to "Invoice.zip":

⇒ SET DOCUMENT TYPE("C:\\Docs\\Invoice.asc";"zip")

See Also
Document type, MAP FILE TYPES, SET DOCUMENT CREATOR, SET DOCUMENT PROPERTIES.

4th Dimension Language Reference 1435

Document creator System Documents

version 6.0
__

Document creator (document) → String

Parameter Type Description
document String → Document name or

Full document pathname

Function result String ← Empty string (Windows) or
File Creator (Mac OS)

Description
The Document creator command returns the creator of the document whose name or
pathname you pass in document.

On Windows, Document creator returns an empty string.

See Also
Document type, SET DOCUMENT CREATOR.

1436 4th Dimension Language Reference

SET DOCUMENT CREATOR System Documents

version 6.0
__

SET DOCUMENT CREATOR (document; fileCreator)

Parameter Type Description
document String → Document name

or Full document pathname
fileCreator String → Mac OS file creator (4-character string)

or empty string (Windows)

Description
The SET DOCUMENT CREATOR command sets the creator of the document whose name
or pathname you pass in document.

You pass the new creator of the document in fileCreator.

This command does nothing on Windows.

See discussion about file creators in System Documents.

See Also
Document creator, SET DOCUMENT PROPERTIES, SET DOCUMENT TYPE.

4th Dimension Language Reference 1437

Open document System Documents

version 6.8 (Modified)
__

Open document (document{; fileType{; mode}}) → DocRef

Parameter Type Description
document String → Document name or

Full document pathname or
Empty string for standard file dialog box

fileType String → Mac OS file type (4-character string) or
Windows file extension (1 to 3-character string) or
TEXT (.TXT) document if omitted

mode Integer → Document’s opening mode

Function result DocRef ← Document reference number

Description
The Open document command opens the document whose name or pathname you pass
in document.

If you pass an empty string in document, the Open File dialog box is presented, and you
then select the document to be open. If you cancel the dialog, no document is opened;
Open document returns a null DocRef and sets the OK variable to 0.

• If the document is correctly opened, Open document returns its document reference
number and sets the OK variable to 1.
• If the document is already open and the mode parameter is omitted, Open document
opens the document in Read mode and sets the OK variable to 1.
• If the document is already open and you try to open it in Write mode, an error is
generated.
• If the document does not exist, an error is generated.

On Macintosh, if you use the Open File dialog box, all documents are presented by
default. To show another type of document, specify a document type in the optional
fileType parameter.

On Windows, if you use the Open File dialog box, all types of documents *.* are presented
by default. To show another type of document, in fileType, pass a 1 to 3-character
Windows file extension or a Macintosh file type mapped using the MAP FILE TYPES
command.

1438 4th Dimension Language Reference

On Windows, even if you do not use the Open File dialog box, you might pass the fileType
parameter to specify the file extension of the document you want to open. By default,
Open document attempts to open a .TXT file. If you specify the fileType parameter, Open
document tries to open the document whose name is “Document.fileType”. For example:

⇒ vhDocRef:=Open document("C:\\Letter";"WRI")

will try to open the document “C:\\Letter.WRI” on your disk. If you pass more than
three characters in fileType, Open document only takes the first three characters into
account. If a document type is not specified, Open document tries to open the document
with no file extension. If it does not find it, it tries to open the document with the .TXT
extension. If it still does not find it, it will return a “File not found” error.

If a document is open, Open document initially sets the file position at the beginning of
the document while Append document sets it at the end of the document.

Once you have opened a document, you can read and write in the document using the
RECEIVE PACKET and SEND PACKET commands that you can combine with the Get
document position and SET DOCUMENT POSITION commands in order to directly access
any part of the document.

The optional mode parameter allows you to define how document is to be opened. Four
different open file modes are possible. 4th Dimension offers the following predefined
constants, located in the "System Documents" theme:

Constant Type Value
Read and Write (default value) Integer 0
Write Mode Integer 1
Read Mode Integer 2
Get Pathname Integer 3

Do not forget to eventually call CLOSE DOCUMENT for the document.

Example
1. The following example opens an existing document called Note, writes the string
“Good-bye” into it, and closes the document. If the document already contains the string
“Hello”, this string would be overwritten:

C_TIME(vhDoc)
⇒ vhDoc:=Open document ("Note") ` Open a document called Note

If (OK=1)
SEND PACKET (vhDoc"Good-bye") ` Write one word into the document
CLOSE DOCUMENT (vhDoc) ` Close the document

End if

4th Dimension Language Reference 1439

2. You can now read a document even if it is already open in write mode:

⇒ vDoc:=Open document ("PassFile";"TEXT") ` The file is open
` Before the file is closed, it is possible to consult it in read-only mode:

⇒ vRef:=Open document ("PassFile";"TEXT";Read Mode)

System Variable and Sets
If the document is correctly opened, the OK system variable is set to 1; otherwise, it is set
to 0. After the call, the Document system variable contains the full name of the document.
If you call Open document with a mode of 3, the function returns ?00:00:00? (no
document reference). The document is not opened but the Document and OK system
variables are updated:
• OK is equal to 1.
• Document contains either the name or the full pathname and the name of document,
depending on the value passed in document (if you passed a file name, Document contains
this name; if you passed a full pathname, Document contains this full pathname).

Note: If the file defined in document is not found or if you pass an empty string in
document, an open file dialog box appears. If the user chooses a document and clicks the
OK button, document is set to the path of the document the user selected and OK is set to
1. If the user clicked the Cancel button, OK is set to 0.

See Also
Append document, Create document.

1440 4th Dimension Language Reference

Create document System Documents

version 6.7.1 (Modified)
__

Create document (document{; type}) → DocRef

Parameter Type Description
document String → Document name or

Full document pathname or
Empty string for standard file dialog box

type String → Mac OS file type (4-character string) or
Windows file extension (1- to 3-character

string) or
TEXT (.TXT) document if omitted

Function result DocRef ← Document reference number

Description
The Create document command creates a new document and returns its document
reference number.

Pass the name or full pathname of the new document in document. If document already
exists on the disk, it is overwritten. However, if document is locked or already open, an
error is generated.

If you pass an empty string in document, the Save As dialog box is displayed and you can
then enter the name of the document you want to create. If you cancel the dialog, no
document is created; Create document returns a null DocRef and sets the OK variable to 0.

If the document is correctly created and opened, Create document returns its document
reference number and sets the OK variable to 1. The system variable Document is updated
and returns the access path of the created document.

Whether or not you use the Save As dialog box, Create document creates a .TXT
(Windows) or TEXT (Macintosh) document by default. If you want to create another type
of document, pass the fileType parameter.

On Macintosh, you pass a file type. On Windows you pass a 1- to 3-character Windows file
extension or Macintosh file type mapped through the MAP FILE TYPES mechanism. If you
want to create a document without an extension, a document containing several
extensions, or a document containing an extension with more than three characters, do
not use the type parameters and pass the full name in document (see example2).

4th Dimension Language Reference 1441

Once you have created and opened a document, you can write and read the document
using the SEND PACKET and RECEIVE PACKET commands that you can combine with the
Get document position and SET DOCUMENT POSITION commands in order to directly
access any part of the document.

Do not forget to eventually call CLOSE DOCUMENT for the document.

Example
(1) The following example creates and opens a new document called Note, writes the
string “Hello” into it, and closes the document:

C_TIME(vhDoc)
⇒ vhDoc:=Create document ("Note") ` Create new document called Note

If (OK=1)
SEND PACKET(vhDoc; "Hello") ` Write one word in the document
CLOSE DOCUMENT(vhDoc) ` Close the document

End if

(2) The following example creates documents with non-standard extensions under
Windows:

⇒ $vtMyDoc:=Create document("Doc.ext1.ext2") `Several extensions
⇒ $vtMyDoc:=Create document("Doc.shtml") `Long extension
⇒ $vtMyDoc:=Create document("Doc.") `No extension (the period "." is mandatory)

System Variables or Sets
If the document has been created correctly, the system variable OK is set to 1 and the
system variable Document contains either the name or the full pathname and the name of
document, depending on the value passed in document (if you passed a file name,
Document contains this name; if you passed a full pathname, Document contains this full
pathname).

See Also
Append document, Open document.

1442 4th Dimension Language Reference

Append document System Documents

version 3
__

Append document (document{; type}) → DocRef

Parameter Type Description
document String → Document name or

Full document pathname or
Empty string for standard file dialog box

type String → Mac OS file type (4-character string) or
Windows file extension (1 to 3-character
string) or TEXT (.TXT) document if omitted

Function result DocRef ← Document reference number

Description
The Append document command does the same as thing as Open document: it allows you
to open a document on disk.

The only difference is that Append document sets the file position at the end of the
document while Open document sets its at the beginning of the document.

Refer to Open document for more details about using Append document.

Example
The following example opens an existing document called Note, appends the string “and
so long” and a carriage return onto the end of the document, and closes the document. If
the document already contained the string “Good-bye”, the document would now
contain the string “Good-bye and so long”, followed by a carriage return:

C_TIME(vhDocRef)
⇒ vhDocRef:=Append document ("Note") ` Open Note document

SEND PACKET (vhDocRef;" and so long"+Char(13)) ` Append a string
CLOSE DOCUMENT (vhDocRef) ` Close the document

See Also
Create document, Open document.

4th Dimension Language Reference 1443

CLOSE DOCUMENT System Documents

version 3
__

CLOSE DOCUMENT (docRef)

Parameter Type Description
docRef DocRef → Document reference number

Description
CLOSE DOCUMENT closes the document specified by docRef.

Closing a document is the only way to ensure that the data written to a file is saved. You
must close all the documents you open with the commands Open document, Create
document or Append document.

Example
The following example lets the user create a new document, writes the string “Hello” into
it, and closes the document:

C_TIME(vhDocRef)
vhDocRef:=Create document ("")
If (OK=1)

SEND PACKET(vhDocRef; "Hello") ` Write one word into the document
⇒ CLOSE DOCUMENT(vhDocRef) ` Close the document

End if

See Also
Append document, Create document, Open document.

1444 4th Dimension Language Reference

COPY DOCUMENT System Documents

version 6.0
__

COPY DOCUMENT (sourceName; destinationName{; *})

Parameter Type Description
sourceName String → Name of document to be copied
destinationName String → Name of copied document
* → Override existing document if any

Description
The command COPY DOCUMENT copies the document specified by sourceName to the
location specified by destinationName.

Both sourceName and destinationName can be a name referring to a document located in
the database folder or a pathname referring to a document relatively to the root level of a
volume.

An error will occur if there is already a document named destinationName unless you
specify the optional * parameter instructing COPY DOCUMENT to delete and override the
destination document.

Examples
(1) The following example duplicates a document in its own folder:

⇒ COPY DOCUMENT("C:\\FOLDER\\DocName";"C:\\FOLDER\\DocName2")

(2) The following example copies a document to the database folder (provided
C:\\FOLDER is not the database folder):

⇒ COPY DOCUMENT("C:\\FOLDER\\DocName";"DocName")

(3) The following example copies and from a document from one volume to another one:

⇒ COPY DOCUMENT("C:\\FOLDER\\DocName";"F:\\Archives\\DocName.OLD")

(4) The following example duplicates a document in its own folder overriding an already
existing copy:

⇒ COPY DOCUMENT("C:\\FOLDER\\DocName";"C:\\FOLDER\\DocName2";*)

See Also
MOVE DOCUMENT.

4th Dimension Language Reference 1445

MOVE DOCUMENT System Documents

version 6.0
__

MOVE DOCUMENT (srcPathname; dstPathname)

Parameter Type Description
srcPathname String → Full pathname to existing document
dstPathname String → Destination pathname

Description
The command MOVE DOCUMENT moves or renames a document.

You specify the full pathname to the document in srcPathName and the new name
and/or new location for the document in dstPathName.

Warning: Using MOVE DOCUMENT, you can move a document from and to any directory
on the same volume. If you want to move a document between two distinct volumes, use
COPY DOCUMENT to “move” the document then delete the original copy of the
document using DELETE DOCUMENT.

Examples
(1) The following example renames the document DocName:

⇒ MOVE DOCUMENT("C:\\FOLDER\\DocName";"C:\\FOLDER\\NewDocName")

(2) The following example moves and renames the document DocName:

⇒ MOVE DOCUMENT("C:\\FOLDER1\\DocName";"C:\\FOLDER2\\NewDocName")

(3) The following example moves the document DocName:

⇒ MOVE DOCUMENT("C:\\FOLDER1\\DocName";"C:\\FOLDER2\\DocName")

Note: In the last two example, the destination folder "C:\\FOLDER2" must exist. The
command MOVE DOCUMENT only moves a document, does not create folders.

See Also
COPY DOCUMENT.

1446 4th Dimension Language Reference

DELETE DOCUMENT System Documents

version 6.7.1 (Modified)
__

DELETE DOCUMENT (document)

Parameter Type Description
document String → Document name or

Full document pathname

Description
The command DELETE DOCUMENT deletes the document whose name you pass in
document.

If the document name or the entered path name is incorrect, an error is generated. This is
also the case if you try to delete an open document.

DELETE DOCUMENT doesn’t accept an empty string argument for document. If an empty
string is used, the Open File dialog box is not displayed and an error is generated.

WARNING: DELETE DOCUMENT can delete any file on a disk. This includes documents
created with other applications as well as the applications themselves. DELETE DOCUMENT
should be used with extreme caution. Deleting a document is a permanent operation and
cannot be undone.

Examples
(1) The following example deletes the document named Note:

⇒ DELETE DOCUMENT ("Note") ` Delete the document

(2) See example for the command APPEND TO CLIPBOARD.

System Variables or Sets
Deleting a document sets the OK system variable to 1. If DELETE DOCUMENT can’t delete
the document, the OK system variable is set to 0.

4th Dimension Language Reference 1447

Select document System Documents

version 2004
__

Select document (directory; fileTypes; title; options{; selected}) → String

Parameter Type Description
directory Text | Longint → • Directory access path to display by default

in the document selection dialog box, or
• Empty string to display default user folder
(“My documents” under Windows,
“Documents” under Mac OS), or
• Number of the memorized access path

fileTypes Text → List of types of documents to filter, or
"*" to not filter documents

title Text → Title of the selection dialog box
options Longint → Selection option(s)
selected Text array ← Array containing the list of access paths +

names of selected files

Function result String ← Name of selected file (first file of the list
in case of multiple selection)

Description
The Select document command displays a standard open document dialog box which
allows the user to set one or more files and returns the name and/or full access path of the
selected file(s).

The directory parameter indicates the folder whose contents are initially displayed in the
open document dialog box. You can pass three types of values:
• a text containing the full access path of the folder to display.
• an empty string ("") to display the default user folder for the current opeerating system
(“My documents” under Windows, “Documents” under Mac OS).
• a number of the memorized access path (from 1 to 32000) to display the associated
folder.
As such, you can store in memory the access path of the folder opened when the user
clicked the selection button, in other words, the folder selected by the user. During the
first call of an arbitrary number (for example, 5) the command displays the default user
folder of the operating system (equivalent of passing an empty string). The user could
also browse folders on the hard disk. When the user clicks on the selection button, the
access path is memorized and associated with number 5. During future calls to number 5,
the memorized access path will be used by default. If a new location is selected, path
number 5 is updated.
This mechanism lets you memorize up to 32,000 access paths. Under Windows, each path
is kept for the session only. Under Mac OS, the paths are kept by the system and remain
stored from one session to the next.

1448 4th Dimension Language Reference

Pass the type(s) of file(s) that can be selected in the open file dialog box in the fileTypes
parameter. You can pass a list of several types separated by a ; (semi-colon). For each type
defined, a row will be added in the type choice menu of the dialog box.
Under Mac OS, you must pass the type of files that can be filtered (TEXT, APPL, etc.).
Under Windows, you can also pass a Mac OS type file — 4th Dimension performs the
conversion internally — or the file extensions (.txt, .exe, etc.). Please note that under
Windows, the user can “force” the display of all document types by entering *.* in the
dialog box. However, in this case, 4th Dimension will perform an additional verification
of the types of files selected: if the user selects an unauthorized file type, the command
returns an error.
If you do not want to restrict the files displayed to one or more types, pass the "*" (star) or
".*" string in fileTypes.

Pass the label that must appear in the dialog box in the title parameter. By default, if you
pass an empty string, the label “Open” is displayed.

The options parameter allows you to specify advanced functions that are allowed in an
open file dialog box. 4th Dimension provides the following pre-defined constants in the
“System Documents” theme:
Constant Type Value
Multiple files Longint 1
Package open Longint 2
Package selection Longint 4
Alias selection Longint 8
Use Sheet Window Longint 16

You can pass one or a combination of constants.
• Multiple files: Authorizes the simultaneous selection of several files using the key
combinations Shift+click (adjacent selection) and Ctrl+click (Windows) or
Command+click (Mac OS). In this case, the selected parameter, if passed, contains the list
of all selected files. By default, if this constant is not used, the command will not allow
the selection of multiple files.
• Package open (Mac OS only): Authorizes the opening of packages and the viewing of
their contents. By default, if this constant is not used, the command will not allow the
opening of packages.
• Package selection (Mac OS only): Authorizes the selection of packages as entities. By
default, if this constant is not used, the command will not allow the selection of software
packages as such. In this case, it is impossible to open or select a software package (even if
the Package open constant is passed.
• Alias selection: Authorizes the selection of shortcuts (Windows) or aliases (Mac OS) as
document.
By default, if this constant is not used, when an alias or shortcut is selected, the command
will return the access path of the targeted element. When you pass the constant, the
command returns the path of the alias or shortcut itself.
• Use Sheet Window (Mac OS only): Displays the selection dialog box in the form of a
sheet window (this option is ignored under Windows).

4th Dimension Language Reference 1449

Sheet windows are specific to the Mac OS X interface which have graphic animation (for
more information, refer to the Window Types section). By default, if this constant is not
used, the command will display a standard dialog box.

If you do not want to use an option, pass 0 in the options parameter.

The optional selected parameter allows you to get the full access path (access path + name)
of every file selected by the user. The command creates, sizes and fills the array according
to the user selection. This parameter is useful when the Multiple files option is used or
when you want to find out the access path of the selected file (simply take the name of
the file returned by the command from the value of the array). If no file is selected, the
array is returned empty.

The command returns the name (name + extension under Windows) of the selected file.
If several files are selected, the command returns the name of the first file in the list of
selected files. The list of files can be obtained in the selected parameter. If no file is
selected, the command returns an empty string.

See also
Open document, Select folder.

System Variables or Sets
If the command has been correctly executed and a valid document was selected, the
system variable OK is set to 1 and the system variable Document will contain the full access
path of the selected file.
If no file was selected (for example, if the user clicked on the Cancel button in the open
file dialog box), the system variable OK is set to 0 and the system variable Document will
be empty.

1450 4th Dimension Language Reference

Test path name System Documents

version 6.0
__

Test path name (pathname) → Number

Parameter Type Description
pathname String → Pathname to directory, folder or document

Function result Number ← 1, pathname refers to an existing document
0, pathname refers to an existing directory or folder
<0, invalid pathname, OS file manager error code

Description
The function Test path name checks if a document or folder whose name or pathname
you pass in pathname is present on the disk.

If a document is found, Test path name returns 1. If a folder found, Test path name
returns 0.

The following predefined constant are provided by 4D:

Constant Type Value
Is a document Long Integer 1
Is a directory Long Integer 0

If no document nor folder is found, Test path name returns a negative value (i.e. -43 for
File not found).

Example
The following tests if the document “Journal” is present in the folder of the database,
then creates it if it was not found:

⇒ If (Test path name("Journal") # Is a document)
$vhDocRef:=Create document("Journal")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
End if

End if

See Also
Create document, CREATE FOLDER.

4th Dimension Language Reference 1451

SHOW ON DISK System Documents

version 2004.1
__

SHOW ON DISK (pathname{; *})

Parameter Type Description
pathname String → Pathname of item to show
* → If the item is a folder, show its contents

Description
The SHOW ON DISK command displays the file or folder whose pathname was passed in
the pathname parameter in a standard window of the operating system.
In a user interface, this command lets you designate the location of a specific file or
folder.

By default, if pathname designates a folder, the command displays the level of the folder
itself. If you pass the optional * parameter, the command opens the folder and displays its
contents in the window. If pathname designates a file, the * parameter is ignored.

Examples
The following examples illustrate the operation of this command:

⇒ SHOW ON DISK("c:\\MyFolder\\MyFile.txt") ` Displays the designated file

⇒ SHOW ON DISK("c:\\MyFolder\\Folder2") ` Displays the designated folder

1452 4th Dimension Language Reference

⇒ SHOW ON DISK("c:\\MyFolder\\Folder2";*) ` Displays the contents of the
designated folder

System Variables and Sets
The system variable OK is set to 1 if the command is executed correctly.

4th Dimension Language Reference 1453

CREATE FOLDER System Documents

version 6.0
__

CREATE FOLDER (folderPath)

Parameter Type Description
folderPath String → Pathname to new folder to create

Description
The command CREATE FOLDER creates a folder according to the pathname you pass in
folderPath.

If you pass a name, the folder is created in the folder of the database. If you pass a path
name, it must refer to a valid path up to the name of the folder you want to create;
starting at the root level of a volume or at the level of the database folder.

Examples
(1) The following example creates the folder “Archives” in the folder of the database:

⇒ CREATE FOLDER("Archives")

(2) The following example creates the folder Archives in the folder of the database, then
it creates the subfolder “January” and “February”:

⇒ CREATE FOLDER("Archives")
⇒ CREATE FOLDER("Archives\\January")
⇒ CREATE FOLDER("Archives\\February")

(3) The following example creates the folder “Archives” at the root level of the C volume:

⇒ CREATE FOLDER("C:\\Archives")

(4) The following example will fail if there is no “NewStuff” folder at the root level of the
C volume:

⇒ CREATE FOLDER("C:\\NewStuff\\Pictures")
` WRONG, cannot create two folder levels in one call

See Also
FOLDER LIST, Test path name.

1454 4th Dimension Language Reference

Select folder System Documents

version 6.5
__

Select folder {(message)} → String

Parameter Type Description
message String → Title of the window

Function result String ← Access path to the selected folder

Description
The Select folder command displays a dialog box that allows you to manually select a
folder and then retrieve the complete access path to that folder.

Note: This command does not modify 4D’s current folder.

The Select folder command displays a standard dialog box to browse through the
workstation’s volumes and folders.
The optional parameter message allows you to display a message in the dialog box. In the
following examples, the message is "Select a destination folder":

Windows

4th Dimension Language Reference 1455

Mac OS

The user selects a folder and then clicks the OK button (on Windows) or the Select
button (on Mac OS). The access path to the folder is then returned by the function.
• On Windows, the access path is returned in the following format:
“C:\Folder1\Folder2\SelectedFolder\”
• On Mac OS, the access path is returned in the following format:
“Hard Disk:Folder1:Folder2:SelectedFolder:”

Note: On Mac OS, depending on whether or not the name of the folder is selected in the
dialog box, the access path that is returned to you may be different.

4D Server: This function allows you to view the volumes connected to the client
workstations. It is not possible to call this function from a stored procedure.

If the user validates the dialog box, the OK system variable is set to 1. If the user clicks the
Cancel button, the OK system variable is set to 0 and the function returns an empty
string.

Note: On Windows, if the user selected some incorrect elements, such as “Workstation”,
“Trash can”, and so on, the OK system variable is set to 0, even if the user validates the
dialog box.

1456 4th Dimension Language Reference

Example
The following example allows you to select the folder in which the pictures in the picture
library will be stored:

⇒ $PictFolder:=Select folder("Select a folder for your pictures.")
PICTURE LIBRARY LIST (pictRefs;pictNames)
For ($n;1;Size of array(pictNames))

$vRef:=Create document($PictFolder+pictNames{$n};"PICT")
If (OK=1)

GET PICTURE FROM LIBRARY(pictRefs{$n};$vStoredPict)
SAVE PICTURE TO FILE($vRef;$vStoredPict)
CLOSE DOCUMENT($vRef)

End if
End for

See Also
CREATE FOLDER, FOLDER LIST.

4th Dimension Language Reference 1457

DELETE FOLDER System Documents

version 6.7
__

DELETE FOLDER (folder)

Parameter Type Description
folder String → Name or full path of the folder to be deleted

Description
The command DELETE FOLDER command deletes the folder whose name or full path has
been passed in folder.

Only empty folders can be deleted by this command.
• If you try to delete a folder containing files, the -47 error is generated (Attempt to delete
a non-empty folder).
• If you pass in folder a file path or an empty string or the path to a non-existing folder,
the command does nothing and generates a -43 error (File not found).

You can detect these errors through a method installed by the ON ERR CALL command.

See Also
DELETE DOCUMENT.

1458 4th Dimension Language Reference

CREATE ALIAS System Documents

version 6.7
__

CREATE ALIAS (targetPath; aliasPath)

Parameter Type Description
targetPath String → Name or access path of the alias/shortcut target
aliasPath String → Name or full pathname for the alias or shortcut

Description
The CREATE ALIAS command creates an alias (named “shortcut” under Windows) for the
target file or folder passed in targetPath. The name and location are defined by the
targetPath parameter.

An alias can be made for any kind of document or folder. The alias icon will be the same
as the target item. The icon contains a small arrow at the bottom left side. Under Mac OS,
the icon name is also displayed in italics characters.

This command does not assign a name by default, the name has to be passed in the
aliasPath parameter. If just a name is passed in this parameter, the alias is created in the
current working folder (usually the folder containing the structure file).

Note: Under Windows, the shortcuts are designated by a “.LNK” extension (invisible). If
this extension is not passed, it is automatically added by the command.

If an empty string is passed in the targetPath, the command does nothing.

Example
Your database generates text files called “Report Number” sorted in the database folder.
The user would like to create shortcuts to these reports and to store them at a convenient
location:

`Method CREATE_REPORT
C_TEXT($vtRport)
C_STRING(250;$vtpath)
C_STRING(80;$vaname)
C_TIME(vDoc)
C_INTEGER($ReportNber)

$vTReport:=... `Create report
$ReportNber:=... `Compute the report number
$vaName:="Report"+String($ReportNber)+".txt" `File name
vDoc:=Create document($vaName)

4th Dimension Language Reference 1459

If (OK=1)
SEND PACKET(vDoc;$vTReport)
CLOSE DOCUMENT(vDoc)

`Add the alias
CONFIRM("Create an alias for this report?")
If (OK=1)

$vtPath:=Select folder("Where do you want the alias to be created?")
If (OK=1)

⇒ CREATE ALIAS ($vaName;$vtPath+$vaName)
If (OK=1)

SHOW ON DISK($vtPath+$vaName)
`Show the alias location

End if
End if

End if
End if

System Variables or Sets
The OK system variable is set to 1 if the command execution was successful; otherwise it is
set to 0.

See Also
RESOLVE ALIAS.

1460 4th Dimension Language Reference

RESOLVE ALIAS System Documents

version 6.7
__

RESOLVE ALIAS (aliasPath; targetPath)

Parameter Type Description
aliasPath String → Name or access path of the alias/shortcut
targetPath String ← Name or access path of the alias/shortcut

target

Description
The command RESOLVE ALIAS returns the full path to the target file or folder of the alias
(named shortcut under Windows).

The full path to the alias is passed in aliasPath.
Once the command has been executed, the targetPath variable contains the full path to
the target file or folder of the alias.

See Also
CREATE ALIAS.

4th Dimension Language Reference 1461

VOLUME LIST System Documents

version 6.0
__

VOLUME LIST (volumes)

Parameter Type Description
volumes Array ← Names of the volumes currently mounted

Description
The command VOLUME LIST populates the Text or String array volumes with the names of
the volumes currently defined (Windows) or mounted (Macintosh) on your machine.

On Macintosh, it returns the list of the volumes visible at the Finder level.

On the other hand, on Windows, it returns the list of the volumes currently defined
whether or not each volume is physically present (i.e. the volume A: will be returned
whether or not a disk is actually present in the floppy drive).

Example
Using a scrollable area named asVolumes you want to display the list of the volumes
defined or mounted on your machine, you write:

Case of
: (Form event=On Load)

ARRAY STRING(31;asVolumes;0)
⇒ VOLUME LIST(asVolumes)

` ...
End case

See Also
DOCUMENT LIST, FOLDER LIST, VOLUME ATTRIBUTES.

1462 4th Dimension Language Reference

VOLUME ATTRIBUTES System Documents

version 6.0
__

VOLUME ATTRIBUTES (volume; size; used; free)

Parameter Type Description
volume String → Volume name
size Number ← Volume size expressed in bytes
used Number ← Used space expressed in bytes
free Number ← Free space expressed in bytes

Description
The VOLUME ATTRIBUTES command returns, expressed in bytes, the size, the used space
and the free space for the volume whose name you pass in volume.

Note: If volume indicates a non-mounted remote volume, the OK variable is set to 0 and
the three parameters return -1.

Example
Your application includes some batch operations running the night or the week-end that
store huge temporary files on disk. To make this process as automatic and flexible as
possible, you write a routine that will automatically find the first volume whose free space
is sufficient for your temporary files. You might write the following project method:

` Find volume for space Project Method
` Find volume for space (Real) -> String
` Find volume for space (Space needed in bytes) -> Volume name or Empty string

C_STRING(31;$0)
C_STRING(255;$vsDocName)
C_LONGINT($vlNbVolumes;$vlVolume)
C_REAL($1;$vlSize;$vlUsed;$vlFree)
C_TIME($vhDocRef)

` Initialize function result
$0:=""

` Protect all I/O operations with an error interruption method
ON ERR CALL("ERROR METHOD")

4th Dimension Language Reference 1463

` Get the list of the volumes
ARRAY STRING(31;$asVolumes;0)
gError:=0
VOLUME LIST($asVolumes)
If (gError=0)

` If running on windows, skip the (usual) two floppy drives
If (On Windows)

$vlVolume:=Find in array($asVolumes;"A:")
If ($vlVolume>0)

DELETE ELEMENT($asVolumes;$vlVolume)
End if
$vlVolume:=Find in array($asVolumes;"B:")
If ($vlVolume>0)

DELETE ELEMENT($asVolumes;$vlVolume)
End if

End if
$vlNbVolumes:=Size of array($asVolumes)

` For each volume
For ($vlVolume;1;$vlNbVolumes)

` Get the size, used space and free space
gError:=0

⇒ VOLUME ATTRIBUTES($asVolumes{$vlVolume};$vlSize;$vlUsed;$vlFree)
If (gError=0)

` Is the free space large enough (plus an extra 32K) ?
If ($vlFree>=($1+32768))

` If so, check if the volume is unlocked...
$vsDocName:=$asVolumes{$vlVolume}+Char(Directory symbol)

+"XYZ"+String(Random)+".TXT"
$vhDocRef:=Create document($vsDocName)
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
DELETE DOCUMENT($vsDocName)

` If everything's fine, return the name of the volume
$0:=$asVolumes{$vlVolume}
$vlVolume:=$vlNbVolumes+1

End if
End if

End if
End for

End if
ON ERR CALL("")

1464 4th Dimension Language Reference

Once this project method is added to your application, you can for instance write:

$vsVolume:=Find volume for space (100*1024*1024)
If($vsVolume#"")

` Continue
Else

ALERT("A volume with at least 100 MB of free space is required!")
End if

See Also
VOLUME LIST.

4th Dimension Language Reference 1465

FOLDER LIST System Documents

version 6.0
__

FOLDER LIST (pathname; directories)

Parameter Type Description
pathname String → Pathname to volume, directory or folder
directories Array ← Names of the directories present at this

location

Description
The command FOLDER LIST populates the Text or String array directories with the names
of the folders located at the pathname you pass in pathname.

Note: The pathname parameter only accepts absolute pathnames.

If there are no folders at the specified location, the command returns an empty array. If
the pathname you pass in pathname is invalid, FOLDER LIST generate a file manager error
that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the parameter pathname is 255 characters. If you pass a
longer pathname, it will be truncated and a File manager error will be generated.

See Also
DOCUMENT LIST, VOLUME LIST.

1466 4th Dimension Language Reference

DOCUMENT LIST System Documents

version 6.0
__

DOCUMENT LIST (pathname; documents)

Parameter Type Description
pathname String → Pathname to volume, directory or folder
documents Array ← Names of the documents present at this

location

Description
The DOCUMENT LIST command populates the Text or String array documents with the
names of the documents located at the pathname you pass in pathname.

Note: The pathname parameter only accepts absolute pathnames.

If there are no documents at the specified location, the command returns an empty array.
If the pathname you pass in pathname is invalid, DOCUMENT LIST generates a file
manager error that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the parameter pathname is 255 characters. If you pass a
longer pathname, it is truncated and a File Manager error is generated.

See Also
FOLDER LIST, VOLUME LIST.

4th Dimension Language Reference 1467

MAP FILE TYPES System Documents

version 3.5
__

MAP FILE TYPES (macOS; windows; context)

Parameter Type Description
macOS String → Mac OS file type (4-character string)
windows String → Windows file extension (1 to 3-character
string)
context String → String displayed in List of Types drop-down list

of the Windows file dialog boxes

Description
MAP FILE TYPES lets you associate a Windows file extension with a Macintosh file type.

You need to call this routine only once to establish a mapping for an entire worksession
with a database. Once the call has been made, the commands Append document, Create
document, Create resource file, Open resource file and Open resource file while running on
Windows will automatically substitute the Windows file extension for the Macintosh file
type you actually pass as a parameter to the routine.

In the macOS parameter you pass a 4-character Macintosh file type. If you do not pass a 4-
character string, the command does nothing and generates an error.

In the windows parameter you pass a 1 to 3-character Windows file extension. If you do
not pass a 1 to 3-character string, the command does nothing and generates an error.

In the context parameter you pass the string that will be displayed in the List Files of Type
drop-down list of the Windows Open File dialog box. The context string is limited to 32
characters; additional characters are ignored.

IMPORTANT: Once you have mapped a Windows file extension to a Macintosh file type,
you cannot change or delete this mapping within a single work session. If you need to
change a mapping while developing and debugging a 4D application, reopen the database
and remap the file extension.

1468 4th Dimension Language Reference

Example
The following line of 4D code (that could be part of the Startup database method) maps
the Macintosh MS-Word file type “WDBN” to the Windows file extension “.DOC”:

⇒ MAP FILE TYPES ("WDBN";"DOC";"Word documents")

Once the call above has been made, the following code will display only Word documents
in the Open file dialog on Windows and Macintosh:

$DocRef:=Open document("";"WDBN")
If (OK=1)

` ...
End if

See Also
Append document, Create document, Create resource file, Open resource file, Open resource
file.

4th Dimension Language Reference 1469

GET DOCUMENT PROPERTIES System Documents

version 6.0
__

GET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)

Parameter Type Description
document String → Document name
locked Boolean ← Locked (True) or unlocked (False)
invisible Boolean ← Invisible (True) or visible (False)
created on Date ← Creation date
created at Time ← Creation time
modified on Date ← Last modification date
modified at Time ← Last modification time

Description
The GET DOCUMENT PROPERTIES command returns information about the document
whose name or pathname you pass in document.

After the call:
• locked returns True if the document is locked. A locked document cannot be modified.
• invisible returns True if the document is hidden.
• created on and created at return the date and time when the document was created.
• modified on and modified at return the date and time when the document modified for
the last time.

Example
You have created a documentation database and you would like to export all the records
you created in the database to documents on disk. Because the database is regularly
updated you want to write an export algorithm that create or recreate each document on
disk if the document does not exist or if the corresponding record has been modified after
the document was saved for the last time. Consequently, you need to compare the date
and time of modification of a document (if it exists) with its corresponding record.

1470 4th Dimension Language Reference

For illustrating this example, we use the table whose definition is shown below:

Rather than saving both a date and time values into each record, you can save a “time
stamp” value which expresses the number of seconds elapsed between an arbitrary
anterior date and time (in this example we use Jan, 1st 1995 at 00:00:00) and the date
and time when the record was saved.

In our example, the field [Documents]Creation Stamp holds the time stamp when the
record was first created and the field [Documents]Modification Stamp holds the time stamp
when the record was last modified.

The Time stamp project method listed below calculates the time stamp for a specific date
and time or for the current date and time if no parameters are passed:

` Time stamp Project Method
` Time stamp { (date ; Time) } -> Long
` Time stamp { (date ; Time) } -> Number of seconds since Jan, 1st 1995

C_DATE($1;$vdDate)
C_TIME($2;$vhTime)
C_LONGINT($0)

If (Count parameters=0)
$vdDate:=Current date
$vhTime:=Current time

Else
$vdDate:=$1
$vhTime:=$2

End if
$0:=(($vdDate-!01/01/95!)*86400)+$vhTime

Note: Using this method, you can encode dates and times from the 01/01/95 at 00:00:00
to the 01/19/2063 at 03:14:07 which cover the long integer range 0 to 2^31 minus one.

4th Dimension Language Reference 1471

Conversely, the Time stamp to date and Time stamp to time project methods listed below
allow extracting the date and the time stored into a time stamp:

` Time stamp to date Project Method
` Time stamp to date (Long) -> Date
` Time stamp to date (Time stamp) -> Extracted date

C_DATE($0)
C_LONGINT($1)

$0:=!01/01/95!+($1\86400)

` Time stamp to time Project Method
` Time stamp to time (Long) -> Date
` Time stamp to time (Time stamp) -> Extracted time

C_TIME($0)
C_LONGINT($1)

$0:=Time(Time string(†00:00:00†+($1%86400)))

For insuring that the records have their time stamps correctly updated no matter the way
they are created or modified, we just need to enforce that rule using the trigger of the
table [Documents]:

` Trigger for table [Documents]

Case of
: (Database event=Save New Record Event)

[Documents]Creation Stamp:=Time stamp
[Documents]Modification Stamp:=Time stamp

: (Database event=Save Existing Record Event)
[Documents]Modification Stamp:=Time stamp

End case

1472 4th Dimension Language Reference

Once this is implemented in the database, we have all we need to write the project
method CREATE DOCUMENTATION listed below. We use of GET DOCUMENT PROPERTIES
and SET DOCUMENT PROPERTIES for handling the date and time of creation and
modification of the documents.

` CREATE DOCUMENTATION Project Method

C_STRING(255;$vsPath;$vsDocPathName;$vsDocName)
C_LONGINT($vlDoc)
C_BOOLEAN($vbOnWindows;$vbDoIt;$vbLocked;$vbInvisible)
C_TIME($vhDocRef;$vhCreatedAt;$vhModifiedAt)
C_DATE($vdCreatedOn;$vdModifiedOn)

If (Application type=4D Client)
` If we are running 4D Client, save the documents
` locally on the Client machine where 4D Client is located

$vsPath:=Long name to path name (Application file)
Else

` Otherwise, save the documents where the data file is located
$vsPath:=Long name to path name (Data file)

End if
` Save the documents in a directory we arbitrarily name "Documentation"

$vsPath:=$vsPath+"Documentation"+Char(Directory symbol)
` If this directory does not exist, create it

If (Test path name($vsPath) # Is a directory)
CREATE FOLDER($vsPath)

End if
` Establish the list of the already existing documents
` because we'll have to delete the obsolete ones, in other words,
` the documents whose corresponding records have been deleted.

ARRAY STRING(255;$asDocument;0)
DOCUMENT LIST($vsPath;$asDocument)

` Select all the records from the [Documents] table
ALL RECORDS([Documents])

` For each record
$vlNbRecords:=Records in selection([Documents])
$vlNbDocs:=0
$vbOnWindows:=On Windows
For ($vlDoc;1;$vlNbRecords)

` Assume we will have to (re)create the document on disk
$vbDoIt:=True

` Calculate the name and the path name of the document
$vsDocName:="DOC"+String([Documents]Number;"00000")
$vsDocPathName:=$vsPath+$vsDocName

4th Dimension Language Reference 1473

` Does this document already exist?
If (Test path name($vsDocPathName+".HTM")=Is a document)

` If so, remove the document from the list of the documents
` that may end up deleted

$vlElem:=Find in array($asDocument;$vsDocName+".HTM")
If ($vlElem>0)

DELETE ELEMENT($asDocument;$vlElem)
End if

` Was the document saved after the last time the record was modified?
⇒ GET DOCUMENT PROPERTIES($vsDocPathName+".HTM";$vbLocked;

$vbInvisible;$vdCreatedOn;$vhCreatedAt;
$vdModifiedOn;$vhModifiedAt)

If (Time stamp ($vdModifiedOn;$vhModifiedAt)>=[Documents]Modification
 Stamp)

` If so, we do not need to recreate the document
$vbDoIt:=False

End if
Else

` The document does not exist, reset these two variables so
` we know we'll have to compute them before setting the final properties
` of the document

$vdModifiedOn:=!00/00/00!
$vhModifiedAt:=†00:00:00†

End if
` Do we need to (re)create the document?

If ($vbDoIt)
` If so, increment the number of updated documents

$vlNbDocs:=$vlNbDocs+1
` Delete the document if it already exists

DELETE DOCUMENT($vsDocPathName+".HTM")
` And create it again

If ($vbOnWindows)
$vhDocRef:=Create document($vsDocPathName;"HTM")

Else
$vhDocRef:=Create document($vsDocPathName+".HTM")

End if
If (OK=1)

` Here write the contents of the document
CLOSE DOCUMENT($vhDocRef)
If ($vdModifiedOn=!00/00/00!)

` The document did not exist, set the modification date and time
` to their right values

$vdModifiedOn:=Current date
$vhModifiedAt:=Current time

End if

1474 4th Dimension Language Reference

` Change the properties of the document so its date and time of creation
` are made equal to those of the corresponding record

⇒ SET DOCUMENT PROPERTIES($vsDocPathName+".HTM";$vbLocked;
$vbInvisible;Time stamp to date ([Documents]Creation Stamp);

Time stamp to time ([Documents]Creation Stamp);
$vdModifiedOn;$vhModifiedAt)

End if
End if

` Just to know what's going on
SET WINDOW TITLE("Processing Document "+String($vlDoc)+" of "+

String($vlNbRecords))
NEXT RECORD([Documents])

End for
` Delete the obsolete documents, in other words
` those which are still in the array $asDocument

For ($vlDoc;1;Size of array($asDocument))
DELETE DOCUMENT($vsPath+$asDocument{$vlDoc})
SET WINDOW TITLE("Deleting obsolete document: "+Char(34)+

$asDocument{$vlDoc}+Char(34))
End for

` We're done
ALERT("Number of documents processed: "+String($vlNbRecords)+Char(13)+

"Number of documents updated: "+String($vlNbDocs)+Char(13)+"Number of
documents deleted: "+String(Size of array($asDocument)))

See Also
Document creator, Document type, SET DOCUMENT PROPERTIES.

4th Dimension Language Reference 1475

SET DOCUMENT PROPERTIES System Documents

version 6.0
__

SET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)

Parameter Type Description
document String → Document name

or Full document pathname
locked Boolean → Locked (True) or Unlocked (False)
invisible Boolean → Invisible (True) or Visible (False)
created on Date → Creation date
created at Time → Creation time
modified on Date → Last modification date
modified at Time → Last modification time

Description
The SET DOCUMENT PROPERTIES command changes the information about the
document whose name or pathname you pass in document.

Before the call:
• Pass True in locked to lock the document. A locked document cannot be modified. Pass
False in Locked to unlock a document.
• Pass True in invisible to hide the document. Pass False in invisible to make the document
visible in the desktop windows.
• Pass the document creation date and time in created on and created at.
• Pass the document last modification date and time in modified on and modified at.

The dates and times of creation and last modification are managed by the file manager of
your system each time you create or access a document. Using this command, you can
change those properties for special purpose. See example for the command GET
DOCUMENT PROPERTIES.

See Also
GET DOCUMENT PROPERTIES, SET DOCUMENT CREATOR, SET DOCUMENT TYPE.

1476 4th Dimension Language Reference

GET DOCUMENT ICON System Documents

version 6.7
__

GET DOCUMENT ICON (docPath; icon{; size})

Parameter Type Description
docPath String → Name or path of document to get icon,

or Empty string for standard Open File dialog box
icon Picture → Picture variable or field

← Document icon
size Longint → Size of the returned picture (in pixels)

Description
The command GET DOCUMENT ICON returns in the 4D picture variable or field icon, the
icon of the file whose name is passed in filePath. The file can be of any type (executable,
document, shortcut or alias...). However, the command does not return folder icons.

filePath should contain the full pathname of the file. You can also pass the file name only,
in this case the file must be placed in the database current working directory (usually, the
folder containing the database structure file).
If you pass an empty string in filePath, the standard Open File dialog box is presented. The
user can then select the file to read. Once the dialog box is validated, the Document system
variable contains the full pathname to the selected file.

Pass in icon a 4D picture field or variable. After the command is executed, this parameter
contains the icon of the file (PICT format).

The optional size parameter allows you to set the dimensions in pixels of the returned
icon. This value actually represents the side length of the square including the icon. Icons
are usually defined in 32x32 pixels (“large icons”) or 16x16 pixels (“small icons”). If you
pass 0 or omit this parameter, the largest available icon is returned.

4th Dimension Language Reference 1477

Get document size System Documents

version 6.0
__

Get document size (document{; *}) → Number

Parameter Type Description
document DocRef | String → Document reference number or

Document name
* → On Mac OS only:

- if omitted, size of data fork
- if specified, size of resource fork

Function result Number ← Size (expressed in bytes) of the document

Description
The Get document size command returns the size, expressed in bytes, of a document.

If the document is open, you pass its document reference number in document.
If the document is not open, you pass its name or pathname in document.

On Macintosh, if you do not pass the optional * parameter, the size of the data fork is
returned. If you do pass the * parameter, the size of the resource fork is returned.

See Also
Get document position, SET DOCUMENT POSITION, SET DOCUMENT SIZE.

1478 4th Dimension Language Reference

SET DOCUMENT SIZE System Documents

version 6.0
__

SET DOCUMENT SIZE (document; size)

Parameter Type Description
document DocRef → Document reference number
size Number → New size expressed in bytes

Description
The SET DOCUMENT SIZE command sets the size of a document to the number of bytes
you pass in size.

If the document is open, you pass its document reference number in document.

On Macintosh, the size of the document's data fork is changed.

See Also
Get document position, Get document size, SET DOCUMENT POSITION.

4th Dimension Language Reference 1479

Get document position System Documents

version 6.0
__

Get document position (docRef) → Number

Parameter Type Description
docRef DocRef → Document reference number

Function result Number ← File position (expressed in bytes)
from the beginning of the file

Description
This command operates only on a document currently open whose document reference
number you pass in docRef.

Get document position returns the position, starting from the beginning of the
document, where the next read (RECEIVE PACKET) or write (SEND PACKET) will occur.

See Also
RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION.

1480 4th Dimension Language Reference

SET DOCUMENT POSITION System Documents

version 6.0
__

SET DOCUMENT POSITION (docRef; offset{; anchor})

Parameter Type Description
docRef DocRef → Document reference number
offset Number → File position (expressed in bytes)
anchor Integer → 1 = In relation to the beginning of the file

2 = In relation to the end of the file
3 = In relation to current position

Description
This command operates only on a document currently open whose document reference
number you pass in docRef.

SET DOCUMENT POSITION sets the position you pass in offset where the next read
(RECEIVE PACKET) or write (SEND PACKET) will occur.

If you omit the optional anchor parameter, the position is relative to the beginning of the
document. If you do specify the anchor parameter, you pass one of the values listed
above.

Depending on the anchor you can pass positive or negative values in offset.

See Also
Get document position, RECEIVE PACKET, SEND PACKET.

4th Dimension Language Reference 1481

1482 4th Dimension Language Reference

53

System Environment

4th Dimension Language Reference 1483

1484 4th Dimension Language Reference

Screen height System Environment

version 3.5
__

Screen height {(*)} → Number

Parameter Type Description
* Number → Windows: height of application window, or

height of screen if * is specified
Macintosh: height of main screen

Function result Number ← Height expressed in pixels

Description
On Windows, Screen height returns the height of 4D application window (MDI window).
If you specify the optional * parameter, Screen height returns the height of the screen.

On Macintosh, Screen height returns the height of the main screen, the screen where the
menu bar is located.

See Also
SCREEN COORDINATES, Screen width.

4th Dimension Language Reference 1485

Screen width System Environment

version 3.5
__

Screen width {(*)} → Number

Parameter Type Description
* Number → Windows: width of application window, or

width of screen if * is specified
Macintosh: width of main screen

Function result Number ← Width expressed in pixels

Description
On Windows, Screen width returns the width of 4D application window (MDI window). If
you specify the optional * parameter, Screen width returns the width of the screen.

On Macintosh, Screen width returns the width of the main screen, the screen where the
menu bar is located.

See Also
SCREEN COORDINATES, Screen height.

1486 4th Dimension Language Reference

Count screens System Environment

version 6.0
__

Count screens → Longint

Parameter Type Description

This command does not require any parameters

Function result Longint ← Number of monitors

Description
The command Count screens returns the number of screen monitors connected to your
machine.

Windows note: On Windows, Count screens usually returns 1.

See Also
Menu bar screen, SCREEN COORDINATES, SCREEN DEPTH, Screen height, Screen width.

4th Dimension Language Reference 1487

SCREEN COORDINATES System Environment

version 6.0
__

SCREEN COORDINATES (left; top; right; bottom{; screen})

Parameter Type Description

left Longint ← Global left coordinate of screen area
top Longint ← Global top coordinate of screen area
right Longint ← Global right coordinate of screen area
bottom Longint ← Global bottom coordinate of screen area
screen Longint → Screen number, or main screen if omitted

Description
The command SCREEN COORDINATES returns in left, top, right, and bottom the global
coordinates of the screen specified by screen.

On Windows
Usually, you will not pass the screen parameter.

On Macintosh
If you omit the screen parameter, the command returns the coordinates of the main
screen, the screen where the menu bar is displayed.

See Also
Count screens, Menu bar screen, SCREEN DEPTH.

1488 4th Dimension Language Reference

SCREEN DEPTH System Environment

version 6.0
__

SCREEN DEPTH (depth; color{; screen})

Parameter Type Description
depth Number ← Depth of the screen

(number of colors = 2 ^ depth)
color Number ← 1 = Color screen, 0 = Black and white or Gray

scale
screen Number → Screen number, or main screen if omitted

Description
The command Screen depth returns in depth and color information about the monitor.

After the call:

• The depth of the screen is returned in depth. The depth of the screen is the exponent of
the power of 2 expressing the number of colors displayed on your monitor. For example,
if your monitor is set for 256 colors (2^8), the depth of your screen is 8.

The following predefined constants are provided by 4th Dimension:
Constant Type Value
Black and white Long Integer 0
Four colors Long Integer 2
Sixteen colors Long Integer 4
Two fifty six colors Long Integer 8
Thousands of colors Long Integer 16
Millions of colors 24 bit Long Integer 24
Millions of colors 32 bit Long Integer 32

If the monitor is set to display in color, 1 is returned in color. If the monitor is set to
display in gray scale, 0 is returned in color. Note that this value is significant on the
Macintosh platform.

The following predefined constants are provided by 4th Dimension:
Constant Type Value
Is gray scale Long Integer 0
Is color Long Integer 1

4th Dimension Language Reference 1489

• The optional parameter screen specifies the monitor for which you want to get
information. On Windows, you will not usually pass the screen parameter. On Macintosh,
if you omit the screen parameter, the command returns the depth of the main screen, the
screen where the menu bar is displayed.

Example
Your application displays many color graphics. Somewhere in your database, you could
write:

⇒ SCREEN DEPTH ($vlDepth;$vlColor)
If ($vlDepth<8)

ALERT("The forms will look better if the monitor"+" was set to display 256 colors or
more.")

End if

See Also
Count screens, SET SCREEN DEPTH.

1490 4th Dimension Language Reference

SET SCREEN DEPTH System Environment

version 6.0
__

SET SCREEN DEPTH (depth{; color{; screen}})

Parameter Type Description
depth Number → Depth of the screen

(number of colors = 2 ^ Screen depth)
color Number → 1 = Color, 0 = Gray Scale
screen Number → Screen number, or main screen if omitted

Description
This command does nothing on Windows.

On Macintosh, SET SCREEN DEPTH changes the depth and color/gray scale settings of the
screen whose number you pass in screen. If you omit this parameter, the command is
applied to the main screen.

For details about the values you pass in color and depth, see the description of the
command SCREEN DEPTH.

See Also
SCREEN DEPTH.

4th Dimension Language Reference 1491

Menu bar screen System Environment

version 6.0
__

Menu bar screen → Number

Parameter Type Description

This command does not require any parameters

Function result Longint ← Number of screen where menu bar is located

Description
Menu bar screen returns the number of the screen where the menu bar is located.

Windows note: On Windows, Menu bar screen usually returns 1.

See Also
Count screens, Menu bar height.

1492 4th Dimension Language Reference

Menu bar height System Environment

version 6.0
__

Menu bar height → Number

Parameter Type Description

This command does not require any parameters

Function result Longint ← Height (expressed in pixels) of menu bar
(returns zero if menu bar is hidden)

Description
Menu bar height returns the height of the menu bar, expressed in pixels.

See Also
HIDE MENU BAR, Menu bar screen, SHOW MENU BAR.

4th Dimension Language Reference 1493

FONT LIST System Environment

version 6.0
__

FONT LIST (fonts)

Parameter Type Description
fonts Array ← Array of font names

Description
The command FONT LIST populates the string or text array fonts with the names of the
fonts available on your system.

Example
In a form, you want a drop-down list that displays a list of the fonts available on your
system. The method of the drop-down list is as follows:

Case of
: (Form event=On Load)

ARRAY STRING(63;asFont;0)
⇒ FONT LIST(asFont)

` ...

End case

See Also
Font name, Font number.

1494 4th Dimension Language Reference

Font name System Environment

version 6.0
__

Font name (fontNumber) → String

Parameter Type Description
fontNumber Longint → Font number for which to return the font

name

Function result String ← Font name

Description
The command Font name returns the name of the font whose number is fontNumber. If
there is no available font with that number, the command returns an empty string.

Examples
1. To display a form object with the default system font, you write:

⇒ FONT(myObject;Font name(0)) ` 0 is the font number of the default system font

2. To display a form object with the default application font, you write:

⇒ FONT(myObject;Font name(1)) ` 1 is the font number of the default application font

See Also
FONT LIST, Font number.

4th Dimension Language Reference 1495

Font number System Environment

version 6.0
__

Font number (fontName) → Longint

Parameter Type Description
fontName String → Font name for which to return the font number

Function result Longint ← Font number

Description
The Font number command returns the number of the font whose name is fontName. If
there is no font with this name, the command returns 0.

Example
Some forms in your database use the font whose name is “Kind of Special.” Somewhere in
your database, you could write:

⇒ If (Font number("Kind of Special")=0)
ALERT("This form would look better if the font Kind of Special was installed.")

End if

See Also
FONT LIST, Font name.

1496 4th Dimension Language Reference

PLATFORM PROPERTIES System Environment

version 2004.2 (Modified)
__

PLATFORM PROPERTIES (platform{; system{; machine{; language}}})

Parameter Type Description
platform Number ← 1 68K-based Macintosh

2 Power Macintosh
3 Windows

system Number ← Depends on the version you are running
machine Number ← Depends on the version you are running
language Number ← Depends on the system you are using

Description
The PLATFORM PROPERTIES command returns information about the type of platform
you are running, the version and the language of the operating system, and the processor
installed on your machine.

PLATFORM PROPERTIES returns environment information in the platform, system, machine
and language parameters.

• platform indicates whether you are running a PowerPC-based Macintosh or Windows
version of 4th Dimension. This parameter returns one the following predefined
constants:

Constant Type Value
Macintosh 68K Long Integer 1 (obsolete)
Power Macintosh Long Integer 2
Windows Long Integer 3

• The information returned in system depends on the version of 4th Dimension you are
running.

Macintosh version
If you are running a Mac OS version of 4th Dimension, the system parameter returns a
32-bit (Long Integer) value, for which the high level word is unused and the low level
word is structured like this:
- The high byte contains the major version number,
- The low byte is composed of two nibbles (4 bits each). The high nibble is the major
update version number and the low nibble is the minor update version. Example: System
9.0.4 is coded as $0904, so you receive the decimal value 2308.

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the Bitwise operators.

4th Dimension Language Reference 1497

Use the following formula to find out the Mac OS main version number:

⇒ PLATFORM PROPERTIES($vlPlatform;$vlSystem)
$vlResult:=$vlSystem\256

`If $vlResult = 8 → you are under Mac OS 8.x
`If $vlResult = 9 → you are under Mac OS 9.x
`If $vlResult = 16 → you are under Mac OS 10.x

Windows version
If you are running the Windows version of 4th Dimension, the system parameter returns
a 32-bit (Long Integer) value, the bits and bytes of which are structured as follows:

If the high level bit is set to 0, it means you are running Windows NT4 or Windows 2000.
If the bit is set to 1, it means you are running Windows 95 or Windows 98.

Note: The high level bit fixes the sign of the long integer value. Therefore, in 4D, you
just need to test the sign of the value; if it is positive you are running Windows NT,
Windows 2000 or Windows XP. You can also use the Bitwise operators.

The low byte gives the major Windows version number. If it returns 4, you are running
Windows 95, 98 or Windows NT 4. If it returns 5, you are running Windows 2000 or
Windows XP. In both cases, the sign of the value tells whether or not you are running
NT/2000.

The next low byte gives the minor Windows version number. If you are running
Windows 95, this value is 0.

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the Bitwise operators.

• The machine parameter returns a value that you can compare to one of the following
predefined constants:
Constant Type Value
INTEL 386 Long Integer 386
INTEL 486 Long Integer 486
Pentium Long Integer 586
PowerPC 601 Long Integer 601
PowerPC 603 Long Integer 603
PowerPC 604 Long Integer 604
PowerPC G3 Long Integer 510
Other G3 and above Long Integer 406

Note: An updated list of Macintosh numbers is published by Apple Computer, Inc. in its
Developer and Technical documentation. New values may be added when Apple or other
manufacturers release new models of the Macintosh.

1498 4th Dimension Language Reference

• The language parameter is used to find out the current language of the system on which
the database is running. Here is a list of the codes that can be returned in this parameter,
as well as their meanings:

Code Language
1 Arabic
2 Bulgarian
3 Catalan
4 Chinese
5 Czech
6 Danish
7 German
8 Greek
9 English
10 Spanish
11 Finnish
12 French
13 Hebrew
14 Hungarian
15 Icelandic
16 Italian
17 Japanese
18 Korean
19 Dutch
20 Norwegian
21 Polish
22 Portuguese
24 Romanian
25 Russian
26 Croatian
26 Serbian
27 Slovak
28 Albanian
29 Swedish
30 Thai
31 Turkish
33 Indonesian
34 Ukrainian
35 Belarusian
36 Slovenian
37 Estonian
38 Latvian
39 Lithuanian
41 Farsi
42 Vietnamese

4th Dimension Language Reference 1499

45 Basque
54 Afrikaans
56 Faeroese

Note: If the command is not able to identify the system language, the value 9 (English) is
returned.

Example
The following project method displays an alert box showing the OS software you are
using:

` SHOW OS VERSION project method

⇒ PLATFORM PROPERTIES($vlPlatform;$vlSystem;$vlMachine)
If (($vlPlatform<1) | ($vlPlatform>3))

$vsPlatformOS:=""
Else

If ($vlPlatform=3)
$vsPlatformOS:=""
If ($vlSystem<0)

$winMajVers:=((2^31)+$vlSystem)%256
$winMinVers:=(((2^31)+$vlSystem)\256)%256
If ($winMinVers=0)

$vsPlatformOS:="Windows™ 95"
Else

$vsPlatformOS:="Windows™ 98"
End if

Else
$winMajVers:=$vlSystem%256
$winMinVers:=($vlSystem\256)%256
Case of

: ($winMajVers=4)
$vsPlatformOS:="Windows™ NT"

: ($winMajVers=5)
If ($winMinVers=0)

$vsPlatformOS:="Windows™ 2000"
Else

$vsPlatformOS:="Windows™ XP"
End if

End case
End if
$vsPlatformOS:=$vsPlatformOS+" version "+String($winMajVers)+"."+

String($winMinVers)

1500 4th Dimension Language Reference

Else
$vsPlatformOS:="Mac OS™ version "
If (($vlSystem\256) = 16)

$vsPlatformOS:=$vsPlatformOS+"10"
Else

$vsPlatformOS:=$vsPlatformOS+String($vlSystem\256)
End if
$vsPlatformOS:=$vsPlatformOS+"."+String(($vlSystem\16)%16)+

(("."+String($vlSystem%16))*Num(($vlSystem%16) # 0))
End if

End if
ALERT($vsPlatformOS)

On Windows, you get an alert box similar to this:

On Macintosh, you get an alert box similar to this:

See Also
Bitwise Operators.

4th Dimension Language Reference 1501

System folder System Environment

version 6.7 (Modified)
__

System folder {(type)} → String

Parameter Type Description
type Longint → Type of system folder

Function result String ← Pathname to a system folder

Description
The command System folder returns the pathname to a system folder within the active
Windows or Macintosh System folder, or to the active Windows or Macintosh System
folder itself.

You pass in the optional type parameter a value indicating the type of system folder. 4D
provides you with the following predefined constants, placed in the “System Folder”
theme:
Constant Type Value
System Long Integer 0
Fonts Long Integer 1
Preferences or Profiles_All Long Integer 2
Preferences or Profiles_User Long Integer 3
Startup Items_All Long Integer 4
Startup Items_User Long Integer 5
Mac Shutdown Items_All Long Integer 6
Mac Shutdown Items_User Long Integer 7
Apple or Start Menu_All Long Integer 8
Apple or Start Menu_User Long Integer 9
Mac Extensions Long Integer 10
Mac Control Panels Long Integer 11
System Win Long Integer 12
System32 Win Long Integer 13
Favorites Win Long Integer 14
Desktop Win Long Integer 15
Program Files Win Long Integer 16

The pathnames to some system folders can specific to the current user. Constants 2 to 9
allows you to choose whether you want to obtain the pathname to a folder which is
shared by all users, or customized for the current user.

Note: The constants Mac Shutdown Items, Mac Extensions and Mac Control Panels can be
used on Mac OS only. When they are used on Windows, System folder will return an
empty string. Conversely, the constants System Win, System32 Win, Favorites Win, Desktop
Win and Program Files Win can be used on Windows only. When they are used on Mac OS,
System folder will return an empty string.

1502 4th Dimension Language Reference

If you omit the type parameter, the function will return the pathname to active System
folder (= constant System).

See Also
Get 4D folder, Temporary folder.

4th Dimension Language Reference 1503

Temporary folder System Environment

version 6.0
__

Temporary folder → String

Parameter Type Description
This command does not require any parameters

Function result String ← Pathname to temporary folder

Description
The command Temporary folder returns the pathname to the current temporary folder set
by your system.

Example
See example for the command APPEND TO CLIPBOARD.

See Also
System folder.

1504 4th Dimension Language Reference

Current machine System Environment

version 6.0
__

Current machine → String

Parameter Type Description
This command does not require any parameters

Function result String ← Network name of the machine

Description
The command Current machine returns the network name of your machine, as set in the
Network Control Panel.

Example
Even if you are not running with the Client/Server version of the 4D environment, your
application can include some network services that require your machine to be correctly
configured. In the On Startup database method of your application, you write:

⇒ If ((Current machine="") | (Current machine owner=""))
` Display a dialog box asking the user to setup
` the Network identity of his or her machine

End if

See Also
Current machine owner.

4th Dimension Language Reference 1505

Current machine owner System Environment

version 6.0
__

Current machine owner → String

Parameter Type Description
This command does not require any parameters

Function result String ← Network name of machine owner

Description
The command Current machine owner returns the owner name of your machine, as set in
the Network Control Panel.

Example
See example for the command Current machine.

See Also
Current machine.

1506 4th Dimension Language Reference

Gestalt System Environment

version 6.0
__

Gestalt (selector; value) → Number

Parameter Type Description
selector String → 4-character gestalt selector
value Number ← Gestalt result

Function result Number ← Error code result

Description
The Gestalt command returns in value a numeric value that denotes the characteristics of
your system hardware and software, depending on the selector you pass in selector.

If the requested information is obtained, Gestalt returns 0 in function result; otherwise, it
returns the error -5550. If the selector is unkown, Gestalt returns the error -5551.

Important: The Gestalt Manager is part of Mac OS. On Windows, some of the selectors are
also implemented, but the usefulness of this command is limited.

For more information about the selectors that you can pass to Gestalt, refer to the Apple
Developer documentation related to the Gestalt Manager, available on-line at the
following address:
http://developer.apple.com/documentation/Carbon/Reference/Gestalt_Manager/index.html

Example
On Macintosh, using version 9.2 of Mac OS, the following code displays the alert “You're
running system version 0x0920”:

⇒ $vlErrCode:=Gestalt("sysv";$vlInfo)
If ($vlErrCode=0)

 ALERT("You're running system version "+String($vlInfo;"&x"))
End if

4th Dimension Language Reference 1507

LOG EVENT System Environment

version 6.5
__

LOG EVENT (message{; importance})

Parameter Type Description
message String → Contents of the message
importance Integer → Message’s importance level

Note: This feature is only available on Windows.

Description
The command LOG EVENT allows you to add custom messages that will appear in the
Windows Log events. This service maintains a log file that receives and stores messages
coming from running applications. It therefore allows you to monitor the course of a
worksession. For more information, please refer to the 4D Design Mode manual.

For this feature to be available, Windows Log events service must be running.

Pass the message to write in the log events in message.

You can attribute a level of importance to message, which helps you to read and
understand the log events. There are three levels of importance: Information, Warning,
and Error. The importance parameter allows you to set the level of importance of the
message.
4th Dimension provides you with the following predefined constants, placed in the
“Windows Log Events” category:

Constant Type Value
Information Message Integer 0
Warning Message Integer 1
Error Message Integer 2

If you don’t pass anything in importance or pass an incorrect value, the default value (0)
is used.

Example
If you want to have keep track of when your database is opened, you could write the
following line of code in the On Startup Database Method:

⇒ LOG EVENT ("The Invoice database was opened.")

Each time the database is opened, this information will be written in Windows’ log events
and its level of importance will be 0.

1508 4th Dimension Language Reference

SET ENVIRONMENT VARIABLE System Environment

version 2004.1 (Modified)
__

SET ENVIRONMENT VARIABLE (varName; varValue)

Parameter Type Description
varName String → Variable name to set
varValue String → Value of the variable or

 "" to reset default value

Description
The SET ENVIRONMENT VARIABLE command allows you to set the value of an
environment variable under Mac OS X and Windows. It is meant to be used with the SET
CGI EXECUTABLE or LAUNCH EXTERNAL PROCESS commands.

Pass the name of the variable to define in varName and its value in varValue.

• To get the general list of environment variables and possible values, please refer to the
technical documentation of your operating system.
• To see the list of environment variables available with the SET CGI EXECUTABLE
command, please refer to the Using CGIs section in the “Web Server” chapter.
• To see the list of environment variables available with the LAUNCH EXTERNAL PROCESS
command, please refer to the documentation for this command. Note that two specific
environment variables are available for use in this context:
_4D_OPTION_CURRENT_DIRECTORY: Used to set the current directory of the external
process to be launched. In varValue, you must pass the pathname of the directory (HFS
type syntax on Mac OS and DOS on Windows).
_4D_OPTION_HIDE_CONSOLE (Windows only): Used to hide the window of the DOS
console. You should pass "true" in varValue to hide the console or "false" to display it.
These variables are valid in the current process for the next call to LAUNCH EXTERNAL
PROCESS.

Example
Refer to examples 7 and 8 of the LAUNCH EXTERNAL PROCESS command.

See also
LAUNCH EXTERNAL PROCESS, SET CGI EXECUTABLE, Using CGIs.

4th Dimension Language Reference 1509

LAUNCH EXTERNAL PROCESS System Environment

version 2004
__

LAUNCH EXTERNAL PROCESS (fileName{; inputStream{; outputStream{; errorStream}}})

Parameter Type Description
fileName String → File path and arguments of file to launch
inputStream String | BLOB → Input stream (stdin)
outputStream String | BLOB ← Output stream (stdout)
errorStream String | BLOB ← Error stream (stderr)

Attention: This command is designed for advanced users.

Description
The LAUNCH EXTERNAL PROCESS command allows you to launch an external process from
4th Dimension under Mac OS X and Windows.
Under Mac OS X, this command provides access to any executable application that can be
launched from the Terminal.

Note: For 4D Pack users, this command has the same functions (plus expanded features)
as the AP_Sublaunch command.

Pass the fixed file path of the application to execute, as well as any required arguments (if
necessary), in the fileName parameter.
Under Mac OS X, you can also pass the application name only; 4th Dimension will then
use the PATH environment variable to locate the executable.

Warning: This command can only launch executable applications; it cannot execute
instructions that are part of the shell (command interpreter). For example, under Mac OS
it is not possible to use this command to execute the echo instruction or indirections.

The inputStream parameter (optional) contains the stdin of the external process. Once the
command has been executed, the outputStream and errorStream parameters (if passed)
return respectively the stdout and stderr of the external process. You can use BLOB
parameters instead of strings if you manage text data of a size greater than 32 KB or
binary data (such as pictures).

Examples under Mac OS X
The following examples use the Mac OS X Terminal available in the Application/Utilities
folder.

1. To change permissions for a file (chmod is the Mac OS X command used to modify file
access):

⇒ LAUNCH EXTERNAL PROCESS ("chmod +x /folder/myfile.txt")

1510 4th Dimension Language Reference

2. To edit a text file (cat is the Mac OS X command used to edit files). In this example, the
full access path of the command is passed:

C_TEXT(input;output)
input:=""

⇒ LAUNCH EXTERNAL PROCESS ("/bin/cat /folder/myfile.txt";input;output)

3. To get the contents of the “Users” folder (ls -l is the Mac OS X equivalent of the dir
command in DOS):

C_TEXT($In;$Out)
⇒ LAUNCH EXTERNAL PROCESS("/bin/ls -l /Users";$In;$Out)

Examples under Windows
4. To open NotePad:

⇒ LAUNCH EXTERNAL PROCESS ("C:\\WINDOWS\\notepad.exe")

5. To open Notepad and open a specific document:

⇒ LAUNCH EXTERNAL PROCESS ("C:\\WINDOWS\\notepad.exe C:\\Docs\\
new folder\\res.txt")

6. To launch the Microsoft® Word® application and open a specific document (note the
use of the two ""):

$mydoc:="C:\\Program Files\\Microsoft Office\\Office10\\WINWORD.EXE \"C:\\
Documents and Settings\\Mark\\Desktop\\MyDocs\\New folder\\test.xml\""

⇒ LAUNCH EXTERNAL PROCESS($mydoc;$tIn;$tOut)

7. To execute a Perl script (requires ActivePerl):

C_TEXT($input;$output)
SET ENVIRONMENT VARIABLE("myvariable";"value")

⇒ LAUNCH EXTERNAL PROCESS ("D:\\Perl\\bin\\perl.exe D:\\Perl\\eg\\cgi\\
env.pl";$input;$output)

8. To launch a command in a specific directory and without displaying the console:

SET ENVIRONMENT VARIABLE("_4D_OPTION_CURRENT_DIRECTORY";
"C:\\4D_VCS")

SET ENVIRONMENT VARIABLE("_4D_OPTION_HIDE_CONSOLE";"true")
⇒ LAUNCH EXTERNAL PROCESS("mycommand")

See also
SET ENVIRONMENT VARIABLE.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1. Otherwise
(file not found, insufficient memory, etc.), it is set to 0.

4th Dimension Language Reference 1511

1512 4th Dimension Language Reference

54

Table

4th Dimension Language Reference 1513

1514 4th Dimension Language Reference

DEFAULT TABLE Table

version 3
__

DEFAULT TABLE (table)

Parameter Type Description
table Table → Table to set as the default

Description
DEFAULT TABLE sets table as the default table for the current process.

There is no default table for a process until the DEFAULT TABLE command is executed.
After a default table has been set, any command that omits the table parameter will
operate on the default table. For example, consider this command:

INPUT FORM ([Table]; "form")

If the default table is first set to [Table], the same command could be written this way:

INPUT FORM ("form")

One reason for setting the default table is to create code that is not table specific. Doing
this allows the same code to operate on different tables. You can also use pointers to tables
to write code that is not table specific. For more information about this technique, see the
description of the Table name command.

DEFAULT TABLE does not allow the omission of table names when referring to fields. For
example:

[My Table]My Field:="A string" ` Good

could not be written as:

DEFAULT TABLE ([My Table])
My Field:="A string" ` WRONG

because a default table had been set. However, you can omit the table name when
referring to fields in the table method, form, and objects that belong to the table.

4th Dimension Language Reference 1515

In 4th Dimension, all tables are “open” and ready for use. DEFAULT TABLE does not open a
table, set a current table, or prepare the table for input or output. DEFAULT TABLE is simply
a programming convenience to reduce the amount of typing and make the code easier to
read.

Tip: Although using DEFAULT TABLE and omitting the table name may make the code
easier to read, many programmers find that using this command actually causes more
problems and confusion than it is worth.

Example
The following example first shows code without the DEFAULT TABLE command. It then
shows the same code, with DEFAULT TABLE. The code is a loop commonly used to add new
records to a database. The INPUT FORM and ADD RECORD commands both require a table
as the first parameter:

INPUT FORM ([Customers];"Add Recs")
Repeat

ADD RECORD ([Customers])
Until (OK = 0)

Specifying the default table results in this code:

⇒ DEFAULT TABLE ([Customers])
INPUT FORM ("Add Recs")
Repeat

ADD RECORD
Until (OK = 0)

See Also
Current default table.

1516 4th Dimension Language Reference

Current default table Table

version 3
__

Current default table → Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ← Pointer to the default table

Description
Current default table returns a pointer to the table that has been passed to the last call to
DEFAULT TABLE for the current process.

Example
Provided a default table has been set, the following line of code sets the window title to
the name of the current default table:

⇒ SET WINDOW TITLE(Table name(Current default table))

See Also
DEFAULT TABLE, Table, Table name.

4th Dimension Language Reference 1517

Current form table Table

version 6.0
__

Current form table → Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ← Pointer to the table of the currently displayed form

Description
The Current form table command returns the pointer to the table of the form being
displayed or printed in the current process.

If there is no form being displayed or printed in the current process, the command
returns Nil.

If there are several windows open for the current process (which means that the window
opened last is the current active window), the command returns the pointer to the table
of the form displayed in the active window.

If the currently displayed form is the Detail form for a subform area, you are in data entry
and you double-clicked on a record or a subrecord of a double-clickable subform area. In
this case, the command returns:
• The pointer to the table shown in the subform area, if the subform displays a table.
• A non-significant pointer, if the subform area displays a subtable.

Example
Throughout your application, you use the following convention when displaying a
record:
If the variable vsCurrentRecord is present in a form, it displays “New Record” if you are
working with a new record. If you are working with the 56th record of a selection
composed of 5200 records, it displays “56 of 5200”.

1518 4th Dimension Language Reference

To do so, use the object method to create the variable vsCurrentRecord, then copy and
paste it into all of your forms:

` vsCurrentRecord non-enterable variable object method
Case of

: (Form event =On Load)
C_STRING (31;vsCurrentRecord)
C_POINTER ($vpParentTable)
C_LONGINT ($vlRecordNum)

⇒ $vpParentTable:=Current form table
$vlRecordNum:=Record number ($vpParentTable->)
Case of

: ($vlRecordNum=-3)
vsCurrentRecord:="New Record"

: ($vlRecordNum=-1)
vsCurrentRecord:="No Record"

: ($vlRecordNum>=0)
vsCurrentRecord:=String (Selected record number ($vpParentTable->))+

" of "+String (Records in selection ($vpParentTable->))
End case

End case

See Also
DIALOG, INPUT FORM, OUTPUT FORM, PRINT SELECTION.

4th Dimension Language Reference 1519

1520 4th Dimension Language Reference

55

Tool Bar

4th Dimension Language Reference 1521

1522 4th Dimension Language Reference

HIDE TOOL BAR Tool Bar

version 6.0
__

HIDE TOOL BAR

Parameter Type Description
This command does not require any parameters

Description
The command HIDE TOOL BAR makes the toolbar invisible.

If the toolbar was already hidden, HIDE TOOL BAR does nothing.

See Also
HIDE MENU BAR, SHOW MENU BAR, SHOW TOOL BAR.

4th Dimension Language Reference 1523

SHOW TOOL BAR Tool Bar

version 6.0
__

SHOW TOOL BAR

Parameter Type Description
This command does not require any parameters

Description
The command SHOW TOOL BAR makes the toolbar visible.

If the toolbar was already visible, SHOW TOOL BAR does nothing.

See Also
HIDE MENU BAR, HIDE TOOL BAR, SHOW MENU BAR.

1524 4th Dimension Language Reference

56

Tools

4th Dimension Language Reference 1525

1526 4th Dimension Language Reference

BUILD APPLICATION Tools

version 2004
__

BUILD APPLICATION {(projectName)}

Parameter Type Description
projectName String → Full access path of the project to use

Description
The BUILD APPLICATION command launches the application generation process. It takes
into account parameters set in the current application project or the application project
set in the projectName parameter.

An application project is an XML file that contains all the parameters used to generate an
application. Most parameters can be seen in the Build Application... dialog box (for more
information, refer to the Design Reference manual of 4th Dimension).
By default, 4th Dimension creates an application project named “buildapp.prj” (default)
for each database and places it in the BuildApp subfolder in the database Preferences
folder.

If the database has not yet been compiled or if the compiled code is outdated, the
command will first launch the compiler process. In this case, the compiler window does
not appear (unless an error occurs), only a progress bar is displayed.

If you do not pass the optional projectName parameter, the command displays a standard
open file dialog box, so that you can designate a project file. When the dialog box has
been validated, the system variable Document contains the full pathname of the open
project file.
If you pass the access path and name of an XML file for a valid application project (“.prj”
extension), the command will use the parameters defined in the file. For more
information on the structure and the keys that can be used in the XML file of an
application project, refer to the 4th Dimension XML Keys manual (HTML format).

Example
This example builds two applications in a single method:

⇒ BUILD APPLICATION("c:\\folder\\projects\\myproject1.prj")
If (OK=1)

⇒ BUILD APPLICATION("c:\\folder\\projects\\myproject2.prj")
End if

System Variables or Sets
The system variable OK is set to 1 if the command has been correctly executed.
Otherwise, it is set to 0. The system variable Document contains the full pathname of the
open project file.

4th Dimension Language Reference 1527

ENCODE Tools

version 2004
__

ENCODE (blob)

Parameter Type Description
blob BLOB → BLOB to encode in Base64 format

← BLOB encoded in Base64 format

Description
The ENCODE command encodes the BLOB passed in the blob parameter in Base64 format.
The command directly modifies the BLOB passed as a parameter.

Base64 encoding modifies 8-bit coded data so that they do not keep more than 7 useful
bits. This encoding is required, for example, for handling BLOBs using XML.

See also
DECODE.

1528 4th Dimension Language Reference

DECODE Tools

version 2004
__

DECODE (blob)

Parameter Type Description
blob BLOB → BLOB encoded in Base64 format

← Decoded BLOB

Description
The DECODE command allows you to decode the BLOB coded in Base64 format passed in
the blob parameter. The command directly modifies the BLOB passed as a parameter.

The command does not verify the contents of the blob. You must verify that the data
passed is really coded in Base64 format, otherwise the result will be incorrect.

See also
ENCODE.

4th Dimension Language Reference 1529

SPELL CHECKING Tools

version 2004
__

SPELL CHECKING

Parameter Type Description
This command does not require any parameters

Description
The SPELL CHECKING command provokes the spell check of the field or variable having
the focus in the currently displayed form. The object checked must be of the string or
text type.

Spell checking starts with the first word of the field or variable. If an unknown word is
detected, the spell check dialog box appears (for more information , refer to the Design
Reference manual of 4th Dimension). 4th Dimension uses the current dictionary
(corresponding to the language of the application) unless you have used the SET
DICTIONARY command.

See also
SET DICTIONARY.

1530 4th Dimension Language Reference

SET DICTIONARY Tools

version 2004
__

SET DICTIONARY (dictionary)

Parameter Type Description
dictionary Longint → Dictionary to use for spell-check

Description
The SET DICTIONARY command causes the replacement of the current dictionary with the
one specified by the dictionary parameter. The current dictionary is used for the built-in
spell-check feature in 4th Dimension (for more information, refer to the 4th Dimension
Design Reference manual).

By default, 4th Dimension uses the dictionary corresponding to the application language.
Four main dictionaries are available: English, French, German and Spanish.

In dictionary, pass the number of the dictionary to use. You can use one of the following
predefined constants, which are found in the “Dictionaries” theme:
Constant Type Value
English Dictionary Longint 69632
German Dictionary Longint 131584
Spanish Dictionary Longint 196608
French Dictionary Longint 262144

In addition, numerous variants are available for each of the four main languages. Here is
the full list of all variants supported by the command. To load a variant, pass its value
directly in the dictionary parameter:

Dictionary Value
English (United Kingdom) 65536
English Irish (Ireland) 65600
English Australian (Australia) 65664
English of New Zealand 65680
English American (USA) 65792
English Canadian (Canada) 65920
English South African (South Africa) 66048
English West Indian (Caribbean) 66176
English Jamaican (Jamaica) 66192
English (United Kingdom + America) 69632 (*)
German standard (Germany, old spelling) 131072
German of Luxembourg 131073
German of Austria 131088
German of Liechtenstein 131089
German of Switzerland (old spelling) 131104

4th Dimension Language Reference 1531

German of South Tyrol 131120
German New spelling 131328
German of Switzerland New spelling 131360
German Old and New spelling 131584 (*)
German of Switzerland Old and New spelling 131616
Spanish standard (Spain) 196608 (*)
Spanish of Latin America standard 196864
Spanish Argentinean (Argentina) 196865
Spanish Bolivian (Bolivia) 196866
Spanish Chilean (Chile) 196867
Spanish Columbian (Columbia) 196868
Spanish Cuban (Cuba) 196869
Spanish Costa Rican (Costa Rica) 196870
Spanish Dominican (Dominican Rep.) 196871
Spanish Ecuadorian (Ecuador) 196872
Spanish Guatemalan (Guatemala) 196873
Spanish Honduran (Honduras) 196874
Spanish Mexican (Mexico) 196875
Spanish Nicaraguan (Nicaragua) 196876
Spanish Panamanian (Panama) 196877
Spanish Paraguayan (Paraguay) 196878
Spanish Peruvian (Peru) 196879
Spanish Puerto Rican (Puerto Rico) 196880
Spanish Salvadorian (El Salvador) 196881
Spanish Uruguayan (Uruguay) 196882
Spanish Venezuelan (Venezuela) 196883
Spanish Guinean (Equatorial Guinea) 197121
France, Monaco, Valle d’Aosta 262144 (*)
Canada 262160
Louisiana 262161
Belgium 262176
Luxembourg 262177
Switzerland 262192
Martinique, Guadeloupe, Haïti, Guyana 262208
Reunion, Seychelles, Comoro, Mauritius 262224
Tahiti, New Caledonia, Vanuatu, etc. 262240
Morocco, Algeria, Tunisia 262256
French African standard 262272
Benin 262273
Burkina Faso 262274
Burundi 262275
Cameroon 262276
Central African Republics 262277
Congo (Brazzaville) 262278
Democratic Republic of Congo (ex-Zaire) 262279
Ivory Coast 262280
Djibouti 262281
Gabon 262282

1532 4th Dimension Language Reference

Guinea 262283
Mauritania 262284
Niger 262285
Rwanda 262286
Senegal 262287
Chad 262288
Togo 262289

(*) standard dictionary that is installed when you use a constant.

See also
SPELL CHECKING.

System Variables or Sets
If the dictionary is loaded correctly, the system variable OK is set to 1; otherwise, it is set to
0 and an error is returned.

4th Dimension Language Reference 1533

1534 4th Dimension Language Reference

57

Transactions

4th Dimension Language Reference 1535

1536 4th Dimension Language Reference

Using Transactions Transactions

version 6.0
__

Transactions are a series of related data modifications made to a database within a process.
A transaction is not saved to a database permanently until the transaction is validated. If a
transaction is not completed, either because it is canceled or because of some outside
event, the modifications are not saved.

During a transaction, all changes made to the database data within a process are stored
locally in a temporary buffer. If the transaction is accepted with VALIDATE TRANSACTION,
the changes are saved permanently. If the transaction is canceled with CANCEL
TRANSACTION, the changes are not saved.

Since transactions deal with temporary record addresses, after a transaction is validated or
canceled, the selection for each table of the current process becomes empty. For this
reason, you should be cautious when using named selections inside a transaction. After a
transaction is validated or canceled, a named selection created before or during the
transaction may contain incorrect record addresses. For example, a named selection may
contain the address of a deleted record or the temporary address of a record added during
the transaction. This warning also applies to sets, because they are based on bit tables with
record addresses.

The following commands use record numbers—do not use them in a transaction:
• GOTO RECORD
• RELATE ONE SELECTION
• RELATE MANY SELECTION

Transaction Examples
__

In this example, the database is a simple invoicing system. The invoice lines are stored in
a table called [Invoice Lines], which is related to the table [Invoices] by means of a relation
between the fields [Invoices]Invoice ID and [Invoice Lines]Invoice ID. When an invoice is
added, a unique ID is calculated, using the Sequence number command. The relation
between [Invoices] and [Invoice Lines] is an automatic Relate Many relation. The Auto
assign related value in subform check box is checked.

4th Dimension Language Reference 1537

The relation between [Invoice Lines] and [Parts] is manual.

When a user enters an invoice, the following actions are executed:
• Add a record in the table [Invoices].
• Add several records in the table [Invoice Lines].
• Update the [Parts]In Warehouse field of each part listed in the invoice.

This example is a typical situation in which you need to use a transaction. You must be
sure that you can save all these records during the operation or that you will be able to
cancel the transaction if a record cannot be added or updated. In other words, you must
save related data.

If you do not use a transaction, you cannot guarantee the logical data integrity of your
database. For example, if one record of the [Parts] records is locked, you will not be able to
update the quantity stored in the field [Parts]In Warehouse. Therefore, this field will
become logically incorrect. The sum of the parts sold and the parts remaining in the
warehouse will not be equal to the original quantity entered in the record. You can avoid
such a situation by using transactions.

There are several ways of performing data entry using transactions:

1. You can handle the transactions yourself by using the transaction commands START
TRANSACTION, VALIDATE TRANSACTION, and CANCEL TRANSACTION. You can write, for
example:

READ WRITE([Invoice Lines])
READ WRITE([Parts])
INPUT FORM([Invoices];"Input")
Repeat

START TRANSACTION
ADD RECORD([Invoices])
If (OK=1)

VALIDATE TRANSACTION
Else

CANCEL TRANSACTION
End if

Until (OK=0)
READ ONLY(*)

1538 4th Dimension Language Reference

2. To reduce record locking while performing the data entry, you can also choose to
manage transactions from within the form method and access the tables in READ WRITE
only when it becomes necessary.

You perform the data entry using the input form for [Invoices], which contains the
related table [Invoice Lines] in a subform. The form has two buttons: bCancel and bOK,
both of which are no action buttons.

The adding loop becomes:

READ WRITE([Invoice Lines])
READ ONLY([Parts])
INPUT FORM([Invoices];"Input")
Repeat

ADD RECORD([Invoices])
Until (bOK=0)
READ ONLY([Invoice Lines])

Note that the [Parts] table is now in read-only access mode during data entry. Read/write
access will be available only if the data entry is validated.

The transaction is started in the [Invoices] input form method listed here:

Case of
: (Form Event=On Load)

START TRANSACTION
[Invoices]Invoice ID:=Sequence number([Invoices]Invoice ID)

Else
[Invoices]Total Invoice:=Sum([Invoice Lines]Total line)

End case

If you click the bCancel button, the data entry as well as the transaction must be canceled.
Here is the object method of the bCancel button:

Case of
: (Form Event=On Clicked)

CANCEL TRANSACTION
CANCEL

End case

If you click the bValidate button, the data entry must be accepted and the transaction
must be validated. Here is the object method of the bOK button:

Case of
: (Form Event=On Clicked)

$NbLines:=Records in selection([Invoice Lines])
READ WRITE([Parts]) ` Switch to Read/Write access for the [Parts] table
FIRST RECORD([Invoice Lines]) ` Start at the first line
$ValidTrans:=True ` Assume everything will be OK

4th Dimension Language Reference 1539

For ($Line;1;$NbLines) ` For each line
RELATE ONE([Invoice Lines]Part No)
OK:=1 ` Assume you want to continue

 ` Try getting the record in Read/Write access
While (Locked([Parts]) & (OK=1))

CONFIRM("The Part "+[Invoice Lines]Part No+" is in use. Wait?")
If (OK=1)

DELAY PROCESS(Current process;60)
LOAD RECORD([Parts])

End if
End while
If (OK=1)

` Update quantity in the warehouse
[Parts]In Warehouse:=[Parts]In Warehouse-[Invoice Lines]Quantity
SAVE RECORD([Parts]) ` Save the record

Else
$Line:=$NbLines+1 ` Leave the loop
$ValidTrans:=False

End if
NEXT RECORD([Invoice Lines]) ` Go next line

End for
READ ONLY([Parts]) ` Set the table state to read only
If ($ValidTrans)

SAVE RECORD([Invoices]) ` Save the Invoices record
VALIDATE TRANSACTION ` Validate all database modifications

Else
CANCEL TRANSACTION ` Cancel everything

End if
CANCEL ` Leave the form

End case

In this code, we call the CANCEL command regardless of the button clicked. The new
record is not validated by a call to ACCEPT, but by the SAVE RECORD command. In
addition, note that SAVE RECORD is called just before the VALIDATE TRANSACTION
command. Therefore, saving the [Invoices] record is actually a part of the transaction.
Calling the ACCEPT command would also validate the record, but in this case the
transaction would be validated before the [Invoices] record was saved. In other words, the
record would be saved outside the transaction.

Depending on your needs, you can customize your database, as shown in these examples.
In the last example, the handling of locked records in the [Parts] table could be developed
further.

See Also
CANCEL TRANSACTION, In transaction, START TRANSACTION, VALIDATE TRANSACTION.

1540 4th Dimension Language Reference

START TRANSACTION Transactions

version 3
__

START TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
START TRANSACTION starts a transaction in the current process. All changes to the
database are stored temporarily until the transaction is accepted (validated) or canceled.

If you have several global processes, you can have several transactions. You cannot,
however, nest transactions. If you start a transaction inside another transaction,
4th Dimension ignores the second transaction.

See Also
CANCEL TRANSACTION, In transaction, Using Transactions, VALIDATE TRANSACTION.

4th Dimension Language Reference 1541

VALIDATE TRANSACTION Transactions

version 3
__

VALIDATE TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
VALIDATE TRANSACTION accepts the transaction in the current process that was started
with START TRANSACTION. VALIDATE TRANSACTION saves the changes to the database
that occurred during the transaction.

See Also
CANCEL TRANSACTION, In transaction, START TRANSACTION, Using Transactions.

1542 4th Dimension Language Reference

CANCEL TRANSACTION Transactions

version 3
__

CANCEL TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
CANCEL TRANSACTION cancels the transaction in the current process that was started
with START TRANSACTION. CANCEL TRANSACTION leaves the database unchanged by
canceling the operations executed during the transaction.

See Also
In transaction, START TRANSACTION, Using Transactions, VALIDATE TRANSACTION.

4th Dimension Language Reference 1543

In transaction Transactions

version 6.0
__

In transaction → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← Returns TRUE if current process is in
transaction

Description
The command In transaction returns TRUE if the current process is in a transaction,
otherwise it returns FALSE.

Example
If you perform a multi-record operation (adding, modifying, or deleting records), you
may encounter locked records. In this case, if you have to maintain data integrity, you
must be in transaction so you can “roll-back” the whole operation and leave the database
untouched.

If you perform the operation from within a trigger or from a subroutine (that can be
called while in transaction or not), you can use In transaction to check whether or not
the current process method or the caller method started a transaction. If a transaction was
not started, you do not even start the operation, because you already know that you will
not be able to roll it back if it fails.

See Also
CANCEL TRANSACTION, START TRANSACTION, Triggers, VALIDATE TRANSACTION.

1544 4th Dimension Language Reference

58

Triggers

4th Dimension Language Reference 1545

1546 4th Dimension Language Reference

Triggers Triggers

version 6.0
__

A Trigger is a method attached to a table. It is a property of a table. You do not call
triggers; they are automatically invoked by the 4D database engine each time you
manipulate table records (add, delete, modify, and load). You can write very simple
triggers, and then make them more sophisticated.

Triggers can prevent “illegal” operations on the records of your database. They are a very
powerful tool for restricting operations on a table, as well as preventing accidental data
loss or tampering. For example, in an invoicing system, you can prevent anyone from
adding an invoice without specifying the customer to whom the invoice is billed.

Compatibility with Previous Versions of 4D
__

Triggers are a new type of method introduced in version 6. In previous versions of
4th Dimension, table methods (called file procedures) were executed by 4D only when a
form for a table was used for data entry, display, or printing—they were rarely used. Note
that triggers execute at a much lower level than the old file procedures. No matter what
you do to a record via user actions (such as data entry) or programmatically (such as a call
to SAVE RECORD), the trigger of a table will be invoked by 4D. Triggers are truly quite
different from the old file procedures. If you have converted a version 3 database and you
want to take advantage of the new Trigger capability, you must deselect the Use V3.x.x
File Procedure Scheme property in the Preferences dialog box shown here.

4th Dimension Language Reference 1547

Activating and Creating a Trigger
__

By default, when you create a table in the Design Environment, it has no trigger.

To use a trigger for a table, you need to:
• Activate the trigger and tell 4D when it has to be invoked.
• Write the code for the trigger.

Activating a trigger that is not yet written or writing a trigger without activating it will
not affect the operations performed on a table.

1. Activating a Trigger
To activate a trigger for a table, you must select one of the Triggers options (database
events) for the table in the Table Properties window:

On saving new record
If this option is selected, the trigger will be invoked each time a record is added to the
table.
This happens when:
• Adding a record in data entry (User environment or ADD RECORD command).
• Creating and saving a record with CREATE RECORD and SAVE RECORD. Note that the
trigger is invoked at the moment you call SAVE RECORD, not when it is created.
• Importing records (User environment or using an import command).
• Calling any other commands that create and/or save new records (i.e., ARRAY TO
SELECTION, SAVE RELATED ONE, etc.).
• Using a Plug-in that calls the CREATE RECORD and SAVE RECORD commands.

1548 4th Dimension Language Reference

On saving an existing record
If this option is selected, the trigger will be invoked each time a record of the table is
modified.
This happens when:
• Modifying a record in data entry (User environment or MODIFY RECORD command).
• Saving an already existing record using SAVE RECORD.
• Calling any other commands that save existing records (i.e., ARRAY TO SELECTION,
APPLY TO SELECTION, etc.).
• Using a Plug-in that calls the SAVE RECORD command.

On deleting a record
If this option is selected, the trigger will be invoked each time a record of the table is
deleted.
This happens when:
• Deleting a record (User environment or calling DELETE RECORD or DELETE SELECTION).
• Performing any operation that provokes deletion of related records through the
deletion control options of a relation.
• Using a Plug-in that calls the DELETE RECORD command.

On loading a record
If this option is selected, the trigger will be invoked each time a record of the table is
loaded. This includes all situations in which a current record is loaded from the data file.
You will use this option less often than the three previous ones.

In order to optimize the operation of 4D, the On loading a record option never triggers a
call to the trigger when using a command that can take advantage of the index.

In fact, when the index is used, records are not loaded and conversely, if the index is not
used (i.e., if the field being processed is not indexed), records are loaded. That would mean
that a trigger for which the On loading a record option was selected could either be or not
be executed depending on the Indexed attribute for the processed field. Rather than
keeping a behavior that is difficult to anticipate, the decision was made to never execute
the trigger with the On loading a record option selected when using a command that
could take advantage of the index.

Note: If the On loading a record option is selected, the trigger will be executed when a
current record is loaded from the data file, except for the following functions:
• Queries: User queries that were prepared in the standard query editor or by using the
QUERY or QUERY SELECTION commands.
• Order by: Sorts that were prepared in the standard Order by Editor or by using the
ORDER BY command.
• On a series: Sum, Average, Min, Max, Std deviation, Variance, Sum square.
• Commands: RELATE ONE SELECTION, RELATE MANY SELECTION.

IMPORTANT: If you execute an operation or call a command that acts on multiple
records, the trigger is called once for each record. For example, if you call APPLY TO
SELECTION for a table whose current selection is composed of 100 records, the trigger will
be invoked 100 times.

4th Dimension Language Reference 1549

2. Creating a Trigger
To create a trigger for a table, use the Explorer Window or press Alt (on Windows) or
Option (Macintosh) and double-click on the table title in the Structure window. For more
information, see the 4th Dimension Design Reference manual.

Database Events
__

A trigger can be invoked for one of the four database events described above. Within the
trigger, you detect which event is occurring by calling the Database event function. This
function returns a numeric value that denotes the database event.

Typically, you write a trigger with a Case of structure on the result returned by Database
event. You can use the constants of the Database Events theme:

` Trigger for [anyTable]
C_LONGINT($0)
$0:=0 ` Assume the database request will be granted
Case of

⇒ : (Database event=On Saving New Record Event)
` Perform appropriate actions for the saving of a newly created record

⇒ : (Database event=On Saving Existing Record Event)
` Perform appropriate actions for the saving of an already existing record

⇒ : (Database event=On Deleting Record Event)
` Perform appropriate actions for the deletion of a record

⇒ : (Database event=On Loading Record Event)
` Perform appropriate actions for the loading into memory of a record

End case

Triggers are Functions
__

A trigger has two purposes:
• Performing actions on the record just before it is saved or deleted, or just after it has
been loaded.
• Granting or rejecting a database operation.

1550 4th Dimension Language Reference

1. Performing Actions
Each time a record is saved (added or modified) to a [Documents] table, you want to
“mark” the record with a time stamp for creation and another one for the most recent
modification. You can write the following trigger:

` Trigger for table [Documents]
Case of

: (Database event=On Saving New Record Event)
[Documents]Creation Stamp:=Time stamp
[Documents]Modification Stamp:=Time stamp

: (Database event=On Saving Existing Record Event)
[Documents]Modification Stamp:=Time stamp

End case

Note: The Time stamp function used in this example is a small project method that
returns the number of seconds elapsed since a fixed date was chosen arbitrarily.

After this trigger has been written and activated, no matter what way you add or modify
a record to the [Documents] table (data entry, import, project method, 4D plug-in), the
fields [Documents]Creation Stamp and [Documents]Modification Stamp will automatically be
assigned by the trigger before the record is eventually written to the disk.

Note: See the example for the GET DOCUMENT PROPERTIES command for a complete
study of this example.

2. Granting or rejecting the database operation
To grant or reject a database operation, the trigger must return a trigger error code in the
$0 function result.

Example
Let’s take the case of an [Employees] table. During data entry, you enforce a rule on the
field [Employees]Social Security Number. When you click the validation button, you check
the field using the object method of the button:

` bAccept button object method
If (Good SS number ([Employees]SS number))

ACCEPT
Else

BEEP
ALERT ("Enter a Social Security Number then click OK again.")

End if

If the field value is valid, you accept the data entry; if the field value is not valid, you
display an alert and you stay in data entry.

4th Dimension Language Reference 1551

If you also create [Employees] records programmatically, the following piece of code would
be programmatically valid, but would violate the rule expressed in the previous object
method:

` Extract from a project method
` ...

CREATE RECORD ([Employees])
[Employees]Name :="DOE"
SAVE RECORD ([Employees]) ` ← DB rule violation! The SS number has not been

 assigned!
` ...

Using a trigger for the [Employees]table, you can enforce the [Employees]SS number rule at
all the levels of the database. The trigger would look like this:

` Trigger for [Employees]
$0:=0
$dbEvent:=Database event
Case of

: (($dbEvent=On Saving New Record Event) | ($dbEvent=On Saving Existing Record
Event))

If (Not(Good SS number ([Employees]SS number)))
$0:=-15050

Else
` ...

End if
` ...

End case

Once this trigger is written and activated, the line SAVE RECORD ([Employees]) will
generate a database engine error -15050, and the record will NOT be saved.

Similarily, if a 4D Plug-in attempted to save an [Employees] record with an invalid social
security number, the trigger will generate the same error and the record will not be saved.

The trigger guarantees that nobody (user, database designer, Plug-in, 4D Open client with
4D Server) can violate the social security number rule, either deliberately or accidentally.

Note that even if you do not have a trigger for a table, you can get database engine errors
while attempting to save or delete a record. For example, if you attempt to save a record
with a duplicated value in a unique indexed field, the error -9998 is returned.

Therefore, triggers returning errors add new database engine errors to your application:
• 4D manages the “regular” errors: unique index, relational data control, and so on.
• Using triggers, you manage the custom errors unique to your application.

1552 4th Dimension Language Reference

Important: You can return an error code value of your choice. However, do NOT use error
codes already taken by the 4D database engine. We strongly recommend that you use
error codes between -32000 and -15000. We reserve error codes above -15000 for the
database engine.

At the process level, you handle trigger errors the same way you handle database engine
errors:
• You can let 4D display the standard error dialog box, then the method is halted.
• You can use an error-handling method installed using ON ERR CALL and recover the
error the appropriate way.

Note: During data entry, if a trigger error is returned while attempting to validate or
delete a record, the error is handled like a unique indexed error. The error dialog is
displayed, and you stay in the data entry. Even if you only use a database in the User
environment (not in Custom menus), you have the benefit of using triggers.

Even when a trigger returns no error ($0:=0), this does not mean that a database
operation will be successful—a unique index violation may occur. If the operation is the
update of a record, the record may be locked, an I/O error may occur, and so on. The
checking is done after the execution of the trigger. However, at the higher level of the
executing process, errors returned by the database engine or a trigger are the same—a
trigger error is a database engine error.

Triggers and the 4D Architecture
__

Triggers execute at the database engine level. This is summarized in the following
diagram:

4th Dimension Language Reference 1553

Triggers are executed on the machine where the database engine is actually located. This
is obvious with a 4D single-user version. On 4D Server, triggers are executed within the
acting process on the server machine, not on the client machine.

When a trigger is invoked, it executes within the context of the process that attempts the
database operation. This process, which invokes the trigger execution, is called the
invoking process.

In particular, the trigger works with the current selections, current records, table
read/write states, and record locking operations of the invoking process.

Warning: A trigger cannot and must not change the current record of the table to which
it is attached. Within a trigger, if you need to check a unique value on multiple fields, use
the SET QUERY DESTINATION command, which allows you to query a table without
changing the current selection or current record of the table.

Be careful about using other database or language objects of the 4D environment, because
a trigger may execute on a machine other than that of the invoking process—this is the
case with 4D Server!

• Interprocess variables: A trigger has access to the interprocess variables of the machine
where it executes. With 4D Server, it can access a machine other than that of the
invoking process.
• Process variables: An independent process variables table is shared by all the triggers. A
trigger has no access to the process variables of the invoking process.
• Local variables: You can use local variables in a trigger. Their scope is the trigger
execution; they are created/deleted at each execution.
• Semaphores: A trigger can test or set global semaphores as well as local semaphores (on
the machine where it executes). However, a trigger must execute quickly, so you must be
very careful when testing or setting semaphores from within triggers.
• Sets and Named selections: If you use a set or a named selection from within a trigger,
you work on the machine where the trigger executes.
• User Interface: Do NOT use user interface elements in a trigger (no alerts, no messages,
no dialog boxes). Accordingly, you should limit any tracing of triggers in the Debugger
window. Remember that in Client/Server, triggers execute on the 4D Server machine. An
alert message on the server machine does not help a user on a client machine. Let the
invoking process handle the user interface.

1554 4th Dimension Language Reference

Triggers and Transactions

You must handle transactions at the invoking process level. Do not manage transactions
at the trigger level. During one trigger execution, if you have to add, modify or delete
multiple records (see the following case study), you must first use the In transaction
command from within the trigger to test if the invoking process is currently in
transaction. If this is not the case, the trigger may potentially encounter a locked record.
Therefore, if the invoking process is not in transaction, do not even start the operations
on the records. Just return an error in $0 in order to signal to the invoking process that
the database operation it is trying to perform must be executed in a transaction.
Otherwise, if locked records are met, the invoking process will have no means to roll back
the actions of the trigger.

Note: In order to optimize the combined operation of triggers and transactions, 4D does
not call triggers after the execution of VALIDATE TRANSACTION. This prevents the triggers
from being executed twice.

Cascading Triggers
__

Given the following example structure:

Note: The tables have been collapsed; they have more fields than shown here.

Let’s say that the database “authorizes” the deletion of an invoice. We can examine how
such an operation would be handled at the trigger level (because you could also perform
deletions at the process level).

In order to maintain the relational integrity of the data, deleting an invoice requires the
following actions to be performed in the trigger for [Invoices]:
• In the [Customer] record, decrement the Gross Sales field by the amount of the invoice.
• Delete all the [Line Items] records related to the invoice.
• This also implies that the [Line Items] trigger decrements the Quantity Sold field of the
[Products] record related to the line item to be deleted.
• Delete all the [Payments] records related to the deleted invoice.

4th Dimension Language Reference 1555

First, the trigger for [Invoices] must perform these actions only if the invoking process is
in transaction, so that a roll-back is possible if a locked record is met.

Second, the trigger for [Line Items] is cascading with the trigger for [Invoices]. The [Line
Items] trigger executes “within” the execution of the [Invoices] trigger, because the
deletion of the list items are consequent to a call to DELETE SELECTION from within the
[Invoices] trigger.

Consider that all tables in this example have triggers activated for all database events. The
cascade of triggers will be:

• [Invoices] trigger is invoked because the invoking process deletes an invoice
• [Customers] trigger is invoked because the [Invoices] trigger updates the
Gross Sales field
• [Line Items] trigger is invoked because the [Invoices] trigger deletes a line item
(repeated)

• [Products] trigger is invoked because the [Line Items] trigger updates the
Quantity Sold field

• [Payments] trigger is invoked because the [Invoices] trigger deletes a payment
(repeated)

In this cascade relationship, the [Invoices] trigger is said to be executing at level 1, the
[Customers], [Line Items], and [Payments] triggers at level 2, and the [Products] trigger at
level 3.

From within the triggers, you can use the Trigger level command to detect the level at
which a trigger is executed. In addition, you can use the TRIGGER PROPERTIES command
to get information about the other levels.

For example, if a [Products] record is being deleted at a process level, the [Products] trigger
would be executed at level 1, not at level 3.

Using Trigger level and TRIGGER PROPERTIES, you can detect the cause of an action. In our
example, an invoice is deleted at a process level. If we delete a [Customers] record at a
process level, then the [Customers] trigger should attempt to delete all the invoices related
to that customer. This means that the [Invoices] trigger will be invoked as above, but for
another reason. From within the [Invoices] trigger, you can detect if it executed at level 1
or 2. If it did execute at level 2, you can then check whether or not it is because the
[Customers] record is deleted. If this the case, you do not even need to bother updating
the Gross Sales field.

1556 4th Dimension Language Reference

Using Sequence Numbers within a Trigger
__

While handling an On Saving New Record Event database event, you can call the Sequence
number command to maintain a unique ID number for the records of a table.

Example

` Trigger for table [Invoices]
Case of

: (Database event=On Saving New Record Event)
` ...

[Invoices]Invoice ID Number:=Sequence number ([Invoices])
` ...

End case

See Also
Database event, Methods, Record number, Trigger level, TRIGGER PROPERTIES.

4th Dimension Language Reference 1557

Database event Triggers

version 6.0
__

Database event → Number

Parameter Type Description
This command does not require any parameters

Function result Longint ← 0 Outside any trigger execution cycle
1 Saving a new record
2 Saving an existing record
3 Deleting a record
4 Loading a record

Description
Called from within a trigger, the command Database event returns a numeric value that
denotes the type of the database event, in other words, the reason why the trigger has
been invoked.

The following predefined constants are provided:
Constant Type Value
On Saving New Record Event Long Integer 1
On Saving Existing Record Event Long Integer 2
On Deleting Record Event Long Integer 3
On Loading Record Event Long Integer 4

Within a trigger, if you perform database operations on multiple records, you may
encounter conditions (usually locked records) that will make the trigger unable to
perform correctly. An example of this situation is updating multiple records in a
[Products] table when a record is being added to an [Invoices] table. At this point, you
must stop attempting database operations, and return a database error so the invoking
process will know that its database request cannot be performed. Then the invoking
process must be able to cancel, during the transaction, the incomplete database operations
performed by the trigger. When this type of situation occurs, you need to know from
within the trigger if you are in transaction even before attempting anything. To do so,
use the command In transaction.

When cascading trigger calls, 4th Dimension has no limit other than the available
memory. To optimize trigger execution, you may want to write the code of your triggers
depending not only on the database event, but also on the level of the call when triggers
are cascaded. For example, during a deletion database event for the [Invoices] table, you
may want to skip the update of the [Customers] Gross Sales field if the deletion of the
[Invoices] record is part of the deletion of all the invoices related to a [Customers] record
being deleted. To do so, use the commands Trigger level and TRIGGER PROPERTIES.

1558 4th Dimension Language Reference

Example
You use the command Database event to structure your triggers as follows:

` Trigger for [anyTable]
C_LONGINT($0)
$0:=0 ` Assume the database request will be granted
Case of

⇒ : (Database event=On Saving New Record Event)
` Perform appropriates action for the saving of a newly created record

⇒ : (Database event=On Saving Existing Record Event)
` Perform appropriates actions for the saving of an already existing record

⇒ : (Database event=On Deleting Record Event)
` Perform appropriates actions for the deletion of a record

⇒ : (Database event=On Loading Record Event)
` Perform appropriates actions for the loading into memory of a record

End case

See Also
In transaction, Trigger level, TRIGGER PROPERTIES, Triggers.

4th Dimension Language Reference 1559

Trigger level Triggers

version 6.0
__

Trigger level → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Level of trigger execution
(0 if outside any trigger execution cycle)

Description
The command Trigger level returns the execution level of the trigger.

For more information on execution levels, see the topic Cascading Triggers in the section
Triggers.

See Also
Database event, TRIGGER PROPERTIES, Triggers.

1560 4th Dimension Language Reference

TRIGGER PROPERTIES Triggers

version 6.0
__

TRIGGER PROPERTIES (triggerLevel; dbEvent; tableNum; recordNum)

Parameter Type Description
triggerLevel Number → Trigger execution cycle level
dbEvent Number ← Database event
tableNum Number ← Involved table number
recordNum Number ← Involved record number

Description
The TRIGGER PROPERTIES command returns information about the trigger execution level
you pass in triggerLevel. You use TRIGGER PROPERTIES in conjunction with Trigger level to
perform different actions depending on the cascading of trigger execution levels. For
more information, see the topic Cascading Triggers in the section Triggers.

If you pass a non-existing trigger execution level, the command returns 0 (zero) in all
parameters.

The nature of the database event for the trigger execution level is returned in dbEvent.
The following predefined constants are provided:
Constant Type Value
On Saving New Record Event Long Integer 1
On Saving Existing Record Event Long Integer 2
On Deleting Record Event Long Integer 3
On Loading Record Event Long Integer 4

The table number and record number for the record involved by the database event for
the trigger execution level are returned in tableNum and recordNum.

Note: Remember that while in transaction, newly created records have temporary record
numbers.

See Also
About Record Numbers, Database event, Trigger level, Triggers.

4th Dimension Language Reference 1561

1562 4th Dimension Language Reference

59

User forms

4th Dimension Language Reference 1563

1564 4th Dimension Language Reference

Overview of user forms User forms

version 2004
__

In 4th Dimension 2004, developers can offer users the possibility of creating or
modifying customized forms. These “User forms” can then be used like any other 4th
Dimension form.

Introduction
User forms are based on standard 4th Dimension forms created by the developer in the
Design environment (called “source” or “developer” forms) where the Editable by user
property has been applied in the Form editor. A simplified Form editor (called using the
EDIT FORM command) allows users to modify the form appearance, add graphic objects
(using a library of specific objects), hide elements, etc.— the developer can control of
authorized actions.

User forms can be used in two different ways:
• The user modifies the “source” form and adapts it to his or her needs using the EDIT
FORM command. The user form is kept locally and is automatically used instead of the
original form.
This behavior responds to a developer’s need to set parameters for dialog boxes while on
site; for example, to add a company logo in forms, hide unnecessary fields, etc.
• The “source” file acts as a basic template that users can freely duplicate and make as
many copies as necessary using the CREATE USER FORM command. Each copy can be set
freely (content, name, etc.) using the EDIT FORM command. However, the name of each
user form must be unique. The INPUT FORM and OUTPUT FORM commands then let you
specify the user form to be used in each process.
This behavior lets developers build, for example, customized reports for users.

Storing and managing user forms
User form mechanisms work with both compiled and interpreted databases, with 4th
Dimension, 4D Server, 4D Runtime, ou 4D Runtime. In client/server mode, user modified
forms are available on all machines.

4D automatically handles changes in forms. When a form is set as Editable by user, it is
locked in the Design environment. The developer must explicitly click on the icon to
unlock it in order to be able to access form objects. This operation makes related user
forms obsolete, which must also be regenerated. When a “source” form is deleted, the
related user forms are also deleted.

User forms are stored in a separate file with a .4DA extension, placed next to the main
structure file (.4DB/.4DC). This file is called “user structure file”. The behavior of this file
is transparent: 4th Dimension uses a user form when it exists (the new LIST USER FORMS
command allows finding valid user forms at any time). It is also in this file that the
INPUT FORM and OUTPUT FORM commands look for the user forms. When a user form is
obsolete, it is deleted and 4th Dimension uses the source form by default.

4th Dimension Language Reference 1565

In client/server, the .4DA file is broadcast on client machines following the same rules as
the main structure file.
This principle also allows keeping user forms non-obsolete in case of a structure file update
by the developer.

Error codes
Specific error codes may be returned when using user form management commands.
These codes, located from -9750 to -9759, are described in the Database Engine Errors
section.

1566 4th Dimension Language Reference

EDIT FORM User forms

version 2004
__

EDIT FORM (table; form{; userForm{; library}})

Parameter Type Description
table Table → Table of form to modify
form String → Name of form to modify
userForm String → Name of the user form to modify
library String → Pathname of usable object library

Description
The EDIT FORM command opens the form set using the table, form and the optional
userForm parameters in the User form editor:

Note: The window of the editor opens only if it is the first window of the processs. In
other words, usually you will need to open a new process to display the editor.

If you do not pass the userForm parameter and if there is not a user form already linked to
form, the source form is displayed in the editor. The modified form is then copied in the
user structure file (.4DA) and will be used as a form replacement.

If a user form was already generated from form using this command, the user form is
displayed in the editor. If you want to start from the source form, you must first delete
the user form using the DELETE USER FORM command.

The userForm parameter allows setting a user form (created using the CREATE USER FORM
command) to modify. In this case, the form is displayed in the editor.

4th Dimension Language Reference 1567

In the optional library parameter, pass the full access path of the object library that the
user will be authorized to use to customize the form. When used with the User form
editor, object libraries will allow you to paste objects with their graphic properties and
automatic actions. Objects with methods do not appear in the library. Be careful, it is up
to the developer to make sure that the addition of library objects is compatible with the
user form (and its objects) in terms of names, variables and types.
In client/server mode, the library must be found in the Extras folder of the database, at
the same level as the Plugins folder, so that it is available for all client machines. If the
library is valid, it is opened with the form window.
For more information on object libraries, refer to the Design Reference manual of the 4th
Dimension documentation.

Example
The following example shows a project method that allows the user to modify a dialog
form:

⇒ EDIT FORM([Dialogs];"Welcome";"Lib_Logos.4il")

See also
CREATE USER FORM, DELETE USER FORM, LIST USER FORMS, Overview of user forms.

System Variables or Sets
If the user stores the changes made to the form, the OK variable is set to 1. In case of
error, OK is set to 0.

Error Handling
An error is generated if:
• the form has not been declared editable by the user in the Design environment or if it
does not exist,
• the form is already open and being modified in another process,
• the user cannot access the form because they do not have the proper access rights.
You can intercept this error with the error-handling method installed by the ON ERR CALL
command.

1568 4th Dimension Language Reference

CREATE USER FORM User forms

version 2004
__

CREATE USER FORM (table; form; userForm)

Parameter Type Description
table Table → Source form table
form String → Source form name
userForm String → Name of new user form

Description
The CREATE USER FORM command duplicates the 4th Dimension form whose table and
name are passed as parameters and creates a new user form named userForm.

Once created, the userForm form can be modified using the EDIT FORM command. This
command allows you to create X user forms (for example, various report forms) from a
single source form.

See also
DELETE USER FORM, EDIT FORM, INPUT FORM, LIST USER FORMS, OUTPUT FORM,
Overview of user forms.

System Variables or Sets
The OK variable returns 1 if the operation is executed properly; otherwise, it returns 0.

Error Handling
An error is generated if:
• form is already a user form,
• the name of userForm is the same as the name of the source form or an existing user
form,
• the user cannot access the form because they do not have the proper access rights.
You can intercept these errors with the error-handling method installed by the ON ERR
CALL command.

4th Dimension Language Reference 1569

LIST USER FORMS User forms

version 2004
__

LIST USER FORMS (table; form; userFormArray)

Parameter Type Description
table Table → Source form table
form String → Source form name
userFormArray Array string ← Names of user forms coming from

the source form

Description
The LIST USER FORMS command fills the userFormArray array with the names of user
forms coming from the developer form set in the table and form parameters.

If the user form was created directly using the EDIT FORM command, the only item that
userFormArray contains is an empty string ("").

The array is empty if there are no user forms for the specified developer form.

See also
CREATE USER FORM, EDIT FORM, Overview of user forms.

1570 4th Dimension Language Reference

DELETE USER FORM User forms

version 2004
__

DELETE USER FORM (table; form; userForm)

Parameter Type Description
table Table → User form table
form String → Source form name
userForm String → User form name

Description
The DELETE USER FORM command allows you to remove the user form set using the table,
form and userForm parameters.

If the user form was created directly using the EDIT FORM command, pass an empty
string ("") in userForm.

See also
CREATE USER FORM, LIST USER FORMS, Overview of user forms.

System Variables or Sets
If the user form is properly removed, the OK variable returns 1. Otherwise, OK is set to 0.

Error Handling
An error is generated if:
• the user form does not exist,
• the user does not have the proper access to remove the user form.
You can intercept this error with the error-handling method installed by the ON ERR CALL
command.

4th Dimension Language Reference 1571

1572 4th Dimension Language Reference

60

User Interface

4th Dimension Language Reference 1573

1574 4th Dimension Language Reference

BEEP User Interface

version 3
__

BEEP

Parameter Type Description
This command does not require any parameters

Description
The command BEEP causes the PC or Macintosh to generate a beep. Your computer (on
Windows or Macintosh) can emit a sound other than a beep, depending on the sound
chosen in the Sound control panel.

Warning: Do not call BEEP from within a Web connection process, because the beep will
be produced on the 4th Dimension Web server machine and not on the client Web
browser machine.

Example
In the following example, if no records are found by the query, a beep is emitted and an
alert is displayed:

QUERY([Customers];[Customers]Name=$vsNameToLookFor)
If (Records in selection([Customers])=0)

⇒ BEEP
ALERT("There is no Customer with such a name.")

End if

See Also
PLAY.

4th Dimension Language Reference 1575

PLAY User Interface

version 3
__

PLAY (objectName{; channel})

Parameter Type Description
objectName String → Sound name

Windows: .WAV, .MID or .AVI file
Any platform: Mac OS-based ‘snd’ resource
or empty string for stopping asynchronous play

channel Number → if specified, synthesizer channel and asynchronous
if omitted, synchronous

Description on Windows
On Windows, the command PLAY plays sound (.WAV files), MIDI (.MID files), or Video
(.AVI files) Windows files. You pass the full pathname of the file you want to play in
objectName.

Note: You cannot play multimedia files or objects in asynchronous mode. To do so, use
OLE Services.

On Macintosh or on Windows (with some restrictions, see Important Note below), the
command PLAY plays the sound resource named by objectName on Macintosh.

The channel parameter specifies the Macintosh synthesizer channel. If channel is not
specified, the channel is for simple digitized sounds and is synchronous. Synchronous
means that all processing stops until the sound has finished. If channel is 0, the channel is
for simple digitized sounds and is asynchronous. Asynchronous means that processing
does not stop and the sound plays in the background.

To stop playing a synchronous sound, use the following statement:

⇒ PLAY ("";0)

If you work with a database on Macintosh and Windows concurrently, you can also play
Macintosh sounds on the Windows platform. To do so:
• On the Macintosh, using a resource editor such as ResEdit or Resorcerer, copy the
required 'snd ' resources into the resource fork of the structure file.
• Transport the database from Macintosh to Windows, using 4D Transporter.

1576 4th Dimension Language Reference

Important Note: The Windows version of 4th Dimension does not play Macintosh sounds
that have been compressed by MACE. If your Macintosh ‘snd’ resource does not play on
Windows, determine whether it complies with the following requirements:

snd resource field Value (in hexadecimal)
Version 0x0001
NbSynth 0x0001
SynthResID 0x0005
SynthInitOptions 0x000000A0
NbSoundCommand 0x0001
FirstCommand 0x8051

You can check the internal data of a ‘snd’ resource using Resorcerer.

Examples
1. The following example shows how to play a video file on Windows:

$DocRef := Open document (""; "AVI")
If (OK=1)

CLOSE DOCUMENT($DocRef)
⇒ PLAY (Document)

End if

2. The following example code appears in a startup method. It welcomes the user with a
sound called Welcome Sound on Macintosh:

⇒ PLAY ("Welcome Sound") ` Play the Welcome Sound

See Also
BEEP.

4th Dimension Language Reference 1577

Get platform interface User Interface

version 2004 (Modified)
Compatibility Note
This command is maintained only for compatibility reasons. In new databases (created
with 4D starting with version 2004), the platform interface is managed automatically by
the program and this command is ignored. It can still be used in converted database,
although it is recommended to activate the new interface management feature in the
Preferences dialog box ("System" option).

__

Get platform interface → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Current platform interface in use

Description
The Get platform interface command returns a numeric value that denotes the current
platform interface used for displaying forms.

The function can return one of the following values:

Constant Type Value
Automatic Platform Longint -1
Mac OS 7 Longint 0
Windows 3.11, NT 3.51 Longint 1
Windows 9x Longint 2
Mac OS 9 Longint 3
Mac Theme Longint 4

You can change the platform interface using the command SET PLATFORM INTERFACE or
within the Design environment Preferences dialog box.

See Also
SET PLATFORM INTERFACE.

1578 4th Dimension Language Reference

SET PLATFORM INTERFACE User Interface

version 2004 (Modified)
Compatibility Note
This command is maintained only for compatibility reasons. In new databases (created
with 4D starting with version 2004), the platform interface is managed automatically by
the program and the command has no effect. It can still be used in converted database,
although it is recommended to activate the new interface management feature in the
Preferences dialog box ("System" option).

__

SET PLATFORM INTERFACE (interface)

Parameter Type Description
interface Number → New platform interface setting:

-1 Automatic
0 Mac OS 7
1 Windows 3.11, NT 3.51
2 Windows 9x
3 Mac OS 9
4 Mac Theme

Description
The SET PLATFORM INTERFACE command sets the platform interface used for displaying
the forms.

You can pass in interface one of the following predefined constants:

Constant Type Value
Automatic Platform Long Integer -1
Mac OS 7 Long Integer 0
Windows 3.11, NT 3.51 Long Integer 1
Windows 9x Long Integer 2
Mac OS 9 Long Integer 3
Mac Theme Long Integer 4

Note: The constant Mac Theme allows you to use the user interface defined with the
Appearance Manager. This manager only exists on Mac OS. When a database defined with
“Mac Theme” interface is displayed on Windows, the interface “Windows 9x” is applied.

The command does nothing if the value you pass does not change the current platform
interface.

Note: The platform interface can also be changed in the Design environment Preferences
dialog box.

4th Dimension Language Reference 1579

Example
In a 4D Client/Server architecture, the Macintosh and Windows stations can use different
platform interfaces concurrently. To do so, you can call the SET PLATFORM INTERFACE
command in the On Startup Database Method:

` This example assumes that user preferences are stored in a [Preferences] table
` Look for the record corresponding to the current user

QUERY([Preferences];[Preferences]User name=Current User)
If (Records in selection([Preferences])=0)

` If not found, look for the default preferences
QUERY([Preferences];[Preferences]User name="Default")

End if
` Set the Platform Interface according to the user preferences

⇒ SET PLATFORM INTERFACE ([Preferences]Platform Interface)

See Also
Get platform interface.

1580 4th Dimension Language Reference

SET TABLE TITLES User Interface

version 2004.2 (Modified)
__

SET TABLE TITLES (tableTitles; tableNumbers{; *})

Parameter Type Description
tableTitles String Array → Table names as they must appear in dialog boxes
tableNumbers Numeric Array → Actual table numbers
* → Use the custom names in the formula editor

Description
SET TABLE TITLES enables you to mask, rename, and reorder the tables of your database
when they appear in standard 4th Dimension dialog boxes such as the Query editor,
within the User or Custom Menus environments.
Using this command, you can also rename on the fly the table labels in your forms, if
you used dynamic names. For more information about inserting dynamic field and table
names in the forms, refer to the 4th Dimension Design Reference manual.

The tableTitles and tableNumbers arrays must be synchronized. In the tableTitles array, you
pass the names of the tables as you would like them to appear. If you do not want to
show a particular table, do not include its name or new title in the array. The tables will
appear in the order you specify in this array. In each element of the tableNumbers array,
you pass the actual table number corresponding to the table name or new title passed in
the same element number in the tableTitles array.

For example, you have a database composed of the tables A, B, and C, created in that
order. You want these tables to appear as X, Y, and Z. In addition you do not want to
show table B. Finally, you want to show Z and X, in that order. To do so, you pass Z and X
in a two-element tableTitles array, and you pass 3 and 1 in a two-element tableNumbers
array.

The optional * parameter lets you indicate whether or not custom names defined using
this command can be used in 4D formulas.
• By default, when this parameter is omitted, formulas executed in 4D cannot use these
custom names; it is necessary to use the real table names.
• If the * parameter is passed, the names defined by this command can be used in the
formulas executed by 4th Dimension. Be careful in this case, the custom names must not
contain characters that are “forbidden” by the 4D language interpreter, like -?*! (for more
information, refer to the “Identifiers” section).

4th Dimension Language Reference 1581

SET TABLE TITLES does NOT change the actual structure of your database. It only affects
subsequent uses of the standard 4th Dimension dialog boxes and forms using dynamic
names within the User or Custom Menus environments. The scope of the SET TABLE
TITLES command is the worksession. One benefit in Client/Server is that several 4D Client
stations can simultaneously “see” your database in different ways. You can call SET TABLE
TITLES as many times as you want.

Use the SET TABLE TITLES command for:
• Dynamically localizing a database.
• Showing tables the way you want, independent from the actual definition of your
database.
• Showing tables in a way that depends on the identity or custom privileges of a user.

WARNING: SET TABLE TITLES does NOT override the Invisible property of a table. When a
table is set to be invisible at the Design level of your database, even though it is included
in a call to SET TABLE TITLES, it will not appear.

Example
• You are building a 4D application that you plan to sell internationally. Therefore, you
must carefully consider localization issues. Regarding the standard 4th Dimension dialog
boxes that can appear in the User and Custom Menus environments and your forms that
use dynamic names, you can address localization needs by using a [Translations] table and
a few project methods to create and use fields localized for any number of countries.

• In your database, add the following table:

• Then, create the TRANSLATE TABLES AND FIELDS project method listed below. This
method browses the actual structure of your database and creates all the necessary
[Translations] records for the localization corresponding to the language passed as
parameter.

 ` TRANSLATE TABLES AND FIELDS project method
 ` TRANSLATE TABLES AND FIELDS (String)
 ` TRANSLATE TABLES AND FIELDS (Language)

C_STRING(31;$1)
C_LONGINT($vlTable;$vlField)

1582 4th Dimension Language Reference

For ($vlTable;1;Count tables) ` Loop through the tables
` Check if there is a translation of the table name for the specified language

QUERY([Translations];[Translations]Actual Name=Table name($vlTable);*)
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])=0)

` If not, create the record
CREATE RECORD([Translations])
[Translations]Actual Name:=Table name($vlTable)
[Translations]Language:=$1

` The translated table name will have to be entered
SAVE RECORD([Translations])

End if
For ($vlField;1;Count fields($vlTable))

` Check if there is a translation of the field name for the specified language
QUERY([Translations];[Translations]Actual Name=Field name($vlTable;$vlField);*)
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])=0)

` If not, create the record
CREATE RECORD([Translations])
[Translations]Actual Name:=Field name($vlTable;$vlField)
[Translations]Language:=$1

` The translated field name will have to be entered
SAVE RECORD([Translations])

End if
End for

End for

• At this point, if you execute the following line, you create as many records as needed for
a Spanish localization of the tables and fields titles.

TRANSLATE TABLES AND FIELDS ("Spanish")

• After this call has been executed, you can then enter the [Translations]Translated Name
for each of the newly created records.

• Finally, each time you want to show your database’s standard 4D dialog boxes or forms
with dynamic titles using the Spanish localization, you execute the following line:

LOCALIZED TABLES AND FIELDS ("Spanish")

with the project method LOCALIZED TABLES AND FIELDS:

` LOCALIZED TABLES AND FIELDS global method
` LOCALIZED TABLES AND FIELDS (String)
` LOCALIZED TABLES AND FIELDS (Language)

C_STRING(63;$1)
C_LONGINT($vlTable;$vlNbTable;$vlField;$vlNbField)

4th Dimension Language Reference 1583

$vlNbTable:=Count tables ` Get the number of tables present in the database
 ` Initialize the arrays to be passed to SET TABLE TITLES

ARRAY STRING(31;$asTableName;$vlNbTable)
ARRAY INTEGER($aiTableNumber;$vlNbTable)
For ($vlTable;1;$vlNbTable) ` Loop through the tables

$asTableName{$vlTable}:=Table name($vlTable) ` Get the name of the table
$aiTableNumber{$vlTable}:=$vlTable ` Store the actual table number

 ` Look for the translation
QUERY([Translations];[Translations]Actual Name=$asTableName{$vlTable};*)
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])>0)

 ` If available, use the localized table name
$asTableName{$vlTable}:=[Translations]Translated Name

End if
$vlNbField:=Count fields($vlTable) ` Get the number of fields for that table

 ` Initialize the arrays to be passed to SET FIELD TITLES
ARRAY STRING(31;$asFieldName;$vlNbField)
ARRAY INTEGER($aiFieldNumber;$vlNbField)
For ($vlField;1;$vlNbField) ` Loop through the fields

$asFieldName{$vlField}:=Field name($vlTable;$vlField) ` Get the name of the field
$aiFieldNumber{$vlField}:=$vlField ` Store the actual field number
QUERY([Translations];[Translations]Actual Name=$asFieldName{$vlField};*)

` Look for the translation
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])>0)

 ` If available, use the localized field name
$asFieldName{$vlField}:=[Translations]Translated Name

End if
End for
SORT ARRAY($asFieldName;$aiFieldNumber;>)
SET FIELD TITLES(Table($vlTable)->;$asFieldName;$aiFieldNumber)

End for
SORT ARRAY($asTableName;$aiTableNumber;>)

⇒ SET TABLE TITLES($asTableName;$aiTableNumber)

• Note that new localizations can be added to the database without modifying or
recompiling the code.

See Also
Count tables, SET FIELD TITLES, Table name.

1584 4th Dimension Language Reference

GET TABLE TITLES User Interface

version 2003
__

GET TABLE TITLES (tableTitles; tableNums)

Parameter Type Description
tableTitles Text array ← Current table names
tableNums Longint array ← Table numbers

Description
The GET TABLE TITLES command fills the tableTitles and tableNums arrays with the names
and numbers of database tables defined in the Structure window or using the SET TABLE
TITLES command. The contents of these two arrays are synchronized.

If the SET TABLE TITLES command is called during the session, GET TABLE TITLES only
returns the “modified” names and table numbers defined using this command.
Otherwise, GET TABLE TITLES returns the names of all database tables as defined in the
Structure window.
In both cases, the command does not return invisible tables.

See also
GET FIELD TITLES, SET TABLE TITLES.

4th Dimension Language Reference 1585

SET FIELD TITLES User Interface

version 2004.2 (Modified)
__

SET FIELD TITLES (table | subtable; fieldTitles; fieldNumbers{; *})

Parameter Type Description
table | subtable Table or Subtable → Table or Subtable for which to set the field titles
fieldTitles String Array → Field names as they must appear in dialog boxes
fieldNumbers Numeric Array → Actual field numbers
* → Use the custom names in the formula editor

Description
SET FIELD TITLES enables you to mask, rename, and reorder the fields of the table or
subtable passed in table or subtable when they appear in standard 4th Dimension dialog
boxes, such as the Query editor, within the User or Custom Menus environments.
Using this command, you can also rename on the fly the labels of the fields in your
forms, if you used dynamic names. For more information about inserting dynamic field
and table names in forms, refer to the 4th Dimension Design Reference manual.

The fieldTitles and fieldNumbers arrays must be synchronized. In the fieldTitles array, you
pass the name of the fields as you would like them to appear. If you do not want to show
a particular field, do not include its name or new title in the array. The fields will appear
in the order you specify in this array. In each element of the fieldNumbers array, you pass
the actual field number corresponding to the field name or new title passed in the same
element number in the fieldTitles array.

For example, you have a table or subtable composed of the fields F, G, and H, created in
that order. You want these fields to appear as M, N, and O. In addition you do not want
to show field N. Finally, you want to show O and M in that order. To do so, pass O and M
in a two-element fieldTitles array and pass 3 and 1 in a two-element fieldNumbers array.

The optional * parameter lets you indicate whether or not custom names defined using
this command can be used in 4D formulas.
• By default, when this parameter is omitted, formulas executed in 4D cannot use these
custom names; it is necessary to use the real table names.
• If the * parameter is passed, the names defined by this command can be used in the
formulas executed by 4th Dimension. Be careful in this case, the custom names must not
contain characters that are “forbidden” by the 4D language interpreter, like -?*! (for more
information, refer to the “Identifiers” section).

1586 4th Dimension Language Reference

SET FIELD TITLES does NOT change the actual structure of your table. It only affects
subsequent uses of the standard 4th Dimension dialog boxes and forms using dynamic
names within the User or Custom Menus environments. The scope of the SET FIELD
TITLES command is the worksession. One benefit in Client/Server is that several 4D Client
stations can simultaneously “see” your table in different ways. You can call SET FIELD
TITLES as many times as you want.

Use the SET FIELD TITLES command for:
• Dynamically localizing a table.
• Showing fields the way you want, independent of the actual definition of your table.
• Showing fields in a way that depends on the identity or custom privileges of a user.

WARNING:
• SET FIELD TITLES does NOT override the Invisible property of a field. When a field is set
to be invisible at the Design level of your database, even though it is included in a call to
SET FIELD TITLES, it will not appear.
• Each call to SET FIELD TITLES must be followed or preceded by a call to SET TABLE TITLES
— even though you do not want to modify the table title — otherwise the command will
have no effect.

Example
See example for the SET TABLE TITLES command.

See Also
Count fields, Field name, SET TABLE TITLES.

4th Dimension Language Reference 1587

GET FIELD TITLES User Interface

version 2003
__

GET FIELD TITLES (table; fieldTitles; fieldNums)

Parameter Type Description
table Table ← Table for which you want to find out the field names
fieldTitles Text array ← Current field names
fieldNums Longint array ← Field numbers

Description
The GET FIELD TITLES command fills the fieldTitles and fieldNums arrays with the names
and numbers of database fields for the desired table. The contents of these two arrays are
synchronized.

If the SET FIELD TITLES command is called during the session, GET FIELD TITLES only
returns the “modified” names and field numbers defined using this command.
Otherwise, GET FIELD TITLES returns the names of all database fields as defined in the
Structure window.
In both cases, the command does not return invisible fields.

See also
GET TABLE TITLES, SET FIELD TITLES.

1588 4th Dimension Language Reference

Shift down User Interface

version 6.0
__

Shift down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Shift key

Description
Shift down returns TRUE if the Shift key is pressed.

Example
The following object method for the button bAnyButton performs different actions,
depending on which modifier keys are pressed when the button is clicked:

` bAnyButton Object Method
Case of

` Other multiple key combinations could be tested here
` ...

: (Shift down & Windows Ctrl down)
` Shift and Windows Ctrl (or Macintosh Command) keys are pressed

DO ACTION1
` ...

: (Shift down)
` Only Shift key is pressed

DO ACTION2
` ...

: (Windows Ctrl down)
` Only Windows Ctrl (or Macintosh Command) key is pressed

DO ACTION3
` ...
` Other individual keys could be tested here
` ...

End case

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, Windows Alt down, Windows Ctrl down.

4th Dimension Language Reference 1589

Caps lock down User Interface

version 6.0
__

Caps lock down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Caps Lock key

Description
Caps lock down returns TRUE if the Caps Lock key is pressed.

Example
See example for the command Shift down.

See Also
Macintosh command down, Macintosh control down, Macintosh option down, Shift down,
Windows Alt down, Windows Ctrl down.

1590 4th Dimension Language Reference

Windows Ctrl down User Interface

version 6.0
__

Windows Ctrl down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Windows Ctrl key
(Command key on Macintosh)

Description
Windows Ctrl down returns TRUE if the Windows Ctrl key is pressed.

Note: When called on a Macintosh platform, Windows Ctrl down returns TRUE if the
Macintosh Command key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh option down, Shift down, Windows
Alt down, Windows Ctrl down.

4th Dimension Language Reference 1591

Windows Alt down User Interface

version 6.0
__

Windows Alt down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Windows Alt key
(Option key on Macintosh)

Description
Windows Alt down returns TRUE if the Windows Alt key is pressed.

Note: When called on a Macintosh platform, Windows Alt down returns TRUE if the
Macintosh Option key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, Shift down, Windows Ctrl down.

1592 4th Dimension Language Reference

Macintosh command down User Interface

version 6.0
__

Macintosh command down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Macintosh Command key
(Ctrl key on Windows)

Description
Macintosh command down returns TRUE if the Macintosh command key is pressed.

Note: When called on a Windows platform, Macintosh command down returns TRUE if
the Windows Ctrl key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh control down, Macintosh option down, Shift down, Windows Alt
down, Windows Ctrl down.

4th Dimension Language Reference 1593

Macintosh option down User Interface

version 6.0
__

Macintosh option down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Macintosh Option key
(Alt key on Windows)

Description
Macintosh option down returns TRUE if the Macintosh Option key is pressed.

Note: When called on a Windows platform, Macintosh option down returns TRUE if the
Windows Alt key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Shift down, Windows
Alt down, Windows Ctrl down.

1594 4th Dimension Language Reference

Macintosh control down User Interface

version 6.0
__

Macintosh control down → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← State of the Macintosh Control key

Description
Macintosh control down returns TRUE if the Macintosh Control key is pressed.

Note: When called on a Windows platform, Macintosh control down always return FALSE.
This Macintosh key has no equivalent on Windows.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh option down, Shift down, Windows
Alt down, Windows Ctrl down.

4th Dimension Language Reference 1595

GET MOUSE User Interface

version 2003 (Modified)
__

GET MOUSE (mouseX; mouseY; mouseButton{; *})

Parameter Type Description
mouseX Number ← Horizontal coordinate of mouse
mouseY Number ← Vertical coordinate of mouse
mouseButton Number ← Mouse button state:

0 = Button up
1 = Button down
2 = Right button down
3 = Both buttons down

* → If specified, global coordinate system is used
If omitted, local coordinate system is used

Description
The GET MOUSE command returns the current state of the mouse.

The horizonal and vertical coordinates are returned in mouseX and mouseY. If you pass
the * parameter, the coordinates are expressed relative to the screen. If you omit the *
parameter, they are expressed relative to the frontmost window of the current process.

The parameter mouseButton returns the state of the buttons, as listed previously.

Note: The values 2 and 3 can be returned under Mac OS X starting with version 10.2.5
only.

Example
See the example for the command Pop up menu.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, ON EVENT CALL, Shift down, Windows Alt down, Windows Ctrl down.

1596 4th Dimension Language Reference

Pop up menu User Interface

version 2004 (Modified)
__

Pop up menu (contents{; default{; xCoord; yCoord}}) → Number

Parameter Type Description
contents Text → Menu text definition
default Number → Number of menu item selected by default
xCoord Number → X coordinate of upper left corner
yCoord Number → Y coordinate of upper left corner

Function result Number ← Selected menu item number

Description
The Pop up menu command displays a pop-up menu at the current location of the mouse.

In order to follow user interface rules, you usually call this command in response to a
mouse click and if the mouse button is still down.

You define the items of the pop-up menu with the parameter contents as follows:
• Separate each item from the next one with a semi-colon (;). For example,
"ItemText1;ItemText2;ItemText3".
• To disable an item, place an opening parenthesis (() in the item text.
• To specify a separation line, pass "(-" as item text.
• To specify a font style for a line, place in the item text a less than sign (<) followed by
one of these characters:

<B Bold
<I Italic
<U Underline
<O Outline (Macintosh only)
<S Shadow (Macintosh only)

• To add a check mark to an item, place in the item text an exclamation mark (!) followed
by the character you want as a check mark.
- On Macintosh, the character is displayed directly. To display the standard check mark
whatever the system version or language, use the following statement: Char(18).
- On Windows, a check mark is displayed, no matter what character you passed.
• To add an icon to an item, place in the item text a circumflex accent (^) followed by a
character whose ASCII code plus 208 is the resource ID of a Mac OS-based icon resource.
• To add a shortcut to an item, place in the item text a slash (/) followed by the shortcut
character for the item. Note that this last option is purely informative; no shortcut will
activate the pop-up menu. However, you may want to include a shortcut if the pop-up
menu item has an equivalent in the main menu bar of your application.

4th Dimension Language Reference 1597

The optional default parameter allows you to specify the default menu item selected when
the pop-up menu is displayed. Pass a value between 1 and the number of menu items. If
you omit this parameter, the command selects the first menu item as the default.

The optional xCoord and yCoord parameters are used to designate the location of the pop-
up menu to be displayed. In xCoord and yCoord, pass respectively the horizontal and
vertical coordinates of the upper left corner of the menu. These coordinates must be
expressed in pixels in the local coordinate system of the current form. These two
parameters must be passed together; if only one is passed, it will be ignored.
If you use the xCoord and yCoord parameters, the default parameter is ignored. In this
case, the mouse is not necessarily located at the level of the pop-up menu.
These parameters are useful in particular for managing 3D buttons with an associated pop-
up menu.

If you select a menu item, the command returns its number; otherwise, it returns zero
(0).

Note: Use pop-up menus that have a reasonable number of items. If you want to display
more than 50 items, you might think about a using scrollable area in a form instead of a
pop-up menu.

Example
The project method MY SPEED MENU pulls down a navigation speed menu:

` MY SPEED MENU project method
GET MOUSE($vlMouseX;$vlMouseY;$vlButton)
If (Macintosh control down | ($vlButton=2))

$vtItems:="About this database...<I;(-;!-Other Options;(-"
For ($vlTable;1;Count tables)

$vtItems:=$vtItems+";"+Table name($vlTable)
End for

⇒ $vlUserChoice:=Pop up menu($vtItems)
Case of

: ($vlUserChoice=1)
` Display Information

: ($vlUserChoice=2)
` Display options

Else
If ($vlUserChoice>0)

` Go to table whose number is $vlUserChoice-4
End if

End case
End if

1598 4th Dimension Language Reference

This project method can be called from:
• The method of a form object that reacts to a mouse click without waiting for the mouse
button to be released (i.e., an invisible button)
• A process that “spies” events and communicate with the other processes
• An event-handling method installed using ON EVENT CALL.

In the last two cases, the click does not need to occur in any form object. This is one of
the advantages of the Pop up menu command. Generally, you use form objects to display
pop-up menus. Using Pop up menu, you can display the menu anywhere.

The pop-up menu is displayed on Windows by pressing the right mouse button; it is
displayed on Macintosh by pressing Control-Click. Note, however, that the method does
not actually check whether or not there was a mouse click; the caller method tests that.

The following is the pop-up menu as it appears on Windows (left) and Macintosh (right).
Note the standard check mark for the Windows version.

See Also
GET MOUSE.

4th Dimension Language Reference 1599

POST KEY User Interface

version 6.0
__

POST KEY (code{; modifiers{; process}})

Parameter Type Description
code Number → ASCII code of character or function key code
modifiers Number → State of modifier keys
process Number → Destination process reference number, or

Application event queue, if omitted, or 0

Description
The POST KEY command simulates a keystroke. Its effect is as if the user actually entered a
character on the keyboard.

You pass the ASCII code of the character in code.

If you pass the modifiers parameter, you pass one or a combination of the Events
(modifiers) constants. For example, to simulate the Shift key, pass Shift key mask. If you do
not pass modifiers, no modifiers are simulated.

If you specify the process parameter, the keystroke is sent to the process whose process
number you pass in process. If you pass 0 (zero) or if you omit the parameter, the
keystroke is sent at the application level, and the 4D scheduler will dispatch it to the
appropriate process.

Example
See example for the command Process number.

See Also
POST CLICK, POST EVENT.

1600 4th Dimension Language Reference

POST CLICK User Interface

version 6.0
__

POST CLICK (mouseX; mouseY{; process}{; *})

Parameter Type Description
mouseX Number → Horizontal coordinate
mouseY Number → Vertical coordinate
process Number → Destination process reference number, or

Application event queue, if omitted, or 0
* → If specified, global coordinate system is used

If omitted, local coordinate system is used

Description
The command POST CLICK simulates a mouse click. Its effect as if the user actually clicked
the mouse button.

You pass the horizontal and vertical coordinates of the click in mouseX and mouseY. If
you pass the * parameter, you express these coordinates relative to the screen. If you omit
the * parameter, you express these coordinates relative to the frontmost window of the
process whose process number you pass in process.

If you specify the process parameter, the click is sent to the process whose process number
you pass in process. If you pass 0 (zero) or if you omit the parameter, the click is sent at
the application level, and the 4D scheduler will dispatch it to the appropriate process.

See Also
POST EVENT, POST KEY.

4th Dimension Language Reference 1601

POST EVENT User Interface

version 6.0
__

POST EVENT (what; message; when; mouseX; mouseY; modifiers{; process})

Parameter Type Description
what Number → Type of event
message Number → Event message
when Number → Event time expressed in ticks
mouseX Number → Horizontal coordinate of mouse
mouseY Number → Vertical coordinate of mouse
modifiers Number → Modifier keys state
process Number → Destination process reference number, or

Application event queue, if omitted, or 0

Description
The command POST EVENT simulates a keyboard or mouse event. Its effect is as if the user
actually acted on the keyboard or the mouse.

You pass one of the following values in what:
Constant Type Value
Mouse down event Long Integer 1
Mouse up event Long Integer 2
Key down event Long Integer 3
Key up event Long Integer 4
Auto key event Long Integer 5

If the event is a mouse-related event, you pass 0 (zero) in message. If the event is a
keyboard-related event, you pass the ASCII code of the simulated character in message.

Usually, you pass the value returned by Tickcount in when.

If the event is a mouse-related event, you pass the horizontal and vertical coordinates of
the click in mouseX and mouseY.

In the parameter modifiers, you pass one or a combination of the Events (modifiers)
constants. For example, to simulate the Shift key, pass Shift key bit.

If you specify the process parameter, the event is sent to the process whose process
number you pass in process. If you pass 0 (zero) or if you omit the parameter, the event is
sent at the application level, and the 4D scheduler will dispatch it to the appropriate
process.

See Also
POST CLICK, POST KEY.

1602 4th Dimension Language Reference

SCROLL LINES User Interface

version 2004.1 (Modified)
__

SCROLL LINES ({*; }object{; position{; *}})

Parameter Type Description
* * → If specified, object is an object name (string)

If omitted, object is a table or a variable
object Form object → Object name (if * is specified) or

Table or variable (if * is omitted)
position Longint → Line position in the selection
* * → Display the line in first position after scroll

Description
The SCROLL LINES command allows scrolling lines of a list form (displayed using the
MODIFY SELECTION or DISPLAY SELECTION commands), a subform or a list box so that
the first selected record/row or a specific record/row is displayed.

If you pass the first optional * parameter, you indicate that the object parameter is the
name of a subform or list box object (in this case, pass a string in object). If you do not
pass anything in this parameter, you indicate that the object parameter is a table (list
form table or subform table) or a variable (list box).

If you do not pass the position parameter, the command provokes the vertical scroll of
lines of the list so that the first highlighted line in the list is visible. If no line is selected,
the command does nothing. If at least one selected line is already visible, the command
does nothing.
The position parameter allows you to indicate the number of the line to display. If you
pass this parameter, the command provokes the vertical scroll of lines of the list so that
the set line is visible (highlighted or not). If the line is already visible, the command does
nothing. For list forms and subforms, this number is the number of the line among the
current selection (its position). For list boxes, this number is the number of the row
among all the object rows (including hidden rows).

If you pass the second optional * parameter, the line made visible using the command (if
the list was scrolled) will be placed in the first position of the list.

Note: The HIGHLIGHT RECORDS command features an optional * parameter that allows
delegating scroll management to the SCROLL LINES command.

See also
HIGHLIGHT RECORDS, SELECT LISTBOX ROW.

4th Dimension Language Reference 1603

GET HIGHLIGHT User Interface

version 3
__

GET HIGHLIGHT (area; startSel; endSel)

Parameter Type Description
area Field | Variable → Enterable field or variable
startSel Number ← Current text selection starting position
endSel Number ← Current text selection ending position

Description
The GET HIGHLIGHT command is used to determine what text is currently highlighted.

Warning: Although you pass a enterable field or variable name to GET HIGHLIGHT, this
command returns a significant selection position only when it is applied to the area
currently being edited.

Note: This command cannot be used with fields in the List form of a subform.

Text can be highlighted by the user or by the HIGHLIGHT TEXT command.

The parameter startSel returns the position of the first highlighted character.
The parameter endSel returns the position of the last highlighted character plus one.

If startSel and endSel are returned equal, the insertion point is positioned before the
character specified by startSel. The user has not selected any text, and no characters are
highlighted.

Examples
1. The following example gets the highlighted selection from the field called
[Products]Comments:

⇒ GET HIGHLIGHT ([Products]Comments;vFirst;vLast)
If (vFirst<vLast)

ALERT("The selected text is: "+Substring([Products]Comments;vFirst;vLast-vFirst))
End if

2. See example for the command FILTER KEYSTROKE.

See Also
FILTER KEYSTROKE, HIGHLIGHT TEXT, Keystroke.

1604 4th Dimension Language Reference

HIGHLIGHT TEXT User Interface

version 3
__

HIGHLIGHT TEXT (area; startSel; endSel)

Parameter Type Description
area Field | Variable → Enterable field or variable
startSel Number → New text selection starting position
endSel Number → New text selection ending position

Description
The command HIGHLIGHT TEXT highlights a section of the text in area.

If area is not the object currently being edited, the focus is then set to this area.

Note: This command cannot be used with fields in the List form of a subform.

startSel is the first character position to be highlighted, and lastSel is the last character plus
one to be highlighted. If startSel and lastSel are equal, the insertion point is positioned
before the character specified by startSel, and no characters are highlighted.

If lastSel is greater than the number of characters in area, then all characters between
startSel and the end of the text are highlighted.

Example
1. The following example selects all the characters of the enterable field
[Products]Comments:

⇒ HIGHLIGHT TEXT([Products]Comments;1;Length([Products]Comments)+1)

2. The following example moves the insertion point to the beginning of the enterable
field [Products]Comments:

⇒ HIGHLIGHT TEXT([Products]Comments;1;1)

3. The following example moves the insertion point to the end of the enterable field
[Products]Comments:

$vLen:=Length([Products]Comments)+1
⇒ HIGHLIGHT TEXT([Products]Comments;$vLen;$vLen)

4. See example for the command FILTER KEYSTROKE.

See Also
GET HIGHLIGHT.

4th Dimension Language Reference 1605

SET CURSOR User Interface

version 6.0
__

SET CURSOR {(cursor)}

Parameter Type Description
cursor Number → Mac OS-based cursor resource number

Description
The SET CURSOR command changes the mouse cursor to the cursor stored in the Mac OS-
based ‘CURS’ resource whose ID number you pass in cursor.

If you omit the parameter, the mouse cursor is set to the standard arrow.

Use the RESOURCE LIST command to get the list of available cursors.

See Also
RESOURCE LIST.

1606 4th Dimension Language Reference

Focus object User Interface

version 2004 (Modified)
__

Focus object → Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ← Pointer to the object having the focus

Description
Focus object returns a pointer to the object having the focus in the current form. If no
object has the focus, the command returns Nil. You can use Focus object to perform an
action on a form area without having to know which object is currently selected. Be sure
to test that the object is the correct data type, using Type, before performing an action on
it.

Note: When it is used with a List box type object, the Focus object function returns a
pointer to the column (the array) of the list box that has the focus.

This command cannot be used with fields in subforms.

Note: This command is to be used only in data entry context, otherwise it will return
errors.

Example
The following example is an object method for a button. The object method changes the
data in the current object to uppercase. The object must be a text or string data type (type
0 or 24):

⇒ $vp := Focus object ` Save the pointer to the last area
Case of

:(Nil($pointer)) ` No object has the focus
...
 ` If it is a string or text area

:((Type ($vp->) = Is Alpha field) | (Type($vp->) = Is String var))
$vp-> := Uppercase ($vp->) ` Change the area to uppercase

End case

4th Dimension Language Reference 1607

REDRAW User Interface

version 6.5 (Modified)
__

REDRAW (object)

Parameter Type Description
object Object → Subtable for which to redraw the subform, or

Table for which to redraw the subform, or
Field for which to redraw the area, or
Variable for which to redraw the area, or
Form to redraw on a Web browser

Description
When you use a method to change the value of a field or subfield displayed in a subform,
you must execute REDRAW to ensure that the form is updated.

Web Server: When executed after the On Timer form event, the REDRAW command can
be called to periodically update a 4D form sent to a Web browser. For more information,
please refer to the description of the SET TIMER command.

See Also
SET TIMER.

1608 4th Dimension Language Reference

INVERT BACKGROUND User Interface

version 3
__

INVERT BACKGROUND ({*; }textVar | textField)

Parameter Type Description
* → Allows entry of a variable or object name
textVar | textField Variable | Field → Text variable or field to invert

Description
INVERT BACKGROUND is used to invert textVar or textField in the form.

The scope of the command is the form being used.

You can use INVERT BACKGROUND when displaying on screen or printing to a dot matrix
printer. A postscript printer will not print an inverted background.

You cannot invert a variable in an output form. Avoid using INVERT BACKGROUND on an
enterable variable. Entering characters will only partially erase the inverted display.

Example
This example is an object method for a variable in an input form. It tests the value of a
field. If the field is positive, the object method does nothing. If the field is negative, the
object method inverts the display of the variable in the form:

vAmount:=[Accounts]Amount ` Put the value of field in the variable
If (vAmount < 0) ` If it is a negative amount…

⇒ INVERT BACKGROUND (vAmount) ` Invert the background
End if

Note: This command, originally created for black and white user interfaces, is now rarely
used. You now generally use colors to highlight a field or a variable.

See Also
SET COLOR, SET RGB COLORS.

4th Dimension Language Reference 1609

1610 4th Dimension Language Reference

61

Users and Groups

4th Dimension Language Reference 1611

1612 4th Dimension Language Reference

EDIT ACCESS Users and Groups

version 3
__

EDIT ACCESS

Parameter Type Description
This command does not require any parameters

Description
EDIT ACCESS allows the user to edit the password system. When this command is
executed, the Toolbox window with only the Users and User groups pages is displayed.

Note: This command opens a modal window. Consequently, you should not call it from
another modal window; otherwise it will do nothing.

Groups can be edited by the Designer, the Administrator and group owners. The Designer
and the Administrator can edit any group. Group owners can edit only the groups they
own. Users can be added to and removed from groups. The command has no effect if no
groups are defined.

The Designer and the Administrator can add new users, as well as assign them to groups.

Example
The following example displays the Users and User groups management window to the
user:

⇒ EDIT ACCESS

See Also
CHANGE CURRENT USER, CHANGE PASSWORD.

4th Dimension Language Reference 1613

CHANGE CURRENT USER Users and Groups

version 2004 (Modified)
__

CHANGE CURRENT USER ({user}{; }{password})

Parameter Type Description
user String | Num → Name or unique user ID
password String → Password (not encrypted)

Description
CHANGE CURRENT USER is used to change the identity of the current user in the database,
without having to quit. The user can change their identity themselves either using the
database connection dialog box (when the command is called without parameters) or
directly via the command. When a user changes their identity, they abandon any former
access privileges in favor of those belonging to the chosen user.

If the CHANGE CURRENT USER command is executed without parameters, the database
connection dialog box is displayed. The user must then enter or select a valid name and
password in order to enter the database. The contents of the connection dialog box will
depend on the options set on the Application/Access page of the database Preferences.

You can also pass the two optional user and password parameters in order to specify by
programming the new account to be used.
In the user parameter, pass the name or unique user ID (userRef) of the account to be
used. The user names and IDs can be obtained using the GET USER LIST command.

User ID User description
1 Designer
2 Administrator
3 to 15000 User created by the Designer

(user No. 3 is the first user created by the Designer,
user No. 4 is the second, etc.).

-11 to -15010 User created by the Administrator
(user No. -11 is the first user created by the Administrator,
user No. -12 is the second, etc.).

If the user account does not exist or was deleted, error -9979 is returned. You can
intercept this error with the error-handling method installed by the ON ERR CALL
command. Otherwise, you can call the function Is user deleted to test the user account
before calling this command.

Pass the non-encrypted user account password in the password parameter. If the password
does not match the user, the command will return error message -9978 and do nothing.

1614 4th Dimension Language Reference

The command execution is now delayed to prevent flooding (brute force attack), in other
words, attempts of multiple user name/password combinations. As a result, after the 4th
call to this command, it is run only after a period of 10 seconds. This delay is throughout
the entire work station.

Offering a custom access management dialog box
The CHANGE CURRENT USER command can be used to set up custom dialog boxes for
entering the name and password (with entry and expiration rules) that benefit from the
same advantages as the access control system of 4th Dimension.
It works as follows:
1. The database is entered directly in the “Default user” mode, without a dialog box.
2. The On Startup database method displays a custom dialog box for entering the user
name and password. All types of processing are foreseeable in the dialog box:
- It is possible to display the list of database users, as in the standard access dialog box of
4th Dimension, using the GET USER LIST command.
- The password entry field can contain various controls in order to check the validity of
the entered characters (minimum number of characters, uniqueness, etc.).
- In order for the characters of passwords being entered to be masked on screen, you can
use the FONT command with the special %password font.
- Expiration rules can be applied at the moment when the dialog box is validated:
expiration date, forced change to the initial connection, locking of account after several
incorrect entries, memorization of passwords already used, etc.
3. When the entry is validated, the required information (user name and password) are
passed to the CHANGE CURRENT USER command in order to open the database with the
user account privileges.

Example
The following example displays the connection dialog box:

⇒ CHANGE CURRENT USER

See Also
CHANGE PASSWORD.

4th Dimension Language Reference 1615

Validate password Users and Groups

version 2004 (Modified)
__

Validate password (userID; password) → Boolean

Parameter Type Description
userID Number → Unique user ID
password String → Unencrypted password

Function result Boolean ← True = valid password
False = invalid password

Description
Validate password returns True if the string passed in password is the password for the user
account whose ID number is passed in userID.

The command execution is now delayed to prevent flooding (brute force attack), in other
words, attempts of multiple user name/password combinations. As a result, after the 4th
call to this command, it is run only after a period of 10 seconds. This delay is throughout
the entire work station.

Example
This example checks whether the password of the user “Hardy” is “Laurel”:

GET USER LIST(atUserName;alUserID)
$vlElem:=Find in array(atUserName;"Hardy")
If ($vlElem>0)

⇒ If (Validate password(alUserID{$vlElem};"Laurel"))
ALERT("Yep!")

Else
ALERT("Too bad!")

End if
Else

ALERT("Unknown user name")
End if

See Also
GET USER PROPERTIES, Set user properties.

1616 4th Dimension Language Reference

CHANGE PASSWORD Users and Groups

version 3
__

CHANGE PASSWORD (password)

Parameter Type Description
password String → New password

Description
CHANGE PASSWORD changes the password of the current user. This command replaces
the current password with the new password you pass in password.

Warning: Password are case-sensitive.

Example
The following example allows the user to change his or her password.

CHANGE CURRENT USER ` Present user with password dialog
If (OK=1)

$pw1:=Request("Enter new password for "+Current user)
` The password should be at least five characters long

If (((OK=1) & ($pw1#"")) & (Length($pw1)>5))
` Make sure the password has been entered correctly

$pw2:=Request("Enter password again")
If ((OK=1) & ($pw1=$pw2))

CHANGE PASSWORD($pw2) ` Change the password
End if

End if
End if

See Also
CHANGE CURRENT USER.

4th Dimension Language Reference 1617

Current user Users and Groups

version 3
__

Current user → String

Parameter Type Description
This command does not require any parameters

Function result String ← User name of the current user

Description
Current user returns the user name of the current user.

Example
See example for the command User in group.

See Also
CHANGE ACCESS, CHANGE PASSWORD, User in group.

1618 4th Dimension Language Reference

Get default user Users and Groups

version 2004
__

Get default user → Number

Parameter Type Description
This command does not require any parameters

Function result Number ← Unique user ID number

Description
The Get default user command returns the unique user ID of the user set as “Default user”
in the database Preferences dialog box:

The following numbers can be used as user IDs:

ID User description
1 Designer
2 Administrator
3 to 15000 User created by Designer (user #3 is the 1st user created by

Designer, user #4 is the second, and so on).
-11 to -15010 User created by the Administrator (user #-11 is the 1st user created

by Administrator, user #-12 is the second, and so on).

If no default user has been set, the command returns 0.

4th Dimension Language Reference 1619

User in group Users and Groups

version 3
__

User in group (user; group) → Boolean

Parameter Type Description
user String → User name
group String → Group name

Function result Boolean ← TRUE = user is in group
FALSE = user is not in group

Description
User in group returns TRUE if user is in group.

Example
The following example searches for specific invoices. If the current user is in the
Executive group, he or she is allowed access to forms that display confidential
information. If the user is not in the Executive group, a different form is displayed:

QUERY([Invoices];[Invoices]Retail>100)
⇒ If (User in group(Current user;"Executive"))

OUTPUT FORM([Invoices];"Executive Output")
INPUT FORM([Invoices];"Executive Input")

Else
OUTPUT FORM([Invoices];"Standard Output")
INPUT FORM([Invoices];"Standard Input")

End if
MODIFY SELECTION([Invoices];*)

See Also
Current user.

1620 4th Dimension Language Reference

DELETE USER Users and Groups

version 6.0
__

DELETE USER (UserID)

Parameter Type Description
UserID Number → ID number of user to delete

Description
The command DELETE USER deletes the user whose unique user ID number you pass in
userID. You must pass a valid user ID number returned by the command GET USER LIST.

If the user account does not exist or has already been deleted, the error -9979 is generated.
You can catch this error with an error-handling method installed using ON ERR CALL.

Deleted user names no longer appear in the Password window displayed when the
database is open or when you call CHANGE ACCESS. However, in order to maintain unique
user ID numbers, the user account is kept in the password system. Deleted user names are
displayed in green in the Design environment Passwords window.

See Also
GET USER LIST, GET USER PROPERTIES, Is user deleted, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling DELETE USER or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 1621

Is user deleted Users and Groups

version 6.0
__

Is user deleted (userNumber) → Boolean

Parameter Type Description
userNumber Number → User ID number

Function result Boolean ← TRUE = User account is deleted or does not
exist
FALSE = User account is active

Description
The command Is user deleted tests the user account whose unique user ID number you
pass in userID.

If the user account does not exist or has been deleted, Is user deleted returns TRUE.
Otherwise, it returns FALSE.

See Also
DELETE USER, GET USER PROPERTIES, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling Is user deleted or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

1622 4th Dimension Language Reference

GET USER LIST Users and Groups

version 6.0
__

GET USER LIST (userNames; userNumbers)

Parameter Type Description
userNames String Array ← User names as they appear

in the Password editor window
userNumbers Numeric Array ← Corresponding unique user ID numbers

Description
GET USER LIST populates the arrays userNames and userNumbers with the names and
unique ID numbers of the users as they appear in the Passwords window.

The array userNames is filled with the user names displayed in the Passwords window,
including users whose accounts are disabled (user names displayed in green in the
Passwords window).

Note: Use the command Is user deleted to detect deleted users.

The array userNumbers, synchronized with userNames, is filled with the corresponding
unique user ID numbers. These numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

See Also
GET GROUP LIST, GET USER PROPERTIES, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET USER LIST or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 1623

GET USER PROPERTIES Users and Groups

version 2004 (Modified)
__

GET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{; memberships{;
groupOwner}})

Parameter Type Description
userID Number → Unique user ID number
name String ← Name of the user
startup String ← Startup method name
password String ← Always an empty string
nbLogin Number ← Number of logins to the database
lastLogin Date ← Date of last login to the database
memberships Numeric Array ← ID numbers of groups to which the user belongs
groupOwner Number ← ID number of user group owner

Description
GET USER PROPERTIES returns the information about the user whose unique user ID
number you pass in userID. You must pass a valid user ID number returned by the
command GET USER LIST.

If the user account does not exist or has been deleted, the error -9979 is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.
Otherwise, you can call Is user deleted to test the user account before calling GET USER
PROPERTIES.

User ID numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

1624 4th Dimension Language Reference

After the call, you retrieve the name, startup method, encrypted password, number of
logins and date of last login for the user, in the parameters name, startup, password,
nbLogin and lastLogin.

Note: GET USER PROPERTIES no longer returns the encrypted password in the password
parameter. Starting with version 6.0.2, an empty string is always returned in this
parameter. To check the password of a user, call the Validate password function.

If you pass the optional memberships parameter, the unique ID numbers of the groups to
which the user belongs are returned. Group ID numbers can have the following ranges:

If you pass the optional groupOwner parameter, you get the ID number of the user group
“owner”, i.e. the default owner group of the objects created by this user.

The group ID numbers can be the following:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP LIST, GET USER LIST, Set user properties, Validate password.

Error Handling
If you do not have the proper access privileges for calling GET USER PROPERTIES or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 1625

Set user properties Users and Groups

version 2004 (Modified)
__

Set user properties (userID; name; startup; password; nbLogin; lastLogin{; memberships{;
groupOwner}}) → Number

Parameter Type Description
userID Number → Unique ID number of user account, or

-1 for adding a user affiliated with the Designer, or
-2 for adding a user affiliated with the Administrator

name String → New user name
startup String → Name of new user startup method
password String → New (unencrypted) password, or

* to leave the password unchanged
nbLogin Number → New number of logins to the database
lastLogin Date → New date of last login to the database
memberships Numeric Array → ID numbers of groups to which the user belongs
groupOwner Number ← ID number of user group owner

Function result Number ← Unique ID number of new user

Description
Set user properties enables you to change and update the properties of an existing user
account whose unique user ID number you pass in userID, or to add a new user affiliated
with the Designer or the Administrator.

If you are changing the properties of an existing user account, you must pass a valid user
ID number returned by the GET USER LIST command.

If the user account does not exist or has been deleted, the error -9979 is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.
Otherwise, you can call Is user deleted to test the user account before calling Set user
properties.

1626 4th Dimension Language Reference

User ID numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Administrator,
user #-12 is the second, and so on).

To add a new user affiliated with the Designer pass -1 in userID. To add a new user
affiliated with the Administrator pass -2 in userID.
After the call, if the user is successfully added or modified, its unique ID number is
returned in userID.

If you do not pass -1, -2 or a valid user ID number, Set user properties does nothing.

Before the call, you pass the new name, startup method, password, number of logins and
date of last login for the user, in the name, startup, password, nbLogin and lastLogin
parameters. You pass an unencrypted password in the password parameter. 4D will
encrypt it for you before saving it in the user account.
If the new user name passed in name is not unique (there is already a user with the same
name), the command does nothing and the error -9979 is returned. You can catch this
error with an error-handling method installed using ON ERR CALL.

If you do not want to change all the properties of the user (aside from the memberships,
see below), first call GET USER PROPERTIES and pass the returned values for the properties
you want to leave unchanged.

If you do not want to change the password for an account, pass the * symbol as a value
for the password parameter. This allows you to change the other properties of the user
account without changing the password for the account.

If you do not pass the optional memberships parameter, the current memberships of the
user are left unchanged. If you do not pass memberships when adding a user, the user will
not belong to any group.
If you pass the optional memberships parameter, you change all the memberships for the
user. Before the call, you must populate the memberships array with the unique ID
numbers of the groups to which the user will belong.

If you pass the optional groupOwner parameter, you indicate the ID number of the user
group “owner”, i.e. the default owner group of the objects created by this user.

4th Dimension Language Reference 1627

The group ID numbers can be the following:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To revoke all the memberships of a user, pass an empty memberships array.

See Also
DELETE USER, GET GROUP LIST, GET USER LIST, GET USER PROPERTIES, Is user deleted,
Validate password.

Error Handling
If you do not have the proper access privileges for calling Set user properties or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

1628 4th Dimension Language Reference

USERS TO BLOB Users and Groups

version 2004
__

USERS TO BLOB (users)

Parameter Type Description
users BLOB → BLOB that must contain users

← User accounts (encrypted)

Description
The USERS TO BLOB command stores in the BLOB users the list of all user accounts and
the database groups created by the Aministrator.

Only the database Administrator can execute this command. If another user attempts to
execute it, the command does nothing and a privilege error (-9949) is generated.

The generated BLOB is automatically encrypted and can only be read using the BLOB TO
USERS command. You can store this BLOB in a file on your hard disk or in a field.
This command is the equivalent of recording gropus and users from the Toolbar. The only
difference is that it allows the storing of user accounts in a BLOB field and not just in a
file.

This concept allows you to keep a backup of users in the database data and, as such, puts
in place a backup mechanism as well as a system to automatically load users in case of a
database structure file update (information related to user accounts are stored by 4th
Dimension in the database structure file).

See also
BLOB TO USERS.

4th Dimension Language Reference 1629

BLOB TO USERS Users and Groups

version 2004
__

BLOB TO USERS (users)

Parameter Type Description
users BLOB → BLOB (encrypted) containing database user accounts

created and saved by the database Administrator

Description
The BLOB TO USERS command adds the user accounts present in the BLOB users in the
database. The BLOB Le BLOB users is encrypted and must have been created using the
USERS TO BLOB command.

Only the database Administrator can execute this command. If another user attempts to
execute it, the command does nothing and a privilege error (-9949) is generated.

The following rules apply when adding a user account:
• The user ID is used as a reference. Users are processed in order according to their user ID.
• If the number already exists in the structure file, account information is updated if
necessary, according to the information contained in the BLOB.
• If the number does not exist in the structure file, the user is created according to the
information contained in the BLOB.
• If the number matches a user account that was deleted in the structure file, the account
is updated according to the information contained in the BLOB.
• If the information contained in the BLOB indicates that the user account is deleted, the
account is deleted from the structure file.
• Updated users are linked to groups according to the information in the BLOB.
• If a group does not exist, it is created.

If the command is executed correctly, the system variable OK is set to 1. Otherwise, it is
set to 0.

Compatibility note: User and group files (.4UG extension) created by the Save Groups...
menu command in versions of 4th Dimension prior to 2004 can be loaded in 4th
Dimension 2004 using the following sequence:

DOCUMENT TO BLOB(mydoc; blob)
BLOB TO USERS(blob)

However, user and group files generated in 4th Dimension starting with version 2004
cannot be opened with a previous version.

See also
USERS TO BLOB.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

1630 4th Dimension Language Reference

GET GROUP LIST Users and Groups

version 6.0
__

GET GROUP LIST (groupNames; groupNumbers)

Parameter Type Description
groupNames String Array ← Names of the groups as they appear

in the Password editor window
groupNumbers Numeric Array ← Corresponding unique group ID numbers

Description
GET GROUP LIST populates the arrays groupNames and groupNumbers with the names and
unique ID numbers of the groups as they appear in the Password editor window.

The array groupNumbers, synchronized with groupNames, is filled with the corresponding
unique group ID numbers. These numbers can have the following ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP PROPERTIES, GET USER LIST, SET GROUP PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET GROUP LIST or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 1631

GET GROUP PROPERTIES Users and Groups

version 6.0
__

GET GROUP PROPERTIES (groupID; name; owner{; members})

Parameter Type Description
groupID Number → Unique group ID number
name String ← Name of the group
owner Number ← User ID number of group owner
members Numeric Array ← Group members

Description
GET GROUP PROPERTIES returns the properties of the group whose unique group ID
number you pass in groupID. You must pass a valid group ID number returned by the
command GET GROUP LIST. Group ID numbers can have the following values or ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

If you do not pass a valid group ID number, GET GROUP PROPERTIES returns empty
parameters.

After the call, you retrieve the name and owner of the group, in the parameters name and
owner.

1632 4th Dimension Language Reference

If you pass the optional members parameter, the unique ID numbers of the users and
groups belonging to the group are returned. Member ID numbers can have the following
ranges:

Member ID number Member Description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

15001 to 32767 Group created by the Designer or affiliated Group Owner
(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP LIST, GET USER LIST, SET GROUP PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET GROUP PROPERTIES or if
the Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 1633

Set group properties Users and Groups

version 6.0
__

Set group properties (groupID; name; owner{; members}) → Number

Parameter Type Description
groupID Number → Unique ID number of group, or

-1 for adding a Designer group, or
-2 for adding an Administrator group

name String → New group name
owner Number → User ID number of new group owner
members Numeric Array → New group members

Function result Number ← Unique ID number of new group

Description
Set group properties enables you to change and update the properties of an existing group
whose unique group ID number you pass in groupID, or to add a new group affiliated with
the Designer or the Administrator.

If you are changing the properties of an existing group, you must pass a valid group ID
number returned by the command GET GROUP LIST. Group ID numbers can have the
following values or ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To add a new group affiliated with the Designer, pass -1 in groupID. To add a new group
affiliated with the Administrator, pass -2 in groupID. After the call, if the group is
successfully added, its unique ID number is returned in groupID.

If you do not pass -1, -2 or a valid group ID number, Set group properties does nothing.

Before the call, you pass the new name and owner of the group in the parameters name
and owner. If you do not want to change all the properties of the group (besides the
members, see below), first call GET GROUP PROPERTIES and pass the returned values for
the properties you want to leave unchanged.

1634 4th Dimension Language Reference

If you do not pass the optional members parameter, the current member list of the group
is left unchanged. If you do not pass members while adding a group, the group will have
no members.

Note: The group owner is not automatically set as a member of the group that he or she
owns. It is up to you to include the group owner in the group, using the members
parameter.

If you pass the optional members parameter, you change the whole member list for the
group. Before the call, you must populate the array members with the unique ID numbers
of the users and groups the group will get as members. Member ID numbers can have the
following ranges:

Member ID number Member Description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

15001 to 32767 Group created by the Designer or affiliated Group Owner
(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To remove all the members from a group, pass an empty members array.

See Also
GET GROUP LIST, GET GROUP PROPERTIES, GET USER LIST.

Error Handling
If you do not have the proper access privileges for calling Set group properties or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 1635

CHANGE LICENSES Users and Groups

version 2004 (Modified)
__

CHANGE LICENSES

Parameter Type Description
This command does not require any parameters

Description
The CHANGE LICENSES command displays the 4D Update License dialog box, which
enables the user to activate plug-ins, the Web server or, with 4D Server, to add expansion
numbers in order to increase the number of clients who can use the database and its plug-
ins simultaneously.

Note: In 4th Dimension and 4D Server, you can display this dialog box by selecting the
Update License... command in the Help menu.

Using the CHANGE LICENSES command, you can display the 4D License dialog box from
the User and Custom menus environments.

CHANGE LICENSES is a convenient way to allow licensing in a compiled 4D application
distributed to customers. 4D developers or IS managers can use this command to
distribute a 4D application and let users enter their License without sending an update of
the application each time.

For more information about this dialog box, please refer to the 4th Dimension Installation
Guide.

Example
In a custom configuration or preferences dialog box, you include a button whose method
is:

` bLicense button object method
⇒ CHANGE LICENSES

1636 4th Dimension Language Reference

SET PLUGIN ACCESS Users and Groups

version 2004
__

SET PLUGIN ACCESS (plugIn; group)

Parameter Type Description
plugIn Longint → Plug-in number
group String → Group name to associate with plug-in

Description
The SET PLUGIN ACCESS command lets you set, by programming, the user group allowed
to use each “serialized” plug-in that is installed in the database. By doing so, you can
manage how plug-in licenses are used.

Note: This operation can also be carried out in the Design environment using the Groups
editor.

Pass the number of the plug-in to be associated with a group of users in the plugIn
parameter. Plug-in licenses include 4D Client Web and SOAP licenses. You can pass one of
the following constants found in the “Is license available” theme:

Constant Type Value
4D Draw License Longint 808464694
4D For OCI License Longint 808465208
4D View License Longint 808465207
4D Write License Longint 808464697
4D Client Web License Longint 808465209
4D Client SOAP License Longint 808465465
4D ODBC Pro License Longint 808464946
4D for ADO License Longint 808465714
4D for MySQL License Longint 808465712
4D for PostgreSQL License Longint 808465713
4D for Sybase License Longint 808465715

Pass the name of the group whose users are authorized to use the plug-in in group.

Note: Only one group at a time can be allowed to use a plug-in. When this command is
executed, if another group had the plug-in access rights, it loses this privilege.

See also
Get plugin access, GET PLUGIN LIST.

4th Dimension Language Reference 1637

Get plugin access Users and Groups

version 2004
__

Get plugin access (plugIn) → String

Parameter Type Description
plugIn Longint → Plug-in number

Function result String ← Group name associated with plug-in

Description
The Get plugin access command returns the name of the user group authorized to use the
plug-in whose number was passed in the plugIn parameter. If there is no group associated
with the plug-in, the command returns an empty string ("").

Pass the number of the plug-in for which you want to find out the associated group of
users in the plugIn parameter. Plug-in licenses include 4D Client Web and SOAP licenses.
You can pass one of the following constants found in the “Is license available” theme:

Constant Type Value
4D Draw License Longint 808464694
4D For OCI License Longint 808465208
4D View License Longint 808465207
4D Write License Longint 808464697
4D Client Web License Longint 808465209
4D Client SOAP License Longint 808465465
4D ODBC Pro License Longint 808464946
4D for ADO License Longint 808465714
4D for MySQL License Longint 808465712
4D for PostgreSQL License Longint 808465713
4D for Sybase License Longint 808465715

See also
GET PLUGIN LIST, SET PLUGIN ACCESS.

1638 4th Dimension Language Reference

GET PLUGIN LIST Users and Groups

version 2004
__

GET PLUGIN LIST (numbersArray; namesArray)

Parameter Type Description
numbersArray Longint Array ← Numbers of plug-ins
namesArray Array string ← Names of plug-ins

Description
The GET PLUGIN LIST command fills in the numbersArray and namesArray arrays with the
numbers and names of the plug-ins loaded by the 4th Dimension application. These two
arrays are automatically sized and synchronized by the command.

Note: You can compare the values returned in numbersArray with the constants of the “Is
license available” theme.

GET PLUGIN LIST takes all plug-ins into account, including those that are integrated (for
example, 4D Chart), and third-party plug-ins.

See also
Get plugin access, SET PLUGIN ACCESS.

4th Dimension Language Reference 1639

1640 4th Dimension Language Reference

62

Variables

4th Dimension Language Reference 1641

1642 4th Dimension Language Reference

SAVE VARIABLES Variables

version 3
__

SAVE VARIABLES (document; variable{; variable2; ...; variableN})

Parameter Type Description
document String → Document in which to save the variables
variable Variable → Variables to save

Description
The command SAVE VARIABLES saves one or several variables in the document whose
name you pass in document.

The variables do not need to be of the same type, but have to be of type String, Text,
Real, Integer, Long Integer, Date, Time, Boolean, or Picture.

If you supply an empty string for document, the standard Save File dialog box appears; the
user can then choose the document to create. In this case, the 4D system variable
Document is set to the name of the document if one is created.

If the variables are properly saved, the OK variable is set to 1. If not, OK is set to 0.

Note: When you write variables to documents with SAVE VARIABLES, 4th Dimension uses
an internal data format. You can retrieve the variables only with the LOAD VARIABLES
command. Do not use RECEIVE VARIABLE or RECEIVE PACKET to read a document created
by SAVE VARIABLES.

WARNING: This command does not support array variables. Use the new BLOB commands
instead.

Example
The following example saves three variables to a document named UserPrefs:

⇒ SAVE VARIABLES ("User Prefs";vsName;vlCode;vgIconPicture)

System Variables or Sets
If the variables are saved properly, the OK system variable is set to 1; otherwise it is set to
0.

See Also
BLOB TO DOCUMENT, BLOB TO VARIABLE, DOCUMENT TO BLOB, LOAD VARIABLES,
VARIABLE TO BLOB.

4th Dimension Language Reference 1643

LOAD VARIABLES Variables

version 3
__

LOAD VARIABLES (document; variable{; variable2; ...; variableN})

Parameter Type Description
document String → Document containing 4D variables
variable Variable → Variables to receive the values

Description
The command LOAD VARIABLES loads one or several variables from the document
specified by document. The document must have been created using the command SAVE
VARIABLES.

The variables variable, variable2...variableN are created; if they already exist, they are
overwritten.

If you supply an empty string for document, the standard Open File dialog box appears, so
the user can choose the document to open. If a document is chosen, the 4D system
variable Document is set to the name of the document.

In compiled databases, each variable must be of the same type as those loaded from disk.

WARNING: This command does not support array variables. Use the new BLOB commands
instead.

Example
The following example loads three variables from a document named UserPrefs:

⇒ LOAD VARIABLES ("User Prefs";vsName;vlCode;vgIconPicture)

System Variables or Sets
If the variables are loaded properly, the OK system variable is set to 1; otherwise it is set to
0.

See Also
BLOB TO DOCUMENT, BLOB TO VARIABLE, DOCUMENT TO BLOB, RECEIVE VARIABLE,
VARIABLE TO BLOB.

1644 4th Dimension Language Reference

CLEAR VARIABLE Variables

version 3
__

CLEAR VARIABLE (variable)

Parameter Type Description
variable Variable → Variable to clear

Description
This command acts differently in interpreted mode and in compiled mode.

In interpreted mode
CLEAR VARIABLE erases variable from memory. Consequently, the variable becomes
undefined; trying to read its value will generate a syntax error. Note that if you again
assign a value to the variable, 4D recreates the variable on the fly. After a variable is
cleared, Undefined returns True when applied to that variable.

In compiled mode
CLEAR VARIABLE only resets variable to its default type value (i.e., empty string for String
and Text variables, 0 for numeric variables, no elements for arrays, etc.). The variable still
exists—variables can never be undefined in compiled code.

The variable you pass in variable must be a process or an interprocess variable.

Note: You do not need to clear process variables when a process ends; 4D clears them
automatically.

Local variables, which are variables preceded by a dollar sign ($), cannot be cleared with
CLEAR VARIABLE. They are cleared automatically when the method in which are located
completes execution.

4th Dimension Language Reference 1645

Example
In a form, you are using the drop-down list asMyDropDown whose sole purpose is user
interface. In other words, you use that array during data entry, but once you are done
with the form, you will no longer use that array. Consequently, during the On Unload
event, you just get rid of the array:

` asMyDropDown drop-drop list object method
Case of

: (Form event=On Load)
` Initialize the array one way or another

ARRAY STRING(63;asMyDropDown;...)
` ...

:(Form event=On Unload)
` No longer need the array

⇒ CLEAR VARIABLE (asMyDropDown)
` ...

End case

See Also
Undefined.

1646 4th Dimension Language Reference

Undefined Variables

version 3
__

Undefined (variable) → Boolean

Parameter Type Description
variable Variable → Variable to test

Function result Boolean ← True = Variable is currently undefined
False = Variable is currently defined

Description
Undefined returns True if variable has not been defined, and False if variable has been
defined. A variable is defined if a value is assigned to it. A variable is undefined if it does
not have a value assigned to it, or if it has been cleared with CLEAR VARIABLE.

If the database has been compiled, the Undefined function returns False for all variables.

Examples
1. Up to version 6, a good way to test if you were running in interpreted mode or in
compiled mode was to write:

anyVar:="Hello"
CLEAR VARIABLE(anyVar)

⇒ If (Undefined(anyVar))
` You are in interpreted mode

Else
` You are in compiled mode

End if

Starting with version 6, it is more convenient to use the built-in command Compiled
application.

4th Dimension Language Reference 1647

2. The following code manages the creation of processes when a menu item for a
particular module of your application is chosen. If the process already exists, you bring it
to the front; if it does not exist, you start it. To do so, for each module of the application,
you maintain an interprocess variable ◊PID_... that you initialize in the On Startup
database method.

When developing the database, you add new modules. Instead modifying the On Startup
database method (to add the initialization of the corresponding ◊PID_...) and then
reopening the database to reinitialize everything each time you add a module, you use the
Undefined command to manage the addition of the new module, on the fly:

` M_ADD_CUSTOMERS global procedure

` This line takes care of intermediate development stages
⇒ If (Undefined(◊PID_ADD_CUSTOMERS))

C_LONGINT(◊PID_ADD_CUSTOMERS)
◊PID_ADD_CUSTOMERS:=0

End if

If (◊PID_ADD_CUSTOMERS=0)
◊PID_ADD_CUSTOMERS:=New process("P_ADD_CUSTOMERS";64*1024;

"P_ADD_CUSTOMERS")
Else

SHOW PROCESS(◊PID_ADD_CUSTOMERS)
BRING TO FRONT(◊PID_ADD_CUSTOMERS)

End if
` Note: P_ADD_CUSTOMERS, the process master method, sets
` ◊PID_ADD_CUSTOMERS to zero when it ends.

See Also
CLEAR VARIABLE.

1648 4th Dimension Language Reference

63

Web Server

4th Dimension Language Reference 1649

1650 4th Dimension Language Reference

Web Server, Overview Web Server

version 2004 (Modified)
__

4th Dimension, 4D Server and 4D Client include a Web Server engine that enables you to
publish 4D databases or any type of HTML page on the Web. The principal characteristics
of the 4D Web Server engine are:

• Easy publication
You can start or stop publication of the database on the Web at any time. To do so, you
just need to choose a menu command or execute a language command.

• Contextual and Non-contextual mode
The 4D Web server can operate in two distinct modes: contextual mode and non-contextual
mode. You can use the 4D Web server in either of these modes and you can pass from one
mode to the other on the fly in accordance with your needs.
- contextual mode (available only with the Web server of 4th Dimension and 4D Server)
consists of a unique and unequaled feature. In this mode, 4D manages Web browsers as
standard database clients. Your database is published directly on the Web. You do not
need to develop a database, a Web site and then a CGI interface between the two. Your
database is your Web site. Any modification made to the structure or data of the database
is immediately passed on to all the browsers connecting to it. 4D converts database menu
bars, forms and methods into HTML on the fly: it is not necessary to know HTML to be
able to publish a 4D database on the Web. 4D automatically maintains a data use context
for each Web browser (selections, variables, etc.). Note that in return, Web navigation in
contextual mode includes specific constraints. For more information, refer to the Using
the Contextual Mode section.
- Used in non-contextual mode (standard mode), the 4D Web server is a completely
standard HTTP server: Web pages are sent without it being necessary to maintain context.
You can access the data of the 4D database and build "semi-dynamic" HTML pages on the
fly that include both static data and data coming from the database, before sending them
on to the Web browsers. You can also send static Web pages that do not require any
processing by the Web server.

• Dedicated database methods
On Web Authentication Database Method and On Web Connection Database Method are the
entry points of requests in the Web server; they can be used to evaluate and route any
type of request.

• Use of special tags and URLs
The 4D Web server offers numerous mechanisms that enable interaction with user
actions, in particular:
- special tags can be included in Web pages in order to initiate processing by the Web
server at the time when they are sent to browsers.
- special URLs that enable 4D to be called in order to execute any action.
- these URLs can also be used as form actions to trigger processing when the user posts
HTML forms.

4th Dimension Language Reference 1651

• Access Security
Several automatic configuration options allow you to grant specific access authorizations
to Web browsers or to use the password system integrated into 4th Dimension. You can
define a "Generic Web User" to simplify access management within the database.
The On Web Authentication Database Method allows you to evaluate any request before it
is processed by the Web server. Moreover, the ability to define a default HTML root folder
allows you to restrict access to files on disk.
Finally, you must designate individually the project methods that may be executed via
the Web.

• SSL Connections
Your 4D Web server can communicate with browsers in secured mode through the SSL
protocol (Secured Socket Layer). This protocol, compatible with most Web browsers,
authenticates the sender and receiver and guaranties the confidentiality and integrity of
the exchanged information.

• Extended support for Internet formats
The 4D Web server is HTTP/1.1 compatible and supports XML documents and WML
(Wireless Markup Language) technology.

• CGI Support
The 4D Web Server can call CGIs in a very simple way, as well as be called by other HTTP
servers through CGIs.

• Simultaneous operation of databases

4th Dimension and the Web
If you publish a 4D database on the Web using 4th Dimension, you can simultaneously:
• Use the database locally with 4D
• Connect to the database using Web browsers.

1652 4th Dimension Language Reference

4D Server and the Web
If you publish a 4D database on the Web using 4D Server, you can simultaneously
connect to and operate the 4D database, using:
• 4D Client workstations
• 4D Open-based applications
• Web browsers.

 4D Client and the Web
When a 4D database is published on the Web with 4D Client, it is possible to connect to
the 4D database and to simultaneously use it:
- via 4D Client machines
- via applications using 4D Open
- via Web browsers. In this case, if the database is also published with 4D Server, the Web
browsers can connect to the published database via 4D Client or via 4D Server. Moreover,
this allows different data access modes to be handled (public, administration, etc.).

4th Dimension Language Reference 1653

The basic mechanisms of the 4D Web server are used in a similar manner by 4D Client,
with the exception of the contextual mode. In fact, it is not possible to use the contextual
mode with the 4D Client Web server (for more information about this mode, refer to the
Using the Contextual Mode section).
Similarly, the operation of language commands is usually identical, whether the
command be executed on 4th Dimension, 4D Server or 4D Client. The main point is that
commands are applied to the Web site of the machine on which they are executed. You
must manage this using the Execute on server / EXECUTE ON CLIENT commands.

• Load balancing with 4D Client: since any 4D Client machine can be used as a Web
server, you can set up a dynamic Web server system with a load balancer. This offers
extensive development possibilities, including, more particularly:
- the setting-up of a load-balancing system in order to optimize the performance of the
4D Web server: using a mirror of the Web site that is installed on each 4D Client Web
server, a load balancer (hardware or software) will send requests to the client machines on
the basis of their current load.

- the setting-up of a fault tolerance Web server: the 4D Web site is mirrored on two or
more 4D Client machines. If one 4D Client Web server fails, another one takes over.
- the creation of different views of the same data, for instance depending on the origin of
the requests. Within a company network, a protected 4D Client Web server can serve
Intranet requests and another 4D Client Web server, located beyond the firewall, will
serve Internet requests.
- the distribution of tasks between different 4D Client Web servers: one 4D Client Web
server can be in charge of SOAP requests, another can handle standard requests, and so
on.

See Also
Connection Security, SEND HTML FILE, SET HOME PAGE, SET HTML ROOT, SET HTML ROOT,
SET WEB DISPLAY LIMITS, SET WEB TIMEOUT, STOP WEB SERVER, Using CGIs, Using SSL
Protocol, Using the Contextual Mode, Web Server Settings.

1654 4th Dimension Language Reference

Web server configuration and connection management Web Server

version 2004 (Modified)
__

4th Dimension, 4D Server and 4D Client include a Web server that enable you to publish
the data of your databases on the Web, transparently and dynamically.
This section describes the steps necessary for publication of 4D databases and for
connection of browsers, as well as the process of connection management.

Conditions for publishing a 4D database on the Web
__

To be able to publish a 4D database on the Web using 4th Dimension, 4D Server or 4D
Client, you must have the elements described below:
• The required 4D Web Extension, 4D Server Web Extension or 4D Client Web Extension
licenses must be installed in your application. For more information, please refer to your
4D Product Line Installation Guide.
• Web connections are made over the network using the TCP/IP protocol. Consequently:
- You must have TCP/IP installed on your machine and correctly configured. Refer to
your computer or Operating System manuals for more information.
- If you want to use SSL for network connections, make sure that requested components
are correctly installed (see section Using SSL Protocol).
• After all the previous points have been checked and taken care of, you need to start the
Web server from within 4D. This last point is discussed further on in this section.

Publication authorization (4D Client)
By default, any 4D Client machine can publish the database to which it is connected on
the Web. However, you can control the possibility of Web publication for each 4D Client
by using the 4D password system.
In fact, 4D Client Web licenses are considered as plug-in licenses by 4D Server. Therefore,
in the same way as for plug-ins, you must retrict the right to use Web Server licenses to a
specific group of users.

To do this, display the Groups page in the Toolbox using 4D Client (you must have
suitable access authorization to modify these parameters).

4th Dimension Language Reference 1655

Select a group in the list on the left, then check the Access option next to the Web
Server line in the Plug-in distribution area:

Above: only users belonging to the "Web" group are authorized to publish their 4D Client
machine as a Web server.

Configuring the Web server under Mac OS X
__

Under Mac OS X, using TCP/IP ports reserved for Web publishing requires specific access
privileges: only the “root” user of the machine can launch an application using these
ports.

These ports are numbers 0 to 1023. Remember that, by default, a 4D database is published
on TCP port 80 in standard mode and on port 443 in SSL mode.

1656 4th Dimension Language Reference

Once you publish a 4D database on the default TCP port without being connected as the
“root” user, an alert dialog box will be displayed:

To use the Web server under Mac OS X, you have four possibilities:

• Modify the TCP port numbers used by the 4D Web server.
You must use port numbers greater than 1023, for example, port 8080 for standard mode
and 8043 for SSL mode.
This operation occurs in the Preferences dialog box (see Web Server Settings section) or
using the SET DATABASE PARAMETER command. In this case, it will be necessary to
indicate the port number after each database connection URL (for example,
http://www.mydatabase.com/pages/mypage.html:8080) and
https://www.mydatabase.com/pages/payment.html:8043.

• Logging on as the “root” user
By default, the “root” user is not enabled on a machine running Mac OS X. You must first
enable it and then log in with this user name.
Enabling a “root” user takes place using the NetInfo Manager utility provided by Apple
and installed in the Applications:Utilities folder.
Once the utility has been launched, choose the Security command in the Domain menu,
then the Enable root user option. You must have first identified the machine
administrator using the Authenticate... command, located in the same menu (enter the
shortened name and the administrator password).

4th Dimension Language Reference 1657

For more information on this operation, refer to the Mac OS X documentation.

Once the “root” user has been created, you must close the session (Apple menu) and then
log in using the “root” user name. You can then launch the Web server on port number
80, or a 4D Web server with a secure connection.

• Port transfer
This third solution lets you publish a 4D Web database under Mac OS X without being a
“root” user and without it being necessary to specify the port number behind each
connection URL to the server. It is based on port transfer. The principle consists of
transferring, at the system level, the requests received on the standard TCP port number
(80) to one specified in the 4D database (which must be greater than 1023). Note that
this tip will not work with secured connections (the TCP port 443 is not modifiable).
To carry out this operation, you must connect as a “root” user, start the Terminal and use
Unix commands.

To set up the port transfer under Mac OS X (assuming that your IP address is
192.168.93.45):
1. Open a session as a root user (see the previous paragraph).
2. Start the Terminal program.
This program is found in the Applications:Utilities folder.
3. Enter “su” (“substitute user” special account) followed by the root user password.
4. Enter the following command:
ipfw add 400 fwd 192.168.93.45,8080 tcp from any to 192.168.93.45 80
Of course, you must replace “192.168.93.45” with your own IP address.
The figure 400 is the reference number of this operation.
5. Quit the Terminal program.
6. Start your 4D application as a standard user.
7. In the Preferences of the database, set the Web publication TCP port to 8080.
From then on, Mac OSX is ready to transfer the requests received on port 80 to port 8080
instantaneously and in a manner which is invisible for the user.

To remove this mode of operation:
1. Start the Terminal program and enter:
ipfw delete 400
The requests received on port 80 will no longer be transferred to port 8080.

• Opening a temporary root session
This solution works as follows: the 4th Dimension Web server is initially launched in a
“root” session that is opened for this purpose, but is closed soon after. This new feature
can be used with 4th Dimension, 4D Server, 4D Client and the 4D Runtime executable
applications.

Here are the details of the sequence:
1. The 4th Dimension application is executed using a classic user session.
2. When the Web server is launched on the standard port (port 80), an alert dialog box
appears telling the user that the operation is not possible.

1658 4th Dimension Language Reference

The dialog box gives the user the opportunity to modify access privileges in order to be
able to launch the Web server. To do this, the user must enter an administrator name and
password for the machine.
3. The user enters an administrator name and password for the machine.
Using this information, 4th Dimension can modify application access privileges and set
the user session as “root”.
4. The user is asked to quit and restart the application.
5. On start-up, the 4th Dimension application starts in root session.
6. If the “Publish Database at Startup” option is checked in the application Preferences,
the Web server is launched on port 80.
If the “Allow SSL for Web Server” option is checked, the SSL port (443 by default) is also
opened.
7. After a few moments, the root session is automatically closed and replaced with the
session of the current user.
The Web server remains published and the user session continues normally.

The drawback of this mechanism is that once it is in place, you cannot stop, start and
restart the Web server at will during a session. You cannot go from a standard user session
to a “root” session (higher access privileges) without restarting the application. This
mechanism only works on application startup.

Starting the 4D Web Server
__

The 4D Web Server can be started in three different ways:
• Using the Run menu of 4th Dimension and/or 4D Client or the Web menu of 4D
Server. The Web Server menu allows you to start and stop the Web Server at your
convenience:

4th Dimension and 4D Client:

4D Server:

4th Dimension Language Reference 1659

• Automatically publishing the database each time it is opened. To automatically publish a
database on the Web, choose the Edit menu’s Preferences... option from the main menu
bar of 4D. The Preferences... window appears. Click on the Configuration page of the
Web theme:

In the Web Server Publishing section, select the Publish Database at Startup check box,
then click OK. Once this is done, the database will be automatically published on the Web
each time you open it with 4th Dimension, 4D Server or 4D Client.

• Programmatically, by calling the command START WEB SERVER.

Tip: You do not need to quit 4D and reopen your database to start or stop publishing a
database on the Web. You can interrupt and restart the Web server as many times as you
want, using the Run menu or calling the commands START WEB SERVER and STOP WEB
SERVER.

1660 4th Dimension Language Reference

Testing the Web server

The Test Web Server command can be used to make sure the built-in Web server is
functioning correctly (4th Dimension and 4D Client only). This command is accessible in
the Run menu when the Web server is launched:

When you select this command, the home page of the Web site published by the 4D
application is displayed in a window of your default Web browser:

This command lets you verify that the Web server, home page display, etc. work
correctly. The page is called using the URL Localhost, which is the standard shortcut
designating the IP address of the machine on which the Web browser is executed. The
command takes into account the TCP publication port number specified in the
application preferences.

4th Dimension Language Reference 1661

Connecting to a 4D database published on the Web
__

After you have started publishing a 4D database on the Web, you can connect to it using
a Web browser. To do so:
• If your Web site has a registered name (i.e., “ www.flowersforever.com”), indicate that
name in the Open, Address, or Location area of your browser. Then press Enter to
connect.
• If your Web Site does not have a registered name, indicate the IP address of your
machine
(i.e., 123.4.567.89) in the Open, Address, or Location area of your browser. Then press
Enter.

At this time, your browser should display the home page of your Web site. If you have
published a database in keeping with standard configurations, you should obtain the
default home page of the 4th Dimension Web server. This page lets you test the
connection and the server operation.

You may also encounter one of the following situations:

1. The connection fails and you get a message such as “...the server may not be accepting
connections or may be busy...”.
In this case, check the following:
• Verify that the name or the IP address you entered is correct.
• Verify that 4th Dimension, 4D Server or 4D Client is up and running and has started its
Web server.
• Check if the database is configured for being served on a TCP Port other than the
default Web TCP Port (see situation 4).
• Check whether TCP/IP is correctly configured on both the server and browser
machines. Both machines must be on the same net and subnet, or your routers must be
correctly configured.
• Check your hardware connections.
• If you are not locally testing your own site, but rather attempting to connect to a Web
database served on Internet or Intranet by someone else, ultimately, the message might
be true: the server may be off or busy. So, retry later until you can log on, or contact the
Web provider.

2. You connect, but you get an HTTP 404 "File not found" error. This means that the site
home page has not be served. In this case, check that the home page actually exists at the
location defined in the database Preferences (see Web Server Settings section) or using the
SET HOME PAGE command.

3. You connect, but you get a Web page with the message “Menu Bar/This database is not
ready to be published on the Web, you should first create a menu bar”. This means that
you correctly connected to the database published in contextual mode but no home page
nor menu bar has been defined (in contextual mode, 4D publishes menu bar #1 as the
default home page if no HTML page is specified). For more information, see the Your First
Time with the Web Server section.

1662 4th Dimension Language Reference

4. You connect, but you do NOT obtain the Web page you were expecting! This can occur
when you have several Web servers running simultaneously on the same machine.
Examples:
• You are running only one 4D Web database on a Windows system that is already
running its own Web server.
• You are running several 4D Web databases on the same machine.
In this kind of situation, you need to change the TCP port number on which your 4D
Web database is published. To do so, refer to Web Server Settings section.

Note: If your database is protected by a password system, you may have to enter a valid
user name and password (for more information, refer to section Connection Security).

Web Process management
__

Various 4D processes support Web publication of databases and connection to browsers.
This paragraph describes these processes as well as their characteristics.

Web Server Process
The Web Server process runs and executes when the database is being published as a Web
site.
In the Process page of the Runtime Explorer window shown here, the Web Server process
is the fifth process that is running and executing:

This is a 4D kernel process; you cannot abort this process using the Abort button. Also,
you cannot attempt interprocess communication using commands such as CALL PROCESS.
Note that the Web Server process does not have any user interface components (windows,
menus, and so on).

4th Dimension Language Reference 1663

You can start the Web Server process in the following ways:
• Choose Start Web Server in the Web Server menu of 4D Server or the Run menu of
4th Dimension/4D Client.
• Call the 4D command START WEB SERVER.
• Open a database whose Publish Database at Startup Preference is checked.

You can stop running the Web Server process in the following ways:
• Choose Stop Web Server from the User environment Web Server menu of 4D Server or
the Run menu of 4th Dimension/4D Client.
• Call the 4D command STOP WEB SERVER.
• Quit the database being currently published.

The purpose of the Web Server process is only to handle Web connection attempts.
Starting the Web Server process does not mean that you open an actual Web connection,
it just means that you allow Web users to initiate Web connections. Stopping the Web
Server process does not mean that you close currently running Web connection processes
(if any), it just means that you no longer allow Web users to initiate new Web
connections.

If there are open Web connection processes when you stop the Web Server process, each
of these processes continues executing normally.
Consequently, a delay time can be necessary to complete the termination of the Web
Server process.

Web Connection Processes
__

Each time a Web browser attempts to connect to the database, the request is handled by
the Web Server process, which performs the following steps:

• First, it creates one or several temporary local 4D processes called Web Processes to
evaluate and manage the connection with the Web browser.
Note: These temporary processes manage every HTTP request. They execute quickly and
then aborted or delayed. For the Web server to be reactive in non-contextual mode, 4D
freezes this “pool” of Web processes for 5 seconds and reuses them to execute any possible
future HTTP queries. You can customize this behavior using the command SET DATABASE
PARAMETER.

• If the request does not require that a context be created, the Web process handles the
processing of the request and sends a response (if necessary) to the browser. The
temporary process is then aborted or delayed (see above).

1664 4th Dimension Language Reference

• If the request requires that a context is created, it checks to verify that there are
available resources for the new connection. If it is not the case, it sends the following
message to the Web browser: “This database has not been setup for the Web yet.”
If the Web connection is initiated successfully, then a Web Connection process is started.
This is the process that will handle the entire Web session for that connection. The
Process list shown here displays the Web connection process “Web Connection#
152142900,” started after a Web browser connection has been initiated:

Note that the sixth process, which was started then aborted, handled the initialization of
the Web connection.

Note: For more information about the context management, see the paragraph Using the
Contextual Mode section.

• If during the session, the connection switches from contextual mode to non-contextual
mode, the Web connection process (with an ID) is aborted.
Conversely, if during the session, the connection switches from non-contextual mode to
contextual mode, a numbered Web connection process is created.

See Also
SEND HTML FILE, SET HTML ROOT, SET WEB DISPLAY LIMITS, SET WEB TIMEOUT, STOP
WEB SERVER, Using SSL Protocol.

4th Dimension Language Reference 1665

Your First Time with the Web Server Web Server

version 6.5 (Modified)
__

Example in contextual mode
This section gives a simple example of instant database publication in contextual mode.
This automatic mode can be used more particularly for Intranet servers. It illustrates the
basic principles of 4D Web server operation.

The structure of this database (given at the end of this section) is simple: the database is
made of one table, an input form, an output form and a menu bar. The Home page is
customized. The database is published as a Web server.

1. Connect to the Web server database
Connect to the Web Server by opening the database on a Web browser. You get the
following Home Web page:

1666 4th Dimension Language Reference

2. Display and browse the records
Click on the linked text List Existing Records. This presents the Web equivalent of a 4D
Display Selection screen:

At this point, you can browse the records at your convenience. After you click the Done
button, you go back to the Web site Home page.

4th Dimension Language Reference 1667

3. Add records
In the Web site Home page, click on the Linked text Add Some Records to display the
Web equivalent of a 4D Add Record screen:

You can add as many as records as you wish. When you are done, click the Cancel button
(the one with the red cross) to return to the Web site Home page.

4. List or add records in the Main menu
In the Home page, click the Go to Main Menu Bar button. This exits the Home page and
presents the Web equivalent of the 4D Custom menu bar:

1668 4th Dimension Language Reference

At this point, clicking on each menu item allows you to List or Add records: the same 4D
methods that were used from the Home page are associated to the menu items.

5. Terminate the connection
When you are done, just quit your browser. 4D will terminate the Web connection
process once the timeout delay has elapsed.

Initiating a Web connection in contextual mode
Each time a Web browser connects to a 4D database published as a Web Server in
contextual mode, 4D performs the following actions:
• It executes the On Web Authentication database method, if it exists.
• If this method returns True or does not exist, it executes the On Web Connection
database method, if it exists.
• If there is no such database method or if the method has completed, 4D then displays
the Default Home page defined in the Preferences, if any.
• If no Default home page is defined, 4D then displays the current menu bar (by default
menu bar #1), if it exists.
• If there is neither a Default Home page nor a menu bar, 4th Dimension displays a
default Web page that states: "This database has not been setup for the Web yet".

4th Dimension Language Reference 1669

The following diagram summarizes these actions:

1670 4th Dimension Language Reference

The On Web connection database method can call any of the project methods or forms
defined in the database as well as HTML pages. The database method can actually handle
the whole session.

A Web connection to 4D or 4D Server is not the same as a Client/Server connection. The
HTTP protocol, which supports HTML and the Web, is not a “session-based” protocol; it is
rather a “request-based” protocol. In Client/Server, you connect, work in a session, and
then disconnect from the server. With HTTP, each time you perform an action that
requires the attention of or an action from the Web Server, a request is sent to the server.
In short, an HTTP request can be understood as the sequence “Connect+Request+Wait for
reply+Disconnect.”

In contextual mode, in order to run a Client/Server session via HTTP, by default 4D
maintains, through a transparent encoding of the URLs, a context that uniquely
identifies your Web connection and at the same time associates the connection to the 4D
process handling the connection.

However, in this mode 4D has no way to provide an equivalent of the Client/Server
disconnect action that terminates a session. That is the reason why the termination of a
Client/Server session is handled through a timeout scheme. The 4D process handling the
Web connection terminates after no activity has been detected for a delay time equal to
the database Web timeout settings.

Database and Web Server in one
You can completely manage a 4D Web Server session using 4D Menus Bars, Forms and
Methods in contextual mode. In the preceding example, listing and adding records was
performed by simple 4D methods and forms. If we had not included an HTML home
page, a Web browser would have obtained, upon connection, the menu bar #1 shown.

If we eliminate the HTML home page, building a Web Server supporting database
Client/Server transactions consists of building a 4D database on Windows or Macintosh,
for one or multiple users. The following steps explain the process of creating the example
database in this way.

4th Dimension Language Reference 1671

• Here is the Structure of the example database:

• Input and Output forms are added to enable you to work with records.

• Menu bar #1 is added to enable you to work with Custom menus and to support Web
connections.

1672 4th Dimension Language Reference

• The two following project methods are written.

` M_ADD_RECORDS project method
C_TEXT($1) ` This parameter MUST be explicitly declared
Repeat

ADD RECORD ([Clients])
Until (OK=0)

` M_LIST_RECORDS project method
C_TEXT($1) ` This parameter MUST be explicitly declared
ALL RECORDS ([Clients])
MODIFY SELECTION([Clients])

The "Start a New Process" attribute is assigned to each method.

• The Web server starts up in contextual mode and a default home page is defined in the
database Preferences:

4th Dimension Language Reference 1673

• The home page contains two links,“Add Some Records” and “List Existing Records,”
that trigger the execution of the 4D project methods M_ADD_RECORDS and
M_LIST_RECORDS through their URLs. The convention is quite simple: any HTML object
can link to a project method of your database with the URL
"/4DMETHOD/Name_of_your_Method". The Available through 4DACTION, 4D METHOD
and 4D SCRIPT attribute must be associated with each method called using 4DMETHOD:

Once these links have been defined, when the Web browser sends back the URL, 4D
executes the project method specified after the /4DMETHOD/ keyword. Then, after the
project method has been completed, you go back to the HTML page that triggered its
execution. Note that the project method can itself display 4D forms, other HTML pages,
and so on.
Your 4D-based Web Site can be a completely 4D-based system or a combination of 4D
forms and HTML pages. The interesting point in using HTML pages from within your 4D
database is that you benefit from both the 4D and HTML development environments.
Remember, you do not have to use HTML pages if you do not want to

The HTML home page in this example includes a button used to submit a record. There
are three types of HTML buttons: normal, submit, and reset.
• Normal - Normal buttons can be attributed an URL that refers to a 4D method using the
/4DMETHOD/ keyword. Normal buttons are used for navigation purposes.
• Submit - Submit buttons submit the form with the values entered by the user (if any) to
the Web server. They are useful for handling data entry that you prefer to perform via an
HTML page rather than a plain 4D form
• Reset - Reset buttons are not very useful within a 4D development: they clear the form
of the values entered by the user (if any) and does not send any request to the server.

While integrating HTML pages into 4D, you will typically use normal or submit type
buttons. The code of the home page button is the following: INPUT TYPE="SUBMIT"
NAME="/4DMETHOD/GO_MAIN_MENUBAR"

1674 4th Dimension Language Reference

To submit the HTML form on the 4D side, you need to specify the POST action 4D
method that will be executed by 4D after the form is submitted.
To do this, it must contain the line FORM ACTION="/4DMETHOD/GO_MAIN_MENU_BAR"
METHOD="POST"

• The GO_MAIN_MENU_BAR project method is the following:
SET HOME PAGE("")

In this example, this method has only one purpose: getting out of the current default
home page displayed on the Web browser and then sending the current menu bar. 4D
switches to the menu bar #1 of the database.

That is it!

In less than five minutes, you have created a 4D database that is both a locally operable
database and a Web Server that you can publish on your Intranet network or on the
Internet.

See Also
SEND HTML FILE, SET WEB DISPLAY LIMITS, SET WEB TIMEOUT, START WEB SERVER, STOP
WEB SERVER.

4th Dimension Language Reference 1675

Connection Security Web Server

version 2004.2 (Modified)
__

The security of your 4D Web Server is based on the following elements:

• The combination of the Web password management system and the On Web
Authentication Database Method,
• The definition of a Generic Web User,
• The definition of a HTML Root folder by default,
• The definition of the “Available through 4DACTION, 4DMETHOD and 4DSCRIPT”
property for each project method of the database.

Note: The security of the connection itself can be managed through the SSL protocol. For
more information, refer to section Using SSL Protocol.

Password Management System for Web Access
__

You can now define, in the Preferences dialog box, the access control system you want to
apply to your Web server. To do this, in the Preferences dialog box, choose the Advanced
page of the Web theme:

1676 4th Dimension Language Reference

In the "Passwords" area, two options are available to you: Use Passwords and Include 4D
Passwords. The second check box is only active if the first one has been selected.

• Use Passwords: lets you manage access to the Web server using passwords. When a user
connects to the server, a dialog box appears on their browser in order for them to enter
their user name and password. These two values are then sent to the On Web
Authentication Database Method along with the other connection parameters (IP address
and port, URL...) so that you can process them.
Note: In this case, if the On Web Authentication Database Method doesn’t exist, the
connection is refused.

• Include 4D Passwords: allows you to use, instead of or in addition to your own password
system, 4D’s database password system (as defined in 4D).

Notes:
- With the 4D Client Web server, keep in mind that all the sites published by the 4D
Client machines will share the same table of users. Validation of users/passwords is carried
out by the 4D Server application.
- Passwords entered by users are not encrypted in the HTTP requests (Basic mode).

Overview of the 4D Web Server’s Access System
The system that filters connections to the 4D Web server depends on the combination of
two parameters:
• The Web password options in the Preferences dialog box,
• The existence of the On Web Authentication Database Method.

Here are the different resulting systems:

No option is selected
Note: New databases are created with these parameters by default.
• If the On Web Authentication Database Method exists, it is executed; besides $1 and $2,
only the IP addresses of the browser and the server ($3 and $4) are returned, the user
name and password ($5 and $6) are left empty. In this case, you can filter the
connections according to the browser’s IP address and/or the server’s IP address.
• If the On Web Authentication Database Method doesn’t exist, the connection is
automatically accepted.

The “Use Passwords” option is selected and the “Include 4D Passwords” option is not selected.
• If the On Web Authentication Database Method exists, it is executed and all its parameters
are given. You can therefore filter more precisely the connections according to the user
name, password, and/or the browser’s or Web server’s IP address.
• If the On Web Authentication Database Method doesn’t exist, the connection is
automatically refused and a message indicating that the Authentication method doesn’t
exist is sent to the browser.
Note: If the user name sent by the browser is an empty string and if the On Web
Authentication Database Method doesn’t exist, a password dialog box is sent to the
browser.

4th Dimension Language Reference 1677

The “Use Passwords” and “Include 4D Passwords” options are selected.
• If the user name sent by the browser exists in the table of 4D users and the password is
correct, the connection is accepted. If the password is incorrect, the connection is refused.
• If the user name sent by the browser doesn’t exist in 4D, two results are then possible:
- If the On Web Authentication Database Method exists, the parameters $1, $2, $3, $4, $5,
and $6 are returned. You can therefore filter the connections according to the user name,
password, and/or the browser’s or Web server’s IP address.
- If the On Web Authentication Database Method doesn’t exist, the connection is refused.

4D Web server’s access system is summarized in the following diagram:

1678 4th Dimension Language Reference

A Security Note about Robots
Certain robots (query engines, spiders...) scroll through Web servers and static pages. If
you want robots to be able to access your entire site, you can define which URLs they are
not allowed to access.
To do so, put the ROBOTS.TXT file at the server’s root. This file must be structured in the
following manner:

User-Agent: <name>
Disallow: <URL> or <beginning of the URL>

For example:
User-Agent: *
Disallow: /4D
Disallow: /%23%23
Disallow: /GIFS/

“User-Agent: *” means that all robots are affected.
“Disallow: /4D” means that robots are not allowed to access URLs beginning with /4D.
“Disallow: /%23%23” means that robots are not allowed to access URLs beginning with
/%23%23.
“Disallow: /GIFS/’ means that robots are not allowed to access the /GIFS/ folder or its
subfolders.

Another example:
User-Agent: *
Disallow: /

In this case, robots are not allowed to access the entire site.

Generic Web User
__

You can designate a user, previously defined in the 4D password table, as a “Generic Web
User.” In this case, each browser that connects to the database can use the access
authorizations and restrictions associated with this generic user. You can therefore easily
control the browser’s access to the different parts of the database.

Note: Do not confuse this option, which allows you to restrict the browser’s access to
different parts of the database (tables, menus, etc.), with the Web server’s connection
control system, managed by the password system and the On Web Authentication
Database Method.

To define a Generic Web User:
1. In the Design mode, create at least one user with the Users editor of the Tool Box.
You can associate a password with the user if you wish.
2. In the different 4D editors, authorize or restrict access to this user.
3. In the Preferences dialog, choose the Advanced page of the Web theme.
The “Web Passwords” area contains the Generic Web User drop-down list. By default, the
Generic Web User is the Designer and the browsers have full access to the entire database.

4th Dimension Language Reference 1679

4. Choose a user in the drop-down list and validate the dialog box.

All the Web browsers that are authorized to connect to the database will benefit from the
access authorizations and restrictions associated with this Generic Web User (except when
the “Include 4D Passwords” option has been selected and the user that connects does not
exist in the 4D password table, see below).

Interaction with the Web Password System
The "Use Passwords" option does not influence how the Generic Web User operates.
Whatever the state of this option, the access authorizations and restrictions associated
with the “Generic Web User” will be applied to all the Web browsers that are authorized
to connect to the database.

However, when the "Include 4D passwords" option is selected, two possible results can
occur:
• The user’s name and password don’t exist in 4D’s password table. In this case, if the
connection has been accepted by the On Web Authentication Database Method, the
Generic Web User’s access rights will be applied to the browser.
• If the user’s name and password exist in 4D’s password table, the “Generic Web User”
parameter is ignored. The user connects with his own access rights.

Defining a HTML Root Folder by Default
__

This option in the Preferences allows you to define the folder in which 4D will search for
the static and semi-dynamic HTML pages, pictures, etc., to send to the browsers.

Moreover, the HTML root folder defines, on the Web server hard drive, the hierarchical
level above which the files will not be accessible. This access restriction applies to URLs
sent to Web browsers as well as to 4D’s Web server commands, such as SEND HTML FILE. If
a URL is sent to the database by a browser or if a 4D command tries to access a file located
above the HTML root folder, an error is returned indicating that the file has not been
found.

By default, 4D defines a HTML Root folder named WebFolder. If it does not already exist,
the HTML root folder is physically created on disk at the moment the Web server is
launched for the first time.

1680 4th Dimension Language Reference

If you keep the default location, the root folder is created:
• with 4th Dimension and 4D Server, at the same level as that of the database structure
file.
• with 4D Client, at the same level as that of the 4D Client .exe file (under Windows) or
the software package (under Mac OS).

You can modify the default HTML root folder name and location in the Preferences
dialog box (Web theme, Configuration page):

In the “Default HTML Root” entry area, enter the new access path of the folder that you
wish to define.
The access path entered in this dialog box is relative: it is established from the folder
containing the structure of the database (4th Dimension or 4D Server) or the folder
containing the 4D Client application or software package (4D Client).
For multi-platform compatibility of your databases, the 4D Web server uses particular
writing conventions to describe access paths. The syntax rules are as follows:
• Folders are separated by a slash (“/”)
• The access path must not end with a slash (“/”)
• To “go up” one level in the folder hierarchy, enter “..” (two periods) before the folder
name
• The access path must not start with a slash (“/”) (except if you want the HTML root
folder to be the database or 4D Client folder, see below).
For example, if you want the HTML root folder to be the “Web” subfolder in the
“4DDatabase” folder, enter 4DDatabase/Web.
If you want the HTML root folder to be the database or 4D Client folder, but for access to
the folders above to be forbidden, enter “/” in the area. For a completely free access to the
volumes, leave the “Default HTML Root” area empty.

WARNING: If you do not define a default HTML Root folder in the Preferences dialog box,
the folder that contains the structure file of the database or the 4D Client application will
be used. Be careful because in this case there are no access restrictions (users can access
all the volumes).

Note: When the HTML root folder is modified in the Preferences dialog box, the cache is
cleared so as to not store files whose access is restricted.

4th Dimension Language Reference 1681

Database Preferences and SET HTML ROOT (contextual mode)
You can also modify the HTML root folder by using the SET HTML ROOT command (in
contextual mode only). The modification therefore only applies to the current Web
process for the worksession. The cache of the HTML pages is therefore cleared.
However, the SET HTML ROOT command takes into account the default HTML root folder
when it is defined in the Preferences. If the folder defined in the Preferences dialog box is
“WebPages/” and if you pass the instruction SET HTML ROOT(“Folder”), the default HTML
root folder becomes “WebPages/Folder/”. Also in this case, the access restrictions are only
maintained for the folders located above the “WebPages” folder.

Note: The SET HTML ROOT command has no effect when the Web server is in non-
contextual mode.

Available through 4DACTION, 4DMETHOD and 4DSCRIPT
__

The special 4DACTION (non-contextual mode) and 4DMETHOD (contextual mode) URLs,
as well as the 4DSCRIPT, 4DVAR and 4DHTMLVAR tags, allow you to trigger the execution
of any project method of a4D database published on the Web. For example, the request
http://www.server.com/4DACTION/Erase_All causes the execution of the Erase_All project
method, if it exists.

This mechanism therefore presents a security risk for the database, in particular if an
Internet user intentionally (or unintentionally) triggers a method not intended for
execution via the Web. You can avoid this risk in three ways:
• Restrict access to project methods using the 4D password system. Drawbacks: This
system requires the use of 4D passwords and forbids any type of method execution
(including using HTML tags).
• Filter the methods called via the URLS using the On Web Authentication Database
Method. Drawbacks: If the database includes a great number of methods, this system may
by difficult to manage.
• Use the Available through 4DACTION, 4DMETHOD and 4DSCRIPT option found in the
Method properties dialog box:

1682 4th Dimension Language Reference

This option is used to individually designate each project method that can be called using
the special URLs, 4DACTION and 4DMETHOD, or the 4DSCRIPT, 4DVAR and 4DHTMLVAR
tags. When it is not checked, the project method concerned cannot be executed using an
HTTP request containing a special URL or tag. Conversely, it can be executed using other
types of calls (formulas, other methods, etc.).

This option is unchecked by default for databases created with 4th Dimension starting
with version 2003. Methods that can be executed using the 4DACTION or 4DMETHOD
Web URLs or the 4DSCRIPT, 4DVAR and 4DHTMLVAR tags must be specifically indicated.
Conversely, for reasons of compatibility, this option is checked for existing databases
(created with a version of 4D earlier than 2003): by default, all the project methods are
accessible via Web requests.

In the Explorer, Project methods “available through 4DACTION, 4DMETHOD and
4DSCRIPT” are given a specific icon:

See Also
On Web Authentication Database Method, On Web Connection Database Method, Using SSL
Protocol.

4th Dimension Language Reference 1683

On Web Authentication Database Method Web Server

version 2004 (Modified)
__

The On Web Authentication Database Method is in charge of managing Web server engine
access. It is called by 4th Dimension, 4D Server or 4D Client when a Web browser request
requires the execution of a 4D method on the server (method called using a 4DACTION or
4DCGI URL, a 4DSCRIPT tag, etc.).

This method receives six Text parameters: $1, $2, $3, $4, $5, and $6, and returns one
Boolean parameter, $0. The description of these parameters is as follows:

Parameters Type Description
$1 Text URL
$2 Text HTTP header + HTTP body (up to 32 kb limit)
$3 Text IP address of the Web client (browser)
$4 Text IP address of the server
$5 Text User name
$6 Text Password

$0 Boolean True = request accepted, False = request rejected

You must declare these parameters as follows:

` On Web Authentication Database Method

C_TEXT($1;$2;$3;$4;$5;$6)
C_BOOLEAN($0)

` Code for the method

Note: All the On Web Authentication database method’s parameters will not eventually
be filled in. The information received by the database method depends on the options
that you have previously selected in the Preferences dialog box (please refer to the section
Connection Security).

• URL
The first parameter ($1) is the URL entered by the user in the location area of his or her
Web browser, from which the host address has been removed.

1684 4th Dimension Language Reference

Let’s take the example of an Intranet connection. Suppose that the IP address of your 4D
Web Server machine is 123.4.567.89. The following table shows the values of $1
depending on the URL entered in the Web browser:

URL entered in Web browser Location area Value of parameter $1
123.4.567.89 /
http://123.4.567.89 /
123.4.567.89/Customers /Customers
http://123.4.567.89/Customers /Customers
http://123.4.567.89/Customers/Add /Customers/Add
123.4.567.89/Do_This/If_OK/Do_That /Do_This/If_OK/Do_That

• Header and Body of the HTTP request
The second parameter ($2) is the header and the body of the HTTP request sent by the
Web browser. Note that this information is passed to your On Web Authentication database
method as it is. Its contents will vary depending on the nature of the Web browser which
is attempting the connection.
If your application deals with this information, it is up to you to parse the header and the
body.

Note: For more information about this parameter, please refer to the description of the
On Web Connection Database Method.

• Web client IP address
The $3 parameter receives the IP address of the browser’s machine. This information can
allow you to distinguish between Intranet and Internet connections.

• Server IP address
The $4 parameter receives the IP address used to call the Web server. 4D since version 6.5
allows for multi-homing, which allows you to exploit machines with more than one IP
address. For more information, please refer to the section Web Server Settings.

• User Name and Password
The $5 and $6 parameters receive the user name and password entered by the user in the
standard identification dialog box displayed by the browser. This dialog box appears for
each connection, if the Use Passwords option has been selected in the Preferences dialog
box (see section Connection Security).

Note: If the user name sent by the browser exists in 4D, the $6 parameter (the user’s
password) is not returned for security reasons.

4th Dimension Language Reference 1685

• $0 parameter

The On Web Authentication Database Method returns a boolean in $0:
• If $0 is True, the connection is accepted.
• If $0 is False, the connection is refused.

The On Web Connection Database Method is only executed if the connection has been
accepted by On Web Authentication.

WARNING: If no value is set to $0 or if $0 is not defined in the On Web Authentication
Database Method, the connection is considered as accepted and the On Web Connection
Database Method is executed.

Notes
• Do not call any interface elements in the On Web Authentication Database Method
(ALERT, DIALOG, etc.), otherwise it will be interrupted and the connection will be refused.
The same is true if an error occurs while the database method is being executed.
• It is possible to forbid execution by 4DACTION or 4DMETHOD for each project method
using the “Available through 4DACTION, 4DMETHOD and 4DSCRIPT” option in the
Method properties dialog. For more information about this point, refer to the Connection
Security section.

On Web Authentication Database Method calls
The On Web Authentication Database Method is automatically called, regardless of the
mode, when a request or processing requires the execution of a 4D method. It is also
called when the Web server receives an invalid static URL (for example, if the static page
requested does not exist).

The On Web Authentication Database Method is therefore called in the following cases:
• when 4D receives a URL beginning with 4DACTION/
• when 4D receives a URL beginning with 4DMETHOD/
• when 4D receives a URL beginning with 4DCGI/
• when 4D receives a URL requesting a static page that does not exist
• when 4D processes a 4DSCRIPT tag in a semi-dynamic page
• when 4D processes a 4DLOOP tag based on a method in a semi-dynamic page.

Note that the On Web Authentication Database Method is NOT called when the server
receives a URL requesting a valid static page.

1686 4th Dimension Language Reference

Example
Here is a typical example of the On Web Authentication Database Method that filters
connections using a Users and a Password table:

`On Web Authentication Database Method
C_TEXT($5;$6;$3;$4)
C_TEXT($user;$password;$BrowserIP;$ServerIP)
C_BOOLEAN($4Duser)
ARRAY TEXT($users;0)
ARRAY LONGINT($nums;0)
C_LONGINT($upos)
C_BOOLEAN($0)

$0:=False

$user:=$5
$password:=$6
$BrowserIP:=$3
$ServerIP:=$4

`For security reasons, refuse names that contain @
If (WithWildcard($user) | WithWildcard($password))

$0:=False
`The WithWildcard method is described below

Else
`Check to see if it’s a 4D user

GET USER LIST($users;$nums)
$upos:=Find in array($users;$user)
If ($upos > 0)

$4Duser:=Not(Is user deleted($nums{$upos}))
Else

$4Duser:=False
End if

If (Not($4Duser))
`It is not a user defined 4D, look in the table of Web users

QUERY([WebUsers];[WebUsers]User=$user;*)
QUERY([WebUsers]; & [WebUsers]Password=$password)
$0:=(Records in selection([WebUsers]) = 1)

Else
$0:=True

End if
End if

`Is this an intranet connection?
If (Substring($BrowserIP;1;7) # "192.100.")

$0:=False
End if

4th Dimension Language Reference 1687

The WithWildcard method is as follows:

`WithWildcard Method
`WithWildcard (String) -> Boolean
`WithWildcard (Name) -> Contains a Wilcard character

C_INTEGER($i)
C_BOOLEAN($0)
C_TEXT($1)

$0:=False
For($i;1;Length($1))

If (Ascii(Substring($1;$i;1)) = Ascii("@"))
$0:=True

End if
End for

See Also
Connection Security, Database Methods, On Web Connection Database Method, URLs and
Form Actions.

1688 4th Dimension Language Reference

On Web Connection Database Method Web Server

version 2004 (Modified)
__

The On Web Connection database method can be called in three different cases:
• the Web server receives a request beginning with the 4DCGI URL.
• the Web server receives an invalid request.
• it is also called by 4th Dimension or 4D Server each time a Web browser initiates a
connection to the database in contextual mode, or each time the Web server receives a
request requiring the creation of a context (this case is not handled by 4D Client, which
does not support the contextual mode).

For more information, refer to the paragraph “On Web Connection Database Method
calls” below.

The request should have been previously accepted by the On Web Authentication Database
Method (if it exists) and the database should be published as a Web server.

The On Web Connection database method receives six text parameters that are passed by
4D. The contents of these parameters are as follows:

Parameters Type Description
$1 Text URL
$2 Text HTTP header + HTTP body (up to 32 kb limit)
$3 Text IP address of the Web client (browser)
$4 Text IP address of the server
$5 Text User name
$6 Text Password

You must declare these parameters as follows:

` On Web Connection Database Method

C_TEXT($1;$2;$3;$4;$5;$6)

` Code for the method

• URL extra data
The first parameter ($1) is the URL entered by the user in the location area of his or her
Web browser, from which the host address has been removed.

4th Dimension Language Reference 1689

Let’s take the example of an Intranet connection. Suppose that the IP address of your 4D
Web Server machine is 123.4.567.89. The following table shows the values of $1
depending on the URL entered in the Web browser:

URL entered in Web browser Location area Value of parameter $1
123.4.567.89 /
http://123.4.567.89 /
123.4.567.89/Customers /Customers
http://123.4.567.89/Customers /Customers
http://123.4.567.89/Customers/Add /Customers/Add
123.4.567.89/Do_This/If_OK/Do_That /Do_This/If_OK/Do_That

Note that you are free to use this parameter at your convenience. 4D simply ignores the
value passed beyond the host part of the URL.

For example, you can establish a convention where the value "/Customers/Add" means “go
directly to add a new record in the [Customers] table.” By supplying the Web users of your
database with a list of possible values and/or default bookmarks, you can provide shortcuts
to the different parts of your application. This way, Web users can quickly access resources
of your Web site without going through the whole navigation path each time they make
a new connection to your database.

WARNING: In order to prevent a user from reentering a database with a bookmark
created during a previous session, 4D intercepts any URL that corresponds to one of the
standard 4D URLs.

• Header of the HTTP request followed by the HTTP body
The second parameter ($2) is the header and the body of the HTTP request sent by the
Web browser. Note that this information is passed to your On Web Connection Database
Method as it is. Its contents will vary depending on the nature of the Web browser which
is attempting the connection.

With Netscape 4.5 running on Mac OS, you may receive a header similar to this:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.5 (Macintosh; I; PPC)
Host: 123.45.67.89
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: us
Accept-Charset: iso-8

1690 4th Dimension Language Reference

With Microsoft Internet Explorer 6 running on Windows, you may receive a header
similar to this:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: 123.45.67.89
Accept: image/gif, image/x-xbitmap, image/pjpeg, */*
Accept-Language: us

If your application deals with this information, it is up to you to parse the header and the
body.

• IP address of the Web client
The $3 parameter receives the IP address of the browser’s machine. This information can
allow you to distinguish between Intranet and Internet connections.

• IP address of the server
The $4 parameter receives the IP address to which the HTTP request was sent. 4D allows
for multi-homing, which allows you to exploit machines with more than one IP address.
For more information, please refer to the section Web Server Settings.

• User Name and Password
The $5 and $6 parameters receive the user name and password entered by the user in the
standard identification dialog box displayed by the browser. This dialog box appears for
each connection, if the Use Passwords option has been selected in the Preferences dialog
box (see section Connection Security).

Note: If the user name sent by the browser exists in 4D, the $6 parameter (the user’s
password) is not returned for security reasons.

On Web Connection Database Method Calls
__

The On Web Connection Database Method can be used as the entry point for the 4D Web
server, either using the special 4DCGI URL, or using customized command URLs. It also
plays a role as the entry point in contextual mode (with 4th Dimension and 4D Server).

Warning: Calling a 4D command that displays an interface element (ALERT, DIALOG...)
ends the method processing.

The On Web connection database method is therefore called in the following cases:
• When connecting a browser to a 4D Web server operating in contextual mode. The
database method is called with the /<action>... URL.
• When 4D receives the /4DMETHOD URL. The Web server switches to contextual mode
and the database method is called with the /4DMETHOD/MethodName URL in $1.

4th Dimension Language Reference 1691

• When 4D receives the /4DCGI URL. The database method is called with the
/4DCGI/<action> URL in $1.
• When a Web page is called with a URL of type <path>/<file> is not found. The database
method is called with the URL (*).
• When a Web page is called with a URL of type <file>/ and no home page has been
defined by default. The database method is called with the URL (*).

(*) In this particular cases, the URL received in $1 does NOT start with the "/" character.

To know whether the On Web Connection Database Method was called from a contextual
or from a non-contextual connection, you can use the Web Context function, that
returns True if it is called from contextual mode, and False otherwise.

Consequently, we suggest that you structure the On Web Connection database method in
the following manner:

`On Web connection database method
C_TEXT($1;$2;$3;$4;$5;$6)
If (Web Context) `If in contextual mode

WithContext ($1;$2;$3;$4;$5;$6)
`The WithContext contains everything that was in the
`On Web connection database method in 4D 6.0.x

Else
NoContext ($1;$2;$3;$4;$5;$6)

`The NoContext method executes the non-contextual
`processing of requests (generally short)

End if

Example: Implementing Client Local Home Pages in contextual mode
In the following example, the parameter $1, sent to the On Web Connection database
method, is used to implement Client Home Pages within an organization. The Intranet
server operates in contextual mode.

The database has two tables: [Customers] and [Tables]. The On Startup database method
shown here initializes interprocess arrays used later by the On Web Connection database
method.

` On Startup Database Method

` Table List
ARRAY STRING(31;◊asTables;Count tables)
For ($vlTable;1;Size of array(◊asTables))

◊asTables{$vlTable}:=Table name($vlTable)
End for

` Standard Web Actions at Login
ARRAY STRING(31;◊asActions;2)
◊asActions{1}:="Add"
◊asActions{2}:="List"

1692 4th Dimension Language Reference

The main job of the On Web Connection database method is to decipher the extra data
passed in the URL after the host part of the address and to act accordingly. The method is
as follows:

` On Web Connection Database Method

C_TEXT($1;$2;$3;$4;$5;$6)
C_TEXT($vtURL)

If (Web context) `If we are in contextual mode
` Just in case, check that $1 is equal to "/" or "/..."

If ($1="/@")
` Copy the URL into a local variable minus the first "/"

$vtURL:=Substring($1;2)
` Parse the URL and populate a local array with the tokens of the URL
` For example, if the URL extra data is "aaa/bbb/ccc", the resulting array
` will be of the three elements "aaa", "bbb" and "ccc" in that order

$vlElem:=0
ARRAY TEXT($atTokens;$vlElem)
While ($vtURL # "")

$vlElem:=$vlElem+1
INSERT ELEMENT($atTokens;$vlElem)
$vlPos:=Position("/";$vtURL)
If ($vlPos>0)

$atTokens{$vlElem}:=Substring($vtURL;1;$vlPos-1)
$vtURL:=Substring($vtURL;$vlPos+1)

Else
$atTokens{$vlElem}:=$vtURL
$vtURL:=""

End if
 End while

` If extra data was passed after the HOST part of the URL
If ($vlElem>0)

` Using the interprocess array initialized in the On Startup DB method
` Check whether the 1st token is a name of a table

$vlTableNumber:=Find in array(◊asTables;$atTokens{1})
If ($vlTableNumber>0)

` If so, get pointer to this table
$vpTable:=Table($vlTableNumber)

` Set the Input and Output forms
INPUT FORM($vpTable->;"Input Web")
OUTPUT FORM($vpTable->;"Output Web")

` Using an interprocess array initialized in the On Startup DB Method
` Check whether the 2nd token is a known standard action

$vlAction:=Find in array(◊asActions;$atTokens{2})

4th Dimension Language Reference 1693

Case of
` Adding records

: ($vlAction=1)
Repeat

ADD RECORD($vpTable->;*)
Until (OK=0)
` Listing records

: ($vlAction=2)
READ ONLY($vpTable->)
ALL RECORDS($vpTable->)
DISPLAY SELECTION($vpTable->;*)
READ WRITE($vpTable->)

Else
` Here could additional standard table actions be implemented

End case
Else

` Here could other standard actions be implemented
End if

End if
End if

` Whatever happened above, pursue with the normal Log On process
WWW NORMAL LOG ON

Else
... ` Here could the code managing the non-contextual mode

`would be implemented
End if

At this point, people within the organization can connect to the database and enter a URL
according to the convention set by the methods listed. Users can also create bookmarks if
they do not want to re-enter the URL each time. In fact, the ultimate solution is to
provide each member of the organization with an HTML page that they will use locally to
access the database.

1694 4th Dimension Language Reference

This HTML page is shown:

In other words, the HTML page ACME_IS.HTM is the Client Local Home Page for the 4D-
based information system of the organization. If a user clicks on the Add New Products
link, the Web browser will connect to the host having the URL
http://123.4.567.89/Products/Add. Provided that the IP address of the database computer
is 123.4.567.89, the On Web Connection Database Method receives the extra URL data
"/Products/Add" in $1, and therefore proceeds to add records in the [Products] table.

Finally, users can drag and drop links from that page onto the desktop to create Internet
Shortcut icons, such as the Add New Customers icon shown here. Simply double-clicking
these icons will bring them directly into any part of your 4D Web database.

4th Dimension Language Reference 1695

The source code of this HTML page is listed here:

See Also
Database Methods, On Web Authentication Database Method, URLs and Form Actions, Using
the Contextual Mode.

1696 4th Dimension Language Reference

Binding 4D objects with HTML objects Web Server

version 2003 (Modified)
__

This section describes the means made available by the 4D Web server for exchanging
information via the Web, i.e. for dynamically sending and receiving values. The
following points will be dealt with:
• Sending dynamic values stored in 4D variables
• Receiving dynamic values via Web forms
• Using the COMPILER_WEB project method
• Managing server-side image mapping
• Embedding JavaScript

Note: the sending and receiving of dynamic values can be carried out automatically in
contextual mode via converted 4D forms. For more information on this point, refer to
the section Using the contextual mode.

Sending dynamic values
__

References to 4D variables can be inserted in your HTML pages. You can bind these
references with any type of HTML object. When the Web pages are sent to the browser,
4D will replace these references with the current values of the variables. The pages
received are therefore a combination of static elements and values coming from 4D. This
type of page is called semi-dynamic.

Notes:
• You work with process variables.
• As HTML is a word processing oriented language, you will usually work with Text
variables. However, you can also use BLOBs variables (which avoid the 32 000 characters
limitation of text type variables). You just need to generate the BLOB in Text without
length mode.

First, an HTML object can have its value initialized using the value of a 4D variable.

Second, after a Web form is submitted back, the value of an HTML object can be returned
into a 4D variable. To do so, within the HTML source of the form, you create an HTML
object whose name is the same as the name of the 4D process variable you want to bind.
That point is studied further in the paragraph “Receiving dynamic values” in this
document.

Note: In non-contextual mode, it is not possible to make a reference to 4D picture
variables.

4th Dimension Language Reference 1697

Since an HTML object value can be initialized with the value of a 4D variable, you can
programmatically provide default values to HTML objects by including <!--#4DVAR
VarName--> in the value field of the HTML object, where VarName is the name of the 4D
process variable as defined in the current Web process. This is the name that you surround
with the standard HTML notation for comments <!--#...-->.

Note: Some HTML editors may not accept <!--#4DVAR VarName--> in the value field of
HTML objects. In this case, you will have to type it in the HTML code.

The <!--#4DVAR --> tag also allows the insertion of 4D expressions in the pages sent (fields,
array elements, etc.). The operation of this tag with this type of data is identical to that
with variables. For more information, refer to the section 4D HTML Tags.

In fact, the syntax <!--#4DVAR VarName--> allows you to insert 4D data anywhere in the
HTML page. For example, if you write:

<P>Welcome to <!--#4DVAR vtSiteName-->!</P>

The value of the 4D variable vtSiteName will be inserted in the HTML page.

Here is an example:

` The following piece of 4D code assigns "4D4D" to the process variable vs4D
vs4D:="4D4D"

` Then it send the HTML page "AnyPage.HTM"
SEND HTML FILE("AnyPage.HTM")

1698 4th Dimension Language Reference

The source of the HTML page AnyPage.HTM is listed here:

In the HTML source code shown, note the hidden input object named vs4D. The value of
this object is set to the text value "<!--#4DVAR vs4D-->". Since the project method sending
the HTML file has previously defined the 4D process variable vs4D, 4D replaces the value
of the HTML object and sets it to "4D4D", the value of the 4D variable.

The embedded JavaScript function Is4DWebServer tests the value of the vs4D HTML
object. Here is the trick: if the HTML page is served by 4D, the object’s value is changed to
"4D4D". However, if the HTML page is served by another application (i.e., 4D WebSTAR
on Macintosh), the object stays with its value as defined in the page, "[vs4D]". Bingo! By
using JavaScript to test the value of that object, from within the page on the Web
Browser side, you can detect whether or not the page is being served by 4D.

4th Dimension Language Reference 1699

This first example shows how you can build “intelligent” HTML pages that provide
additional features when being served by 4D, while staying compatible with other Web
servers.
Important: You bind process variables only. In addition, the current version of 4D does
not allow you to bind a 4D array to an HTML SELECT object. On the other hand, each
element of a SELECT object can refer to separate 4D variables (i.e., the first element to V1,
the second to V2, and so on).

The binding in the direction 4D toward Web Browser works with any encapsulation
method (SEND HTML FILE, SEND HTML BLOB, as well as, in contextual mode, static text or
text or BLOB variable in a 4D form).

Parsing of pages sent by the server
• In contextual mode, before sending an HTML page (HTML document or translated 4D
form), 4D always parses the HTML source code in order to look for objects referring to 4D
variables.
• In non-contextual mode, for the purpose of optimization, the parsing of the HTML
source code is not carried out by the 4D Web server when HTML pages are called using
simple URLs that are suffixed with “.HTML” or “.HTM”. Of course, 4D offers mechanisms
that allow you to "force" the parsing of pages when necessary (refer to the section 4D
HTML Tags).

Inserting HTML Code into 4D Variables
You can insert HTML code into 4D variables. When the HTML static page is displayed on
the Web browser, the value of the variable is replaced by the HTML code and will be
interpeted by the browser.

To insert HTML code into 4D variables, you have two possibilites:
• Make the 4D variable start with ASCII code 1 as first character (i.e.,
vtHTML:=Char(1)+"...HTML code...") and add it to the HTML page using the <!--#4DVAR
vtHTML--> tag.
• Insert directly the 4D variable (i.e., vtHTML:="...HTML code...") in the HTML page using
the <!--#4DHTMLVAR vtHTML--> tag.
You can use a Text or a BLOB variable (the BLOB should have been generated in Text
without length mode).

For more information, refer to section “HTML Tags”.

Receiving dynamic values
__

When you send an HTML page using SEND HTML FILE or SEND HTML BLOB, you can also
bind 4D variables with HTML objects in the “Web Browser toward 4D” direction. The
binding works both ways: once the HTML form is submitted, 4D can copy back the values
of the HTML objects into the 4D process variables. With a view to database compilation,
these variables must be declared in the COMPILER_WEB method (see paragraph below).

1700 4th Dimension Language Reference

It is also possible to retrieve values from the Web forms sent to 4D without prior
knowledge of the fields that they contain, using the GET WEB FORM VARIABLES
command. For more information, refer to the description of this command.

Warning: Getting the values back into the 4D process variables is only possible with
HTML pages sent using SEND HTML FILE or SEND HTML BLOB. With HTML encapsulated
in a 4D form in contextual mode, getting back values is restricted to the actual 4D objects
located in the form.

Consider the following HTML page source code:

4th Dimension Language Reference 1701

When 4D sends the page to a Web Browser, it looks like this:

The main features of this page are:
• It includes three Submit buttons: vsbLogOn, vsbRegister and vsbInformation.
• When you click Log On, the submission of the form is first processed by the JavaScript
function LogOn. If no name is entered, the form is not even submitted to 4D, and a
JavaScript alert is displayed.
• The form has a POST 4D Method as well as a Submit script (GetBrowserInformation) that
copies the Navigator properties to the four hidden objects whose names starts with
vtNav_App.
• The initial value of the object vtUserName is <!--#4DVAR vtUserName-->.

Let’s examine the 4D method WWW Welcome that sends this HTML page using the SEND
HTML FILE command. This method is called by the On Web Connection Database Method.

` WWW Welcome Project Method
` WWW Welcome -> Boolean
` WWW Welcome -> Yes = Can start a session

C_BOOLEAN($0)
$0:=False

` Hidden INPUT HTML objects returning Browser information
C_TEXT(vtNav_appName;vtNav_appVersion;vtNav_appCodeName;vtNav_userAgent)
vtNav_appName:=""
vtNav_appVersion:=""
vtNav_appCodeName:=""
vtNav_userAgent:=""

` Text INPUT HTML object where the user name is entered
C_TEXT(vtUserName)
vtUserName:=""

1702 4th Dimension Language Reference

` HTML submit button values
C_STRING(31;vsbLogOn;vsbRegister;vsbInformation)

Repeat
` Do not forget to reset the values of the submit buttons!

vsbLogOn:=""
vsbRegister:=""
vsbInformation:=""

` Send the Web page
SEND HTML FILE("Welcome.HTM")

` Test the values of the submit buttons in order to detect which one was clicked
Case of

` The Log On button was clicked
: (vsbLogOn # "")

QUERY([WWW Users];[WWW Users]User Name=vtUserName)
$0:=(Records in selection([WWW Users])>0)
If ($0)

WWW POST EVENT ("Log On";WWW Log information)
` The method WWW POST EVENT saves information to a table
`of the database

Else
CONFIRM("This User Name is unknown, would you like to register?")
$0:=(OK=1)
If ($0)

$0:=WWW Register
` The method WWW Register allow a new Web User to register

End if
End if

` The Register button was clicked
: (vsbRegister # "")

$0:=WWW Register

` The Information button was clicked
: (vsbInformation # "")

DIALOG([User Interface];"WWW Information")
End case

Until (Not(◊vbWebServicesOn) | $0)

4th Dimension Language Reference 1703

The features of this method are:

• The 4D variables vtNav_appName, vtNav_appVersion, vtNav_appCodeName, and
vtNav_userAgent (bound to the HTML objects having the same names) use the
GetBrowserInformation JavaScript script to get back the values assigned to the HTML
objects. Simple and direct, the method initializes the variables as strings, then gets back
the values after the Web page has been submitted.

• The 4D variables vsbLogOn, vsbRegister and vsbInformation are bound to the three
Submit buttons. Note that these variables are reset each time the page is sent to the
browser. When the submit is performed by one of these buttons, the browser returns the
value of the clicked button to 4D. The 4D variables are reset each time, so the variable
that is no longer equal to the empty string tells you which button was clicked. The two
other variables are empty strings, not because the browser returned empty strings, but
because the browser “said” nothing about them; consequently, 4D left the variables
unchanged. That is why it is necessary to reset those variables to the empty string each
time the page is sent to the browser.

This the way to distinguish which Submit button was clicked when several Submit
buttons exist on the Web page. Note that 4D buttons in a 4D form are numeric variables.
However, with HTML, all objects are text objects.

If you bind a 4D variable with a SELECT object, you also bind a text variable. In 4D, to
test which element of a drop-down list was chosen, you test the numeric value of the 4D
array. With HTML, this is the value of the selected item that is returned in the 4D variable
bound to the HTML object.

No matter which object you bind with a 4D variable, the returned value is of type Text, so
you bind String or Text 4D process variables.

An interesting point of this example is that after you have obtained information about
the Browser, you can store these values in a 4D table, again combining Web and database
capabilities. This is what the (unlisted) WWW POST EVENT project method does. It does
not “post an event”; it saves the web session information into the tables shown here:

1704 4th Dimension Language Reference

After you have saved the information in a table, you can use other project methods to
send the information back to the Web user. To do so, simply use QUERY to find the right
information and then use DISPLAY SELECTION to show the [WWW Log] records. The
following figure shows the log information available to the registered user of the Web
site:

Using the binding features shown in this example, combined with all the information
you can give to or gather from users via HTML dialogs or 4D forms, you can add some
very interesting administrative capabilities to your database Web site.

COMPILER_WEB Project Method

When the 4D Web server receives a posted form, it automatically calls the project method
called COMPILER_WEB (if it exists). This method must contain all the typing and/or
variable initialization directives, which are the variables whose names are the same as the
field names in the form. It will be used by the compiler when compiling the database.
The COMPILER_WEB method is common to all the Web forms. By default, the
COMPILER_WEB method does not exist. You must explicitly create it.

Note: You can also use the GET WEB FORM VARIABLES command, which gets the value for
all the variables included in a submitted HTML page.

Web Services: The COMPILER_WEB project method is called, if it exists, for each SOAP
request accepted. You must use this method to declare all the 4D variables associated with
incoming SOAP arguments, for all methods published as Web Services. In fact, the use of
process variables in Web Services methods requires that they be declared before the
method is called. For more information on this point, refer to the description of the SOAP
DECLARATION command.

4th Dimension Language Reference 1705

Binding HTML Objects with 4D Variables - Image Mapping
__

As seen in the section Using the Contextual Mode, when a 4D form is used as a Web page,
4D provides Server-side Image Mapping by means of invisible-like buttons that overlap a
static picture.

If you send an HTML document using SEND HTML FILE or SEND HTML BLOB, you can
bind 4D variables with Image Map HTML objects (INPUT TYPE="IMAGE") to retrieve
information. For example, you can create an Image Map HTML object named bImageMap
(you can actually use any name). Each time you click on the image on the browser side, a
submit with the click position is sent back to the 4D Web Server. To retrieve the
coordinates of the click (expressed relative to the top left corner of the image), you just
need to read the value the 4D process variables bImageMap_X and bImageMap_Y (of type
Longint) which contain the horizontal and vertical coordinates of the click. These
variables should be declared in the COMPILER_WEB project method (see previous
paragraph).

• In the HTML page, you write something like:

<P><INPUT TYPE="image" SRC="MyImage.GIF" NAME="bImageMap" BORDER=0></P>

• The 4D method that sends the HTML page contains:

SEND HTML FILE("ThisPage.HTM")

• In the COMPILER_WEB project method, you write:

C_LONGINT(bImageMap_X;bImageMap_Y)
bImageMap_X:=-1 `Initializing the variable
bImageMap_Y:=-1 `Initializing the variable

• Then, in the POST action 4D method or in the current method, after the POST action
method issued a SEND HMTL FILE("") call, you retrieve the coordinates of the click in the
bImageMap_X and bImageMap_Y variables :

If (($bImageMap_X#-1)&($bImageMap_Y#-1))
` Do something accordingly to the coordinates

End if

1706 4th Dimension Language Reference

JavaScript Encapsulation
4D supports JavaScript source code embedded into HTML documents, and also JavaScript
.js files embedded in HTML documents (for example <SCRIPT SRC="...").

Using SEND HTML FILE or SEND HTML BLOB in standard mode, you send a page that you
have prepared in an HTML source editor or built programmatically using 4D and saved as
a document on disk. In both cases, you have full control of the page. You can insert
JavaScript scripts in the HEAD section of the document as well as use scripts with the
FORM markup. In the previous example, the script refers to the form "frm" because you
were able to name the form. You can also trigger, accept, or reject the submission of the
form at the FORM markup level.

In contextual mode, if you encapsulate HTML in a 4D form, you do not have control over
the HEAD section or the FORM declaration. The scope of the scripts is therefore different.
For example, you cannot access the HTML form by its name. However, compare the
Is4DWebServer JavaScript function of the previous example with this one:

Both functions do the same thing, but the second example uses the forms property of the
HTML document object to access the object through the element forms[0]. As a result, it
operates even if you do not know the name that 4D may or may have not given to the
translated HTML page (form).

Note: 4D supports Java applets transport.

See Also
4D HTML Tags, SEND HTML BLOB, SEND HTML FILE, URLs and Form Actions.

4th Dimension Language Reference 1707

URLs and Form Actions Web Server

version 2003 (Modified)
__

The 4D Web Server offers different URLs and HTML form actions that allow you to
implement various actions in your database, in both contextual and non-contextual
modes.

These URLs are the following:
• 4DMETHOD/, to link any HTML object to a project method of your database in
contextual mode,
• 4DACTION/, to link any HTML object to a project method of your database in non-
contextual mode,
• 4DCGI/, to call the On Web Connection Database Method from any HTML object.

In addition, the 4D Web Server accepts several additional URLs:
• /4DSTATS, /4DHTMLSTATS, /4DCACHECLEAR and /4DWEBTEST, to allow you to obtain
information about the functioning of your 4D Web site. These URLs are described in the
section Information about the Web Site.
• /4DWSDL, to allow you to access the declaration file of Web Services published on the
server. For more information, refer to the Web Services (Server) commands section and to
the Design Environment manuel.

URL 4DACTION/
__

Syntax: 4DACTION/MyMethod{/Param}
Mode: Non-contextual. When called from contextual mode, aborts the context process
and switches to non-contextual mode.
Usage: URL or Form action.

This URL allows you to link an HTML object (text, button...) to a 4D project method in
contextual mode. The link will be /4DMETHOD/Method_Name/Param where
Method_Name is the name of the 4D project method to be executed when the user clicks
on the link and Param an optional Text parameter to pass to the method in $1 (see
paragraph “The Text Parameters Passed to 4D Methods Called via URLs” below).
When 4D receives a /4DACTION/MyMethod/Param request, the On Web Authentication
Database Method (if it exists) is called. If it returns True, the MyMethod method is
executed.
4DACTION/ can be associated with a URL in a static Web page. The syntax of the URL
must be in the following form: Do Something

The MyMeth project method should generally return a "response" (sending of an HTML
page using SEND HTML FILE or SEND HTML BLOB, etc.). Be sure to make the processing as
short as possible in order not to block the browser.

Note: A method called by 4DACTION must not call interface elements (DIALOG, ALERT...).

1708 4th Dimension Language Reference

Warning: For a 4D method to be able to be executed using the 4DACTION/ URL, it must
have the “Available through 4DACTION, 4DMETHOD and 4DSCRIPT” attribute
(unchecked by default), defined in the Method properties. For more information on this
point, refer to the Connection Security section.

Example
This example describes the association of the 4DACTION/ URL with an HTML picture
object in order to dynamically display a picture in the page. You insert the following
instructions in a static HTML page:

The PICTFROMLIB method is as follows:

C_TEXT($1) `This parameter must always be declared
C_PICTURE($PictVar)
C_BLOB($BlobVar)
C_LONGINT($Number)

`We retrieve the picture’s number in the string $1
$Number:=Num(Substring($1;2;99))
GET PICTURE FROM LIBRARY($Number;$PictVar)
PICTURE TO GIF($PictVar;$BlobVar)
SEND HTML BLOB ($BlobVar;"Pict/gif")

4DACTION to post forms
The 4D Web server offers an additional possibility when you want to use “posted” forms,
which are static HTML pages that send data to the Web server. The POST type must be
associated to them and the form’s action must imperatively start with
/4DACTION/MethodName.

Note: A form can be submitted through two methods (both can be used with 4D):
• POST, usually used to add data into the Web server - to a database,
• GET, usually used to request the Web server - data coming from a database.

In this case, when the Web server receives a posted form, it calls the COMPILER_WEB
project method (if it exists, see below), then the On Web Authentication Database Method
(if it exists). If it returns True, the MethodName method is executed. 4D analyzes the
HTML fields present in the form, retrieves their values and automatically fills the 4D
variables with their contents. The field in the form and the 4D variable must have the
same name.

Note: For more information, refer to the section Binding 4D objects with HTML objects.

The HTML syntax to apply in the form is of the following type:
• to define the action in a form:
<FORM ACTION="/4DACTION/MethodName" METHOD=POST>
• to define a field in a form:
<INPUT TYPE=Field type NAME=Field name VALUE="Default value">

4th Dimension Language Reference 1709

For each field in the form, 4D sets the value of the field to the value of the variable with
the same name. For the form options (for example, check boxes), 4D sets the associated
variable to 1 if it is selected, otherwise 0.
For numerical data entries, 4D converts the value of the field from Alpha–>Real.

Note: If a field in the form is named OK (for example the Submit button), the OK system
variable is set to 1 if the value of the field is not empty, otherwise it is set to 0.

Example
In a 4D Web database started and used in “non-contextual” mode, we hope that the
browsers can search records by using a static HTML page. This page is called “search.htm”.
The database contains other static pages that allow you to, for example, display the search
result (“results.htm”). The POST type has been associated to the page, as well as the
/4DACTION/SEARCH action.
Here is the page as it appears in an HTML editor, in our case Adobe® PageMill™:

Here is the HTML code that corresponds to this page:

<FORM ACTION="/4DACTION/PROCESSFORM" METHOD=POST>
<INPUT TYPE=TEXT NAME=VNAME VALUE="">

<!-- Usually we put the name of the button in VALUE, for interpretation reasons, you must put
a number in VALUE-->
<INPUT TYPE=CHECKBOX NAME=EXACT VALUE="1">Whole word

<!-- OK is a particular case-->
<INPUT TYPE=SUBMIT NAME=OK VALUE="Search">
</FORM>

1710 4th Dimension Language Reference

During data entry, type “ABCD” in the data entry area, check the option and validate it
by clicking the Search button.

4D then calls the COMPILER_WEB project method, which is as follows:

C_TEXT(VNAME)
VNAME:=""
C_LONGINT(vEXACT)
vEXACT:=0
OK:=0 `particular case

In the example, VNAME contains the string “ABCD”, vEXACT is equal to 1 and OK is
equal to 1 (because the button’s name is OK).
4D calls the On Web Authentication Database Method (if it exists), then the PROCESSFORM
project method is called, which is as follows:

If (OK=1)
If (vEXACT=0) `If the option has not been selected

vNAME:=VNAME+"@"
End if
QUERY([Jockeys];[Jockeys]Name=vNAME)
vLIST:=Char(1) `Return the list in HTML
FIRST RECORD([Jockeys])
While (Not(End selection([Jockeys])))

vLIST:=vLIST+[Jockeys]Name+” “+[Jockeys]Tel+”
”
NEXT RECORD([Jockeys])

End while
SEND HTML FILE(“results.htm”) `Send the list to the results.htm form

`which contains a reference to the variable vLIST (that is <!--4DVAR vLIST––>)
...
End if

URL 4DMETHOD/
__

Syntax: 4DMETHOD/MyMethod{/Param}
Mode: Contextual. When called from non-contextual mode, switches to contextual
mode.
Usage: URL or Form action.

This URL allows you to link an HTML object (text, button...) to a 4D project method in
contextual mode. The link will be /4DMETHOD/Method_Name/Param where
Method_Name is the name of the 4D project method to be executed when the HTML
object is clicked and Param an optional Text parameter to pass to the method in $1 (see
paragraph “The Text Parameters Passed to 4D Methods Called via URLs” below). The
linked item triggers the execution of the 4D project method through their URLs. The
project method can itself display 4D forms, other HTML pages, and so on.

4th Dimension Language Reference 1711

When 4D receives a /4DMETHOD request, the On Web Authentication Database Method (if
it exists) is called. If it returns True, the On Web Connection Database Method (if it exists)
is called, then the Method_Name method is executed with the /Param string as parameter
(in $1).

If you assign /4DMETHOD/Method_Name as form action to a HTML static page, the
method is executed when a Submit button of the form is clicked. To submit the HTML
form on the 4D side, you need to specify the POST action 4D method that will be
executed by 4D after the form is submitted. Refer to the example of the command SEND
HTML FILE.
While integrating HTML pages into 4D, you will typically use normal or submit type
buttons.
The HTML syntax to apply in the form is of the following type:
<FORM ACTION="/4DMETHOD/MethodName" METHOD=POST>
For more information about posted forms, refer to the previous paragraph.

Warning: For a 4D method to be able to be executed using the 4DMETHOD/ URL, it must
have the “Available through 4DACTION, 4DMETHOD and 4DSCRIPT” attribute
(unchecked by default), defined in the Method properties. For more information on this
point, refer to the Connection Security section.

URL 4DCGI/<action>

Syntax: 4DCGI/<action>
Mode: Both.
Usage: URL.

When the 4D Web server receives the /4DCGI/<action> URL, the On Web Authentication
Database Method (if it exists) is called. If it returns True, the Web server calls the On Web
Connection Database Method by sending the URL “as is ” to $1.

The 4DCGI/ URL does not correspond to any file. Its role is to call 4D using the On Web
Connection Database Method. The “<action>” parameter can contain any type of
information.

This URL allows you to perform any type of action. You just need to test the value of $1
in the On Web Connection Database Method or in one of its submethods and have 4D
perform the appropriate action. For example, you can build completely custom static
HTML pages to add, search, or sort records or to generate GIF images on-the-fly. Examples
of how to use this URL are in the descriptions of the PICTURE TO GIF and SEND HTTP
REDIRECT commands.

When issuing an action, a “response” must be returned, by using commands that send
data (SEND HTML FILE, SEND HTML BLOB, etc.).

Warning: Please be sure to execute the shortest possible actions so as not to hold up the
browser.

1712 4th Dimension Language Reference

The Text Parameters Passed to 4D Methods Called via URLs

4th Dimension sends text parameters to any 4D method called via special URLs
(4DMETHOD/, 4DACTION/ and 4DCGI/), in both contextual and non-contextual modes.
Regarding these text parameters:
• Although you do not use these parameters, you must explicitly declare them with the
command C_TEXT, otherwise runtime errors will occur while using the Web to access a
database that runs in compiled mode.
• The $1 parameter returns the extra data placed at the end of the URL, and can be used
as a placeholder for passing values from the HTML environment to the 4D environment.

Runtime Errors in Compiled Mode
Let’s consider the following example. You execute a method bound to an HTML object
using a link and obtain the following screen on your Web browser:

This runtime error is related to the missing declaration of the text $1 parameter in the 4D
method that is called when you click on the HTML link referring to that method. As the
context of the execution is the current HTML page, the error refers to the “line 0” of the
method that has actually sent the page to the Web browser.

Following the example from the section Your First Time with the Web Server, you avoid the
problem by explicitly declaring the text $1 parameter within the M_ADD_RECORDS and
M_LIST_RECORDS methods:

` M_ADD_RECORDS project method
⇒ C_TEXT($1) ` This parameter MUST be declared explicitly

Repeat
ADD RECORD([Customers])

Until(OK=0)

4th Dimension Language Reference 1713

` M_LIST_RECORDS project method
⇒ C_TEXT($1) ` This parameter MUST be declared explicitly

ALL RECORDS([Customers])
MODIFY SELECTION([Customers])

After these changes have been made, the compiled runtime errors no longer occur.

Parameters to declare explicitly in the called 4D method
You must declare differents parameters depending on the nature and the origin of the call
to a 4D method.

• On Web Authentication Database Method and On Web Connection Database Method
You must declare the six parameters of the connection:

` On Web Connection Database Method
⇒ C_TEXT($1;$2;$3;$4;$5;$6)

• Method called by the URL 4DMETHOD/
You must declare the $1 parameter:

` Method called by the URL 4DMETHOD/
⇒ C_TEXT($1)

• Method called by the URL 4DACTION/
You must declare the $1 parameter:

` Method called by the URL 4DACTION/
⇒ C_TEXT($1)

• Method called by the tag 4DSCRIPT/ as an HTML comment in a document
The method should return a value in $0. You must declare the $0 and $1 parameter:

` Method called by the tag 4DSCRIPT/ as an HTML comment
⇒ C_TEXT($0; $1)

See Also
Binding 4D objects with HTML objects, GET WEB FORM VARIABLES, Using the Contextual
Mode, Your First Time with the Web Server.

1714 4th Dimension Language Reference

4D HTML Tags Web Server

version 2004.2 (Modified)
__

The 4D Web server provides you with different HTML tags specific to 4D, which allow
you to insert references to 4D variables or expressions, or different types of processing, in
static HTML pages sent by the Web server, for example using the SEND HTML FILE and
SEND HTML BLOB commands. These pages are called semi-dynamic pages.

These tags are inserted as HTML comments (<!--#Tag Contents--> in HTML code). Most
HTML editors offer editing facilities to insert comments.

The following 4D HTML tags are available:
• 4DVAR, to insert 4D variables and expressions,
• 4DHTMLVAR, similar to 4DVAR but inserting HTML code,
• 4DSCRIPT, to execute a 4D method,
• 4DINCLUDE, to include a page within another one,
• 4DIF, 4DELSE and 4DENDIF, to insert conditions in the HTML code,
• 4DLOOP and 4DENDLOOP, to make loops in the HTML code.

Compatibility Note: In version 6.0.x of 4D, the notation to use for inserting 4D variables
in static pages was square brackets [VarName]. In a converted database, to be able to use
the standard HTML syntax (<!--#4DVAR VarName-->), make sure that the option “Use
4DVAR Comments instead of Brackets” in the Preferences dialog box is checked (see
section Web Server Settings).

About 4D HTML Tags
__

Parsing of the contents of semi-dynamic pages sent by 4D takes place when SEND HTML
FILE (.htm, .html, .shtm, .shtml) or SEND HTML BLOB (text/html type BLOB) commands
are called, as well as when sending pages called using URLs.
However, in non-contextual mode, for reasons of optimization, pages that are suffixed
with “.htm” and “.html” are NOT parsed. In order to "force" the parsing of HTML pages
in this case, you must add the suffix “.shtm” or “.shtml” (for example,
http://www.server.com/dir/page.shtm).
An example of the use of this type of page is given in the description of the WEB CACHE
STATISTICS command.

4th Dimension Language Reference 1715

Below are the cases where 4D parses the tags contained in the HTML pages sent to the
Web browsers:

Sending Conditions Content analysis of the sent pages
Contextual mode Non-contextual mode

• Page extension (general case):
.htm, .html, .shtm, .shtml (HTML pages) X X
.xml, .xsl (XML pages) X X
.wml (WML pages) X X
• Pages called via URLs X X, except for pages with

“.htm” or “.html”
extensions

• SEND HTML FILE command call X X
• SEND HTML BLOB command call (if the X X
BLOB is “text/html” type)
• Inclusion by the <!--4DINCLUDE --> tag X X
• Inclusion by the {mypage.htm} tag X -

In order to be processed by 4D, an HTML comment should have the following format <!--
#4D...-->. Please note that some HTML editors automatically add other information
within the comment; this can lead to some misinterpretation.
However, other HTML comments such as <!--Beginning of list--> are possible.

If a comment <!--#4D... does not end by -->, the following message “<!--#4D... : -->
expected” will be inserted and the analysis will stop at this level (the page will be sent to
indicate the error).
It is possible to mix several types of comments. For example, the following HTML syntax
is possible:

<HTML>
...
<BODY>
<!--#4DSCRIPT/PRE_PROCESS--> (Method call)
<!--#4DIF (myvar=1)--> (If condition)

<!--#4DINCLUDE banner1.html--> (Subpage insertion)
<!--#4DENDIF--> (End if)
<!--#4DIF (myvar=2)-->

<!--#4DINCLUDE banner2.html-->
<!--#4DENDIF-->

<!--#4DLOOP [TABLE]--> (loop on the current selection)
<!--#4DIF ([TABLE]ValNum>10)--> (If [TABLE]ValNum>10)

<!--#4DINCLUDE subpage.html--> (subpage insertion)
<!--#4DELSE--> (Else)

Value: <!--#4DVAR [TABLE]ValNum-->

(Field display)

<!--#4DENDIF-->
<!--#4DENDLOOP--> (End for)
</BODY>
</HTML>

1716 4th Dimension Language Reference

4DVAR
Syntax: <!--#4DVAR VarName--> or <!--#4DVAR 4DExpression-->

The tag <!--#4DVAR VarName--> allows you to insert a reference to the 4D variable or
expression VarName anywhere in an HTML page. For example, if you write:
<P>Welcome to <!--#4DVAR vtSiteName-->!</P>
The value of the 4D variable vtSiteName will be inserted in the HTML page.
You can insert a 4D text variable in HTML code, provided its first character is ASCII code 1
(i.e., vtHTML:=Char(1)+"...HTML code..."). You can also use the tag 4DHTMLVAR.

You can also insert 4D expressions (not only variables) in 4D HTML comments with the
4DVAR tag. You can directly insert a field content (for example <!--#4DVAR
[tableName]fieldName-->) or an item array content (for example <!--#4DVAR arr{1}-->) or a
method returning a value (<!--#4DVAR mymethod-->).
The expression conversion follows the same rules as the variable ones. Moreover, the
expression must comply with 4D syntax rules.

Note: Executing a 4D method with 4DVAR depends on the value of the “Available
through 4DACTION, 4DMETHOD and 4DSCRIPT” attribute set in the Method properties.
For more information about this, refer to the Connection Security section.

Although an expression can contain direct calls to 4D functions, this is not recommended
for localization issues. For example, <!--#4DVAR Current date-->, although correctly
interpreted with a 4D in English will not be understood by an French version. The same
applies to real numbers (the decimal separator can be different according to the
language). In both cases, we strongly advise you to assign a variable through
programming.
In case of interpretation error, the inserted text will appear as “<!--#4DVAR myvar--> : ##
error # error code”.

Notes:
• You work with process variables.
• You can display a picture field content. In addition (in contextual mode only), you can
also display a picture variable content. In both modes, it is not possible to display the
content of a picture array item.
• Since HTML is a word processing oriented application, you will usually work with Text
variables. However, you can also use BLOB variables (which avoid the 32 000 characters
limitation of text type variables). You just need to generate the BLOB in Text without
length mode.
• Examples of 4DVAR uses are given in the section Binding 4D objects with HTML objects.

4DHTMLVAR
Syntax: <!--#4DHTMLVAR VarName--> or <!--#4DHTMLVAR 4DExpression-->

This tag allows assessing a variable or a 4D expression and inserting it in a page as an
HTML expression. In fact, this tag works exactly the same way as the <!--#4DVAR
VarName--> tag when VarName starts with the ASCII code 1 (see above).

4th Dimension Language Reference 1717

For example, here are the insertion results of the 4D text variable myvar with the available
tags:
myvar Value Tags Web Page Insertion
myvar:="" <!--#4DVAR myvar-->
myvar:=Char(1)+"" <!--#4DVAR myvar-->
myvar:="" <!--#4DHTMLVAR myvar-->

In case of an interpretation error, the inserted text will be “<!--#4DHTMLVAR myvar--> : ##
error # error code”.

Note: Executing a 4D method with 4DHTMLVAR depends on the value of the “Available
through 4DACTION, 4DMETHOD and 4DSCRIPT” attribute set in the Method properties.
For more information about this, refer to the Connection Security section.

Note: The text variable should be expressed using the ISO Latin-1 character map (for more
information, refer to the Mac to ISO command description).

4DSCRIPT/
Syntax: <!--#4DSCRIPT/MethodName/MyParam-->

The 4DSCRIPT tag allows you to execute 4D methods when sending static HTML pages.
The presence of the <!--#4DSCRIPT/MyMethod/MyParam--> tag in a static page as an
HTML comment forces the execution of the MyMethod method with the MyParam
parameter as a string in $1. When loading the home page, 4D calls the On Web
Authentication Database Method (if it exists). If it returns True, 4D executes the method.
The method returns text in $0. If the string starts with the ASCII code character 1, it is
considered as HTML (the same principle is true for the variables).

Note: The execution of a method with 4DSCRIPT depends on the value of the “Available
through 4DACTION, 4DMETHOD and 4DSCRIPT” attribute defined in the Method
properties. For more information about this, refer to the Connection Security section.

The analysis of the contents of the page is done when either SEND HTML FILE (.htm,
.html, .shtm, .shtml) or SEND HTML BLOB (blob of type text/html) is called.
Remember that in non-contextual mode, the analysis is also done when a URL points to a
file that has either the “.shtm” or “.shtml” extension (for example
http://www.server.com/dir/page.shtm).

Note: In contextual mode, the method is executed in the context.

For example, let’s say that you insert the following comment “Today is <!--
#4DSCRIPT/MYMETH/MYPARAM-->” into a static page. When loading the page, 4D calls
the On Web Authentication Database Method (if it exists), then calls the MYMETH method
and passes the string “/MYPARAM” as the parameter $1.
The method returns text in $0 (for example “12/31/03”); the expression “Today is <!--
#4DSCRIPT/MYMETH/MYPARAM––>” therefore becomes “Today is 12/31/03”.

1718 4th Dimension Language Reference

The MYMETH method is as follows:

C_TEXT($0) `This parameter must always be declared
C_TEXT($1) `This parameter must always be declared
$0:=String(Current date)

Warning: You must always declare the $0 and $1 parameters in the called method.

Note: A method called by 4DSCRIPT must not call interface elements (DIALOG, ALERT...).

As 4D executes methods in their order of appearance, it is absolutely possible to call a
method that sets the value of many variables that are referenced further in the
document, whichever mode you are using.

Note: You can insert as many <!--#4DSCRIPT...--> comments as you want in a static page.

Compatibility note: In 4D previous versions, the same tag, 4DACTION, could be used as a
URL (for example, http://myserver/4DACTION/meth), or as an HTML comment in a
static page (<!--#4DACTION/meth-->). As this could be misleading, starting with 4D
version 6.7 the 4DSCRIPT tag replaces the 4DACTION tag. It is used only as an HTML
comment (<!--#4DSCRIPT/meth-->) and has the same effect as <!--#4DACTION/meth-->.
4DACTION is now just used for URLs.

4DINCLUDE
Syntax: <!--#4DINCLUDE Path-->

This comment allows the body of another HTML page (indicated by the path parameter)
to be included in an HTML page. An HTML page body is included within the <BODY> and
</BODY> tags (the tags themselves are not included).
The <!--#4DINCLUDE --> comment is very useful for tests (<!--#4DIF-->) or loops (<!--
#4DLOOP-->). It is very convenient to include tags according to a criteria or randomly.
When including, regardless of the mode and file name extension, 4D analyses the called
page and then inserts the contents (modified or not) in the page originating the
4DINCLUDE call.

An included page with the <!--#4DINCLUDE --> comment is loaded in the Web server
cache the same way as pages called via a URL or sent with the SEND HTML FILE command.

In path, put the path leading to the document to include. Warning: In the case of a
4DINCLUDE call, the path is relative to the document being analyzed, that is, the
“parent” document. Use the slash character (/) as a folder separator and the two dots (..)
to go up one level (HTML syntax).

The number of <!--#4DINCLUDE path--> within a page is unlimited. However, the <!--
#4DINCLUDE path--> calls can be made only at one level. This means that, for example,
you cannot insert <!--#4DINCLUDE mydoc3.html--> in the mydoc2.html body page, which
is called by <!--#4DINCLUDE mydoc2--> inserted in mydoc1.html.

4th Dimension Language Reference 1719

Furthermore, 4D verifies that inclusions are not recursive.

In case of error, the inserted text is "<!--#4DINCLUDE path--> :The document cannot be
opened".

Note: In contextual mode, if a page is inserted in a form via a tag {mypage.html} inserted
in a static text area, the 4DINCLUDE comments (if any) will be ignored.

Examples
<!--#4DINCLUDE subpage.html-->
<!--#4DINCLUDE folder/subpage.html-->
<!--#4DINCLUDE ../folder/subpage.html-->

4DIF, 4DELSE and 4DENDIF
Syntax: <!--#4DIF expression--> <!--#4DELSE--> <!--#4DENDIF-->

Used with the <!--#4DELSE--> (optional) and <!--#4DENDIF--> comments, the <!--#4DIF
expression--> comment offers the possibility to execute HTML code conditionally.
The expression parameter can contain any valid 4D expression returning a Boolean value.
It must be indicated within parenthesis and comply with the 4D syntax rules.

The <!--#4DIF expression--> ... <!--#4DENDIF--> blocks can be nested in several levels. Like
in 4D, each <!--#4DIF expression--> should match a <!--#4DENDIF-->.

In case of an interpretation error, the text “<!--#4DIF expression-->: A boolean expression
was expected” is inserted instead of the contents located between <!--#4DIF --> and <!--
#4DENDIF-->.
Likewise, if there are not as many <!--#4DENDIF--> as <!--#4DIF -->, the text “<!--#4DIF
expression-->: 4DENDIF expected” is inserted instead of the contents located between <!--
#4DIF --> and <!--#4DENDIF-->.

Example
This example of code inserted in a static HTML page displays a different label according
the vname#"" expression result:

<BODY>
...
<!--#4DIF (vname#"")-->
Names starting with <!--#4DVAR vname-->.
<!--#4DELSE-->
No name has been found.
<!--#4DENDIF-->
...
</BODY>

1720 4th Dimension Language Reference

4DLOOP and 4DENDLOOP
Syntax: <!--#4DLOOP condition--> <!--#4DENDLOOP-->

This comment allows repetition of a portion of HTML code as long as the condition is
fulfilled. The portion is delimited by <!--#4DLOOP--> and <!--#4DENDLOOP-->.

The <!--#4DLOOP condition--> ... <!--#4DENDLOOP--> blocks can be nested. Like in 4D,
each <!--#4DLOOP condition--> should match a <!--#4DENDLOOP-->.

There are three kinds of conditions:

• <!--#4DLOOP [table]-->
This syntax makes a loop for each record from the table current selection in the current
process. The HTML code portion located between the two comments is repeated for each
current selection record.

Note: When the 4DLOOP tag is used with a table, records are loaded in Read only mode.

The following HTML code:

<!--#4DLOOP [People]-->
<!--#4DVAR [People]Name--> <!--#4DVAR [People]Surname-->

<!--#4DENDLOOP-->

... could be expressed in 4D language in the following way:
FIRST RECORD([People])
While(Not(End selection([People])))

...
NEXT RECORD([People])

End while

• <!--#4DLOOP array-->
This syntax makes a loop for each item array. The array current item is increased when
each HTML code portion is repeated.

Note: This syntax cannot be used with two dimension arrays. In this case, it is better to
combine a method with nested loops.

The following HTML code example:

<!--#4DLOOP arr_names-->
<!--#4DVAR arr_names{arr_names}-->

<!--#4DENDLOOP-->

... could be expressed in 4D language in the following way:

For ($Elem;1;Size of array(arr_names))
arr_names:=$Elem
...

End for

4th Dimension Language Reference 1721

• <!--#4DLOOP method-->
This syntax makes a loop as long as the method returns True. The method takes a Long
Integer parameter type. First it is called with the value 0 to allow an initialization stage (if
necessary); it is then called with the values 1,then 2, then 3 and so on, as long as it
returns True.

For security reasons, the On Web Authentication Database Method can be called once just
before the initialization stage (method execution with 0 as parameter). If the
authentication is OK, the initialization stage will proceed.

Warning: C_BOOLEAN($0) and C_LONGINT($1) MUST be declared within the method for
compilation purposes.

Example
The following HTML code example:

<!--#4DLOOP my_method-->
<!--#4DVAR var-->

<!--#4DENDLOOP-->

... could be expressed in 4D language in the following way:

If(AuthenticationWebOK)
If(my_method(0))

$counter:=1
While(my_method($counter))

...
$counter:=$counter+1

End while
End if

End if

The my_method method can be as follow:
C_LONGINT($1)
C_BOOLEAN($0)
If($1=0)

`Initialisation
$0:=True

Else
If($1<50)

...
var:= ...
$0:=True

Else
$0:=False `Stops the loop

End if
End if

1722 4th Dimension Language Reference

In case of an interpretation error, the text “<!--#4DLOOP expression-->: description” is
inserted instead of the contents located between <!--#4DLOOP --> and <!--#4DENDLOOP--
>.
The following messages can be displayed:
- Unexpected expression type (standard error);
- Incorrect table name (error on the table name);
- An array was expected (the variable is not an array or is a two dimension array);
- The method does not exist;
- Syntax error (when the method is executing);
- Access error (you do not have the appropriate access privileges to access the table or the
method).
- 4DENDLOOP expected (the <!--#4DENDLOOP--> number does not match the <!--
#4DLOOP -->).

See Also
Binding 4D objects with HTML objects, URLs and Form Actions, Using the Contextual Mode.

4th Dimension Language Reference 1723

Web Server Settings Web Server

version 2004 (Modified)
__

You can configure the operation of the 4D Web server using the parameters defined in
the Web theme of the database Preferences. This section describes the parameters of the
Configuration, Advanced and Options pages of this theme as well as the “Web
Compatibility” section of the Application/Compatibility page.

Publishing Page
__

Publish Database at Startup
Indicates whether the Web server will be launched on startup of the 4D application. This
option is described in the Web server configuration and connection management section.

1724 4th Dimension Language Reference

TCP port number
By default, 4D publishes a Web database on the regular Web TCP Port, which is port 80. If
that port is already used by another Web service, you need to change the TCP Port used
by 4D for this database. Modifying the TCP port allows you to start the 4D Web server
under Mac OS X without being the root user of the machine (see Web server configuration
and connection management section).
To do so, go to the TCP Port enterable area and indicate an appropriate value (a TCP port
not already used by another TCP/IP service running on the same machine).

Note: If you specify 0, 4D will use the default TCP port number 80.

From a Web browser, you need to include that non-default TCP port number into the
address you enter for connecting to the Web database. The address must have a suffix
consisting of a colon followed by the port number. For example, if you are using the TCP
port number 8080, you will specify “123.4.567.89:8080”.

WARNING: If you use TCP port numbers other than the default numbers (80 for standard
mode and 443 for SLL mode), be careful not to use port numbers that are defaults for
other services that you might want to use simultaneously. For example, if you also plan to
use the FTP protocol on your Web server machine, do not use the TCP port 20 and 21,
which are the default ports for that protocol (unless you know what you are doing). To
find out the standard assignment of TCP port numbers, refer to the Appendix B, TCP port
numbers section in the documentation of the 4D Internet Commands. Ports numbers
below 256 are reserved for well known services and ports numbers from 256 to 1024 are
reserved for specific services originated on the UNIX platforms. For maximum security,
specify a port number beyond these intervals, for example in the 2000's or 3000's.

Defining the IP Address for the HTTP Requests
You can define the IP address on which the Web server must receive HTTP requests.

By default, the server responds to all IP addresses (All option).
The drop-down list automatically lists all available IP addresses on the machine. When
you select a specific address, the server only responds to requests sent to this address.

This feature is for 4D Web Servers located on machines with multiple TCP/IP addresses. It
is, for example, frequently the case of most Internet host providers.

Implementing such a MultiHoming system requires specific configurations on the Web
server machine :

4th Dimension Language Reference 1725

Installing secondary IP addresses
Implementing a MultiHoming system requires specific configurations depending on your
operating system.

• On Mac OS
To configure a MultiHoming system on Mac OS:

1. You must use Open Transport version 1.3 or later. This new feature is only available in
this version of Open Transport.

2. Open the TCP/IP Control Panel.

3. Select the Manually option from the Configuration pop up menu.

4. Create a text file called "Secondary IP Addresses" and save it in the Preferences subfolder
of your System folder.
Each line of the "Secondary IP Addresses" file should contain a secondary IP address and
an optional subnet mask and router address for the secondary IP address.

Please check the Apple Open Transport documentation for more information.

• On Windows
To configure a MultiHoming system on Windows NT or Windows 2000:

1. Select the following sequences of commands:
• Windows NT: Start menu > Settings > Control Panel > Network Control panel >
Protocols tab > TCP/IP Protocol > Properties button > Advanced.
• Windows 2000: Start menu > Settings > Network and Dial-up Connections > Local
Area Connection > Properties button > Internet Protocol (TCP/IP) > Properties button >
Advanced.
The "Advanced TCP/IP Settings" dialog box appears.
• Windows XP: Start menu > Control Panel > Network and Internet Connections >
Network connections > Local Area Connection (Properties) > Internet Protocol (TCP/IP) >
Properties button > Advanced... button.
The "Advanced TCP/IP Settings" dialog is displayed.

2. Click the Add.... button in the "IP Addresses" area, and add additional IP addresses.
You can define up to 5 different IP addresses. You may need to consult your systems
administrator to do so. For more information, please refer to Windows documentation.

Allow SSL for Web Server
Indicates whether or not the Web server will accept secure connections. This option is
described in the Using SSL Protocol section.

1726 4th Dimension Language Reference

HTTPS Port Number
Allows you to modify the TCP/IP port number used by the Web server for secured HTTP
connections over SSL (HTTPS protocol). By default, the HTTPS port number is set to 443
(standard value).
You may consider changing this port number for two main reasons:
• for security reasons — hacker attacks against Web servers are generally concentrated on
standard TCP ports (80 and 443).
• under Mac OS X, in order to allow “standard” users to launch the Web server in a
secured mode — under Mac OS X, the use of TCP/IP ports reserved for Web publications
(0 to 1023) requires specific access privileges: only the root user can launch an application
using these ports. In order for standard users to be able to launch the Web server, one
solution is to modify the TCP/IP port number (see the Web server configuration and
connection management section).
You can pass any valid value (in order to avoid access restrictions under Mac OS X, you
should pass a value greater than 1023). For more information about TCP port numbers,
refer to the “TCP port number” paragraph above.

Default HTML Root
Allows you to define the default location of the Web site files and to indicate the
hierarchical level on the disk above which the files will not be accessible. This option is
described in the Connection Security section.

Defining a Default Home Page
You can designate a default home page for all the browsers that connect to the database,
no matter which mode (contextual or non-contextual) has been defined for the Web
sessions. This page can be static or semi-dynamic.

By default, when the Web server is launched for the first time, 4D creates a home page
named “index.html” and puts it in the HTML root folder. If you do not modify this
configuration, any browser connecting to the Web server will obtain the following page:

4th Dimension Language Reference 1727

To modify the default home page, simply replace it in the database root folder with your
own “index.html” page or enter the relative access path of the page that you want to
define in the “Default Home Page” entry area.
The access path must be set up in relation to the default HTML root folder.
In order to ensure multi-platform compatibility of your databases, the 4D Web server uses
particular writing conventions to define access paths. The syntax rules are as follows:
• folders are separated by a slash (“/”)
• the access path must not end with a slash (“/”)
• to “go up” one level in the folder hierarchy, enter “..” (two periods) before the folder
name
• the access path must not start with a slash (“/”)
For example, if you want the default home page to be “MyHome.htm”, and it is located
in the “Web” folder (itself located in the default HTML root folder of the database), enter
“Web/MyHome.htm”.

Note: You can also define a default home page for each Web process by using the routine
SET HOME PAGE.
If you do not specify a default custom home page, the operation of the Web server will
differ depending on the startup mode:
• If the Web server starts up in non-contextual mode (standard mode), the On Web
Connection Database Method is called. It’s up to you to process the request procedurally.
• If the Web Server starts up in contextual mode, the current menu bar — by default,
menu bar number 1 — is sent as the home page, as in previous versions of 4D.

Starting Mode
Allows you to define the mode in which the Web server will be started. This option is
described in the Using the Contextual Mode section.

Reuse Temporary Contexts (only visible with 4D Client)
Allows you to optimize the operation of the 4D Client Web server by reusing Web
processes created for processing previous Web requests. In fact, the Web server of 4D
Client needs a specific Web process for the handling of each Web request; when
necessary, this process connects to the 4D Server machine in order to access the data and
database engine. It then generates a temporary context using its own variables, selections,
etc. Once the request has been dealt with, this process is killed.
When the Reuse Temporary Contexts option is checked, 4D maintains the specific Web
processes created on 4D Client and reuses them for subsequent requests. By removing the
process creation stage, Web server performance is improved.
In return, you must make sure in this case to systematically initialize the variables used in
4D methods in order to avoid getting incorrect results. Similarly, it is necessary to erase
any current selections or records defined during the previous request.

1728 4th Dimension Language Reference

Advanced page
__

Cache for Static Pages
The 4D Web Server has a cache that allows you to load static pages, GIF images, JPEG
images (<128 kb) and style sheets (.css files) in memory, as they are requested.
Using the cache allows you to significantly increase the Web server’s performance when
sending static pages.

The cache is shared between all the Web processes. You can set the size of the cache in
the Preferences. By default, the cache of the static pages is not enabled. To activate it,
simply check the Use the 4D Web cache option.

You can modify the size of the cache in the Pages Cache Size area. The value you set
depends on the number and size of your Web site’s static pages, as well as the resources
that the host machines has at its disposal.

Note: While using your Web database, you can check the performance of the cache by
using the routine WEB CACHE STATISTICS. If, for example, you notice that the cache’s rate
of use is close to 100%, you may want to consider increasing the size that has been
allocated to it.
The /4DSTATS and /4DHTMLSTATS URLs allow you to also obtain information about the
cache’s state. Please refer to section Information about the Web Site.

4th Dimension Language Reference 1729

Once the cache has been enabled, the 4D Web server looks for the page requested by the
browser first in the cache. If it finds the page, it sends it immediately. If not, 4D loads the
page from disk and places it in the cache.
When the cache is full and additional space is required, 4D “unloads” the oldest pages
first, among the least demanded ones.

Clearing the Cache
At any moment, you can clear the cache of the pages and images that it contains (if, for
example, you have modified a static page and you want to reload it in the cache).
To do so, you just have to click on the Clear Cache button. The cache is then
immediately cleared.

Web Process Timeout
Allows you to define the timeout for the Web connection processes (contextual mode
only). This option is described in the Using the Contextual Mode section.

Defining the Maximum Number of Web Processes
__

This option indicates the strictly high limit of Maximum Concurrent Web Processes of
any type (contextual, non-contextual or belonging to the“pool of processes”) that can be
simultaneously open on the server. This parameter allows prevention of 4D Server
saturation as the result of massive number of requests or an excessive demand of contexts
creation.

By default, this value is 32000. You can set the number anywhere between 10 and 32000.

When the maximum number of concurrent Web processes (minus one) is reached, 4D no
longer creates new processes and sends the following message “Server unavailable” (status
HTTP 503 – Service Unavailable) for each new request.

How to determine the right value?
In theory, the maximum number of Web processes is the result of the following formula:
Available memory/Web process stack size.
Another solution is to visualize the information on Web processes displayed in the
Runtime Explorer: the current number of Web processes and the maximum number
reached since the Web server boot are indicated.

About the Pool of Web Processes
The “pool” of Web processes allows increasing the reactivity of the Web server in the
non-contextual mode. This reserve is sized by a minimum (0 by default) and a maximum
(10 by default) of processes to recycle. These processes can be modified using the SET
DATABASE PARAMETER command. Once the maximum number of Web processes has been
changed, if this number is inferior to the superior limit in the “pool”, this limit is lowered
to the maximum number of Web processes. The maximum number of Web processes can
also be defined using the SET DATABASE PARAMETER command.

1730 4th Dimension Language Reference

Using Javascript for Data Entry Controls
__

When this option is checked, in contextual mode a part of the data entry controls can be
done on the browsers by using automatic Javascripts.

On the browser, the data entry controls and the data types (fields or variables) to which
they can be applied are as follows:
• minimum value (for numeric values)
• maximum value (for numeric values)
• mandatory value (for numeric and alphanumeric values)

Generated Javascripts, which are small in size, display alert dialog boxes without
preventing the user from accepting a data entry (it is still 4D’s responsibility).
Actually, if a data entry area contains an incorrect value, an alert message is displayed on
the browser when the user clicks on a button (OK, Cancel, etc.):

Once the alert dialog box is validated, if the user clicks a second time on the button, the
button’s action is then taken into account.
The complete data entry control is done on the Web server, in User and Custom Menus
mode.

Save Request in File (logweb.txt)
This option enables you to generate a log of requests sent to the Web server in the form
of a CLF text file. This option is described in the Information about the Web Site section.

“Passwords” area
Configuration of Web site access protection using passwords. This option is described in
the Connection Security section.

4th Dimension Language Reference 1731

Options page
__

Directly Sending Extended ASCII Characters
__

By default, the 4D Web server converts the extended ASCII characters in the dynamic
and static Web pages according to HTML standards before sending them. They are then
interpreted by the browsers.
You can set the Web server so that the extended ASCII characters are sent “as is”, without
converting them into HTML entities. This option has shown a speed increase on most
foreign operating systems (especially the Japanese system).

To do this, check the Send Extended Characters Directly option.

Character Sets
__

The Standard Set drop-down list allows you to define the set of characters to be used by
the 4D Web server.
You can also define a customized set of characters by modifying the ASCII character
conversion tables (Web filters) for both input and output of data.
To do this, check the User Defined radio button. This parameter is equivalent to selecting
the “x-user-defined” set of characters.

1732 4th Dimension Language Reference

The buttons associated with Edit Input Filter and Edit Output Filter are now enabled. The
input filter interprets the characters sent by the browser to 4D Web server. The output
filter interprets the characters sent by 4D Web server to the browser.

Click the button that corresponds to the filter that you want to modify.
Input filter interprets characters sent by the browser to the 4D Web server and Output
filter interprets characters sent by the 4D Web server to the browser.
The following dialog box appears:

In the scrollable area, look for and click on the Mac character that you want to filter.

In the “ASCII Code” entry area, enter the character’s new ASCII code.

Repeat this operation for all the characters you want to filter.
You can click on the Save... button in order to save the filter. You can then load it
subsequently using the Load... button.
Click the Use map button in order to activate the Web input and/or output filter.

Allow 4D WebSTAR to connect via 4D Connect
__

This option is designed to allow (checked) or disallow (unchecked) 4D Connect plug-in
connections to the 4D Web server.
4D Connect is a plug-in for the 4D WebSTAR Web server, allowing it to communicate
with a 4D Web server.

For security reasons, the Allow 4D WebSTAR to connect via 4D Connect option is not
checked by default. Depending on your Web configuration, 4D S.A. recommends the
following settings:
• If your 4D Web server is not connected to a 4D WebSTAR server using the 4D Connect
plug-in, leave this option unchecked.
• If your 4D Web server is connected to a 4D WebSTAR server using the 4D Connect
plug-in, you should check this option for it to work.
In this configuration, it is recommended to run the 4D Web server behind a firewall and
to filter, using this firewall, requests addressed to 4D.

4th Dimension Language Reference 1733

Keep-Alive Connections
The Web server of 4th Dimension can use keep-alive connections. The keep-alive option
allows you to maintain a single open TCP connection for the set of exchanges between
the Web browser and the server to save system resources and to optimize transfers.
The Use Keep-Alive Connections option enables or disables keep-alive TCP connections
for the Web server. This option is enabled by default. In most cases, it is advisable to keep
this option check since it accelerates the exchanges. If the Web browser does not support
connection keep alive, the 4D Web server automatically switches to HTTP/1.0.
The 4th Dimension Web server keep-alive function concerns all TCP/IP connections
(HTTP, HTTPS), in contextual and non-contextual mode. Note however that keep-alive
connections are not always used for all 4D Web processes. In some cases, other optimized
internal functions may be invoked. Keep-alive connections are useful mainly for static
pages.

Two options allow you to set how the keep-alive connections work:
• Number of requests by connection: Allows you to set the maximum number of requests
and responses able to travel over a connection keep alive. Limiting the number of
requests per connection allows you to prevent server flooding due to a large number of
incoming requests (a technique used by hackers).
The default value (100) can be increased or decreased depending on the resources of the
machine hosting the 4D Web server.
• Timeout: This value defines the maximum wait period (in seconds) during which the
Web server maintains an open TCP connection without receiving any requests from the
Web browser. Once this period is over, the server closes the connection.
If the Web browser sends a request after the connection is closed, a new TCP connection
is automatically created. This operation is not visible for the user.

Web Compatibility
__

The Compatibility page of the Application theme of the Preferences includes options
allowing you to adjust the operation of the Web server:

1734 4th Dimension Language Reference

Use 4DVAR comments instead of Brackets
__

This option allows you to define the notation to use when inserting 4D variables on static
pages.
• When the option is checked (default value), the syntax you need to use is the standard
HTML notation <!--#4DVAR MYVAR--> (A space character must be inserted between 4DVAR
and the variable name).
• When the option is not checked, the syntax you need to use is the notation with square
brackets ([MYVAR]) — which is a proprietary solution used in former versions of the 4D
Web server.

New Mode to Reference Contexts
__

When this option is checked (default value), in contextual mode the Web server places
the current context number in the basic URL of the documents sent to the browsers.
With the previous system (option not checked), the 4D Web server sends the context
number for each element of a page to the browser, which slows down processing.
This option can be unchecked for reasons of compatibility. Keep in mind that after
modifying it, you must restart the database in order for the new operation to take effect.

Remove "/" on unknown URLs
In previous versions of 4th Dimension, unknown URLs (that corresponded neither to an
existing page nor to a 4D special URL) were returned in the On Web Authentication and
On Web Connection database methods ($1) without being preceded by the “/” character.
This particularity has been removed starting with 4th Dimension 2004.
However, if you have set up mechanisms based on this particularity and wish to keep the
previous behavior, you can check the Remove “/” on unknown URLs option. By default,
this option is checked for converted databases and unchecked for new databases.

See Also
Connection Security, SET DATABASE PARAMETER, SET HOME PAGE, Using the Contextual
Mode.

4th Dimension Language Reference 1735

Information about the Web Site Web Server

version 2003 (Modified)
__

4D allows you to obtain information about the functioning of your 4D Web site.

• You can control the site by using particular URLs (/4DSTATS, /4DHTMLSTATS,
/4DCACHECLEAR and /4DWEBTEST).
• You can generate a log of all the requests.
• You can obtain information regarding the Web Server in the Watch page of the
Runtime Explorer window.

Web Server Management URLs
__

4D Web Server accepts four particular URLs: /4DSTATS, /4DHTMLSTATS, /4DCACHECLEAR
and /4DWEBTEST.
• /4DSTATS, /4DHTMLSTATS and /4DCACHECLEAR are only available to the Designer and
Administrator of the database. If the database’s 4D password system has not been
activated, these URLs are available to all the users.
• /4DWEBTEST is always available.

/4DSTATS
The /4DSTATS URL returns the following information in pure text form:
• the number of “hits” (low-level connections),
• the number of contexts created,
• the number of contexts that could not be created,
• the number of password errors,
• the number of pages stored in the cache,
• the percentage of cache used,
• the list of pages and JPEG or GIF files stored in the cache of the static pages (*).

(*) For more information about the cache of static pages and pictures, please refer to
section Web Server Settings.

This information can allow you to check the functioning of your server and eventually
adapt the corresponding parameters.

Note: The command WEB CACHE STATISTICS allows you to also obtain information about
how the cache is being used for static pages.

/4DHTMLSTATS
The /4DHTMLSTATS URL returns, also in pure text form, the same information as the
/4DSTATS URL. The difference is that in the last field (contained in the cache), only the
list of HTML pages — without the .GIF and .JPEG files — present in the cache is returned.

1736 4th Dimension Language Reference

/4DCACHECLEAR
The /4DCACHECLEAR URL immediately clears the cache of the static pages and images. It
allows you to therefore “force” the update of the pages that have been modified.

/4DWEBTEST
The /4DWEBTEST URL is designed to check the Web Server status. When this URL is
called, 4D returns a text file only with the following HTTP fields filled:

• Date: current date at the RFC 822 format
For example: “Date: Wed, 26 Jan 2000 13:12:50 GMT”
• Server: 4D WebStar_D/internal version number
For example: “4D WebStar_D/7.0”
• User-Agent: name and version @ IP client address
For example: “Mozilla/4.08 (Macintosh; I; PPC, Nav) @ 192.193.00.00”

Connection Log File
__

4D allows you to obtain a log of requests. The log is presented in the form of a text file
named “logweb.txt” automatically placed at the same level as the structure file of the
database. This file is in CLF (Common Log Format) format or NCSA format, recognized by
most Web site analysis tools.

The “logweb.txt” file is automatically located:
• with 4th Dimension and 4D Server, next to the database structure file.
• with 4D Client, next to the .exe file of the application (Windows) or the software
package (Mac OS).

Each line of the file represents a request, such as:
host rfc931 user [DD/MMM/YYYY:HH:MM:SS] "request" state length

Each field is separated by a space and each line ends by the CR/LF sequence (character 13,
character 10).

• host: IP address of the client (ex. 192.100.100.10)
• rfc931: information not generated by 4D, it’s always - (a minus sign)
• user: user name as it is authenticated, or else it is - (a minus sign). If the user name
contains spaces, they will be replaced by _ (an underscore).
• DD: day, MMM: a 3-letter abbreviation for the month name (Jan, Feb,...), YYYY: year,
HH: hour, MM: minutes, SS: seconds
• The date and time are local to the server.
• request: request sent by the client (ex. GET /index.htm HTTP/1.0)
• state: response given by the server.
• length: size of the data returned (except the HTTP header) or 0.

Note: For performance reasons, the operations are saved in a memory buffer in packets of
1Kb before being written to disk. The operations are also written to disk if no request has
been sent every 5 seconds.

4th Dimension Language Reference 1737

The possible values of state are as follows:
200: OK
204: No contents
302: Redirection
304: Not modified
400: Incorrect request
401: Authentication required
404: Not found
500: Internal error

Examples of lines generated by the request log:

192.100.100.10 - - [25/Jan/2003:12:54:06] "GET /index.htm" 200 6524
The Web client whose address was 192.100.100.10 was not authenticated. It asked for
page index.htm, which was sent (it contains 6,524 bytes).

192.100.101.25 - - [25/Jan/2003:12:54:09] "GET /123456.htm" 404 125
The Web client whose address was 192.100.101.25 was not authenticated. It asked for
page 123456.htm, which was not found (4D sent a message of 125 bytes).

192.100.101.31 - - [25/Jan/2003:12:54:10] "GET /secret.htm" 401 0
The Web client whose address was 192.100.101.31 was not authenticated. It asked for
page secret.htm, the server requested Authentication.

192.100.101.31 - ZZZZ [25/Jan/2003:12:54:11] "GET /secret.htm" 401 0
The Web client whose address was 192.100.101.31 was authenticated as ZZZZ. It asked for
page secret.htm, the user name was unknown.

192.100.101.31 - 4D [25/Jan/2003:12:54:12] "GET /secret.htm" 200 2543
The Web client whose address was 192.100.101.31 was authenticated as 4D. It asked for
page secret.htm, which was sent (it contains 2,543 bytes).

Warning: The log file can be imported into a spreadsheet or directly into 4D. However,
you must imperatively stop the Web server before importing it.

By default, the log file of requests is not generated. To request the generation of a log file
of all the Web requests you must check the Save Request in File (logweb.txt) option on
the Configuration page of the Web theme of the database Preferences.

Runtime Explorer Information
__

The Watch page (“Information” heading) in the Runtime Explorer displays three pieces of
information relative to the Web Server:

• Web Cache Usage: indicates the number of pages present in the Web cache as well as its
use percentage. This information is only available if the Web server is active and if the
cache size is greater than 0.

• Web Server Elapsed Time: indicates the duration of use (in hours:minutes:seconds
format) of the Web server. This information is only available if the Web server is active.

1738 4th Dimension Language Reference

• Web Hits Count: indicates the total number of HTTP requests received since the Web
server boot, as well as an instantaneous number of requests per second (measure taken
between two Runtime Explorer updates). This information is only available if the Web
server is active.

Note: For more information about the Runtime Explorer, refer to 4D Design Reference
manual.

See Also
WEB CACHE STATISTICS, Web Server Settings.

4th Dimension Language Reference 1739

Using the Contextual Mode Web Server

version 2003 (Modified)
__

The 4D Web server can operate in two different modes: non-contextual mode (standard
mode) and contextual mode. This section describes these two modes and details the
particularities of the contextual mode.

Warning: The contextual mode can only be used with 4th Dimension and 4D Server. The
4D Client Web server does not support this mode.

Note: The section Your First Time with the Web Server gives a complete example of the
publication of a database in contextual mode.

Non-contextual and contextual mode
__

Starting with version 2003 of 4th Dimension, the 4D Web server uses the non-contextual
mode by default (disconnected mode). In this mode, the operation of the 4D Web server
is comparable to that of standard Web servers: when an HTTP request is received from a
browser (URL, posted form, etc.), the server processes the request, then returns a response
when necessary (sending a Web page, for example). No specific connection is maintained
subsequently between the server and the browser.
In non-contextual mode, the Web server can send static or semi-dynamic pages. Semi-
dynamic pages allow you to access data in the database or to carry out any type of
processing using special 4D tags that are evaluated at the time the page is sent. Semi-
dynamic pages allow you to build, manage and send Web pages whose content originates
in whole or in part from processing carried out by 4D. Non-contextual mode generally
meets most Web site development needs.

In contextual mode, connection to a Web browser causes the creation of a context in
which the current selection, its variables, etc. will be placed. In a way, each browser is
considered as a 4D Client connecting to the database in Custom Menus mode. The
context is handled by a specific Web connection process.
This mode allows instant publication of a 4D database on the Web, without it being
necessary to create Web pages: 4D manages and sends to the browser dynamic pages
stemming from automatic conversion of database menu bars and forms into HTML. In
contextual mode, it is still possible to send semi-dynamic or static pages. It is also possible
to insert HTML or Javascript code into 4D forms in order to add functions to the pages
displayed on the Web.
In addition, in this mode 4D automatically handles simultaneous access to data: when a
browser or a 4D Client machine loads a record, 4D locks it for other users in a transparent
manner, whether they be browsers or other 4D Client machines. Moreover, 4D allows
you to carry out data entry during a transaction with a Web browser, in the same way as
with 4th Dimension or 4D Client. This system enables the 4D Web server to control the
actions of the browsers and to guarantee data integrity.

1740 4th Dimension Language Reference

In return for this ease of publication, the contextual mode includes several constraints:
- Web browsers allowing “surfing” from one Web page to another, one site to another,
etc. With a client/server type database, this navigation must be controlled in order to
respect the logic of database transactions. Each entry carried out by a user in a record
must be validated or cancelled in order not to remain in an uncertain state. The 4D Web
server engine contains automatic mechanisms that manage database sessions and
contexts. These mechanisms prevent the use of certain standard browser functions
(Reload, Previous page, etc., see next paragraph).
- The connection process in charge of maintaining the context remains active until the
timeout of the browser defined in the database Preferences is reached. If, for instance, the
browser has left the site in the meantime, the context is then “wasted”.
These constraints mean that the contextual mode is intended rather for Intranet use or
for use within the framework of specific Internet applications.

How 4D Web Server functions is summarized in the following figure:

Choice of mode
Choosing the 4D Web server operating mode is carried out as follows:
• On startup of the server, using the Starting Mode option of the database Preferences,
• During Web server use, according to the URLs sent or the commands executed.

4th Dimension Language Reference 1741

In fact, some special URLs and certain 4D commands can be used to change the mode. In
principle, the current mode remains in use as long as no URL or 4D command causes it to
change.

• Defining the contextual mode on startup
By default, the Web server starts in non-contextual mode. You can start the Web server
directly in contextual mode. This means that when a user connects to the database, a
context is automatically generated.
To specify the non-contextual mode on startup, check the Contextual Mode (permanent
context) option on the Configuration page in the Web theme of the database Preferences
dialog:

• Commands and URLs that cause the mode to change
During database operation, you can change mode by calling the following elements:
• Change to non-contextual mode:
- SEND HTML BLOB by passing True in the optional noContext parameter
- SEND HTML TEXT by passing True in the optional noContext parameter
- SEND HTTP REDIRECT
- URL beginning with /4DACTION
• Change to contextual mode:
- URL beginning with /4DMETHOD/MyMethod.
When the /4DMETHOD/MyMethod URL is sent, the 4D Web server creates a new context
and carries out the following operations:
- The On Web Authentication Database Method is executed (if any),
- The On Web Connection Database Method is executed (if any) — in this particular case,
$1 is equal to /4DMETHOD/MyMethod instead of / (slash),
- Finally, the requested method is executed in the newly created context.

Finding out the number of contexts generated
Depending on the actions that they carry out, some Web processes use Web contexts and
other do not.
You can find out the number of contexts generated using the PROCESS PROPERTIES
command: for any Web process, this command indicates, in the origin parameter,
whether it uses a context (-11, Web process with context) or not (-3, Web process without
context).

1742 4th Dimension Language Reference

Web Connection Context Management
__

Web Connection Context ID
The number present in the name of the Web connection process is called the context ID,
which is randomly generated and uniquely identifies each Web connection. The context
ID is maintained on both the 4D and the browser sides during the entire Web
connection. In this example, the context ID is 1066993139. In the Web browser window
shown here, you can see this number in the URL displayed in the Location area of the
browser:

The URLs are automatically maintained by 4D during the whole Web session in contextual
mode. Each time an HTTP request is received via TCP/IP, 4D extracts the context ID from
the URL, and thereby can redirect the request to the right Web Connection process.

Context IDs:
• Enable 4D to maintain both a Web and Database session over each Web connection.
• Transparently handle multiple concurrent Web connections.
• Prevent future undesirable connections when using bookmarks, because a different
context ID is generated at each connection.

Synchronizing Web and Database sessions: Web Connection Subcontext ID
In the window shown above, note that the context ID is followed by a dot and a second
number, called the subcontext ID. 4D automatically manages and increments this
number each time a new 4D-based HTML page is sent to the browser in contextual mode.
The subcontext ID is essential to the maintenance of the database session.

Usually, a Web browser includes navigation controls, such as the Back and Forward
buttons, History windows, and so on. These controls are useful when you are browsing
documents, news, bulletin boards, etc. They are less appealing when you perform a
database transaction.

4th Dimension Language Reference 1743

For example, if a Web user is adding a record to a table, you need to know whether or not
the data entry is validated, that is, whether or not the Web user clicked the Accept or
Cancel buttons of your 4D form. If, at this point, the Web user navigates to other pages,
the data entry is left in an uncertain state. To prevent this, 4D uses the subcontext ID to
synchronize the Web session on the browser side with the database session on the 4D
side.

Each time a form is submitted or an HTTP request is sent to 4D by the browser, if a
desynchronization of the Web and database sessions is detected, 4D sends the message
“Using browser navigation controls, you left a form requiring data validation. 4th Dimension
will now return to that form so you can accept or cancel it.” 4D then goes back to the Web
data entry page using the subcontext ID.

This synchronization is also essential for the Web Connection process. You need to
correctly get out of, for example, an ADD RECORD ([...]) to pursue the execution of your
4D code.

The synchronization is selective. If the current Web page displayed on the browser side is
a 4D form (ADD RECORD, DISPLAY SELECTION, DIALOG, etc.), the synchronization will
eventuallly occur.
If the current Web page is an HTML page accessed by link from another Web page (sent
using the command SEND HTML FILE), then you can navigate freely through the pages.

Given the following piece of 4D code:

ADD RECORD ([Customers])
SEND HTML FILE ("anyPage.HTM")
DISPLAY SELECTION ([Products])

1744 4th Dimension Language Reference

The following figure details what happens both on 4D and the Web browser during
execution.
• Lines in red denote 4D form translations and submissions.
• Lines in blue denote switching back and forth between 4D-based and non 4D-based
HTML pages.
• Areas in green denote non 4D-based HTML pages.

4th Dimension Language Reference 1745

Description of the steps

(1) An ADD RECORD is issued. 4D translates the current input form of the table into an
HTML page and sends it to the Web browser. If the form is a multi-page form, the
standard 4D page navigation buttons allow you to navigate through the pages of the
form. This 4D-based navigation is implemented and performed transparently by 4D (via
Web form submission).

(2) During data entry (therefore within the ADD RECORD call), a button is clicked and its
object method issues a SEND HTML FILE call.

(3) Within the SEND HTML FILE call, if the HTML page includes links, it is possible to
navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(4) The object method of the button that was clicked and the data entry initiated by ADD
RECORD are executed. Note that steps (2) and (3) can be repeated several times within the
data entry.

(5) Finally, the data entry is accepted or canceled, and the Web Connection process is
executed.

(6) The next call is a SEND HTML FILE.

(7) This step is analogous to step 3. If the HTML page includes links, it is possible to
navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(8) The Web Connection process is executed.

(9) A DISPLAY SELECTION is issued. 4D translates the current output form of the table into
an HTML page and sends to the Web browser. During the DISPLAY SELECTION, 4D
transparently navigates between the selection page and the display of individual records.
4D also uses MODIFY SELECTION to manage data entry and record locking, via Web form
submissions.

(10) During navigation through the selection, a button in the footer area of the form is
clicked and its object method issues a SEND HTML FILE call.

(11) This step is analogous to steps 7 and 3. If the HTML page includes links, it is possible
to navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(12) The object method of the button that was clicked and the selection display initiated
by DISPLAY SELECTION are executed. Note that steps (10) and (11) can be repeated several
times during navigation of the selection.

(13) Finally, the selection display is exited and the Web Connection process is executed.

And so on...

1746 4th Dimension Language Reference

Free Web navigation (clicking on the Back or Forward buttons for instance) is possible
within any SEND HTML FILE (green areas in the figure above). On the other hand, any
4D-based HTML page (data entry, selection display... including standard dialog boxes such
those displayed by CONFIRM or Request) is exited through the use of one of the browser
navigation controls, 4D will eventually synchronize the Web sessions and the Database
sessions by going back to the Web page whose subcontext ID corresponds to that of the
issued 4D command currently being executed on the Web Connection process side.

Web Connection process and Web session
From the user viewpoint, the user's actions on the Web browser side pilot a Web session.
From the programmatic viewpoint, the Web Connection process pilots the Web session,
not the reverse. The Web browser displays the pages sent by the Web Connection process,
which either:
• Executes 4D code, or
• Waits for the submission from the browser of the current Web page.

From a Design viewpoint, the Web Connection process should be seen as a 4D process
whose domain of execution is 4th Dimension or 4D Server, but whose user interface is
remotely echoed on the connected Web browser.

With this in mind, always take into account this duality of the Web Connection process
when designing Web database applications in contextual mode. For example:

• During data entry of any kind, the main menu bar is that of the browser, not that of
4D. Within a form, do not rely on the 4D menu bar; it is on the Web server machine, not
on the Web browser machine,

• When you design forms to be used on the Web browser, remember that the 4D form set
of features is limited to that of HTML (but sometimes with some 4D additions). Do not
rely on the whole 4D forms feature set (i.e., object types and form events). For more
information on this point, refer to the paragraph “Automatic HTML conversion” below.

• In terms of interprocess communication, CALL PROCESS, when applied to a Web
Connection process, has no effects because its current active form is displayed on the
Web browser. On the other hand, a Web Connection process can issue a CALL PROCESS
toward another 4D process.
In addition, interprocess communication can be indifferently performed in both
directions using the GET PROCESS VARIABLE and SET PROCESS VARIABLE commands, which
do not require a process to have a user interface.

Inactive Web Process Timeout
As explained previously, a Web Connection process in contextual mode is either
executing 4D code or waiting for the submission of the Web page currently displayed on
the browser side. In the latter case, a Web Connection process will wait for a delay equal
to the Inactive Web Process Timeout, set on the Advanced page (Web theme) of the
Preferences window or set programmatically using the SET WEB TIMEOUT command.

4th Dimension Language Reference 1747

The scope of the Web Server Connections Timeout setting is the database session. All
contextual Web Connection processes are subjected to that value; they are immediately
affected if that setting is changed. The default value is 5 minutes.

Note: The command SET WEB TIMEOUT allows you to specify a different Timeout for each
Web process.

You can increase or decrease this timeout at your convenience. For example, you can
increase the timeout if your application allows Web users to surf to other Web sites via
HTML links in the pages served by your database. By increasing the timeout, you enable
users to navigate longer within the other Web sites without closing their connections to
your databases.

WARNING: There is no way to programmatically stop a Web Connection process. If you
specify a long timeout, the process will wait for that delay, even though the Web user
may have stopped working with the Web Connection for quite some time. If you specify
No Timeout, the Web Connection processes will stop only when the database is exited.
However, a Web connection process is automatically aborted as soon as the Web server
switches to non-contextual mode.

Tip: Unlike Web Server process, Web Connection processes can be aborted using the
Abort command (available in the Runtime Explorer when the Process page is displayed).

Automatic HTML conversion

This paragraph specifies the elements, objects and mechanisms handled automatically
during database conversion into HTML by 4th Dimension in contextual mode.

Menu Bars
• Each menu bar is translated into one HTML page. Each menu title appears as text only
and menu commands associated with 4D methods appear as links to these 4D methods.
Menu commands that are only associated with automatic actions appear as text only.
• Clicking a menu item on the Web Browser side starts the execution of the associated 4D
method on the Web Connection process side.
Note: When the “Start a New Process” property is assigned to a menu command, the
associated method is executed by the 4D Web server in a new Web connection process
using the 4DMETHOD URL. In this case, the method of the menu must have the
Available through 4DACTION, 4DMETHOD and 4DSCRIPT attribute (unchecked by
default for new databases). For more information, refer to the Connection Security section.
• The picture associated with a menu bar is placed below the menus on the browser.

1748 4th Dimension Language Reference

Forms
• Objects are translated from top to bottom and from left to right, and they have the
same position on the browser as they do in the 4D form. Note, however, that HTML is a
word processing oriented application; horizontal objects positions may be different and
wrap-around may occur.
• Multi-page forms are supported transparently, including a page zero and inherited
forms.
• Automatic actions, when appropriate, are supported transparently.
• Form events (On Load, On Unload, On Clicked and On Timer) are supported. Other events
are not supported.
• The Header, Detail, Break and Footer tags are taken into account during calls to DISPLAY
SELECTION and MODIFY SELECTION. The Header of the form appears once at the
beginning of the HTML page, the detail area is repeated as many times as necessary, and
variables (such as buttons) placed in the Footer area appear at the end of the HTML page,
just under the automatic selection page navigation links.
• The tips associated with buttons displayed as pictures in the form editor appear on the
browser — if the browser allows these tips to be displayed.
• A picture replicated (“Replicated” display) inserted in the (0,0,x,x) coordinates in 4D’s
form editor is sent as a background picture on the browser. Please note that dark pictures
should be avoided.

Note: The 4D Web server uses CSS1 to produce HTML pages with a very similar
appearance to the 4D forms themselves. CSS1 (Cascading Style Sheet 1) specifications have
been defined by the World Wide Web Consortium (W3C). These style sheets set some
characteristics related to the document appearance: font, size, color, title, body, spacing,
etc. .CSS documents are sent with the MIME type “text/css”. In both contextual or non-
contextual mode, these documents are not processed by 4D.
For compatibility reasons, you can modify the Web conversion mode to use for the forms
using the SET DATABASE PARAMETER command (selector 8, Web Conversion Mode).

Fields Objects
When a 4D form is translated to an HTML page, field objects are translated as follows:

4D Field Type HTML Object HTML Markup
Alphanumeric Text field (*) <INPUT Type="text" ...>
Text Text field (*) <TEXTAREA ...> (**)

<INPUT Type="text" ...> (***)
Real Text field (*) <INPUT Type="text" ...>
Integer Text field (*) <INPUT Type="text" ...>
Long Integer Text field (*) <INPUT Type="text" ...>
Date Text field (*) <INPUT Type="text" ...>
Time Text field (*) <INPUT Type="text" ...>
Boolean Radio or Check box (*) <INPUT Type="radio" ...>

<INPUT Type="checkbox" ...>

4th Dimension Language Reference 1749

Picture Image (always non-enterable)
Subtable No HTML support None
BLOB No HTML support None

(*) or text only if non-enterable
(**) If the text value is composed of several lines
(***) If the text value is composed of only one line or is empty

Note: Enterable variables behave like fields of the same type.

Form Objects
When a 4D form is translated to an HTML page, form objects are translated as follows:

4D Form Object Equivalent HTML Object HTML Markup
Line Horizontal Line (1) <HR>
Rectangle Rectangle Managed by CSS1
Oval No HTML support None
Rounded Rectangle No HTML support None
Static Picture Image or Image Map (2)

<INPUT Type="image" ...>
Group Box Text Text with font markups if any
Static Text Text Text with font markups if any
Button Submit button <INPUT Type="submit" ...>
Default Button Submit button <INPUT Type="submit" ...>
Radio Button Radio button (3) <INPUT Type="radio" ...>
Check Box Check Box <INPUT Type="checkbox" ...>
Pop-up/Drop-down List Drop-down List <SELECT ...>...</SELECT>
Combo Box Drop-down List <SELECT ...>...</SELECT>
Scrollable Area Scrollable List (4) <SELECT ...>...</SELECT>
Tab Control URL lists (5)
Invisible Button See note 2
Highlight Button See note 2
3D Button See note 2
Button Grid See note 2
Graph Image (non-enterable)
Plug-in HTML text, Image Text with font markups if any

or Image Map (6) or
or <INPUT Type="image"...>

The following objects are not supported by HTML and therefore are ignored during the
translation:
Hierarchical Pop-up menu, Hierarchical List, Subform, Radio Picture, Thermometer, Ruler, Dial,
Picture Pop-up Menu, Picture Button, 3D Check Box, 3D Radio Button.

1750 4th Dimension Language Reference

Notes
1. Non-horizontal lines are not supported in HTML; they are therefore ignored.

2. Invisible-like buttons are objects of type Invisible Button, Highlight Button, 3D Button,
and Button Grid. If a static picture is not overlapped by an invisible-like button, the
picture is translated as a static image. If it is overlapped by at least one invisible-like
button, it is translated as a Server-Side Image Map. On the Web browser side, the image is
treated as a Server-Side Image Map. On the 4D side, when the submission is received, 4D
recalculates the position of the click in order to generate an On Clicked event for the
appropriate button, as if the button was actually clicked. Managing invisible-like buttons
is therefore quite simple, provided that they overlap with static pictures. You manage
these buttons through the Form method or their object methods, as you would do in the
regular 4D interface. This also provides you with a very simple way to handle Web Image
Mapping. If an invisible-like button does not overlap with any static picture objects, it is
ignored during the translation.

3. Radio button grouping is maintained though the translation.

4. Grouped scrollable areas are not supported in HTML. 4D translates them as independent
scrollable lists located on the same line.

5. Tab controls (of type array or created by using the values defined in the Object
properties) are converted into URL lists.

If the array elements are empty strings, 4D displays 1, 2, 3... on the browser.

6. Plug-in areas are publishable on the Web, by first being converted into HTML, Image or
Image Map. This last solution allows you to manage mouse clicks inside the plug-in area
(for example, the integrated plug-in 4D Chart is published in an Image Map and the
4D_Pack _AP External clock area is published as an Image). The way in which a plug-in
area, which is on a 4D form, is published on the Web depends on the plug-in editor’s
specifications.

4th Dimension Language Reference 1751

Display Selection / Modify Selection
• The UserSet mechanism is not supported
• An automatic selection paging mechanism is provided by 4D. For more information, see
the description of the SET WEB DISPLAY LIMITS command.

4D Commands
While developing a 4D Web database, you may ask what happens when this or that
command is called. Will the command take effect on the Web Server machine or on the
Web Browser machine? The Web Connection Process is executing on the Web Server
machine, but its user interface is remotely echoed on the connected Web Browser.
Consequently, for Web database development, the 4D commands can be classified as
follows:

Commands that are not affected by execution from within a Web Connection process
A command such as CREATE RECORD works within the executing process; in this case, it
creates a record within the Web Connection process. The same applies to commands such
as Screen width, which returns the width of the screen on the Web Server machine (the
machine on which the process is executing).

Commands that include extra built-in capabilities for transparent Web support
Command Name Comments
ADD RECORD Automatic translation of the form, multi-page forms supported
ALERT Automatic translation of the dialog box
CONFIRM Automatic translation of the dialog box
DIALOG Automatic translation of the form, multi-page forms supported
DISPLAY SELECTION Automatic translation of the form

Built-in Web paging mechanism
UserSet mechanism is not supported

MODIFY RECORD Automatic translation of the form, multi-page forms supported
MODIFY SELECTION Automatic translation of the form

Built-in Web paging mechanism
UserSet mechanism is not supported

QUERY Standard Query dialog box supported
QUERY BY EXAMPLE Automatic translation of the form, multi-page forms supported
Request Automatic translation of the dialog box
REDRAW Update of the form displayed on the browser

Commands to use when you know what you want to do
The following commands execute locally on the Web Server machine.

For example, you can invoke the printing of a selection from a Web Browser. However,
the printing will be performed on the Web Server machine.

1752 4th Dimension Language Reference

In addition, when a user interface component is involved, it appears on the Web Server
machine, i.e., Open document("") vs Open Document("This document"). You should avoid
such calls, because the Web Browser will wait for a reply until the dialog box is closed on
the Web Server machine. On the other hand, it is perfectly OK to call these routines
when no dialog boxes are involved.

Command Name Comments
Append document OK, if no file dialog box is invoked
BEEP Beeps on Web Server machine
Create document OK, if no file dialog box is invoked
DISPLAY RECORD Does nothing
EXPORT DIF OK, if no file dialog box is invoked
EXPORT SYLK OK, if no file dialog box is invoked
EXPORT TEXT OK, if no file dialog box is invoked
IMPORT DIF OK, if no file dialog box is invoked
IMPORT SYLK OK, if no file dialog box is invoked
IMPORT TEXT OK, if no file dialog box is invoked
LOAD SET OK, if no file dialog box is invoked
LOAD VARIABLES OK, if no file dialog box is invoked
MESSAGE Messages will appear on Web Server machine
Open document OK, if no file dialog box is invoked
Open external window Window opens on Web Server machine
Open resource file OK, if no file dialog box is invoked
Open window Window opens on Web Server machine
PLAY Sound is played on 4D machine
Print form OK, if no Printing dialog box is invoked
PRINT LABEL OK, if no Printing dialog box is invoked
PRINT RECORD OK, if no Printing dialog box is invoked
PRINT SELECTION OK, if no Printing dialog box is invoked
QUIT 4D Supported, you can shutdown the Web server remotely
SAVE SET OK, if no file dialog box is invoked
SAVE VARIABLES OK, if no file dialog box is invoked
SELECT LOG FILE OK, if no file dialog box is invoked
SET CHANNEL OK, if no file dialog box is invoked (documents)
TRACE Debugger window appears on Web Server machine

4th Dimension Language Reference 1753

Commands Not Supported by Web Connection Processes

Command Name Comments
ADD DATA SEGMENT Do NOT call this command from within a Web Connection process

This command has not been designed to be used on the Web
ADD SUBRECORD Do NOT call this command from within a Web Connection process

This command has not been designed to be used on the Web
CHANGE ACCESS Do NOT call this command from within a Web Connection process

This command has not been designed to be used on the Web
EDIT ACCESS Do NOT call this command from within a Web Connection process

The Passwords window appears on the 4D machine
The Browser will wait until the window is closed

GRAPH TABLE Do NOT call this command from within a Web Connection process
This command has not been designed to be used on the Web

MODIFY SUBRECORD Do NOT call this command from within a Web Connection process
This command has not been designed to be used on the Web

ORDER BY Programmatical support only
Standard Order By dialog box not supported on the Web

PRINT SETTINGS Do NOT call this command from within a Web Connection process
The Printing dialog boxes will appear on the 4D machine
The Browser will wait until the dialog boxes are closed

QR REPORT Do NOT call this command from within a Web Connection process
The Quick Report window appears on the 4D machine
The Browser will wait until the window is closed

Embedding HTML

You can customize the content of 4D forms converted into HTML by embedding HTML
code (or Javascript) into the form. The resulting form, on the Web browser side, is a
combination of HTML and 4D objects.

Inserting an HTML page using a static text object
A static text object of a 4D form containing, for instance, the string "{page.HTM}", inserts
the HTML document "page.HTM" into the 4D form at the place where the text object is
located.
You insert a document in its entirety (in fact, everything included between the <BODY>
and </BODY> tags). You can either use an existing HTML document, or, using language,
build a document that you save to disk and to which you refer subsequently.

Note: In some cases, HTML conversion of 4D forms created in version 6.0.x that contain
a reference to an HTML document ({mapage.htm}) do not always give the expected result
with 4D version 6.7 and later. In this case, it is possible to modify the form conversion
mode using the SET DATABASE PARAMETER command.

1754 4th Dimension Language Reference

Inserting HTML code
Any 4D text variable can embed HTML code into a 4D form, if its first character has the
ASCII code 1 (for example, vtHTML:=Character(1)+"...HTML code...").
You can thus insert pieces of code and, in this case, you can build the HTML code into
memory.

File References and URLs
__

In contextual mode, to insure the maintenance of the database context and subcontext
IDs, 4D automatically remaps file references and URLs. For example, 4D remaps all IMG
and HREF references to local files.

If you insert your own HTML code into a 4D form using a text variable, you must follow
the 4D remapping syntax.

Local GIF files are remapped as "/4DBin/_/GIF_file_pathname", where GIF_file_pathname is
the full HTML path name of the GIF file relative to the root of the volume where the file
is located.

Example
The following 4D method returns the remapped reference for the pathname received as
parameter:

` WWW Local GIF URL Project Method
` WWW Local GIF URL Project (Text)
` WWW Local GIF URL (Native pathname) -> URL to local GIF file

C_TEXT($0;$1)
$0:="/4Bin/_/"+HTML Pathname ($1)

Note: For details about the method HTML Pathname, see the examples of the command
Mac to ISO.

Then, when inserting HTML code into a 4D form using a text variable, you can write:

vtHTML:=Char(1)+"<P><IMG SRC="+Char(34)+WWW Local GIF URL
("F:\ThisImage.HTM"+Char(34)+" ALIGN=MIDDLE></P>"+Char(13)

This will insert the GIF document in the 4D form at the location of the 4D variable
vtHTML.

Important: You only need to write this kind of code to insert custom HTML code into a
4D form. If you just send an HTML page using SEND HTML FILE or if you use a command
such as ADD RECORD, remember that 4D transparently translates and remaps the HTML.

4th Dimension Language Reference 1755

The remapping does not change links that have the following protocols:
• http:
• ftp:
• mailto:
• news:
• gopher:
• javascript:
• nntp:
• wais:
• prospero:
• telnet:

See Also
Connection Security, On Web Authentication Database Method, On Web Connection
Database Method, SET DATABASE PARAMETER.

1756 4th Dimension Language Reference

Using SSL Protocol Web Server

version 2003 (Modified)
__

The 4D Web server can communicate in secured mode through the SSL protocol (Secured
Socket Layer).

SSL Protocol Definition
The SSL protocol has been designed to secure data exchanges between two applications
—mainly between a Web server and a browser. This protocol is widely used and is
compatible with most Web browsers.

At the network level, the SSL protocol is inserted between the TCP/IP layer (low level) and
the HTTP high level protocol. SSL has been designed mainly to work with HTTP.

Network configuration using SSL:

Note: The SSL protocol can also be used to secure standard 4D Server client/server
connections. For more information, refer to the section Encrypting Client/Server
Connections in the 4D Server Reference manual.

The SSL protocol is designed to authenticate the sender and receiver and to guarantee the
confidentiality and integrity of the exchanged information:
• Authentication: The sender and receiver identities are confirmed.
• Confidentiality: The sent data is encrypted so that no third person can understand the
message.
• Integrity: The received data has not been changed, by accident or malevolently.

4th Dimension Language Reference 1757

SSL uses a public key encryption technique based on a pair of asymmetric keys for
encryption and decryption: a public key and a private key.
The private key is used to encrypt data. The sender (the web site) does not give it to
anyone. The public key is used to decrypt the information and is sent to the receivers
(Web browsers) through a certificate. When using SSL with the Internet, the certificate is
delivered through a certification authority, such as Verisign®. The Web site pays the
Certificate Authority to deliver a certificate which guaranties the server authentication
and contains the public key allowing to exchange data in a secured mode.

Note: For more information on the encryption method and the public and private key
issues, refer to the ENCRYPT BLOB command description.

How to get a certificate?
A 4D Web server working in secured mode means that you need a digital certificate from
a certification authority. This certificate contains various information such as the site ID
as well as the public key used to communicate with the site. This certificate is transmitted
to the Web browsers connecting to this site. Once the certificate has been identified and
accepted, the communication is made in secured mode.

Note: A browser authorizes only the certificates issued by a certification authority
referenced in its properties.

The certification authority is chosen according to several criteria. If the certification
authority is well known, the certificate will be authorized by many browsers, however the
price to pay will be expensive.

To get a SSL certificate:

1. Generate a private key using the GENERATE ENCRYPTION KEYPAIR command.

Warning: For security reasons, the private key should always be kept secret. Actually, it
should always remain with the Web server machine. The Key.pem file must be placed in
the Database structure folder.

2. Use the GENERATE CERTIFICATE REQUEST command to issue a certificate request.

1758 4th Dimension Language Reference

3. Send the certificate request to the chosen certificate authority.
To fill in a certificate request, you might need to contact the certification authority. The
certification authority checks that the information transmitted are correct. The certificate
request is generated in a BLOB using the PKCS format. This format allows to copy and
paste the keys as text and to send them via E-mail without modifying the key content.
For example, you can save the BLOB containing the certificate request in a text document
(using the BLOB TO DOCUMENT command), then open and copy and paste its content in
a mail or a Web form to be sent to the certification authority.

4. Once you get your certificate, create a text file named “cert.pem” and paste the
contents of the certificate into it.
You can receive a certificate in different ways (usually by E-mail or HTML form). The 4D
Web Server accepts all platform-related text formats for certificates (Mac OS, PC, Linux...).
However, the certificate must be in PKCS format.

5. Place the “cert.pem” file in the Database structure folder.
The Web server can now work in a secured mode. A certificate is valid between 6 months
to a year.

SSL installation and activation within 4D
If you want to use the SSL protocol with the 4D Web server, the following components
should be installed on the server, at different locations:

• 4DSLI.DLL: Secured Layer Interface dedicated to the SSL management.
This file should be placed in the [4D Extensions] folder of the 4D application that
publishes the database.

• key.pem: document containing the private encryption key.
- with 4th Dimension or 4D Server, this file must be located in the database folder.
- with 4D Client, this file must be located in the 4D Client application folder.

• cert.pem: document containing the "certificate".
- with 4th Dimension or 4D Server, this file must be located in the database folder.
- with 4D Client, this file must be located in the 4D Client application folder.

Files required to implement SSL with 4D Web server (4th Dimension and 4D Server):

4th Dimension Language Reference 1759

Files required to implement SSL with 4D Web server (4D Client):

Note: 4DSLI.DLL is also necessary to use the encryption commands ENCRYPT BLOB and
DECRYPT BLOB.

The installation of these elements makes it possible to use SSL for connections to the 4D
Web server. However, in order for SSL connections to be accepted by the 4D Web server,
you must “activate” the SSL. This parameter is accessible on the Configuration page of the
Web theme in the database Preferences:

1760 4th Dimension Language Reference

By default, the SSL connections are allowed. You can uncheck this option if you do not
want to use SSL functionalities with your Web server, or if another Web server allowing
secure connections is operating on the same machine.

The TCP port dedicated to SSL data exchange is 443 by default. This port number can be
modified in the HTTPS Port Number area in order, for example, to reinforce the security
of the Web server (for more information about this pont, refer to the Web Server Settings
section). The TCP port defined in this page of the Preferences is used for standard mode
Web server connections.

Note: The other Preferences defined for the 4D Web Server management (password,
timeout, cache size, etc.) are applied, regardless of whether or not the server is operating
in SSL mode.

Browser connection with SSL
For a Web connection to be carried out in secure mode, the URL sent by the browser
simply needs to begin with “https” (instead of “http”).
In this case, a warning dialog appears on the browser. If the user clicks OK, the Web
server sends the certificate to the browser.

The encryption algorithm used for the connection is then decided by the browser and the
Web server. The server offers several symetric encryption algorithms (RC2, RC4, DES...).
The most powerful common algorithm is used.

Warning: The level of encryption allowed depends on current laws in the country of use.
The level of encryption offered by 4D Web Server depends on the version of the
encryption system library used. By default, 4D provides an "Export" version of the library
whereby symetric algorithms are limited to 40 bits.

Management of the connection mode
Using SSL with 4D Web server does not require any specific system configuration.
However, you should keep in mind that a SSL Web server can also work in a non-secured
mode. The connection mode can switch to another mode if the browser requires so (for
example, in the browser URL area, the user can replace “HTTPS” by “HTTP”). The
developer can forbid or redirect requests made in a non secured mode. The command
Secured Web connection allows you to get the current connection mode.

See Also
DECRYPT BLOB, ENCRYPT BLOB, GENERATE CERTIFICATE REQUEST, GENERATE
ENCRYPTION KEYPAIR, Secured Web connection, Web Server Settings.

4th Dimension Language Reference 1761

XML and WML Support Web Server

version 6.7
__

WML
4D Web Server supports WML (Wireless Markup Language) technology. This feature allows
a mobile phone or a PDA’s owner to read and enter data in a 4D database.

Note: The WML language associated to the WAP (Wireless Application Protocol) is
developed by several companies. The WAP technology offers a set of network
communication tools so that mobile phones and PDA users can visualize text published
on Web pages. The WML technology is open and free of charge. For more information
on WML, please refer to the Phone.com Web site: http://www.phone.com/.

The data can be entered or read through WML pages using 4DVAR or 4DSCRIPT tags.

Here is the list of the WML documents supported by 4D Web server:
Extension MIME Type Description
.wml text/vnd.wap.wml WML pages (always supported by 4D*)
.wmls text/vnd.wap.wmlscript WML Scripts (on the client’s side)
.wmlc application/vnd.wap.wmlc WML binary pages
.wmlsc application/vnd.wap.wmlscript WML binary scripts
.wbmp picture/vnd.wap.wbmp Bitmap images for mobile phones (not always

supported)

* Allows dynamic data insertion through 4DVAR and 4DSCRIPT tags.

XML
The 4D Web server supports .xml,.xls and .dtd documents which are sent with the
following MIME type: “text/xml” and “text/xsl”.

Regardless of the mode applied to the sent documents (contextual or non-contextual
mode), 4D analyzes their content and processes their 4DVAR or 4DSCRIPT type tags (if
any) in order to generate dynamic XML.

Note: It is not possible to send XML format from a 4D form in contextual mode using a
tag such as {mypage.xml} included in a static text.

See Also
Binding 4D objects with HTML objects.

1762 4th Dimension Language Reference

Using CGIs Web Server

version 2004 (Modified)
__

The 4D Web Server supports CGIs (Common Gateway Interface). CGIs for Web servers are
similar to plug-ins for 4D methods. They are called by the Web server to execute a task
and return an answer, i.e. a full Web page or some HTML code inserted in the page sent
by the server. CGIs are frequently used to display visitors counters, generate guest books,
receive a form-mail, etc. A multitude of CGIs are available today, most of which are
freeware.

Note: Originally, CGI was a standard for interfacing external applications with HTTP
server. The "CGI" word is now used for the external applications themselves.

The 4D Web Server supports CGIs in two ways:
• 4D Web Server can use CGIs in automatic or manual mode
• 4D Web Server can be interfaced with other HTTP servers using CGIs extensions
(Windows only)

Executing CGIs from 4D Web Server
__

4D supports all types of CGIs, under Mac OS X and under Windows. A CGI can be an
application, a PERL script or a DLL interfacing with a Web server.
- Executables (.EXE) using the “console” and the environment variables. The source code
is usually cross-platform (Windows and Unix). The CGI names are usually written as
follows: nnn.exe or nph-nnn.exe. For more information on this kind of CGI, please refer to
the http://hoohoo.ncsa.uiuc.edu/cgi/ Internet site.
- DLL ISAPI, i.e. extensions for IIS (Internet Information Server). The CGI names are
written as follows: nnn.dll or nph-nnn.dll. The DLLs are downloaded once the Web server
has been stopped for performance purposes.
For more information on this type of CGI, please refer to the
http://www.microsoft.com/iis/ Internet site.
- PERL scripts using the “console” and the environment variables. The CGIs require an
interpreter to execute. However they are cross-platform (Windows, Unix and Mac OS).
Their names are written as follows: nnnn.pl, nph-nnnn.pl, nnnn.cgi or nph-nnnn.cgi.
For more information on this kind of CGI, please refer to the http://www.perl.com/
Internet site.

Executing CGIs in automatic mode
An automatic CGI call is made through an URL, an action or a HTML tag inserted within
a page according to the task to be done by the CGI. In any case, the HTML string has to
contain /cgi-bin/ followed by the CGI name or possibly a path using the HTML syntax as
well as the search string.

4th Dimension Language Reference 1763

For example, an URL “http://195.1.2.3/cgi-bin/search.exe” will trigger the search.exe CGI
launch. Similarly, the marker is placed within a
HTML page, the counter.exe CGI will be launched when the page will be sent.

The CGI should be located at the root of the folder named cgi-bin. This folder should be
placed at the Web server root or in a subfolder. A server can have several cgi-bin folders.
This folder can contain other files than executable application, but only the latest can be
called from a Web client.

Example of installation with a CGI called “Count.exe”:

Below are some examples or locations and matching URLs:

Items location Matching URLs
(Web server root)
[mybase] folder

mybase.4db (structure) (http://195.1.2.3/)
[cgi-bin] folder

counter.exe (http://195.1.2.3/cgi-bin/counter.exe)
[Misc] folder

[cgi-bin] folder
script.pl (http://195.1.2.3/Misc/cgi-bin/script.pl)

Executing CGIs in manual mode
Calling CGIs in manual mode requires the use of the SET CGI EXECUTABLE command. In
particular, this command lets you execute a CGI without it being visible for the Web user
in the URL.
For more information about this point, refer to the description of this command.

1764 4th Dimension Language Reference

Interaction between 4D Web Server and CGIs
A call to a CGI does not modify the 4D environment (selection, variables...).
4D does not limit the response size. However, note that the maximum processing time
allocated to a CGI is limited to 30 seconds. After that time, the Web server will return an
error.

A CGI is always executed without context, regardless of the calling mode. Note however,
that in contextual mode, we strongly recommend that you not use a CGI sending back
HTML code, as it might desynchronize the context.

Errors returned by 4D regarding CGI calls
When a call to a CGI generates an error, 4D will return one of the following answers in a
standard HTML page:
• Not found: 4D does not find the CGI, or a PERL interpreter is missing
• Forbidden: the Web client is asking something other than an executable in a [cgi-bin]
folder
• Timeout: the request has not been processed by the CGI in less than 30 seconds
• Bad Answer: 4D was not able to process the CGI answer, or the ISAPI DLL caused an
exception
• Internal Error: memory full, etc.

Note: When a CGI does not work, check that the execution privileges of the CGI are
adequate and that the line feeds in the CGI script are correct.

Information for CGI Developers
This section in mainly intended for programmers who wish to develop specific CGIs for
their 4D databases.

• Environment variables
4D defines environment variables in compliance with CGI/1.1 specifications, and the
following information:
GATEWAY_INTERFACE: always “CGI/1.1”
SERVER_SOFTWARE: always “4D WebStar_D/version”
SERVER_PROTOCOL: always “HTTP/1.0”
SERVER_PORT_SECURE: contains “1” if the HTTP connection is secure, else “0”.
PATH_TRANSLATED: contains the full path to the HTML server root, and the part of the
path following the CGI name. For security reasons, this part cannot contain the character
sequences // or ..
Example : Root of the server “C:/web”. For a CGI call such as /cgi-bin/cgi.exe/path,
PATH_TRANSLATED value is “C:/web/path”. For a CGI call such /cgi-bin/cgi.exe/../path, 4D
returns the error Forbidden.
REMOTE_IDENT: user name (if relevant), else undefined.
HTTP_AUTHORIZATION, HTTP_CONTENT_LENGTH and HTTP_CONTENT_TYPE: undefined.
ALL_HTTP and URL are defined in case of ISAPI DLLs calls.
CERT_xxx and HTTPS_xxx are defined if the connection is secured (for DLL only).

Note: The SET ENVIRONMENT VARIABLE command lets you set these variables.

4th Dimension Language Reference 1765

In addition to the standard environment variables, 4D provides text variables
FORMVAR_variablename:
- if the request is sent using the "POST" method, these variables are filled with the form
entry areas (for example FORMVAR_NAME, FORMVAR_FIRSTNAME...) except for binary
fields (INPUT TYPE="FILE"). This system can be used with both “www/url-encoded” and
“multipart/form-data” encoded forms.
- if the request is sent using the "GET" method, these variables are filled with the values
passed in the request string (for example, in the case of the URL
.../cgi.exe?name=smith&code=75, FORMVAR_NAME will get the value “smith” and
FORMVAR_CODE will get the value “75”).

This functionality makes form processing easier (it is not necessary to parse strings such as
a=1&b=2&...), however the CGI is made 4D-specific.

• Processing of the answers sent by the CGI
If the name of the CGI (Windows executable or PERL script) starts with nph- (No Parsing
Header), 4D sends the answer “as is” to the Web client. In this case, it is up to the CGI to
comply with HTTP rules. Regarding ISAPI DLLs, 4D will never parse the response,
whatever the prefix.

Otherwise, 4D will send the HTTP header:
- if “Content-Type” is not specified by the CGI, 4D will always send “Content-Type:
text/html”,
- if “Location” is specified, 4D will not take the other elements of the answer into account
and will perform a HTTP redirection,
- if “Status” not specified, 4D will send “HTTP/1.0 200 OK”.
4D accepts any kind of line return combination (Windows-CRLF, Mac OS-CR, Unix-LF) in
the header of the HTTP answer and will reformat it.

Regarding ISAPI DLLs, 4D accepts asynchrone processings (HttpExtensionProc returns
HSE_STATUS_PENDING). A call to ServerSupportFunction (HSE_REQ_DONE_WITH_SESSION)
must occur during the next 30 seconds. If the function TerminateExtension is defined, it is
always called with the value HSE_TERM_MUST_UNLOAD.

Calling a 4D Web Server using CGIs (Windows only)
__

4th Dimension is provided with two new extensions, 4DISAPI.DLL and NPH-CGI4D.EXE.
These extensions have been designed to allow a HTTP server to send requests to a 4D
HTTP server. For example, a non secured 4D Web server can be interrogated via another
HTTP server, running in secured mode.

Warning: These two extensions are available under Windows only.

1766 4th Dimension Language Reference

• The 4DISAPI extension complies to the specifications defined by ISAPI (Internet Services
Application Programming Interface). The ISAPI technology has been developed originally by
Microsoft® for the IIS server but since it has been made compatible with various HTTP
servers such as Netscape®, Apache® or Sambar®.

• The NPH-CGI4D.EXE extension complies to the CGI specifications (Common Gateway
Interface) and can be used with all the CGI compatible servers.

These two extensions work the same way. The CGI compatibility is broadly used with
HTTP servers, however the CGI extension performances are usually lower than the ISAPI
ones.

How does it work?
These extensions work as follow: HTTP server “A” publishes pages on the Internet,
another HTTP server “B” is a 4D Server used in Intranet. To make the two servers
communicate, you just have to add the 4DISAPI or NPH-4DCGI extension in the server
“A” [Scripts] directory.
When a Web browser sends a request to the server A, it transmits it to the server B via the
4DISAPI or NPH-4DCGI extension through the URL (usually, the extension transmits to
the server B the URL part located after the call, including the request items). The answer is
then sent back to the browser. When the CGI name starts with NPH (No Parsing Header),
the server does not have to parse the answer HTTP header, the CGI does the formatting.
The extensions do not change the HTTP request or answer body.
The initial request sent to the server A can be done in a normal or secured mode (SSL).
The communication between the two HTTP servers and the 4DISAPI.DLL extension is
done in a non secured mode.

Note: The 4DISAPI and NPH-4DCG extensions are not compatible with 4D Web server
contextual mode.

4th Dimension Language Reference 1767

The following figure illustrates this principle:

• The extensions identify the GET, HEAD and POST methods which manage the various
status sent back by 4D (200 OK, 302 Moved Temporarily, 404 Not Found...).

• It is not possible to authenticate at the HTTP level via the 4DISAPI or NPH-CGI4D
extension. To do so, an HTML form should be used (which can be done in a secured
connection).

Note: The extensions have been designed to receive and send dynamic data and more
specifically to post data. The basic Web page service does not offer good performance
when the ISAPI or CGI extensions are used.

Installation and configuration
To install 4DISAPI and NPH-CGI4D extensions, copy the 4DISAPI.DLL or NPH-CGI4D.EXE
files in the HTTP server [Scripts] folder.

Each installed extension file is provided with a configuration file (.INI file). The .INI file
should bear the same name as the extension (for example 4DISAPI.INI). The extension and
configuration files should be located in the same folder.

An HTTP server can be defined to target several other HTTP servers. In this case, copy in
the HTTP server [Scripts] folder as many extensions as target servers. You just need to
rename them (for example, 4DISAPI2.DLL, 4DISAPI3.DLL, etc.). Make sure that a
configuration file is associated to each extension and that its name is correct
(4DISAPI2.INI, 4DISAPI3.INI, etc.).

1768 4th Dimension Language Reference

A .INI file contains one section: [Forward] which authorizes the following commands:

• TargetServer =
IP name or address of the Web server to target (for example, myserver.net or
192.193.194.195). The line can be left blank for targeting a server by its address if the
name resolution is unavailable.
The “localhost” name is identified to the 127.0.0.1 address.
The address 127.0.0.1 is used by default.

• TargetPort =
Port used by the target server (by example, 81). The port number 8080 is used by default.

• Timeout =
Maximum timeout for the server answer (in seconds). The default value is set to 30
seconds.

• Allowed =
Allowed URL list, separated by a comma. For example: /pages, /img to give access only to
the URL starting with /pages and /img. To give access to the full site, enter a slash
character / (default setting).

• Forbidden =
Forbidden URL list, separated by a comma. For example: /4DMETHOD, /pages2 to forbid
the access to the URL starting with /4DMETHOD and /pages2. To give unlimited access,
do not enter anything in the list (default setting).
According to the rules stated above, the access to the following URLs will be given or not:
/pages/document.html accessible
/pages1/onepage.html accessible
/www/picture.gif not accessible
/pages2/mypage.html not accessible
/4dmethod/myproc not accessible

If a forbidden URL is called, the extension directly returns the error “HTTP/1.0 403
Forbidden”.

Using the extensions
4DISAPI and NPH-CGI4D extensions support the following URLs:

• 4D call (4D will receive only the URL part located after the extension name):
http://server-address/cgi-bin/4disapi.dll/[Path]
http://server-address/cgi-bin/nph-cgi4d.exe/[Path]

• Checking of the extension (echo of the request):
http://server-address/cgi-bin/4disapi.dll/~~echo
http://server-address/cgi-bin/nph-cgi4d.exe/~~echo

• Information about the extension (technical support):
http://server-address/cgi-bin/4disapi.dll/~~info
http://server-address/cgi-bin/nph-cgi4d.exe/~~info

4th Dimension Language Reference 1769

The following information is returned:
name and version of the extension, for example "Script name: 4disapi.dll (6.7.0b1.2)"
name and version of the server calling the extension, for example "Server software:
4D_WebStar_D/6.7"
version of the HTTP protocol, for example "Server protocol: HTTP/1.0"
version of the CGI protocol, for example "Gateway interface: CGI/1.1"

• Checking of the target server (is the server available?) :
http://server-address/cgi-bin/4disapi.dll/~~target
http://server-address/cgi-bin/nph-cgi4d.exe/~~target
The answer is either:
"Good: target server reached.": the target server answered (whatever the contents of the
answer).
or "Bad: target server not reached.": the target server cannot be reached or did not answer.
In this case, the fail can be caused by:
- the configuration file is missing;
- the target address or port is incorrect;
- the target server is out;
- the target server did receive the request but is unable to answer.

Note concerning 4D WebSTAR: 4D WebSTAR® is one of the most popular Web servers on
Mac OS. Various interaction possibilities between 4D and 4D WebSTAR have been
developed, in particular the 4D WebSTAR plug-ins called 4D Connect and 4D Link. For
more information about these plug-ins, please refer to the 4D WebSTAR documentation.

See also
SET CGI EXECUTABLE, SET ENVIRONMENT VARIABLE.

1770 4th Dimension Language Reference

START WEB SERVER Web Server

version 2003 (Modified)
__

START WEB SERVER

Parameter Type Description
This command does not require any parameters

Description
The START WEB SERVER command starts the Web server of the 4th Dimension application
on which it has been executed (4th Dimension, 4D Server or 4D Client). The database is
therefore published on your Intranet network or on the Internet.

If the Web Server is successfully started, OK is set to 1, otherwise OK is set to 0 (zero). For
example,
if the TCP/IP network protocol is not properly configured, OK is set to 0.

See Also
STOP WEB SERVER.

System Variables and Sets
If the Web Server is successfully started, OK is set to 1; otherwise OK is set to 0.

4th Dimension Language Reference 1771

STOP WEB SERVER Web Server

version 2003 (Modified)
__

STOP WEB SERVER

Parameter Type Description
This command does not require any parameters

Description
The STOP WEB SERVER command stops the Web server of the 4th Dimension application
on which it has been executed (4th Dimension, 4D Server or 4D Client). If the Web
server has been started, all Web connections are stopped, and all Web processes
terminated.
If the Web server has not been started, the command does nothing.

See Also
START WEB SERVER.

1772 4th Dimension Language Reference

SET WEB TIMEOUT Web Server

version 6.5 (Modified)
__

SET WEB TIMEOUT (timeout)

Parameter Type Description
timeout Number → Web connections timeout expressed in seconds

Description
The SET WEB TIMEOUT command sets the timeout for the Web Connection processes in
contextual mode. The default timeout is 5 minutes.

You reduce or increase this delay by passing, in the timeout parameter, the new timeout
expressed in seconds.

The command takes effect immediately, and its scope is the working session.
• If SET WEB TIMEOUT is called from within a Web process, the value of timeout is applied
to that process only.
• If SET WEB TIMEOUT is not called from a Web process, all the Web Connection processes
are affected.

See Also
Using the Contextual Mode, Web Server Settings.

4th Dimension Language Reference 1773

SET HTML ROOT Web Server

version 6.5 (Modified)
__

SET HTML ROOT (pathnameHTML)

Parameter Type Description
pathnameHTML String → HTML Pathname to default directory for HTML files

Description
The SET HTML ROOT command is used to modify the default directory or folder where 4D
looks for the HTML file you pass as a parameter to the command SEND HTML FILE.

Warning: The SET HTML ROOT command works in contextual mode only. To set a default
HTML root folder in non-contextual mode, use the Default HTML Root area in the
Preferences dialog box. For performance reasons, it is usually more judicious to set the
default HTML root folder in the Preferences, whatever the execution mode of the Web
server.

The pathname you specify must be an HTML pathname, where the directory or folder
names are separated by a slash (“/”) character, no matter what the platform. For more
information about HTML pathnames, please refer to the Language Reference part of any
HTML manual you can find in bookstores.

If you specify an invalid pathname, an OS File manager error is generated. You can
intercept the error with an ON ERR CALL method. If you display an alert or a message
from within the error method, it will appear on the browser side.

Note: The SET HTML ROOT command takes into account the default HTML root folder
defined in the Preferences of the database. For more information on this folder, please
refer to section Connection Security.

See Also
ON ERR CALL.

Error Handling
If you specify an invalid pathname, an OS File manager error is generated. You can
intercept the error with an ON ERR CALL method.

1774 4th Dimension Language Reference

SET WEB DISPLAY LIMITS Web Server

version 6.0
__

SET WEB DISPLAY LIMITS (numberRecords{; numberPages{; picRef}})

Parameter Type Description
numberRecords Number → Maximum number of records to display

in each HTML page
numberPages Number → Maximum number of page references

at bottom of each HTML page
picRef Number → Picture reference number for full page record button

Description
The SET WEB DISPLAY LIMITS command modifies the way 4th Dimension displays a
selection of records on the Web browser side when you call DISPLAY SELECTION or
MODIFY SELECTION. This command only operates in contextual mode.

When you display a selection of records using 4th Dimension, the program does not load
all the records of the selection; it only loads (from the disk) the records that are visible in
the window at one time. In doing so, although you create a selection of thousands of
records, displaying them is quite fast. Then, if you scroll or resize the window, 4D loads
the records appropriately.

On the Web, 4D divides the selection of records to be displayed in pages. Without a
paging scheme, a selection of thousands of records would result in thousands of records
going over the Internet or your Intranet to be displayed in only one Web page. It also
would take quite some time to download these records, and your Web browser would
more than likely run out of memory.

By default, 4th Dimension displays the first 20 records of the selection and includes, at
the end of each HTML page, 20 links to the first 20 pages of the selection. This means
that, by default, you can browse the first 400 records of the selection by clicking on the
page links located at the end of each selection page. Note that this paging system is
transparent to your coding; everything happens within the call to DISPLAY SELECTION or
MODIFY SELECTION.

SET WEB DISPLAY LIMITS enables you to change these settings. In the numberRecords
parameter, you indicate the maximum number of records you want to display per
selection page. In numberPages, you indicate the maximum number of selection page
links you want at the end of each selection page.

For example, if you have a selection of 10,000 records and want to browse all of them in
one display selection, you can pass numberRecords=100 and numberPages=100. However,
remember that the data is going over the network or Internet; with the Internet, you
must take the speed factor into account when changing the display selection settings.

4th Dimension Language Reference 1775

In addition, SET WEB DISPLAY LIMITS optionally allows you to change the default icon of
the full page record button. In the picRef parameter, specify the picture reference number
of the picture stored in the database Picture library you want to use as new icon.

SET WEB DISPLAY LIMITS only affects subsequent calls to DISPLAY SELECTION or MODIFY
SELECTION, and its scope is local to the current process.

Example
In the following example, a DISPLAY SELECTION or a MODIFY SELECTION is issued for a
[Zip Codes] table. By default, 4D displays the records on the Web browser side as shown
here:

Note that the first 400 records can be browsed.

If the following picture is added to the database Picture Library:

1776 4th Dimension Language Reference

And, if the project method that displays the selection performs the SET WEB DISPLAY
LIMITS call shown here, prior to the call to DISPLAY SELECTION or MODIFY SELECTION:

SET WEB DISPLAY LIMITS (50;100;17877)

Then the selection on the Web browser side ends up looking like this:

You can now browse the first 5,000 records of the selection.

See Also
DISPLAY SELECTION, MODIFY SELECTION, Using the Contextual Mode.

4th Dimension Language Reference 1777

SET HOME PAGE Web Server

version 6.5
__

SET HOME PAGE (homePage)

Parameter Type Description
homePage String → Page name or HTML access path to the page or

"" to not send the custom home page

Description
The SET HOME PAGE command allows you to modify the custom home page for the
current Web process.

The defined page is linked to the Web process, you can therefore define the different
home pages depending, for example, on the user that is connected. This page can either
be static or semi-dynamic.

You pass the name of the HTML home page or the page’s HTML access path to the
homePage parameter.
To stop sending homePage as home page for the current Web process, execute SET HOME
PAGE with an empty string ("") passed in homePage.

Note: 4D also allows you to define a default home page in the Preferences dialog box. In
this case, the page applies to all the Web connections whatever the Web server’s startup
mode (contextual or non-contextual).

See Also
Web Server Settings.

1778 4th Dimension Language Reference

SEND HTML FILE Web Server

version 6.5 (Modified)
__

SEND HTML FILE (htmlFile)

Parameter Type Description
htmlFile String --> HTML Pathname to HTML file

or empty string for terminating SEND HTML FILE

Description
The SEND HTML FILE command sends, to the Web browser, the Web page stored in the
HTML document whose pathname you pass in htmlFile.

By default, 4th Dimension looks for the HTML document within the HTML root folder,
defined in the application Preferences.

This command will only acccept path names in HTML syntax as a parameter: names of
directories or folders must be separated with a slash ("/") regardless of the platform.
If you specify an invalid HTML pathname, 4D sends the message “The requested HTML
page could not be found” to the Web browser.

The alternate syntax SEND HTML FILE(""), in which you pass an empty string in hmtlFile,
allows you, in contextual mode, to terminate the call to SEND HTML FILE, which initiated
the HTML mode. This is illustrated in the following diagram:

4th Dimension Language Reference 1779

1. In contextual mode, a 4D Method (Project, Object or Database) issues a call to SEND
HTML FILE, sending an HTML document to the browser.

2. The initial Web page sent to the browser may have HTML links to other Web pages or
can itself refer to 4D Methods that call SEND HTML FILE to send other Web pages. These
other pages may have links or refer to 4D Methods for accessing other pages, and so on.
While navigating through the Web pages, you can also use browser’s navigation controls,
such as the Back button.

3. Any of the Web pages can include references to a 4D method that issues a SEND HTML
FILE("") call. This call terminates the SEND HTML FILE call that initiated the whole thing,
and you go back, pursuing the execution 4D Method that originally started the free Web
navigation.

Once SEND HTML FILE is executed, the OK system variable is updated: if the file to be sent
exists and if the timeout has not run out, OK is equal to 1. Otherwise, it is equal to 0.

Note: If you call SEND HTML FILE from within a process that is not a Web process, the
command does nothing and returns no error; the call is simply ignored.

The references to 4D variables and 4DSCRIPTS type tags in the page are always parsed,
whatever the mode.

Examples
(1) The HTML root folder of the database is the WebDocs folder. It contains the following
elements:

..\WebDocs\HTM\MyPage.HTM

Sending the Web page "MyPage.HTM" must be carried out in the following manner :

⇒ SEND HTML FILE ("HTM/MyPage.HTM")

(2) Example in contextual mode:during a 4D Web session, you are adding records using a
4D form. In this form, there is a bHelp button, whose object method is as follows:

` bHelp button Object Method
⇒ SEND HTML FILE ("Help.HTM")

1780 4th Dimension Language Reference

Starting from the Help.HTM document, you can freely navigate between numerous HTML
pages which implement the database Help system for your Web site. In each page, you
have a submit button titled Done, which allows you to go back to data entry.
To do so, each of the HTML documents must contain the definition of this submit
button:

<!-- bDone submit button -->
<P><INPUT TYPE="submit" NAME="bDone" VALUE="Done"></P>

as well as the definition of the form post action:

<!-- Execute the 4D htm_Help_Done when a submit button is hit -->
<FORM action="/4DMETHOD/htm_Help_Done" method="POST">

On the 4D side, the project method htm_Help_Done terminates the SEND HTML FILE
initiated by the bHelp button:

` htm_Help_Done Project Method
⇒ SEND HTML FILE ("")

The call to SEND HTML FILE in the object Method of the bHelp button is the last line of
the method. When the method is completed, you return to data entry.

System Variables and Sets
If the file to be sent exists and if the timeout has not run out, OK is set to 1. Otherwise, it
is equal to 0.

See Also
Binding 4D objects with HTML objects, SEND HTML BLOB, Your First Time with the Web
Server.

4th Dimension Language Reference 1781

SEND HTML BLOB Web Server

version 6.5
__

SEND HTML BLOB (blob; type{; noContext})

Parameter Type Description
blob BLOB → BLOB to send to the browser
type String → Data type of the BLOB
noContext Boolean → True = Switch to non contextual mode

False = Keep current mode

Description
The SEND HTML BLOB command allows you to send blob to the browser.

The type of data contained in the BLOB is indicated by type. This parameter can be one of
the following types:

• type = Empty String (""): In this case, you don’t need to supply any more information in
the BLOB. The browser will try to interpret the contents of the BLOB.

• type = File extension (example: ".HTM", ".GIF", ".JPEG", etc.): In this case, you specify
the MIME type of the data contained in the BLOB by indicating its extension. The BLOB
will then be interpreted according to its extension. However, the extension must be a
standard one so that the browser can correctly interpret it.

• type = Mime/Type (example: “text/html”, “image/tiff”, etc.): In this case, you directly
specify the MIME type of data contained in the BLOB. This solution offers you more
freedom. Besides the standard types, you can pass a custom MIME type to send
proprietary documents via Intranet. To do so, you only need to configure the browsers so
that they recognize the type sent and so that they can open the appropriate application.
The value you pass to type is, in this case, “application/x-[TypeName]”. In the client
workstations’s browser, you reference this type and associate it to the “Launch the
application” action. The SEND HTML BLOB command allows you to therefore send all
types of documents, the Intranet clients automatically open the associated application.

Note: If the BLOB is of type “text/html” (.htm, .html, .shtm, .shtml), it is translated and
analyzed as an HTML file. In this case, when used in contextual mode, SEND HTML BLOB
works exactly as SEND HTML FILE. That is, a 4D method that issues a SEND HTML BLOB("")
call should be called in one of the HTML pages, in order to terminate the original SEND
HTML BLOB call. For more information, refer to the SEND HTML FILE command
description.

1782 4th Dimension Language Reference

Here is a list of the most common MIME types:

Extension Mime/Type
.htm text/html
.html text/html
.shtml text/html
.shtm text/html
.css text/css
.pdf application/pdf
.rtf application/rtf
.ps application/postscript
.eps application/postscript
.hqx application/mac-binhex40
.js application/javascript
.txt text/plain
.text text/plain
.gif image/gif
.jpg image/jpeg
.jpeg image/jpeg
.jpe image/jpeg
.jfif image/jpeg
.pic image/pict
.pict image/pict
.tif image/tiff
.tiff image/tiff
.mpeg video/mpeg
.mpg video/mpeg
.mov video/quicktime
.moov video/quicktime
.aif audio/aiff
.aiff audio/aiff
.wav audio/wav
.ram audio/x-pn-realaudio
.sit application/x-stuffit
.bin application/x-stuffit
.z application/x-zip
.zip application/x-zip
.gz application/x-gzip
.tar application/x-tar

Note: For more information, go to http://www.iana.org and look for “Protocol Numbers
and Assignment Services” topics.

4th Dimension Language Reference 1783

The noContext parameter allows you to tell the 4D Web server that you want to switch
from contextual mode to non-contextual mode. In this case, pass True to noContext.
If the parameter is omitted or contains False, the current mode is used.
The references to 4D variables and 4DSCRIPT type tags in the page are always parsed,
whatever the mode.

Example
Refer to the example of the routine PICTURE TO GIF.

See Also
SEND HTML FILE.

1784 4th Dimension Language Reference

SEND HTML TEXT Web Server

version 6.7
__

SEND HTML TEXT (htmlText{; noContext})

Parameter Type Description
htmlText Text → HTML text field or variable to be sent

to the Web browser
noContext Boolean → True = Go to non contextual mode

False or omitted = Remains in the current mode

Description
The SEND HTML TEXT command directly sends HTML formatted text data.

The htmlText parameter contains the data to be sent. As 4D does not check the parameter
content, make sure that the HTML encoding is correct. The text variable should be
expressed using the ISO Latin-1 character map.

Note: This command is similar to the SEND HTML BLOB command using a BLOB with a
“html/txt” type.

The noContext parameter indicates to the 4D Web server that you want to switch from
the contextual mode to the non-contextual mode when executing the command.
In this case, pass True in the noContext parameter if you want to use the non-contextual
mode. Pass False or nothing if you want to use the current mode.

The references to the 4D variables and 4DSCRIPT type tags (if any) in the text are always
analyzed, regardless of the mode.

Example
The following method:

TEXT TO BLOB("<html><head></head><body>"+String(Current time)
+"</body></html>";$blob;Text without length)

SEND HTML BLOB($blob;"text/html")

... can be replaced by the single line:

⇒ SEND HTML TEXT("<html><head></head><body>"+String(Current time)
+"</body></html>")

See Also
Mac to ISO, SEND HTML BLOB.

4th Dimension Language Reference 1785

PROCESS HTML TAGS Web Server

version 2004
__

PROCESS HTML TAGS (inputData; outputData)

Parameter Type Description
inputData BLOB | Text → Data containing HTML tags to process
outputData BLOB | Text ← Processed data

Description
The PROCESS HTML TAGS command causes the processing by 4th Dimension of 4D HTML
tags contained in the inputData parameter (field or variable of the BLOB or Text type) and
returns the resulting data in outputData.

This command lets you carry out processing on tagged HTML code without it being
necessary for the Web server to send an HTML page using a command of the SEND HTML
BLOB type or that a page suffixed “.shtml” be requested via a URL. It is not even necessary
for the 4th Dimension Web server to be started.

Pass the data containing the tags to be processed in the inputData parameter. This
parameter can be a field or variable of the BLOB or Text type. Keep in mind that it is
generally prefereable to use the BLOB type since the number of characters is not limited
(32,000 limit for the Text type).

All the HTML tags of 4D are supported (4DVAR, 4DSCRIPT, 4DLOOP, etc.), regardless of
the Web server operating mode (contextual or non-contextual) — and even when it is
not started.

Note: When using the 4DINCLUDE tag outside the framework of the Web server (Web
process):
• with 4th Dimension or 4D Server, the default folder is the folder containing the
database structure file,
• with 4D Client, the default folder is the folder containing the 4D Client application.

After command execution, the outputData parameter receives the data of the inputData
parameter, along with the result of the processing of any 4D HTML tags that it contains,
when applicable. If inputData does not contain any 4D HTML tags, the contents of
outputData is identical to that of inputData.
The outputData parameter may be a field or a variable, but it must be of the same type as
that of the inputData parameter.

This command makes it possible to store the values resulting from the processing of
HTML tags in the database before they are sent.
It also permits the parsing of 4D HTML tags apart from the use of the Web server. In
particular, you can use it to send e-mail messages in HTML format that contain processing
of and/or references to data contained in the database via the 4D Internet Commands.

1786 4th Dimension Language Reference

Example
The following example shows how this command works:

C_BLOB($in)
C_BLOB($out)
C_TEXT($in_text)
C_TEXT(Var)
C_TEXT(VarHTML)

Var:=""
$in_text:="<p><!--#4DVAR Var→</p>"
TEXT TO BLOB($in_text;$in;Text without length)

⇒ PROCESS HTML TAGS($in;$out)
VarHTML:=BLOB to text($out;Text without length)

` HTMLvar contains <p></p>

See also
4D HTML Tags.

4th Dimension Language Reference 1787

GET WEB FORM VARIABLES Web Server

version 2004 (Modified)
__

GET WEB FORM VARIABLES (nameArray; valueArray)

Parameter Type Description
nameArray Text Array ← Web form variable names
valueArray Text Array ← Web form variable values

Description
The GET WEB FORM VARIABLES command fills the text arrays nameArray and valueArray
with the variable names and values contained in the Web form “submitted” (i.e. sent to
the Web server).

This command gets the value for all the variables which can be included in HTML pages:
text area, button, checkbox, radio button, pop up menu, choice list...

Note: Regarding checkboxes, the variable name and value are returned only if the
checkbox has been actually checked.

This command is valid for non-contextual mode or in contextual mode, regardless of the
type of URL or form (POST or GET method) sent to the Web server.

This command can be called, if necessary, in the On Web Connection Database Method or
any other 4D method resulting from a form submission.

About Web forms and their associated actions
Each form contains named data entry area (text area, buttons, checkboxes).
When a form is submitted (a request is sent to the Web server), the request contains
(within others) the list of the data entry areas and their associated values.
A form can be submitted through two methods (both can be used with 4D):
• POST, usually used to add data into the Web server - to a database,
• GET, usually used to request the Web server - data coming from a database.

Example
A form contains two fields, vName and vCity with “ROBERT” and “DALLAS” values. The
action associated to the form is “/4DACTION/WEBFORM”.
• If the form method is POST (most frequently used), the data entered will not be visible
in the URL (http://127.0.0.1/4DACTION/WEBFORM).
• If the form method is GET, the data entered will be visible in the URL
(http://127.0.0.1/4DACTION/WEBFORM?vNAME=ROBERT&vCITY=DALLAS).

1788 4th Dimension Language Reference

The WEBFORM method can be as follows:

ARRAY TEXT($anames;0)
ARRAY TEXT($avalues;0)

⇒ GET WEB FORM VARIABLES($anames;$avalues)

The result will be:

$anames{1} = "vNAME"
$anames{2} = "vCITY"
$avalues{1} = "ROBERT"
$avalues{2} = "DALLAS"

The vNAME variable contains ROBERT and the vCITY variable contains DALLAS.

See Also
Binding 4D objects with HTML objects, URLs and Form Actions.

4th Dimension Language Reference 1789

Web Context Web Server

version 2003 (Modified)
__

Web Context → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True = Contextual mode
False = Non contextual mode

Description
The Web Context command must be called from a Web process. It returns a boolean that
indicates if the Web connection is executing in contextual mode (True) or in non-
contextual mode (False).

Note : The Web Context command always returns False when it is:
• called from a process other than a Web process,
• executed on a 4D Client machine.

The use of this function is advocated in the On Web Connection Database Method.

Example
Here is an example of the On Web Connection database method:

⇒ If (Web Context)
WithContext ($1;$2;$3;$4;$5;$6)

Else
WithoutContext ($1;$2;$3;$4;$5;$6)

End if

See Also
On Web Connection Database Method, PROCESS PROPERTIES, Using the Contextual Mode.

1790 4th Dimension Language Reference

SET HTTP HEADER Web Server

version 6.8 (Modified)
__

SET HTTP HEADER (header|fieldArray{; valueArray})

Parameter Type Description
header|fieldArray Text|Text Array → Field or variable containing the request HTTP

header or HTTP header fields
valueArray Text Array → HTTP header field content

Description
The SET HTTP HEADER command allows you to set the fields in the HTTP header of the
reply sent to the Web browser by 4D. It only has an effect in a Web process in non-
contextual mode.
This command allows you to manage “cookies”.

Two syntaxes are available for this command:

• First syntax: SET HTTP HEADER (header)
You pass the HTTP header fields to the fields parameter, of type Text (variable or field),
that you want to set.
This syntax allows writing headers type such as "HTTP/1.0 200 OK"+Char(13)+"Set-Cookie:
C=HELLO". Header fields must be separated by the CR or CR+LF (Carriage return + Line
feed) sequence, under Windows and Mac OS, 4D formats the answer.

Here is an example of a custom “cookie”:

C_TEXT($vTcookie)
$vTcookie:="SET-COOKIE: USER="+String(Abs(Random))+"; PATH=/"

⇒ SET HTTP HEADER($vTcookie)

Note: The command will not accept a literal text type constant as the header parameter, it
must be a 4D variable or field.

For more information about the syntax, please refer to the R.F.Cs (Request For Comments)
that can be found at the following Internet address: http://www.w3c.org.

4th Dimension Language Reference 1791

• Second syntax: SET HTTP HEADER (fieldArray; valueArray)
The HTTP header is defined through two text arrays, fieldArray and valueArray. The header
will be written as follows:

fieldArray{1}:="X-VERSION"
fieldArray{2}:="X-STATUS"
fieldArray{3}:="Set-Cookie"

valueArray{1}:="HTTP/1.0" *
valueArray{2}:="200 OK" *
valueArray{3}:="C=HELLO"

* The first two items are the first line of the answer. When they are entered, they should
be the first and second items array. However, it is possible to omit them and to only write
— 4D taking care of the header format:

fieldArray{1}:="Set-Cookie"
valueArray{1}:="C=HELLO"

If you do not specify a state, it will automatically be HTTP/1.0 200 OK.

If several SET HTTP HEADER calls occur in the same Web process, only the last call is taken
into account.

The Server, Date and Content-Length fields are always set by 4D.

See Also
GET HTTP HEADER.

1792 4th Dimension Language Reference

GET HTTP HEADER Web Server

version 6.7
__

GET HTTP HEADER (header|fieldArray{; valueArray})

Parameter Type Description
header|fieldArray Text|Text Array ← Request HTTP header or HTTP header fields
valueArray Text Array ← HTTP header fields content

Description
The GET HTTP HEADER command returns either a string or two arrays, containing the
HTTP header used for the currently processed request.

This command works only in non-contextual mode. It can be called from within any
method (On Web Connection Database Method or On Web Authentication Database
Method, method called by '/4DACTION'...) executed in a Web process in a non-contextual
mode. If GET HTTP HEADER is called in contextual mode, it returns empty strings.

• First syntax: GET HTTP HEADER (header)
When this syntax is used, the result returned in the header variable is as follows:

"GET /page.html HTTP\1.0"+Char(13)+Char(10)+"User-Agent: browser"+
Char(13)+Char(10)+"Cookie: C=HELLO"

Each header field is separated by a CR+LF (Carriage return+Line feed) sequence under
Windows and Mac OS.

• Second syntax: GET HTTP HEADER (fieldArray; valueArray)
When this syntax is used, the returned results in the fieldArray and valueArray are as
follows:

fieldArray{1} = "X-METHOD" valueArray{1} = "GET" *
fieldArray{2} = "X-URL" valueArray{2} = "/page.html" *
fieldArray{3} = "X-VERSION" valueArray{3} = "HTTP/1.0" *
fieldArray{4} = "User-Agent" valueArray{4} = "browser"
fieldArray{5} = "Cookie" valueArray{5} = "C=HELLO"

* These first three items are not HTTP fields. They are part of the first line of the request.

To comply with the HTTP standard, field names are always written in English.

Here is a list of some HTTP fields that can be used in a request:

• Accept: content allowed by the browser.
• Accept-Language: language(s) that can be used by the browser (for information). Allows
to select a web page using the language defined in the browser.

4th Dimension Language Reference 1793

• Cookie: cookies list
• From: browser user email address.
• Host: server name or address (for example using an URL,
http://mywebserver/mypage.html, Host takes the «mywebserver» value). Allows to
manage several names pointing towards the same IP address (virtual hosting).
• Referer: request origin (for example http://mywebserver/mypage1.html), i.e. the page
which is displayed when clicking on the Previous button.
• User-Agent: browser or proxy name and version.

Example
The following method allows getting any HTTP request header field content:

` Project method GetHTTPField
` GetHTTPField (Text) -> Text
` GetHTTPField (HTTP header name) -> HTTP header content

C_TEXT($0;$1)
C_LONGINT($vlItem)
ARRAY TEXT($names;0)
ARRAY TEXT($values;0)
$0:=""

⇒ GET HTTP HEADER($names;$values)
$vlItem:=Find in array($names;$1)
If ($vlItem>0)

$0:=$values{$vlItem}
End if

• Once this project method has been written, it can be called as follows:

` Cookie header content
$cookie:=GetHTTPField("Cookie")

• You can send different pages according to the language set in the browser (for example
in the On Web Connection Database Method):

$language:=GetHTTPField("Accept-Language")
Case of

:($language="@fr@") `French (see list ISO 639)
SEND HTML FILE("index_fr.html")

:($language="@sp@") `Spanish (see list ISO 639)
SEND HTML FILE("index_es.html")

Else
SEND HTML FILE("index.html")

End case

Note: Web browsers allow defining several languages by default. They are listed in the
"Accept-Language" field, separated by a ";". Their priority is defined according to their
position within the string; therefore it is a good idea to test language positions in the
string.

1794 4th Dimension Language Reference

• Here is an example of virtual hosts (for example, in the On Web Connection Database
Method). The following names "home_site.com", "home_site1.com" and
"home_site2.com" are directed towards the same IP address, for example 192.1.2.3.

$host:=GetHTTPField("Host")
Case of

:($host="www.site1.com")
SEND HTML FILE("home_site1.com")

:($host="www.site2.com")
SEND HTML FILE("home_site2.com")

Else
SEND HTML FILE("home_site.com")

End case

See Also
GET HTTP BODY, SET HTTP HEADER.

4th Dimension Language Reference 1795

GET HTTP BODY Web Server

version 2004
__

GET HTTP BODY (body)

Parameter Type Description
body BLOB | Text ← Body of the HTTP request

Description
The GET HTTP BODY command returns the body of the HTTP request being processed.
The HTTP body is returned as is, without processing or parsing.

This command only operates in non-contextual mode. It can be called using a Web
database method (On Web Authentication Database Method, On Web Connection Database
Method) or any Web method executed in non-contextual mode.

In body, you can pass a variable or a field of the BLOB or Text type. Keep in mind that it is
generally preferable to use the BLOB type since the number of characters is not limited.
The Text type, on the other hand, is limited to 32,000 characters; if you exceed this
amount, any excess data received will be truncated.

This command allows you, for example, to carry out queries in the body of requests. It
also permits advanced users to set up a WebDAV server within a 4th Dimension database.

Example
In this example, a simple request is sent to the 4th Dimension Web server and the
contents of the HTTP body are displayed in the debugger. Here is the form sent to the 4th
Dimension Web server, as well as the corresponding HTML code:

1796 4th Dimension Language Reference

Here is the Test4D2004 method:

C_BLOB($request)
C_TEXT($requestText)

⇒ GET HTTP BODY($request)
$requestText:=BLOB to text($request;Text without length)
SEND HTML FILE("page.html")

Note: This method is declared “Available through 4DACTION, 4DMETHOD and
4DSCRIPT” in its properties.

When the form is submitted to the Web server, the $requestText variable receives the text
of the HTTP request body.

See also
GET HTTP HEADER.

4th Dimension Language Reference 1797

SEND HTTP RAW DATA Web Server

version 2004
__

SEND HTTP RAW DATA (data{; *})

Parameter Type Description
data BLOB → HTTP data to send
* * → Send chunked

Description
The SEND HTTP RAW DATA command lets the 4D Web server send “raw” HTTP data,
which can be chunked. It only operates in non-contextual mode.

The data parameter contains the two standard parts of an HTTP response, i.e. Header and
Body. The data are sent without prior formatting by the server. However, 4th Dimension
carries out a basic check of the response header and body in order to make sure that they
are valid:
• If the header is incomplete or does not comply with the HTTP protocol specifications,
4th Dimension will change it accordingly.
• If the HTTP request is incomplete, 4th Dimension adds the missing information. If, for
instance, you want to redirect the request, you must write:

HTTP/1.1 302
Location: http://...

If you only pass:
Location: http://...

4th Dimension will complete the request by adding HTTP/1.1 302.

The optional * parameter lets you specify that the response will be sent “chunked”. The
cutting up of responses into chunks can be useful when the server sends a response
without knowing its total length (if, for instance, the response has not yet been
generated). All HTTP/1.1-compatible browsers accept chunked responses.
If you pass the * parameter, the Web server will automatically include the transfer-
encoding: chunked field in the header of the response, if necessary (you can handle the
response header manually if you so desire). The remainder of the response will also be
formatted in order to respect the syntax of the chunked option. Chunked responses
contain a single header and an undefined number of body “chunks”.
All the SEND HTTP RAW DATA statements that follow the execution of SEND HTTP RAW
DATA(data;*) within the same method will be considered as part of the response
(regardless of whether they contain the * parameter). The server puts an end to the
chunked send when the method execution is terminated.

1798 4th Dimension Language Reference

Note: If the Web client does not support HTTP/1.1, 4th Dimension will automatically
convert the response into an HTTP/1.0-compatible format (the data sent will not be
chunked). However, in this case, the result may not correspond to your wishes. It is
therefore recommended to check whether the Web browser supports HTTP/1.1 and to
send an appropriate response. To do so, you can use a method such as:

C_BOOLEAN($0)
ARRAY TEXT(arFields;0)
ARRAY TEXT(arValues;0)
GET HTTP HEADER(arFields;arValues)
$0:=False
If (Size of array(arValues)>=3)

If (Position("HTTP/1.1";arValues{3})>0)
$0:=True ` The browser supports HTTP/1.1; $0 returns True

End if
End if

Combined with the new GET HTTP BODY command and other commands of the “Web
Server” theme, this command completes the range of tools available to 4D developers in
order to entirely customize the processing of incoming and outgoing HTTP connections.
These different tools are shown in the following diagram:

4th Dimension Language Reference 1799

Example
This example illustrates the use of the chunked option with the SEND HTTP RAW DATA
command. The data (a sequence of numbers) are sent in 100 chunks generated on the fly
in a loop. Keep in mind that the header of the response is not explicitly set: the SEND
HTTP RAW DATA command will send it automatically and insert the transfer-encoding:
chunked field into it since the * parameter is used.

C_LONGINT($cpt)
C_BLOB($my_blob)
C_TEXT($output)

For ($cpt;1;100)
$output:="["+String($cpt)+"]"
TEXT TO BLOB($output;$my_blob;Text without length)

⇒ SEND HTTP RAW DATA($my_blob;*)
End for

See also
GET HTTP BODY, GET HTTP HEADER.

1800 4th Dimension Language Reference

SEND HTTP REDIRECT Web Server

version 6.5
__

SEND HTTP REDIRECT (url{; *})

Parameter Type Description
url String → New URL
* * → If specified = URL is not translated,

If omitted = URL is translated

Description
The SEND HTTP REDIRECT command allows you to transform a URL into another one.

The url parameter contains the new URL that allows you to redirect the request. If this
parameter is a url to a file, it must contain the reference to this file, for example: SEND
HTTP REDIRECT ("/MyPage.HTM").

When this command is called in contextual mode, the Web process is aborted just after
being executed. The command prevails over commands that send data (SEND HTML FILE,
SEND HTML BLOB, etc.) that may be in the same method.

This command also allows you to redirect a request to another Web server.

4D automatically encodes the URL’s special characters. If you pass the * character, 4D will
not translate them.

Example
You can use this command to execute custom requests in 4D by using static pages.
Imagine that you have placed the following elements in a static HTML page:

Note: The POST action “/4dcgi/rech” has been associated to the text area and to the OK
and Cancel buttons.

4th Dimension Language Reference 1801

In the On Web Connection database method part (or subroutine) that manages the non-
contextual mode, you insert the following code:

Case of
: ($1="/4dcgi/rech") `When 4D receives this URL

`If the OK button has been used and the ‘name’ field contains a Value
If ((bOK="OK") & (name # ""))

`Change the URL to execute the request code,
`placed farther down in the same method

⇒ SEND HTTP REDIRECT("/4dcgi/rech?"+name)
Else

`Else return to the beginning page
⇒ SEND HTTP REDIRECT("/page1.htm")

End if
...

: ($1="/4dcgi/rech?@") `If the URL has been redirected
... `Put the request code here

End case

1802 4th Dimension Language Reference

WEB CACHE STATISTICS Web Server

version 6.5
__

WEB CACHE STATISTICS (pages; hits; usage)

Parameter Type Description
pages Text Array ← Names of the most consulted pages
hits Longint Array ← Number of hits for each page
usage Number ← Percentage of the cache used

Description
The command WEB CACHE STATISTICS allows you to obtain information about the most
consulted pages loaded in the Web server’s cache. Consequently, these statistics only
concern static pages, GIF pictures, JPEG pictures <100 KB and style sheets (.css).

Note: For more information about setting the 4D Web server’s cache, please refer to
section Web Server Settings.

The command fills the pages Text array with the names of the most consulted pages. The
hits Longint array receives the number of “hits” for each page. The usage parameter
receives the percentage of the Web cache used by each page.

Example
Let’s assume that you want to generate a semi-dynamic page that displays the statistics of
the Web cache. For this, in a static HTML page named “stats.shtm”, you place the tag
<!--4DACTION/STATS--> . Then you insert two 4D variables, vPages and vUsage.
In the project method STATS, you write the following code:

C_TEXT ($1)
ARRAY TEXT (pages;0)
ARRAY LONGINT (hits;0)
C_LONGINT (vUsage)

⇒ WEB CACHE STATISTICS(pages;hits;vUsage)
vPages:=Char(1)
For ($i;1;Size of array(pages))

` For each page present in the cache
vPages:=vPages+pages{$i}+" "+String(hits{$i})+"
"

` Insert the name of the page and the HTML code
End for
SEND HTML FILE("stats.shtm")

` The contents of the pages with the suffix “.shtm” is always parsed

See Also
Web Services, Web Server Settings.

4th Dimension Language Reference 1803

Secured Web connection Web Server

version 6.7
__

Secured Web connection → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True = the web connection is secured.
False = the web connection is not secured.

Description
The command Secured Web connection returns a boolean indicating if the 4D Web server
connection was done in secured mode through SSL (the request starts with “https:”
instead of “http:”).

• If the connection is made through SSL, the function returns True.
• If the connection is made in a non secured mode, the function returns False.

Note: For more information on the SSL protocol, refer to section Using SSL Protocol.

This command allows, for example, denying connections made in a non secured mode (if
any).

See Also
GENERATE CERTIFICATE REQUEST, Web Services, Using SSL Protocol.

1804 4th Dimension Language Reference

SET CGI EXECUTABLE Web Server

version 2004
__

SET CGI EXECUTABLE (url1{; url2})

Parameter Type Description
url1 String → Access URL
url2 String → Access URL

Description
The SET CGI EXECUTABLE command is used to execute a CGI without it being visible to
the Web user in the URL. This command can be used in particular in the On Web
Authentication Database Method to determine, for example, which CGI to execute. It
operates both under Mac OS X and Windows.

Note: For more information about CGIs, refer to the Using CGIs section.

In url1, pass the access URL for the CGI to be executed. For example, if you write SET CGI
EXECUTABLE("/myfile.pl"), the 4D Web server will execute the CGI myfile.pl — this
application must be located in the default folder of the Web server.
If you pass an empty string ("") in url1, 4th Dimension will execute the CGI specified in
the URL sent by the browser directly, where applicable.

In the optional url2 parameter, pass the access URL for the file that you want to be
processed by the CGI. For example, if you write SET CGI EXECUTABLE("cgi-
bin/Perl2.cgi";"Perl2.pl"), the Web server will execute the CGI Perl2.cgi (located in the cgi-
bin folder) by passing it the Perl2.pl file.
If you pass an empty string ("") in url2, 4th Dimension will pass the file specified in the
URL sent by the browser to the CGI for processing. This mechanism is used more
particularly by PHP. Example: SET CGI EXECUTABLE("/cgi-bin/php";"").

If the access URL indicated by the command is incorrect, the browser will display the “File
not found” error page.

Keep in mind that the SET CGI EXECUTABLE command does not return an error directly.
This command only sets a “current value” that will be used subsequently when the CGI is
called. In the event of multiple calls with this command, only the value indicated by the
last call will be used.

Example
In this example, the example.php file, which is not located in the cgi-bin folder, is
processed by the CGI Perl2.cgi, located in the cgi-bin folder:

⇒ SET CGI EXECUTABLE("/cgi-bin/Perl2.cgi";"example.php")

See also
Using CGIs.

4th Dimension Language Reference 1805

OPEN WEB URL Web Server

version 6.5
__

OPEN WEB URL (url{; *})

Parameter Type Description
url String → Startup URL
* * → If specified = URL is not translated,

If omitted = URL is translated

Description
The OPEN WEB URL command launches your default Web browser and opens it on the
URL passed in the url parameter.

If there is no browser on the volumes connected to the computer, this command has no
effect.

4D automatically encodes the URL’s special characters. If you pass the * character, 4D will
not translate the URL’s special characters. This option allows you to access and to send
URLS of type "http://www.server.net/page.htm?q=something".

Note: This command does not work when called from a Web process.

Examples
1. When the following line of code is executed:

⇒ OPEN WEB URL("file:///D:/web file.htm")

The Web browser is launched and the URL is translated into
"file:///D%3A/web%20file.htm".

2. When the following line of code is executed:

⇒ OPEN WEB URL("file:///D:/web file.htm";*)

The Web browser is launched and the URL remains "file:///D:/web file.htm"

3. When opening files locally, it is possible to use system separators in the url parameter:

$ref:=Open document("";"";Get Pathname)
CLOSE DOCUMENT($ref)

⇒ OPEN WEB URL("file:///"+document;*)

4. The following line of code launches the browser and connects it to 4D’s home page:

⇒ OPEN WEB URL("http://www.4d.com/")

1806 4th Dimension Language Reference

64

Web Services (Client)

4th Dimension Language Reference 1807

1808 4th Dimension Language Reference

Web Services (Client) Commands Web Services (Client)

version 2003
__

Starting with version 2003, 4th Dimension supports“Web Services”, meaning that the
program enables you to publish (server part) and/or use (client part) Web Services directly
from your database. A Web Service is a set of functions published on a network. These
functions can be called and used by any application compatible with Web Services and
connected to a network. Web Services can carry out all types of tasks, such as supervising
the routing of packages at a transporter’s, e-commerce, monitoring market values, etc.
For more information about the concept and operation of Web Services, refer to the
Design Mode manual.

Subscription to Web Services with 4th Dimension is easy to carry out using the Web
Services Wizard. In most cases, this Wizard will be sufficient for you to be able to use Web
Services. However, if you want to customize certain mechanisms, you must use the client
SOAP commands of 4th Dimension.

This section describes the commands used for subscription to external Web Services
(client part). For a description of the commands used for the publication of Web Services
(server part), refer to the Web Services (Server) commands.

Note: By convention, the terms “SOAP” and “Web Service” have been used to
differentiate between command (and constant) names on the server and client side,
respectively. These two concepts refer to the same technology.

4th Dimension Language Reference 1809

SET WEB SERVICE PARAMETER Web Services (Client)

version 2003
__

SET WEB SERVICE PARAMETER (name; value{; soapType})

Parameter Type Description
name String → Name of parameter to include in SOAP request
value Variable → 4D variable containing the value of the parameter
soapType String → SOAP type of the parameter

Description
The SET WEB SERVICE PARAMETER command enables the definition of a parameter used
for a client SOAP request. Call this command for each parameter in the request (the
number of times the command is called depends on the number of parameters).

In name, pass the name of the parameter as it must appear in the SOAP request.

In value, pass the 4D variable containing the value of the parameter. In the case of proxy
methods, this variable is generally $1, $2, $3, etc., corresponding to a 4D parameter
passed to the proxy method when it was called. It is, however, possible to use
intermediary variables.

Note: Each 4D variable or array used must first be declared using the commands of the
“Compiler” and “Arrays” themes.

By default, 4th Dimension automatically determines the most appropriate SOAP type for
the name parameter according to the content of value. The indication of the type is
included in the request.
However, you may want to “force” the definition of the SOAP type of a parameter. In this
case, you can pass the optional soapType parameter using one of the following character
strings (primary data types):

soapType Description
string String
int Longint
boolean Boolean
float 32-bit real
decimal Real with decimal
double 64-bit real
duration Duration in years, months, days, hours, minutes, seconds, for example

P1Y2M3DT10H30M
datetime Date and time in ISO8601 format, for example 2003-05-31T13:20:00
time Time, for example 13:20:00
date Date, for example 2003-05-31
gyearmonth Year and month (Gregorian calender), for example 2003-05
gyear Year (Gregorian calender), for example 2003

1810 4th Dimension Language Reference

soapType Description
hexbinary Value expressed in hexadecimal
base64binary BLOB
anyuri Uniform Resource Identifier (URI), for example

http://www.company.com/page
qname Qualified XML name (namespace and local part)
notation Notation attribute

Note: For more information about XML data types, refer to the URL
http://www.w3.org/TR/xmlschema-2/

Example
This example defines two parameters:

C_TEXT($1)
C_TEXT($2)

⇒ SET WEB SERVICE PARAMETER("city";$1)
⇒ SET WEB SERVICE PARAMETER("country";$2)

See also
CALL WEB SERVICE, GET WEB SERVICE RESULT.

4th Dimension Language Reference 1811

SET WEB SERVICE OPTION Web Services (Client)

version 2004
__

SET WEB SERVICE OPTION (option; value)

Parameter Type Description
option Longint → Code of the option to set
value Longint → Value of the option

Preliminary note: This command is designed for advanced Web Services users. Its use is
optional.

Description
The SET WEB SERVICE OPTION command allows you to set different options that will be
used during the next SOAP request triggered using the CALL WEB SERVICE command.
You can call this command as many times as there are options to be set.

In the option parameter, pass the number of the option to set and in the value parameter,
pass the new value of the option. For these parameters, you can use one of the following
predefined constants of the “Web Services (Client)” theme:

Constant (option param) Type Value
Web Service HTTP Timeout Longint 1
Web Service SOAP Header Longint 2
Web Service SOAP Version Longint 3

Constant (value param) Type Value
Web Service SOAP_1_1 Longint 0
Web Service SOAP_1_2 Longint 1

The following details each of the options and possible values:

• option = Web Service HTTP Timeout
value = timeout of the client portion expressed in seconds.
The timeout of the client portion is the wait period of the Web Service client in case the
server does not respond. After this period, the client closes the session and the request is
lost.
This timeout is 10 seconds by default. It can be modified for specific reasons (network
status, Web Service specifics, etc.).

• option = Web Service SOAP Header
value = XML root element reference to insert as a header in the SOAP request.
This option allows you to insert a header in a SOAP request generated using the CALL WEB
SERVICE command. SOAP requests do not contain a specific header by default. However,
certain Web Services require a header, for example when managing identification
parameters.

1812 4th Dimension Language Reference

• option = Web Service SOAP Version
value = Web Service SOAP_1_1 or Web Service SOAP_1_2
This option lets you specify the SOAP protocol version used in the request. Pass the Web
Service SOAP_1_1 constant in value to indicate version 1.1 and Web Service SOAP_1_2 to
indicate version 1.2.

The order in which the options are called is not important. If the same option is set
several times, only the value of the last call is taken into account.

Examples
1. Insertion of a customized header in the SOAP request:

` Creating an XML reference
C_STRING(16;vRootRef;vElemRef)
vRootRef:=DOM Create XML Ref("RootElement")
vxPath:="/RootElement/Elem1/Elem2/Elem3"
vElemRef:=DOM Create XML element(vRootRef;vxPath)

`Modifying SOAP header with reference
⇒ SET WEB SERVICE OPTION(Web Service SOAP Header;vElemRef)

2. Using version 1.2 of the SOAP protocol:

⇒ SET WEB SERVICE OPTION(Web Service SOAP Version;Web Service SOAP_1_2)

See also
CALL WEB SERVICE.

4th Dimension Language Reference 1813

CALL WEB SERVICE Web Services (Client)

version 2003
__

CALL WEB SERVICE (accessURL; soapAction; methodName; namespace{; complexType})

Parameter Type Description
accessURL String → Access URL to Web Service
soapAction String → Contents of SOAPAction field
methodName String → Name of the method
namespace String → Namespace
complexType Longint → Configuration of complex types

(simple types if omitted)

Description
The CALL WEB SERVICE command is used to call a Web Service by sending an HTTP
request. This request contains the SOAP message created previously using the SET WEB
SERVICE PARAMETER command.

Any subsequent call to the SET WEB SERVICE PARAMETER command will cause the creation
of a new request. The execution of the CALL WEB SERVICE command also erases any result
from a previously-called Web Service and replaces it with the new result(s).

In accessURL, pass the complete URL allowing access to the Web Service (do not confuse
this URL with that of the WSDL file, which describes the Web Service).

• Access in secure mode (SSL): If you want to use a Web Service in secure mode using SSL,
pass https:// in front of the URL instead of http://. This configuration automatically
enables connection in secure mode.

In soapAction, pass the contents of the SOAPAction field of the request. This field
generally contains the value “ServiceName#MethodName”.

In methodName, pass the name of the remote method (belonging to the Web Service)
that you want to execute.

In namespace, pass the XML namespace used for the SOAP request. For more information
about XML namespaces, refer to the Design Mode manual of 4D.

The optional complexType parameter specifies the configuration of the Web Service
parameters sent or received (defined using the SET WEB SERVICE PARAMETER and GET WEB
SERVICE RESULT commands). The value of the complexType parameter depends on the
publication mode of the Web Service (DOC or RPC, cf. Design Mode manual of 4D) and
on its own parameters.

1814 4th Dimension Language Reference

In complexType, you must pass one of the following constants, located in the Web Services
(Client) theme:
Constant Type Value
Web Service Dynamic Longint 0 (default)
Web Service Manual In Longint 1
Web Service Manual Out Longint 2
Web Service Manual Longint 3

Each constant corresponds to a Web Services “configuration”. A configuration represents
the combination of a publication mode (RPC/DOC) and the types of parameters
(input/output, simple or complex) implemented.

Note: Remember that the “input” or “output” characteristic of parameters is evaluated
from the point of view of the proxy method/Web Service:
• an “input” parameter is a value passed to the proxy method and thus to the Web
Service,
• an “output” parameter is returned by the Web Service and thus by the proxy method
(generally via $0).

The following table shows all the possible configurations as well as the corresponding
constants:

Input parameters
Output parameters Simple Complex
Simple Web Service Dynamic Web Service Manual In

 (RPC mode) (RPC mode)
Complex Web Service Manual Out Web Service Manual

 (RPC mode) (RPC or DOC mode)

The five configurations described below can therefore be implemented. In all cases, 4th
Dimension will handle the formatting of the SOAP request to be sent to the Web Service
as well as its envelope. It is up to you to format the contents of this request according to
the configuration used.

Note: Despite the fact that they are complex XML types, data arrays are handled by 4D as
simple types.

RPC mode, simple input and output
This configuration is the easiest to use. In this case, the complexType contains the Web
Service Dynamic constant or is omitted.
The parameters sent and responses received can be handled directly, without prior
processing.
Refer to the example of the command GET WEB SERVICE RESULT.

4th Dimension Language Reference 1815

RPC mode, complex input and simple output
In this case, the complexType parameter contains the Web Service Manual In constant.
With this configuration, you must “manually” pass each XML source element in the form
of a BLOB to the Web Service, using the SET WEB SERVICE PARAMETER command.
It is up to you to format the initial BLOB as a valid XML element. As its first element, this
BLOB must contain the first apparent “child” element of the <Body> element of the final
request.

• Example
C_BLOB($1)
C_BOOLEAN($0)

SET WEB SERVICE PARAMETER("MyXMLBlob";$1)
⇒ CALL WEB SERVICE("http://my.domain.com/my_service";"MySoapAction";

"http://my.namespace.com/";Web Service Manual In)
GET WEB SERVICE RESULT($0;"MyOutputVar";*)

RPC mode, simple input and complex output
In this case, the complexType parameter contains the Web Service Manual Out constant.
Each output parameter will be returned by the Web Service in the form of an XML
element stored in a BLOB. You retrieve this parameter using the GET WEB SERVICE RESULT
command. You can then parse the contents of the BLOB received using the XML
commands of 4D.

• Example
C_BLOB($0)
C_BOOLEAN($1)

SET WEB SERVICE PARAMETER("MyInputVar";$1)
⇒ CALL WEB SERVICE("http://my.domain.com/my_service";"MySoapAction";

"http://my.namespace.com/";Web Service Manual Out)
GET WEB SERVICE RESULT($0;"MyXMLOutput";*)

RPC mode, complex input and output
In this case, the complexType parameter contains the Web Service Manual constant. Each
input and output parameter must be stored in the form of XML elements in BLOBs, as
described in the two previous configurations.

• Example
C_BLOB($0)
C_BLOB($1)

SET WEB SERVICE PARAMETER("MyXMLInputBlob";$1)
⇒ CALL WEB SERVICE("http://my.domain.com/my_service";"MySoapAction";

"http://my.namespace.com/";Web Service Manual)
GET WEB SERVICE RESULT($0;"MyXMLOutput";*)

1816 4th Dimension Language Reference

DOC mode
A proxy calling method for a DOC Web Service is similar to a proxy calling method for an
RPC Web Service using complex type input and output parameters.
The only difference between these two configurations lies at the level of the XML
content of BLOB parameters sent and received. From 4th Dimension’s point of view, the
building and sending of the SOAP request are identical.

• Example
C_BLOB($0)
C_BLOB($1)

SET WEB SERVICE PARAMETER("MyXMLInput";$1)
CALL WEB SERVICE("http://my.domain.com/my_service";"MySoapAction";

"http://my.namespace.com/";Web Service Manual)
GET WEB SERVICE RESULT($0;"MyXMLOutput";*)

Note: In the case of DOC Web Services, the value of the strings (“MyXMLInput” and
“MyXMLOutput” above) passed as parameters is of no importance; it is even possible to
pass empty strings "". In fact, these values are not used in the SOAP request containing
the XML document. It is, nevertheless, mandatory to pass these parameters.

To use a Web Service published in DOC mode (or in RPC mode with complex types), it is
advisable to proceed as follows:
• Generate the proxy method using the Client Web Services Wizard.
The proxy method will be called in the following manner:
$XMLresultBlob:=$DOCproxy_Method($XMLparamBlob)
• Familiarize yourself with the contents of SOAP requests to be sent to the Web Service
using an on-line test (for instance, http://soapclient.com/soaptest.html). This type of tool is
used to generate HTML test forms based on the WSDL of the Web Service.
• Copy the XML contents generated from the first child element of <body>.
• Write the method enabling you to place the real parameter values into the XML code;
this code must then be placed in the $XMLparamBlob BLOB.
• To parse the response, you can also use an on-line test, or make use of the WSDL that
specifies the returned elements.

See also
GET WEB SERVICE RESULT, SET WEB SERVICE PARAMETER.

System Variables or Sets
If the request has been correctly routed and the Web Service has accepted it, the system
variable OK is set to 1. Otherwise, it is set to 0 and an error is returned.

4th Dimension Language Reference 1817

GET WEB SERVICE RESULT Web Services (Client)

version 2003
__

GET WEB SERVICE RESULT (returnValue{; returnName{; *}})

Parameter Type Description
returnValue Variable ← Value returned by the Web Service
returnName String → Name of the parameter to be retrieved
* → Free up memory

Description
The GET WEB SERVICE RESULT command is used to retrieve a value sent back by the Web
Service as a result of the processing performed.

Note: This command must be used only after the CALL WEB SERVICE command.

The returnValue parameter receives the value sent back by the Web Service. Pass a 4D
variable in this parameter. This variable is generally $0, corresponding to the value
returned by the proxy method. It is, however, possible to use intermediary variables (you
must use process variables only).

Note: Each 4D variable or array used must be previously declared using the commands of
the “Compiler” and “Arrays” themes.

The optional returnName parameter is used to specify the name of the parameter to be
retrieved. However, since most Web Services only return a single value, this parameter is
generally not necessary.

The optional * parameter signals the program to free up the memory devoted to the
processing of the request. You must pass this parameter after retrieving the last value sent
by the Web Service.

1818 4th Dimension Language Reference

Example
Imagine that a Web Service returns the current time in any city in the world. The
parameters received by the Web Service are the name of the city and the country code. In
return, the Web Service sends the corresponding time. The proxy calling method could be
in the following form:

C_TEXT($1)
C_TEXT($2)
C_TIME($0)

SET WEB SERVICE PARAMETER("city";$1)
SET WEB SERVICE PARAMETER("country_code";$2)

CALL WEB SERVICE("http://www.citiesoftheworld.com/WS";"WSTime#City_time";
"City_time";"http://www.citiesoftheworld.com/namespace/default")

If (OK=1)
⇒ GET WEB SERVICE RESULT($0;"return";*)

End if

See also
CALL WEB SERVICE, SET WEB SERVICE PARAMETER.

4th Dimension Language Reference 1819

AUTHENTICATE WEB SERVICE Web Services (Client)

version 2003
__

AUTHENTICATE WEB SERVICE (name; password)

Parameter Type Description
name String → User name
password String → User password

Description
The AUTHENTICATE WEB SERVICE command enables the use of Web Services requiring
authentication of the client application (simple authentication).

In the name and password parameters, pass the required identification information (user
name and password). This information will be encoded and added to the HTTP request
sent to the Web Service using the CALL WEB SERVICE command. It is thus necessary to call
the AUTHENTICATE WEB SERVICE command before calling the CALL WEB SERVICE
command.

The authentication information is reset to zero after each request. Therefore, you must
use the AUTHENTICATE WEB SERVICE command before each CALL WEB SERVICE command.

If authentication fails, the SOAP server returns an error that you can identify using the
Get Web Service error info command.

See also
CALL WEB SERVICE, Get Web Service error info.

1820 4th Dimension Language Reference

Get Web Service error info Web Services (Client)

version 2003
__

Get Web Service error info (infoType) → String

Parameter Type Description
infoType Longint → Information to be retrieved

Function result String ← Information about the last SOAP error

Description
The Get Web Service error info command returns information about the last error
encountered during the execution of a SOAP request sent to a remote Web Service.

The infoType parameter allows you to indicate the type of information that you want to
obtain. You must pass one of the constants listed below, located in the Web Services
(Client) theme:
Constant Type Value
Web Service Error Code Longint 0
Web Service Detailed Message Longint 1
Web Service HTTP Error code Longint 2
Web Service Fault Actor Longint 3

These constants are used to retrieve the following values:

• Web Service Error Code: Main error code (defined by 4D). This code is also returned in
the Error system variable.
List of codes that may be returned:

9910: Soap fault (see also Web Service Fault Actor)
9911: Parser fault
9912: HTTP fault (see also Web Service HTTP Error code)
9913: Network fault
9914: Internal fault.

• Web Service Detailed Message: Detailed message describing the error. The type of message
differs according to the main error type.
- If the main error = 9910 (Soap fault): the cause of the SOAP fault is returned (e.g.: “the
remote method does not exist”).
- If the main error = 9911 (Parser fault): the location of the error in the XML document is
returned.
- If the main error = 9912 (HTTP fault):

- if the HTTP error is located in the interval [300-400] (problems linked to the
location of the requested document), the new location of the requested URL is returned..

- for any other HTTP error code, the <body> is returned.
- If the main error = 9913 (Network fault): the cause of the network fault is returned (e.g.:
“ServerAddress: DNS lookup failure”)

4th Dimension Language Reference 1821

• Web Service HTTP Error code: HTTP error code (to be used in case of main error 9912).

• Web Service Fault Actor: Cause of the error (returned by the SOAP protocol — to be used
in the case of main error 9910).

- Version Mismatch
- Must Understand (server was unable to interpret a parameter defined as mandatory)
- Client Fault
- Server Fault
- Encoding Unknown .

An empty string is returned when no information is available.

1822 4th Dimension Language Reference

65

Web Services (Server)

4th Dimension Language Reference 1823

1824 4th Dimension Language Reference

Web Services (Server) commands Web Services (Server)

version 2003
__

Starting with version 2003, 4th Dimension supports“Web Services”, meaning that the
program enables you to publish (server part) and/or use (client part) Web Services directly
from your database.

A Web Service is a set of functions published on a network. These functions can be called
and used by any application compatible with Web Services and connected to a network.
Web Services can carry out all types of tasks, such as supervising the routing of packages
at a transporter’s, e-commerce, monitoring market values, etc.
For more information about the concept and operation of Web Services, refer to the
Design Mode manual.

This section describes the commands used for the publication of Web Services in 4th
Dimension (server part). For a description of the commands used for subscription to Web
Services (client part), refer to the Web Services (Client) commands.

Publication of Web Services with 4th Dimension is carried out easily using the options in
the method properties. In most cases, this operation will be sufficient to enable you to
publish Web Services. However, if you want to customize certain mechanisms, use data
arrays, etc., you must use the server SOAP commands of 4th Dimension 2003.

Note: By convention, the terms “SOAP” and “Web Service” have been used to
differentiate between command (and constant) names on the server and client side,
respectively. These two concepts refer to the same technology.

4th Dimension Language Reference 1825

SOAP DECLARATION Web Services (Server)

version 2004.3 (Modified)
__

SOAP DECLARATION (variable; type; input_output{; alias})

Parameter Type Description
variable 4D variable → Variable referring to an incoming

or outgoing SOAP argument
type Longint → 4D type to which the argument points
input_output Longint → 1 = SOAP Input, 2 = SOAP Output
alias String → Name published for this argument

during SOAP exchanges

Description
The SOAP DECLARATION command is used to explicitly declare the type of parameters
used in a 4D method published as a Web Service.

When a method is published as a Web Service, the standard parameters $0, $1... $n are
used to describe the parameters of the Web Service to the outside world (more particularly
in the WSDL file). The SOAP protocol requires that parameters be explicitly named; 4th
Dimension uses the names “FourD_arg0, FourD_arg1 ... FourD_argn” by default.

This default operation can nevertheless prove to be problematic for the following reasons:
• It is not possible to declare $0 or $1, $2, etc. as an array. Therefore, it is necessary to use
pointers; however, in this case, the type of values must be known for the generation of
the WSDL file.
• Next, it can be useful or necessary to customize the parameter names (incoming and
outgoing).
• Also, returning values with a size greater than 32 KB (limit for Text arguments) can be
necessary.
• Finally, this operation makes it impossible to return more than one value per RPC call
(in $0).

The SOAP DECLARATION command allows you to be free from these limits. You can
execute this command for each incoming and outgoing parameter and assign it a name
and a type.

Note: Even if the SOAP DECLARATION command is used, it is always necessary to declare
4D variables and arrays in the Compiler_Web method using commands of the “Compiler”
theme.

In variable, pass the 4D variable to be referred to when calling the Web Service.
Warning: You can only refer to process variables or 4D method arguments ($0 to $n).
Local and interprocess variables cannot be used.

1826 4th Dimension Language Reference

By default, because only Text type arguments can be used, the SOAP server responses are
limited to 32 KB. However, it is possible to return SOAP arguments with a size greater
than 32 KB, using BLOBs. To exceed this limit, you simply need to declare the arguments
as BLOBs before calling the SOAP DECLARATION command (see example 4).
Note: On the client side, if you subscribe to this type of Web Service with 4th Dimension,
the Web Services Wizard will of course generate a Text type variable. To be able to use it,
you just need to re-type this return variable as a BLOB in the proxy method.

In type, pass the corresponding 4D type. Most types of 4D variables and arrays can be
used. You can use the following predefined constants, located in the “Field and Variable
Types” theme:
Constant Type Value
Is BLOB Longint 30
Is Boolean Longint 6
Is Integer Longint 8
Is LongInt Longint 9
Is Real Longint 1
Boolean array Longint 22
String array Longint 21
Date array Longint 17
Integer array Longint 15
LongInt array Longint 16
Real array Longint 14
Text array Longint 18
Is Text Longint 2
Is Date Longint 4
Is Time Longint 11
Is String Var Longint 24

Note: The following constants are not used in SOAP methods: Is Alpha Field, Is Pointer,
Array 2D, Picture array, Pointer array, Is Picture, Is Subtable, Is Undefined.

In input_output, pass a value indicating whether the processed parameter is “incoming”
(i.e. corresponding to a value received by the method) or “outgoing” (i.e. corresponding
to a value returned by the method). You can use the following predefined constants,
located in the “Web Services (Server)” theme:
Constant Type Value
SOAP Input Longint 1
SOAP Output Longint 2

COMPILER_WEB method: Incoming SOAP arguments referred to using 4D variables (and
not 4D method arguments) must first be declared in the COMPILER_WEB project method.
In fact, the use of process variables in Web Services methods requires that they be
declared before the method is called. The COMPILER_WEB project method is called, if it
exists, for each SOAP request accepted. By default, the COMPILER_WEB method does not
exist. You must specifically create it.

4th Dimension Language Reference 1827

Note that the COMPILER_WEB method is also called by the 4D Web server when
receiving “conventional” Web requests of the POST type (see Web Services, Special URLs
and Form Actions section).

In alias, pass the name of the argument as it must appear in the WSDL and in the SOAP
exchanges.
Warning: This name must be unique in the RPC call (both input and output parameters
taken together), otherwise, only the last declaration will be taken into account by 4D.

Note: The argument names must not begin with a number nor contain spaces. Moreover,
to avoid any risks of incompatibility, it is recommended to not use extended characters
(such as accented characters).
If the alias parameter is omitted, 4th Dimension will use, by default, the name of the
variable or FourD_argN for the 4D method arguments ($0 to $n).

Note: The SOAP DECLARATION command must be included in the method published as a
Web Service. It is not possible to call it from another method.

Examples
(1) This example specifies a parameter name:

` In the COMPILER_WEB method
C_LONGINT($1)

` In the Web Service method
` During generation of the WSDL file and SOAP calls, the word
` zipcode will be used instead of fourD_arg1

⇒ SOAP DECLARATION($1;Is LongInt;SOAP Input;"zipcode")

(2) This example is used to retrieve an array of zip codes in the form of longints:

`In the COMPILER_WEB method
ARRAY LONGINT(codes;0)

`In the Web service method
⇒ SOAP DECLARATION(codes;LongInt array;SOAP Input;"in_codes")

(3) This example is used to refer to two return values without specifying an argument
name:

⇒ SOAP DECLARATION(ret1;Is LongInt;SOAP Output)
⇒ SOAP DECLARATION(ret2;Is LongInt;SOAP Output)

1828 4th Dimension Language Reference

(4) This example allows the 4D SOAP server to return an argument with a size greater
than 32 KB:

C_BLOB($0)
⇒ SOAP DECLARATION($0; Is Text; SOAP Output)

Note the type Is Text (and not Is BLOB). This allows the argument to be correctly
processed.

See also
Get SOAP info, Is data file locked, SEND SOAP FAULT.

Constants
Field and Variable Types and Web Services (Server) themes.

4th Dimension Language Reference 1829

SEND SOAP FAULT Web Services (Server)

version 2003
__

SEND SOAP FAULT (faultType; description)

Parameter Type Description
faultType Longint → 1 = Client fault, 2 = Server fault
description String → Description of error to be sent to SOAP client

Description
The SEND SOAP FAULT command is used to return an error to a SOAP client indicating the
origin of the fault: client or server. Using this command enables you to indicate an error
to a client without having to return a result.

For instance, a fault on the client side may be detected when you publish a “Square_root”
Web Service and a client sends a request with a negative number; you can use this
command in order to indicate to the client that a positive value is required.

A possible fault on the server side may be, for instance, a lack of memory occurring
during method execution.

Pass the origin of the error in faultType. You can use the following predefined constants,
located in the “Web Services (Server)” theme:

Constant Type Value
SOAP Client Fault Longint 1
SOAP Server Fault Longint 2

Pass a description of the error in description. If the client implementation is in
conformity, the error can be processed.

Example
To go back to the example of the “Square_root” Web Service provided in the command
description, the following command can be used to process requests with negative
numbers:

⇒ SEND SOAP FAULT(SOAP Client Fault;"Positive values required")

See also
Get SOAP info, SOAP DECLARATION.

1830 4th Dimension Language Reference

Is SOAP request Web Services (Server)

version 2003
__

Is SOAP request → Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ← True if the request is SOAP; otherwise, False

Description
The Is SOAP request command returns True if the code being executed is part of a SOAP
request.

This command can be used for security reasons in the On Web Authentication Database
Method in order to determine the nature of the received requests.

See also
On Web Authentication Database Method, SOAP DECLARATION.

4th Dimension Language Reference 1831

Get SOAP info Web Services (Server)

version 2003
__

Get SOAP info (infoNum) → String

Parameter Type Description
infoNum Longint → Number of type of SOAP info to get

Function result String ← SOAP Information

Description
The Get SOAP info command is used to retrieve, in the form of a character string, the
different types of information concerning a SOAP request.

When you process a SOAP request, it may be useful to obtain additional information —
other than the RPC parameter values — about the request. For instance, for security
reasons, you can use this command in the On Web Authentication Database Method to
find out the name of the requested Web Service method.

Pass the number of the type of SOAP information you want to get in the infoNum
parameter. You can use the following predefined constants, located in the “Web Services
(Server)” theme:
Constant Type Value
SOAP Method Name Longint 1
SOAP Service Name Longint 2

• SOAP Method Name = name of the Web Service method about to be executed.
• SOAP Service Name = name of the Web Service to which the method belongs.

Note: Also for security reasons, it is possible to set the maximum size for Web Services
requests sent to 4D. This configuration is carried out using the SET DATABASE PARAMETER
command (“Structure Access” theme).

See also
SEND SOAP FAULT, SET DATABASE PARAMETER.

1832 4th Dimension Language Reference

66

Windows

4th Dimension Language Reference 1833

1834 4th Dimension Language Reference

Managing Windows Windows

version 2004 (Modified)
__

Windows are used to display information to the user. They have three main uses: to enter
data, to display data, and to inform the user in messages and dialogs.

There is always at least one window open. Scroll bars are added, when needed, to let the
user scroll in a form that is larger than the window. In the User environment, this
window displays either the record list (output form) or the data entry screen (input form).
In the Custom Menus environment, this window displays a splash screen (a custom
graphic).

When you execute a menu command within the Custom Menus process, the splash
screen can be replaced with data by commands that display forms. When the commands
finish executing, the splash screen is displayed again by default.

You can open various types of custom windows with the Open Window or Open form
window commands (see the Window Types section). All windows opened by these
commands are referenced through a WinRef expression. A WinRef is the unique ID of each
open window. It is a Longint expression. All commands working with custom windows
expect a WinRef parameter.

When you no longer need a custom window, you should close it using the CLOSE
WINDOW command or by clicking the Control-menu box (Windows) or Close Box
(Macintosh), if it exists.

Some commands open their own windows. Commands such as GRAPH TABLE, QR
REPORT, and PRINT LABEL open a window that becomes the frontmost window.

If you start a new process and do not open a window at the beginning of the process
method, 4D will automatically open a default one as soon as a form is to be displayed.

4th Dimension Language Reference 1835

Side pushers
Starting with version 2004 of 4th Dimension, the right side and bottom of windows have
become “pusher” splitters by default. This means that objects found to the right or below
the limits of a window on screen are automatically pushed to the right or towards the
bottom if the window is enlarged:

This mechanism allows you to manage retractable windows like the Explorer window (see
the example of the SET FORM SIZE command).

Note: This does not work with windows that have scrollbars.

See Also
Open form window, Open window, Window Types.

1836 4th Dimension Language Reference

Window Types Windows

version 2004 (Modified)
__

You can use one of the following predefined constants to specify the type of window that
you open with Open window:

Constant Type Value Can be a floating window
Plain window Long Integer 8 No
Plain no zoom box window Long Integer 0 No
Plain fixed size window Long Integer 4 No
Modal dialog box Long Integer 1 No
Alternate dialog box Long Integer 3 Yes
Movable dialog box Long Integer 5 Yes
Plain dialog box Long Integer 2 Yes
Palette window Long Integer 1984 Yes
Round corner window Long Integer 16 No
Pop up window Long Integer 32 No
Sheet window Long Integer 33 No
Resizable sheet window Long Integer 34 No

Floating Windows: If you pass one of these constants to Open window, you open a regular
windows. To open a floating windows, pass a negative window type value to Open
window.

Modal windows
A modal window places the user in a state (or “mode”) where they can only act within
this window. As long as the modal window is displayed, the menu commands and other
application windows are inaccessible. To close a modal window, the user must either
validate it, cancel it, or choose one of the options it offers. Warning dialog boxes are a
typical example of modal windows.
In 4D, windows of the types 1 and 5 are modal windows.

Note: A modal window always stays in the foreground. As a consequence, when a modal
window calls a non-modal window, this latter window is displayed in the background,
even though it was called subsequent to the modal window. You should thus avoid this
type of operation.
On the other hand, when a modal window calls another modal window, this latter
window will be displayed in the foreground.

4th Dimension Language Reference 1837

The following table shows each window type, on Windows (left) and on Macintosh
(right).

Plain window (8)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: Yes
• Can be minimized/maximized or zoomed: Yes
• Suitable for scroll bars: Yes
• Usage: data entry with scrollbars, DISPLAY SELECTION, MODIFY SELECTION, etc.

Plain no zoom box window (0)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: Yes
• Can be minimized/maximized or zoomed: No on Macintosh
• Suitable for scroll bars: Yes
• Usage: data entry with scrollbars, DISPLAY SELECTION, MODIFY SELECTION, etc.

1838 4th Dimension Language Reference

Plain fixed size window (4)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: No on Macintosh
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: Yes and No
• Usage: data entry with ADD RECORD(...;...*) or equivalent

Modal dialog box (1)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal

4th Dimension Language Reference 1839

Alternate dialog box (3)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal, unless used as floating windows

Movable dialog box (5)
__

• Can have a title: Yes
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal, but can be moved and can be used as floating windows

1840 4th Dimension Language Reference

Plain dialog box (2)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent, splashscreens
• Windows of this type are modal, unless used as floating windows

Palette window (1984 {+ 1} {+ 2} {+ 4} {+ 8})
__

When you call Open window, you can add one or several of the following constants to
Palette window in order to obtain variations in the behavior of the window:

Constant Type Value
Has zoom box Long Integer 8
Has grow box Long Integer 4
Has window title Long Integer 2
Has highlight Long Integer 1

• Can have a title: Yes, if Has window title variation is specified
• Can have a close box or equivalent: Yes
• Can be resized: Yes, if Has grow box variation is specified

4th Dimension Language Reference 1841

• Can be minimized/maximized or zoomed: Yes, if Has zoom box variation is specified
• Suitable for scroll bars: Yes, if Has grow box variation is specified
• Usage: Floating windows with DIALOG or DISPLAY SELECTION (no data entry)

Round corner window (16)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: No on Macintosh
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No on Macintosh
• Usage: Rare (obsolete)

Pop up window (32)

This type of window has the same basic characteristics of the Plain dialog box (2) type
windows and features the following advanced specifics:
• The window is automatically closed and the "cancel" event is passed to the window
when:
- a click occurs outside the window;
- the background window or the MDI (Multiple Document Interface) window is moved;
- the user clicks the Esc key.

1842 4th Dimension Language Reference

• This window is displayed in front of its "parent" window (it must not be used as the
main window of the process). The background window is not disabled. However, it no
longer receives events.
• You cannot resize or move the window using the mouse; however, when performing
these actions programmatically, the redraw of background items is optimized.
• Usage: This type of window is primarily used to handle pop-up menus related to 3D
“bevel” or “toolbar” type buttons.

Sheet window (33) and Resizable sheet window (34)

Sheet windows are specific to Mac OS X. These windows “drop down” over the title bar of
the main window using animation and are displayed above the main window. They are
automatically centered in the main window. Their properties are identical to those of the
modal dialog boxes. They are generally used to perform an action directly relating to the
action occurring in the primary window.

• You can only create a sheet window under Mac OS X if the last open window is visible
and a document type (form).
• The command opens a type 1 (Modal dialog box) window instead of a type 33 window
or type 8 (Plain) window instead of type 34:
- if the last opened window is not visible or is not a document type,
- under Windows.

4th Dimension Language Reference 1843

• Since a sheet window must be drawn above a form, its display is pushed back in the On
load event of the first form loaded in the window (see example 4 of the Open window
command).
• Usage: DIALOG, ADD RECORD(...;...*) or equivalent, under Mac OS (not standard under
Windows).

See Also
Open external window, Open window.

1844 4th Dimension Language Reference

Open window Windows

version 2004 (Modified)
__

Open window (left; top; right; bottom{; type{; title{; controlMenuBox}}}){ → WinRef }

Parameter Type Description
left Number → Global left coordinate of window contents area
top Number → Global top coordinate of window contents area
right Number → Global right coordinate of window contents area,

or -1 for using form default size
bottom Number → Global bottom coordinate of window contents area,

or -1 for using form default size
type Number → Window type
title String → Title of window

or "" for using default form title
controlMenuBox String → Method to call when the Control-menu box is

double-clicked or the Close box is clicked

Function result WinRef ← Window reference number

Description
Open window opens a new window with the dimensions given by the first four
parameters:
• left is the distance in pixels from the left edge of the application window to the left
internal edge of the window.
• top is the distance in pixels from the top of the application window to the top internal
edge of the window.
• right is the distance in pixels from the left edge of the application window to the right
internal edge of the window.
• bottom is the distance in pixels from the top of the application window to the bottom
internal edge of the window.

If you pass -1 in both right and bottom, you instruct 4D to automatically size the window
under the following conditions:
• You have designed a form and set its Sizing Options in the Design environment Form
properties window
• Before calling Open window, you selected the form using the command INPUT FORM, to
which you passed the optional * parameter.

Important: This automatic sizing of the window will occur only if you made a prior call to
INPUT FORM for the form to be displayed, and if you passed the * optional parameter to
INPUT FORM.

4th Dimension Language Reference 1845

• The type parameter is optional. It represents the type of window you want to display,
and corresponds to the different windows shown in the section Window Types. If the
window type is negative, the window created is a floating window. If the type is not
specified, type 1 is used by default.
• The title parameter is the optional title for the window

If you pass an empty string ("") in title, you instruct 4D to use the Window Title set in the
Design environment Form Properties window for the form to be displayed.

Important: The default form title will be set to the window only if you made a prior call to
INPUT FORM for the form to be displayed, and if you passed the * optional parameter to
INPUT FORM.

• The controlMenuBox parameter is the optional Control-menu box method for the
window. If this parameter is specified, a Control-menu box (Windows) or a Close Box
(Macintosh) is added to the window. When the user double-clicks the Control-menu box
(Windows) or clicks on the Close Box (Macintosh), the method passed in controlMenuBox
is called.

Version 6 Note: You can also manage the closing of the window from within the form
method of the form displayed in the window when an On Close Box event occurs. For
more information, see the command Form event.

If more than one window is open for a process, the last window opened is the active
(frontmost) window for that process. Only information within the active window can be
modified. Any other windows can be viewed. When the user types, the active window will
always come to the front, if it is not already there.

Forms are displayed inside an open window. Text from the MESSAGE command also
appears in the window.

Examples
1. The following project method opens a window centered in the main window
(Windows) or in the main screen (Macintosh). Note that it can accept two, three, or four
parameters:

` OPEN CENTERED WINDOW project method
` $1 – Window width
` $2 – Window height
` $3 – Window type (optional)
` $4 – Window title (optional)

$SW:=Screen width\2
$SH:=(Screen height\2)
$WW:=$1\2
$WH:=$2\2

1846 4th Dimension Language Reference

Case of
: (Count parameters=2)

⇒ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH)
: (Count parameters=3)

⇒ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH;$3)
: (Count parameters=4)

⇒ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH;$3;$4)
End case

After the project method is written, you can use it this way:

OPEN CENTERED WINDOW (400;250;Movable dialog box;"Update Archives")
DIALOG([Utility Table];"UPDATE OPTIONS")
CLOSE WINDOW
If (OK=1)

` ...
End if

2. The following example opens a floating window that has a Control-menu box
(Windows) or Close Box (Macintosh) method. The window is opened in the upper right
hand corner of the application window.

⇒ Open window(Screen width-149;33;Screen width-4;178;- Palette window;"";
"CloseColorPalette")

DIALOG([Dialogs];"Color Palette")

The CloseColorPalette method calls the CANCEL command:

CANCEL

3. The following example opens a window whose size and title come from the properties
of the form displayed in the window:

INPUT FORM([Customers];"Add Records";*)
⇒ Open window(10;80;-1;-1;Plain window;"")

Repeat
ADD RECORD([Customers])

Until (OK=0)

Reminder: In order to have Open window automatically use the properties of the form,
you must call INPUT FORM with the optional * parameter, and the properties of the form
must have been set accordingly in the Design environment.

4th Dimension Language Reference 1847

4. This example illustrates the “delay” mechanism for displaying sheet windows under
Mac OS X:

 $myWindow:=Open window(10;10;400;400;Sheet window)
`For the moment, the window is created but remains hidden

DIALOG([Table];"dialForm")
`The On Load event is generated then the sheet window is displayed; it "drops down"
`from the bottom of the title bar

See Also
CLOSE WINDOW, Open external window, Open form window.

1848 4th Dimension Language Reference

Open external window Windows

version 6.0 (Modified)
__

Open external window (left; top; right; bottom; type; title; plugInArea) → Number

Parameter Type Description
left Number → Global left coordinate of window contents area
top Number → Global top coordinate of window contents area
right Number → Global right coordinate of window contents area
bottom Number → Global bottom coordinate of window contents area
type Number → Window type
title String → Title of window
plugInArea String → External area command

Function result Number ← Reference number for window and external area

Description
Open external window opens a new window and displays the external area supported by
the command plugInArea provided by a 4D plug-in. The code passed in plugInArea is
generally in the form "_PluginName", for example: _4D Write, _4D View or _4D Draw.

Open external window returns a Long Integer value that can be used both as a window
reference number (that can be used with other Windows theme commands) and as a
reference to the external area displayed in the window (that can be used with other
routines provided by the 4D plug-in).

The first six arguments are the same as those of the the Open window command.
However, none of the parameters are optional.

Open external window creates modeless windows. The command does not wait for user
input, so you can have several active windows open at once. You can click between each
window and edit the one in front. If the window type has a title bar, a Control-menu box
(Windows) or a Close Box (Macintosh) will be added to enable the user to close the
window.

4th Dimension Language Reference 1849

Examples
The following example opens an external window and displays the 4D Write external
area:

⇒ wrWind:=Open external window (50; 50; 350; 450; 8; "Letter Writing"; "_4D WRITE")

The following example closes the external window opened in the previous example:

CLOSE WINDOW (wrWind)

See Also
CLOSE WINDOW, Open window.

1850 4th Dimension Language Reference

CLOSE WINDOW Windows

version 3
__

CLOSE WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number, or

Frontmost window of current process, if omitted

Description
CLOSE WINDOW closes the active window opened by an Open window command in the
current process. CLOSE WINDOW has no effect if a custom window is not open; it does
not close standard windows. CLOSE WINDOW also has no effect if called while a form is
active in the window. You must call CLOSE WINDOW when you are done using a window
opened by Open window.

It is useless to pass a number to Close window when closing a window previously opened
by the Open window function, since a call to Close window will close the last window
created by Open window.

If you pass an external window reference number in the extWindowRef parameter, CLOSE
WINDOW closes the specified external window. For more information about external
windows, refer to the Open external window function.

Example
The following example opens a window and adds new records with the ADD RECORD
command. When the records have been added, the window is closed with CLOSE
WINDOW:

Open window (5; 40; 250; 300; 0; "New Employee")
Repeat

ADD RECORD ([Employees]) ` Add a new employee record
Until (OK = 0) ` Loop until the user cancels

⇒ CLOSE WINDOW ` Close the window

See Also
Open external window, Open window.

4th Dimension Language Reference 1851

ERASE WINDOW Windows

version 6.0 (Modified)
__

ERASE WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number, or

Frontmost window of current process,
if omitted

Description
The command ERASE WINDOW clears the contents of the window whose reference
number is passed in window.

If you omit the window parameter, ERASE WINDOW clears the contents of the frontmost
window for the current process.

Usually, you will use ERASE WINDOW in combination with MESSAGE and GOTO XY. In
this case, ERASE WINDOW clears the contents of the window and moves the cursor to the
upper-left corner of the window, the GOTO XY (0; 0) position.

Do not confuse ERASE WINDOW, which clears the contents of a window, with CLOSE
WINDOW, which removes the window from the screen.

See Also
GOTO XY, MESSAGE.

1852 4th Dimension Language Reference

REDRAW WINDOW Windows

version 6.0
__

REDRAW WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number, or

Frontmost window of current process, if
omitted

Description
The command REDRAW WINDOW provokes a graphical update of the window whose
reference number you pass in window.

If you omit the window parameter, REDRAW WINDOW applies to the frontmost window
for the current process.

Note: 4th Dimension handles the graphical updates of the windows each time you move
a window, resize it, or bring it to the front, as well as when you change the form and/or
the values displayed in the window. You will rarely use this command.

See Also
ERASE WINDOW.

4th Dimension Language Reference 1853

DRAG WINDOW Windows

version 6.8 (Modified)
__

DRAG WINDOW

Parameter Type Description
This command does not require any parameters

Description
The command DRAG WINDOW allows users to drag the window on which they clicked
following the movements of the mouse. Usually you call this command from within an
object method of an object that can respond instantaneously to mouse clicks (i.e.,
invisible buttons).

Example
The following form, shown here in the Design Environment, contains a frame created
with a static picture, above which are four invisible buttons for each side:

Each button has the following method:

DRAG WINDOW ` Start dragging window when clicked

1854 4th Dimension Language Reference

In the User or Custom Menus environment, after executing the following project
method:

Open window(50;50;50+400;50+300;2)
DIALOG([Table1];"Custom Drag")
CLOSE WINDOW

You obtain a window similar to this:

Then you can drag the window by clicking anywhere on the borders.

See Also
GET WINDOW RECT, SET WINDOW RECT.

4th Dimension Language Reference 1855

HIDE WINDOW Windows

version 6.0.5
__

HIDE WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number or

Current process frontmost window, if omitted

Description
The HIDE WINDOW command allows you to hide the window whose number was passed
in window or, if this parameter is omitted, the current process frontmost window. For
example, this command allows you to display only the active window in a process that
consists of several processes.

The window disappears from the screen but remains open. You can still programmatically
apply any changes supported by 4D windows.

To display a window that was previously hidden by the HIDE WINDOW command:
• Use the SHOW WINDOW command and pass the window reference ID.
• Use the Process page of the Runtime Explorer. Select the process in which the window is
handled, then click on the Show button.

To hide all the windows of a process, use the HIDE PROCESS command.

Example
This example corresponds to a method of a button located in an input form. This button
opens a dialog box in a new window that belongs to the same process. In this example,
the user wants to hide the other windows of the process (an entry form and a tool
palette) while displaying the dialog box. Once the dialog box is validated, other process
windows are displayed again.

` Object method for the "Information" button

⇒ HIDE WINDOW(Entry) ` Hide the entry window
⇒ HIDE WINDOW(Palette) ` Hide the palette

$Infos:=Open window(20;100;500;400;8) ` Create the information window
... ` Place here instructions that are dedicated to the dialog management
CLOSE WINDOW($Infos) ` Close the dialog

⇒ SHOW WINDOW(Entry)
⇒ SHOW WINDOW(Palette) ` Display the other windows

See also
SHOW WINDOW.

1856 4th Dimension Language Reference

SHOW WINDOW Windows

version 6.0.5
__

SHOW WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number or

Current process frontmost window, if omitted

Description
The SHOW WINDOW command allows you to display the window whose number was
passed in window. If this parameter is omitted, the frontmost window of the current
process will be displayed.

In order to use the SHOW WINDOW command, the window must have been hidden by
using the HIDE WINDOW command. If the window is already displayed, the command
does nothing.

Example
Refer to the example of the HIDE WINDOW command.

See also
HIDE WINDOW.

4th Dimension Language Reference 1857

MAXIMIZE WINDOW Windows

version 6.0.5
__

MAXIMIZE WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number or if omitted,

all current process frontmost
windows (Windows) or current
process frontmost window (Mac OS)

Description
The MAXIMIZE WINDOW command triggers the expansion of the window whose
reference number was passed in window. If this parameter is omitted, the effect is the
same but is applied to all the frontmost windows of the current process (Windows) or to
the frontmost window of the current process (Mac OS).

This command has the same effect as a click on the zoom box of a 4D application
window:

On Windows
The size of the window is increased to match the current size of the application window.
The maximized window is set to be the frontmost window. If you do not pass the window
parameter, the command is applied to all the application windows.

Windows zoom box

On Mac OS
The size of the window is increased to match the size of its contents. If you do not pass
the window parameter, the command is applied to the frontmost window of the current
process.

Zoom box on Mac OS

Notes:
• This command only applies to windows that contain a zoom box. If the window type
does not include it, the command does nothing. For more information, please refer to the
Window Types section.
• On Mac OS, the zoom is based on the contents of the window; so, the command must
be called in a context where the contents of the window are defined, for example in a
form method. Otherwise, the command does nothing.
• If the window is already maximized, the command does nothing.

1858 4th Dimension Language Reference

MAXIMIZE WINDOW sets a window to its "maximum" size. If the window is actually a
form whose size was defined in the form properties, the window size is set to those values.

A later click on the zoom box of the window or a call to the MINIMIZE WINDOW
command reduces the window to its initial size. On Windows, a call to MINIMIZE
WINDOW without parameters sets the size of all application windows to their initial sizes.

Example
This example sets the window size of your form to full screen when it is opened. To
achieve this, the following code is placed in the form method:

` In the Form method

⇒ MAXIMIZE WINDOW

See also
MINIMIZE WINDOW.

4th Dimension Language Reference 1859

MINIMIZE WINDOW Windows

version 6.0.5
__

MINIMIZE WINDOW {(window)}

Parameter Type Description
window WinRef → Window reference number or if omitted,

all the current process frontmost
windows (Windows) or current
process frontmost window (Mac OS)

Description
The MINIMIZE WINDOW command sets the size of the window whose number is passed as
window to the size it was before being maximized. If window is omitted, the command
applies to each window of the application (Windows) or to the frontmost window of the
process (on Mac OS).

This command has the same effect as one click on the reduction box of the 4D
application:

On Windows
The size of the window is set to its initial size, i.e., its size before being maximized. If the
window parameter is omitted, all the application windows are set to their initial sizes.

Reduction box on Windows

On Mac OS
The size of the window is set to its initial size (i.e. its size before being maximized). If the
window parameter is omitted, the frontmost window of the current process is set to its
initial size.

Reduction/zoom box on Mac OS

If the windows to which the command is applied were not previously maximized
(manually or using MAXIMIZE WINDOW), or if the window type does not include a zoom
box, the command has no effect.

1860 4th Dimension Language Reference

For more information on window types, refer to the Window Types section.

Note: This function is not to be confused with minimizing a window to a button
(Windows) or in the Dock (Mac OS), which is triggered by a click on the button shown:

Windows

Mac OS

See also
MAXIMIZE WINDOW.

4th Dimension Language Reference 1861

Get window title Windows

version 6.0
__

Get window title {(window)} → String

Parameter Type Description
window WinRef → Window reference number, or

Frontmost window of
current process, if omitted

Function result String ← Window title

Description
The command Get window title returns the title of the window whose reference number is
passed in window. If the window does not exist, an empty string is returned.

If you omit the window parameter, Get window title returns the title of the frontmost
window for the current process.

Example
See example for the command SET WINDOW TITLE.

See Also
SET WINDOW TITLE.

1862 4th Dimension Language Reference

SET WINDOW TITLE Windows

version 6.0 (Modified)
__

SET WINDOW TITLE (title{; window})

Parameter Type Description
title String → Window title
window WinRef → Window reference number, or

Frontmost window of current process,
if omitted

Description
The command SET WINDOW TITLE changes the title of the window whose reference
number is passed in window to the text passed in title (max. length 80 characters). If the
window does not exist, SET WINDOW TITLE does nothing. If you omit the window
parameter, SET WINDOW TITLE changes the title of the frontmost window for the current
process.

Note: In the User environment, 4th Dimension changes the window titles automatically
—i.e., “Entry for Table” when you perform data entry. If you change a window title, 4D
will probably override it. On the other hand, in the Custom Menus environment, 4th
Dimension does not change the titles of the windows.

Example
While performing data entry in a form, you click on a button that executes a lengthy
operation (i.e., browsing programmatically related records shown in a subform). You keep
informed about the progress of the operation using the title of the current window:

` bAnalysis button Object Method
Case of

: (Form event=On Clicked)
$vsCurTitle:=Get window title ` Save current window title in a local variable
FIRST RECORD([Invoice Line Items]) ` Start the lengthy operation
For($vlRecord;1;Records in selection([Invoice Line Items]))

DO SOMETHING
` Show progress information

⇒ SET WINDOW TITLE("Processing Line Item #"+String($vlRecord))
End for

` Restore original window title
⇒ SET WINDOW TITLE($vsCurTitle)

End case

See Also
Get window title.

4th Dimension Language Reference 1863

WINDOW LIST Windows

version 6.0
__

WINDOW LIST (windows{; *})

Parameter Type Description
windows Array ← Array of window reference numbers
* * → If specified, take floating windows into account

If omitted, ignore floating windows

Description
The command WINDOW LIST populates the array windows with the window reference
numbers of the windows currently open in all running processes (kernel or user
processes).

If you do not pass the optional * parameter, floating windows are ignored.

Example
The following project method tiles all the current open window, except floating windows
and dialog boxes:

` TILE WINDOWS project method

⇒ WINDOW LIST($alWnd)
$vlLeft:=10
$vlTop:=80 ` Leave enough room for the Tool bar
For ($vlWnd;1;Size of array($alWnd))

If (Window kind($alWnd{$vlWnd}) # Modal Dialog)
GET WINDOW RECT($vlWL;$vlWT;$vlWR;$vlWB;$alWnd{$vlWnd})
$vlWR:=$vlLeft+($vlWR-$vlWL)
$vlWB:=$vlTop+($vlWB-$vlWT)
$vlWL:=$vlLeft
$vlWT:=$vlTop
SET WINDOW RECT($vlWL;$vlWT;$vlWR;$vlWB;$alWnd{$vlWnd})
$vlLeft:=$vlLeft+10
$vlTop:=$vlTop+25

End if
End for

Note: This method could be improved by adding tests on the size of the main window
(on Windows) or the size and location of the screens (on Macintosh).

See Also
Window kind, Window process.

1864 4th Dimension Language Reference

Window kind Windows

version 6.0
__

Window kind {(window)}

Parameter Type Description
window WinRef → Window reference number, or

Frontmost window of current process,
if omitted

Description
The command Window kind returns the 4th Dimension type of the window whose
reference number is passed in window. If the window does not exist, Window kind returns
0 (zero).

Otherwise, Window kind may return one of the following values:

Constant Type Value
Regular window Long Integer 8
Modal dialog Long Integer 9
External window Long Integer 5
Floating window Long Integer 14

If you omit the window parameter, Window kind returns the type of the frontmost
window for the current process.

Example
Set example for the command WINDOW LIST.

See Also
GET WINDOW RECT, Get window title, Window process.

4th Dimension Language Reference 1865

Window process Windows

version 6.0
__

Window process {(window)} → Number

Parameter Type Description
window WinRef → Window reference number

Function result Number ← Process reference number

Description
The command Window process returns the process number that runs the window whose
reference number is passed in window. If the window does not exist, 0 (zero) is returned.

If you omit the window parameter, Window process returns the process of the current
frontmost window.

See Also
Current process.

1866 4th Dimension Language Reference

GET WINDOW RECT Windows

version 2003 (Modified)
__

GET WINDOW RECT (left; top; right; bottom{; window})

Parameter Type Description
left Number ← Left coordinate of window's contents area
top Number ← Top coordinate of window's contents area
right Number ← Right coordinate of window's contents area
bottom Number ← Bottom coordinate of window's contents area
window WinRef → Window reference number, or

Frontmost window of current process, if omitted or
MDI window if -1 (Windows)

Description
The command GET WINDOW RECT returns the coordinates of the window whose
reference number is passed in window. If the window does not exist, the variable
parameters are left unchanged.

If you omit the window parameter, GET WINDOW RECT applies to the frontmost window
for the current process.

The coordinates are expressed relative to the top left corner of the contents area of the
application window (on Windows) or of the main screen (on Macintosh). The coordinates
return the rectangle corresponding to the contents area of the window (excluding title
bars and borders).

Note: Under Windows, if you pass -1 in window, GET WINDOW RECT returns the
coordinates of the application window (MDI window). These coordinates correspond to
the contents area of the window (excluding menu bars and borders).

Example
See example for the command WINDOW LIST.

See Also
SET WINDOW RECT.

4th Dimension Language Reference 1867

SET WINDOW RECT Windows

version 2004 (Modified)
__

SET WINDOW RECT (left; top; right; bottom{; window})

Parameter Type Description
left Number → Global left coordinate of window's contents area
top Number → Global top coordinate of window's contents area
right Number → Global right coordinate of window's contents area
bottom Number → Global bottom coordinate of window's contents area
window WinRef → Window reference number, or

Frontmost window of current process, if omitted

Description
The SET WINDOW RECT command changes the global coordinates of the the window
whose reference number is passed in window. If the window does not exist, the command
does nothing.

If you omit the window parameter, SET WINDOW RECT applies to the frontmost window
for the current process.

This command can resize and move the window, depending on the new coordinates
passed.

The coordinates must be expressed relative to the top left corner of the contents area of
the application window (on Windows) or to the main screen (on Macintosh). The
coordinates indicate the rectangle corresponding to the contents area of the window
(excluding title bars and borders).

Warning: Be aware that by using this command, you may move a window beyond the
limits of the main window (on Windows) or of the screens (on Macintosh). To prevent
this, use commands such as Screen width and Screen height to double-check the new
coordinates of the window.

This command does not affect form objects. If the window contains a form, the form
objects are not moved or resized by the command (regardless of their properties). Only
the window is modified. In order to modify a form window while taking the resizing
properties and the objects it contains into account, you must use the RESIZE FORM
WINDOW command.

1868 4th Dimension Language Reference

Examples
1. See example for the WINDOW LIST command.

2. Given the following window:

After execution of the following line:

⇒ SET WINDOW RECT(100;100;300;300)

The window appears as follows:

See Also
DRAG WINDOW, GET WINDOW RECT, SET DICTIONARY.

4th Dimension Language Reference 1869

Frontmost window Windows

version 6.0
__

Frontmost window {(*)} → WinRef

Parameter Type Description
* * → If specified, take floating windows into account

If omitted, ignore floating windows

Function result WinRef ← Window reference number

Description
The command Frontmost window returns the window reference number of the frontmost
window.

See Also
Frontmost process, Next window.

1870 4th Dimension Language Reference

Next window Windows

version 6.0
__

Next window (window) → WinRef

Parameter Type Description
window WinRef → Window reference number

Function result WinRef ← Window reference number

Description
The Next window command returns the window reference number of the window
“behind” the window you pass in window (based on the front-to-back order of the
windows).

See Also
Frontmost window.

4th Dimension Language Reference 1871

Find window Windows

version 6.0
__

Find window (left; top{; windowPart}) → WinRef

Parameter Type Description
left Number → Global left coordinate
top Number → Global top coordinate
windowPart Number ← Window part ID number

Function result WinRef ← Window reference number

Description
The command Find window returns (if any) the reference number of the first window
“touched” by the point whose coordinates passed in left and top.

The coordinates must be expressed relative to the top left corner of the contents area of
the application window (Windows) or to the main screen (Macintosh).

If you specify the windowPart parameter, whether or not a window has been found, the
parameter returns one of the following values:

Constants Type Value Platform
In menu bar Long Integer 1 Macintosh only
In system window Long Integer 2 Macintosh only
In contents Long Integer 3 Windows or Macintosh
In drag Long Integer 4 Macintosh only
In grow Long Integer 5 Macintosh only
In go away Long Integer 6 Macintosh only
In zoom box Long Integer 7 Macintosh only

See Also
Frontmost window, Next window.

1872 4th Dimension Language Reference

Open form window Windows

version 2004 (Modified)
__

Open form window ({table; }formName{; type{; hPos{; vPos{; *}}}}) → WinRef

Parameter Type Description
table Table → Table of the form or Default table, if omitted
formName String → Name of the form
type Longint → Window type
hPos Longint → Horizontal position of the window
vPos Longint → Vertical position of the window
* * → Save current position and size of the window

Function result WinRef ← Window reference number

Description
The Open form window command opens a new window using the size and resizing
properties of the form formName.

Note that formName is not displayed in the window. If you want to display the form, you
have to call a command which loads a form (ADD RECORD for example).

By default (if the type parameter is not passed), a standard window with a close box is
opened. Unlike the Open window command, no method is associated to the window's
close box. Clicking on this close box cancels and closes the window, except if the On
Close Box form event has been activated for the form. In this case, the code associated to
the On Close Box event will be executed.

If formName is resizable, the window opened will contain a zoom box as well as a grow
box.

Note: To know the main properties of a form, use the GET FORM PROPERTIES command.

The optional type parameter allows you to specify a type for the window. You must pass
one of the following predefined constants (placed in the “Open form window” theme):
Constant Type Value
Standard form window Longint 8
Modal form dialog box Longint 1
Movable form dialog box Longint 5
Palette form window Longint 1984
Pop up form window Longint 32
Sheet form window Longint 33

4th Dimension Language Reference 1873

Notes:
• The attributes (grow box, close box...) of the window created depend on the interface
specifications of the operating system for the chosen type. It is therefore possible to
obtain different results depending on the platform used.
• For more information about window types, refer to the Window types section. Note that
only the types listed in the “Open form window” theme can be used with the Open form
window command.

The optional parameter hPos allows you to define the horizontal position of the window.
You can pass a defined position, expressed in points, to this parameter (refer to the Open
window command) or one of the following predefined constants placed in the “Open
form window” theme:
Constant Type Value
Horizontally Centered Longint 65536
On the Left Longint 131072
On the Right Longint 196608

The optional parameter vPos allows you to define the vertical position of the window. You
can pass a defined position, expressed in points, to this parameter (refer to the Open
window command) or one of the following predefined constants placed in the “Open
form window” theme:
Constant Type Value
Vertically Centered Longint 262144
At the Top Longint 327680
At the Bottom Longint 393216

These parameters take into account the presence of the tool bar and menu bar as well as
the current size of the application's window (on Windows).

If you pass the optional parameter *, the current position and size of the window are
memorized when closed. When the window is reopened again, its previous position and
size are respected. In this case, the vPos and hPos parameters are only used the first time
the window is opened.

Examples
(1) The following statement opens a standard window with a close box and automatically
adjusts it to be the same size as the "Input" form. Since the form has been defined as
resizable, the window also has a grow and a zoom box:

⇒ $winRef := Open form window ([Table1];"Enter")

(2) The following statement opens a floating palette in the upper left portion of the
screen. This palette uses the last position it was in when the user closed it each time it is
reopened:

⇒ $winRef := Open form window ([Table1]; "Tools"; Palette form window; On the Left;
At the Top;*)

See Also
GET FORM PROPERTIES, Open window, Window Types.

1874 4th Dimension Language Reference

Current form window Windows

version 2004
__

Current form window → WinRef

Parameter Type Description
This command does not require any parameters

Function result WinRef ← Current form window reference number

Description
The Current form window command returns the reference of the current form window. If
no window has been set for the current form, the command returns 0.

The current form window can be generated automatically using a command such as ADD
RECORD, following a user action or by using the Open window or Open form window
commands.

See also
Open form window, Open window, RESIZE FORM WINDOW.

4th Dimension Language Reference 1875

RESIZE FORM WINDOW Windows

version 2004
__

RESIZE FORM WINDOW (width; height)

Parameter Type Description
width Longint → Pixels to add to or remove from the current

form window width
height Longint → Pixels to add to or remove from the current

form window height

Description
The RESIZE FORM WINDOW command lets you change the size of the current form
window.

Pass the number of pixels that you would like to add to the current window size in the
width and height parameters. Pass 0 in either parameter if you do not wish to change the
current size. To reduce the size, pass a negative value in the width and height parameters.

This command produces the exact same result as a manual window resize using the resize
box (if the window type allows it). As a result, the command takes into consideration
resize properties for objects and size limitations defined in the form properties. If, for
example, the command resizes a window to a size greater than what is allowed in the
form, the command will have no effect.

Please note that this behavior is different than that of the SET WINDOW RECT command,
which does not take form properties nor content into account when resizing the window.
Also, note that this command does not necessarily modify the form size. To modify the
size of a form by programming, please see the SET FORM SIZE command.

Example
Given the following window (the fields and frame have the “Grow” property for
horizontal resizing):

1876 4th Dimension Language Reference

After execution of this line:

⇒ RESIZE FORM WINDOW(25;0)

... the window appears as follows:

See also
GET FORM PROPERTIES, SET FORM SIZE, SET WINDOW RECT.

4th Dimension Language Reference 1877

1878 4th Dimension Language Reference

67

XML

4th Dimension Language Reference 1879

1880 4th Dimension Language Reference

Presentation of XML Commands XML

version 2004.1 (Modified)
__

4th Dimension 2003 includes a set of commands used for parsing objects containing
XML (eXtensible Markup Language) data.

About the XML language
__

The XML language is a data exchange standard. It is based on the use of tags and enables
precise description of the data exchanged as well as their structure. XML files are Text
format files, their content is parsed by the applications importing the data. Many
applications now support this format.
For more information about XML, refer, for instance, to the sites http://xml.org and
http://www.w3.org.

For XML support, 4th Dimension uses a library named Xerces.dll developed by the Apache
Foundation company. 4th Dimension supports XML version 1.0.

Note: 4th Dimension allows direct importing and exporting of data in XML format using
the import/export editor.

DOM commands and SAX commands
__

4th Dimension offers two separate sets of XML commands, prefixed DOM and SAX.

What are DOM and SAX ?
DOM (Document Object Model) and SAX (Simple API XML) are two different parsing
modes for XML documents.
• The DOM mode parses an XML source and builds its structure (its “tree”) in memory.
Because of this, access to each element of the source is extremely fast. However, since the
entire tree structure is stored in memory, the processing of large XML documents may
lead to the memory capacity being exceeded and thus provoke errors.
• The SAX mode does not build a tree structure in memory. In this mode, “events” (such
as the start and end of an element) are generated when parsing the source. This mode lets
you parse XML documents of any size, regardless of the amount of memory available.
For more information on XML standards, consult the following sites:
http://www.saxproject.org/?selected=event and http://www.w3schools.com/xml/.

Creating, opening and closing XML documents via DOM
Objects created, modified or parsed by the 4D DOM commands can be text, URLs,
documents or BLOBs. The DOM commands used for opening XML objects in 4th
Dimension are DOM Parse XML source and DOM Parse XML variable.
Many commands then let you read, parse and write the elements and attributes. Errors are
recovered using the GET XML ERROR command (common to both XML standards).
The DOM CLOSE XML command lets you close the source in the end.

4th Dimension Language Reference 1881

Creating, opening and closing XML documents via SAX
The SAX commands work with the standard document references of 4th Dimension
(DocRef, Time type reference). It is therefore possible to use these commands jointly with
the 4D commands used to manage documents, such as SEND PACKET or Append
document.
The creation and opening of XML documents by programming is carried out using the
Create document and Open document commands. Subsequently, the use of an XML
command with these documents will cause the automatic implementation of XML
mechanisms such as encoding. For instance, the <?xml version="1.0" encoding="…
encodage …" standalone = "no "?> header will be written automatically in the document.

Note: Documents read by SAX commands must be opened in read-only mode by the
Open document command. This avoids any conflict between 4th Dimension and the
Xerces library when you open “standard” and XML documents simultaneously. If you
execute a SAX parsing command with a document open in read-write mode, an alert
message is displayed and parsing is impossible.

Closing an XML document must be carried out using the CLOSE DOCUMENT command.
If any XML elements were open, they will be closed automatically.

Use of XPath notation (DOM)
__

Two DOM commands (DOM Create XML element and DOM Find XML element) accept
XPath notation for accessing XML elements.
The XPath notation comes from the XPath language, designed to navigate XML structures.
XPath notation allows setting elements directly within an XML structure without having
to indicate the full access path. It allows you to free yourself up from the element
hierarchy. For example, given the following structure:

<RootElement>
<Elem1>

<Elem2>
<Elem3 Font=Verdana Size=10> </Elem3>

</Elem2>
</Elem1>

</RootElement>

XPath notation allows you to access element 3 using the /RootElement/Elem1/Elem2/Elem3
syntax.

4th Dimension also accepts indexed XPath elements using the Element[ElementNum]
syntax. For example, given the following structure:

<RootElement>
<Elem1>

<Elem2>aaa</Elem2>
<Elem2>bbb</Elem2>
<Elem2>ccc</Elem2>

</Elem1>
</RootElement>

1882 4th Dimension Language Reference

XPath notation allows you to access the “ccc” value using the
/RootElement/Elem1/Elem2[3] syntax.

Note: In 4th Dimension, the xPath parameter specified in the DOM Create XML element
and DOM Find XML element commands must start with the / character, followed by the
name of the current element.

For an illustration of XPath notation, please refer to the examples in the DOM Create
XML element and DOM Find XML element commands.
XSL transformations management
__

4th Dimension supports the application of XSL style sheets (eXtended Stylesheet
Language). The XSL language allows you to modify the tags of an XML document.

The XSL language features two different aspects:
• Formatting: It allows you to apply style and display rules to XML elements, similar to
CSS (Cascading StyleSheet) in HTML.
• Transformations: It allows you to change XML tags to a different tag system, for
example, HTML. This function is known as XSLT. An XSL style sheet can totally
reorganize the XML elements of a document by selecting them then transforming them
into other elements. This function is useful, for example, for synchronizing a set of
dissimilar documents.

Note: 4th Dimension uses the Xalan-C_1_6_0.dll library to perform XSL transformations.
Xalan is a freeware XSLT processor. For more information, please visit
http://xml.apache.org/xalan-c/index.html.

XSL style sheets are text documents (with .xsl extensions) generated manually or using
specialized applications. The XSL language features various elements and functions that
allow you to perform any type of dynamic transformation. For more information on this
language, please visit http://xmlfr.org (for example).

4th Dimension allows you to transform an XML document using an existing XSL style
sheet (APPLY XSLT TRANSFORMATION command). Also, 4th Dimension allows you to
modify XSL style sheet parameters on the fly using the SET XSLT PARAMETER command.

Note: An option in the export dialog box lets you use an XSL style sheet when exporting
XML and thus generate a transformed XML document.

4th Dimension Language Reference 1883

Terminology
__

The XML language uses a number of specific terms and acronyms. This non-exhaustive
list details the main XML concepts used by the commands and functions of 4th
Dimension.

Attribute: an XML sub-tag associated with an element. An attribute always contains a
name and a value (see diagram below).

Child: In an XML structure, an element in a level directly below another.

DTD: Document Type Declaration The DTD records the set of specific rules and properties
that the XML must follow. These rules define, more particularly, the name and content of
each tag as well as its context. This formalization of the elements can be used to check
whether an XML document is in compliance (in which case, it is declared “valid”).
The DTD may be included in the XML document (internal DTD) or in a separate
document (external DTD). Note that the DTD is not mandatory.

Element: an XML tag. An element always contains a name and a value. Optionally, an
element may contain attributes (see diagram).

ElementRef: XML reference used by the 4D XML commands to specify an XML structure.
This reference is made up of 8 coded characters in hexadecimal form, which means it
consists of 16 characters.

Parent: In an XML structure, an element in a level directly above another.

Parsing, parser: The act of analyzing the contents of a structured object in order to
extract useful information. The commands of the “XML” theme are used to parse the
contents of any XML objects.

Root: An element located at the first level of an XML structure.

Sibling: In an XML structure, an element at the same level as another.

Structure XML: structured XML object. This object can be a document, a variable, or an
element.

Validation: An XML document is “validated” by the parser when it is “well-formed” and
in compliance with the DTD specifications. See also Well-formed.

1884 4th Dimension Language Reference

Well-formed: An XML document is declared “well-formed” by the parser when it complies
with the generic XML specifications. See also Validation.

XML: eXtensible Markup Language. A computerized data exchange standard enabling the
transfer of data as well as their structure. The XML language is based on the use of tags
and a specific syntax, in keeping with the HTML language. However, unlike the latter, the
XML language allows the definition of customized tags.

XSL: eXtensible Stylesheet Language. A language permitting the definition of style sheets
used to process and display the contents of an XSL document.

4th Dimension Language Reference 1885

DOM Create XML Ref XML

version 2004
__

DOM Create XML Ref (root{; nameSpace}{; nameSpaceName; nameSpaceValue}{;
nameSpaceName2; nameSpaceValue2; ...; nameSpaceNameN; nameSpaceValueN}) →
String

Parameter Type Description
root String → Name of root element
nameSpace String → Value of namespace
nameSpaceName String → Namespace name
nameSpaceValue String → Namespace value

Function result String ← Root XML element reference

Description
The DOM Create XML Ref command creates an empty XML tree in memory and returns
its reference.

Pass the name of the XML tree root element in the root parameter.

Pass the declaration of the namespace value of the tree in the optional nameSpace
parameter (for example, “http://www.4d.com”).
In this case, you must prefix the root parameter with the namespace name followed by :
(for example, “MyNameSpace:MyRoot”).

Note: The namespace is a string that allows you to make sure the XML variable names are
unique. In general, a URL like http://www.mysite.com/myurl is used. The URL does not
necessarily have to be valid, but it does have to be unique.

You can declare one or more additional namespaces in the generated XML tree using
nameSpaceName/nameSpaceValue pairs. You can pass as many namespace name/value pairs
as you want.

Examples
1. Creating a single XML tree:

C_STRING (16;vElemRef)
⇒ vElemRef:=DOM Create XML Ref("MyRoot")

This code produces the following result:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<MyRoot/>

1886 4th Dimension Language Reference

2. Creating an XML tree with a single namespace:

C_STRING (16;vElemRef)
$Root:="MyNameSpace:MyRoot"
$Namespace:="http://www.4D.com/tech/namespace"

⇒ vElemRef:=DOM Create XML Ref($Root$Namespace)

This code produces the following result:
<MyNameSpace:MyRoot xmlns:MyNameSpace=

"http://www.4D.com/tech/namespace"/>

3. Creating an XML tree with several namespaces:

C_STRING (16;vElemRef)
C_STRING (80;$aNSName1;$aNSName2;$aNSValue1;$aNSValue2)
$Root:="MyNameSpace:MyRoot"
$Namespace:="http://www.4D.com/tech/namespace"
$aNSName1:="NSName1"
$aNSName2:= "NSName2"
$aNSValue1:="http://www.4D.com/Prod/namespace"
$aNSValue2:="http://www.4D.com/Mkt/namespace"

⇒ vElemRef:=DOM Create XML Ref($Root;$Namespace;$aNSName1;$aNSValue1;
$aNSName2;$aNSValue2)

This code produces the following result :
<MyNameSpace:MyRoot xmlns:MyNameSpace="http://www.4D.com/tech/nameSpace"
NSName1="http://www.4D.com/Prod/namespace"
NSName2="http://www.4D.com/Mkt/namespace"/>

See also
DOM SET XML OPTIONS.

System Variables or Sets
If the command was executed correctly, the system variable OK is set to 1. Otherwise, it is
set to 0 and an error is generated.

4th Dimension Language Reference 1887

DOM SET XML OPTIONS XML

version 2004
__

DOM SET XML OPTIONS (elementRef; encoding{; standalone{; indentation}})

Parameter Type Description
elementRef String → XML element reference
encoding String → XML document character set
standalone Boolean → True = document is standalone

False (default) = document is not standalone
indentation Boolean → True (default) = document is indented

False = document is not indented

Description
The DOM SET XML OPTIONS command allows you to define various options that are
useful in creating the XML tree set using elementRef. These options concern encoding, the
standalone property and tree identation options:
• encoding: Indicates the character set used in the document. By default (if the command
is not called), the UTF-8 character set (compressed Unicode) is used.
• standalone: Indicates whether the tree is standalone (True) or if it needs other files or
external resources to operate (False). By default (if the command is not called or if the
parameter is omitted), the tree is not standalone.
• indentation: Indicates whether the tree should display indentations corresponding to
XML key hierarchies (True) or not (False). By default (if the command is not called or if
the parameter is omitted), the tree is indented.

Example
The following example sets the encoding to use and the standalone option in the
elementRef element:

⇒ DOM SET XML OPTIONS(elementRef;"UTF16";True)

See also
DOM Create XML Ref.

1888 4th Dimension Language Reference

DOM Parse XML source XML

version 2004 (Modified)
__

DOM Parse XML source (document{; validation{; dtd}}) → String

Parameter Type Description
document String → Document pathname
validation Boolean → True = Validation by the DTD,

False = No validation
dtd String → Location of the DTD

Function result String ← Reference of XML element (16 characters)

Description
The DOM Parse XML source command parses a document containing an XML structure
and returns a reference for this document. The command can validate (or not) the
document.
The document can be located on the disk or on the Internet/Intranet.

In the document parameter, you can pass:
• either a standard complete pathname (of the type C:\\Folder\\File\\... under Windows
and MacintoshHD:Folder:File under Mac OS),
• or a Unix path (of the type http://www.site.com/File or file://Myfile).
If you only pass the file name in document, the command will search next to the
structure file of the database. In the case of a Mac OS software package, the command will
search for the file next to the software package.

The Boolean parameter validation is used to indicate whether or not to validate the
structure using the DTD.
• If validation equals True, the structure will be validated. In this case, the parser will
attempt to validate the XML structure of the document based either on the DTD defined
or referred to in the document, or that designated by the dtd parameter.
• If validation equals False, the structure will not be validated.

The third parameter, dtd, is used to indicate the specific DTD for document parsing. If
you use this parameter, the command will not take the DTD referred to in the XML
document into account.
There are two ways to specify a DTD:
• as a reference. To do this, pass the complete pathname of the new DTD in the dtd
parameter. If the document indicated does not contain a valid DTD, the dtd parameter is
ignored and an error is generated.
• directly in a text. In this case, if the contents of the parameter begin with “<xml !”, 4D
will consider that it is the DTD; otherwise, 4D will consider it as a pathname.

4th Dimension Language Reference 1889

If validation cannot be performed (no DTD, incorrect URL to DTD, etc.), an error is
generated. The Error system variable indicates the error number. You can intercept this
error using a method installed by the ON ERR CALL command.

The command returns a 16-character string (ElementRef) making up the reference in the
memory of the document virtual structure. This reference should be used with other XML
parsing commands.

Examples
(1) Opening an XML document located on disk, without validation:

⇒ $xml_Struct_Ref:=DOM Parse XML source("C:\\import.xml")

(2) Opening an XML document located next to the database structure file, without
validation:

⇒ $xml_Struct_Ref:=DOM Parse XML source("import.xml")

(3) Opening an XML document located on disk and validation using a DTD on the disk:

⇒ $xml_Struct_Ref:=DOM Parse XML source("C:\\import.xml";True;
"C:\\import_dtd.xml")

(4) Opening an XML document located at a specific URL, without validation:

⇒ $xml_Struct_Ref:=DOM Parse XML source("http://www.4D.com/xml/import.xml")

See also
DOM Parse XML variable.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1.
Otherwise, it is set to 0.

1890 4th Dimension Language Reference

DOM Parse XML variable XML

version 2004 (Modified)
__

DOM Parse XML variable (variable{; validation{; dtd}}) → String

Parameter Type Description
variable BLOB/Text → Name of the variable
validation Boolean → True = Validation by the DTD,

False = No validation
dtd String → Location of the DTD

Function result String ← Reference of XML element (16 characters)

Description
The DOM Parse XML variable command parses a BLOB or Text type variable containing an
XML structure and returns a reference for this variable. The command can validate (or
not) the document.

Pass the name of the BLOB or Text variable containing the XML object in the variable
parameter.

The Boolean parameter validation is used to indicate whether or not to validate the
structure using the DTD.
• If validation equals True, the structure will be validated. In this case, the parser will
attempt to validate the XML structure of the document based either on the DTD defined
or referred to in the document, or that designated by the dtd parameter.
• If validation equals False, the structure will not be validated.

The third parameter, dtd, is used to indicate the specific DTD for document parsing. If
you use this parameter, the command will not take the DTD referred to in the XML
variable into account.

There are two ways to specify a DTD:
• as a reference. To do this, pass the complete pathname of the new DTD in the dtd
parameter. If the document indicated does not contain a valid DTD, the dtd parameter is
ignored and an error is generated.
• directly in text. In this case, if the contents of the parameter begin with “<xml !”, 4D
will consider that it is the DTD; otherwise, 4D will consider it as a pathname.

If validation cannot be performed (no DTD, incorrect URL to DTD, etc.), an error is
generated. The Error system variable indicates the error number. You can intercept this
error using a method installed by the ON ERR CALL command.

4th Dimension Language Reference 1891

The command returns a 16-character string (ElementRef) making up the reference in the
memory of the document virtual structure. This reference should be used with other XML
parsing commands.

Examples
(1) Opening an XML object located in a 4D Text variable, without validation:

C_TEXT(myTextVar)
C_TIME(vDoc)
C_STRING(16;$xml_Struct_Ref)

vDoc:=Open document ("Document.xml")
If (OK=1)

RECEIVE PACKET(vDoc;myTextVar;32000)
CLOSE DOCUMENT(vDoc)

⇒ $xml_Struct_Ref:=DOM Parse XML variable(myTextVar)
End if

(2) Opening an XML document located in a 4D BLOB, without validation:

C_BLOB(myBlobVar)
C_STRING(16;$ref_XML_Struct)

DOCUMENT TO BLOB(“c:\\import.xml”;myBlobVar)
⇒ $xml_Struct_Ref:=DOM Parse XML variable(myBlobVar)

See also
DOM Parse XML source.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1.
Otherwise, it is set to 0.

1892 4th Dimension Language Reference

DOM Create XML element XML

version 2004
__

DOM Create XML element (elementRef; xPath{; attrName; attrValue}{; attrName2;
attrValue2; ...; attrNameN; attrValueN}) → String

Parameter Type Description
elementRef String → Root XML element reference
xPath Text → XPath path of the XML element to create
attrName String → Attribute to set
attrValue String → New attribute value

Function result String ← Reference of the created XML element

Description
The DOM Create XML element command allows you to create a new element in the XML
element elementRef in the path set by the xPath parameter and to add attributes to it if
necessary.

Pass the root element reference in elementRef (created, for example, using the DOM
Create XML Ref command).

Pass the access path in XML format of the element to create in xPath. XPath notation can
be used in this case (see the “Use of XPath notation” paragraph in the Presentation of XML
Commands section). If any path elements do not exist, they are created.

Note: If you defined one or more namespaces for the tree set using elementRef (see DOM
Create XML Ref command), you must precede the xPath parameter with the name of the
space to use (for example, “MyNameSpace:MyElement”).

You can pass attribute/attribute value pairs (in the form of variables, fields or literal
values) in the optional attrName and attrValue parameters. You can pass as many pairs as
you want.

The command returns the XML reference of the element created as a result.

Examples
1. We want to create the following element:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<RootElement>

<Elem1>
<Elem2>

<Elem3> </Elem3>
</Elem2>

</Elem1>
</RootElement>

4th Dimension Language Reference 1893

To do so, simply write:

C_STRING(16;vRootRef;vElemRef)
vRootRef:=DOM Create XML Ref("RootElement")
vxPath:="/RootElement/Elem1/Elem2/Elem3"

⇒ vElemRef:=DOM Create XML element(vRootRef;vxPath)

2. We want to create the following element (containing attributes):
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<RootElement>

<Elem1>
<Elem2>

<Elem3 Font=Verdana Size=10> </Elem3>
</Elem2>

</Elem1>
</RootElement>

To do so, simply write:

C_STRING(16;vRootRef;vElemRef)
C_STRING(80;$aAttrName1;$aAttrName2;$aAttrVal1;$aAttrVal2)
$aAttrName1:="Font"
$aAttrName2:="Size"
$aAttrVal1:="Verdana"
$aAttrVal2:="10"

vRootRef:=DOM Create XML Ref("RootElement")
vxPath:="/RootElement/Elem1/Elem2/Elem3"

⇒ vElemRef:=DOM Create XML element(vRootRef;vxPath;$aAttrName1;$aAttrVal1;
$aAttrName2;$aAttrVal2)

See also
DOM Get XML element, DOM REMOVE XML ELEMENT.

System Variables or Sets
If the command was executed correctly, the system variable OK is set to 1. Otherwise, it is
set to 0 and an error is generated.

Error Handling
An error is generated when:
• The root element reference is invalid.
• The name of the element to create is invalid (for example, if it starts with a number).

1894 4th Dimension Language Reference

DOM Find XML element XML

version 2004
__

DOM Find XML element (elementRef; xPath) → elementRef

Parameter Type Description
elementRef String → XML element reference
xPath Text | BLOB → XPath path of the element to look for

Function result elementRef ← Reference of the element found (if applicable)

Description
The DOM Find XML element command allows you to look for a specific XML element in
an XML structure. The search starts at the element designated by the elementRef
parameter.

The XML node to seek is set using the xPath parameter. The XPath format can be used
(see the “Use of XPath notation” parameter in the Presentation of XML Commands
section). Indexed elements can be used.

Note: In conformity with the XML standard, searches will be case sensitive.

The command returns the XML reference of the found element command.

Example
This example lets you quickly look for an XML element and display its value:

⇒ vFound:=DOM Find XML element(vElemRef;"/Book[15]/Title")
DOM GET XML ELEMENT VALUE(vFound;value)
ALERT("The value of the element is: \""+value+"\"")

The same search can also be done as follows:

⇒ vFound:=DOM Find XML element(vElemRef;"/Book[15]")
⇒ vFound:=DOM Find XML element(vFound;"/Title")

DOM GET XML ELEMENT VALUE(vFound;value)
ALERT("The value of the element is: \""+value+"\"")

See also
DOM Count XML elements, DOM Create XML element.

4th Dimension Language Reference 1895

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

Error Handling
An error is generated when:
• The element reference is invalid
• The specified xPath path is invalid.

1896 4th Dimension Language Reference

DOM Count XML elements XML

version 2004 (Modified)
__

DOM Count XML elements (elementRef; elementName) → Longint

Parameter Type Description
elementRef String → XML element reference
elementName String → Name of XML elements to count

Function result Longint ← Number of elements

Description
The DOM Count XML elements command returns the number of “child” elements
dependent on the elementRef parent element and named elementName.

See also
DOM Get XML element.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

4th Dimension Language Reference 1897

DOM Get XML element XML

version 2004 (Modified)
__

DOM Get XML element (elementRef; elementName; index; elementValue) → String

Parameter Type Description
elementRef String → XML element reference
elementName String → Name of element to get
index Longint → Index number of element to get
elementValue Variable ← Value of the element

Function result String ← XML reference (16 characters)

Description
The DOM Get XML element command returns a reference to the “child” element
dependent on the elementName and index parameters.

The value of the element is also returned in the elementValue parameter.

See also
DOM GET XML ELEMENT VALUE.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1898 4th Dimension Language Reference

DOM Get parent XML element XML

version 2004.2
__

DOM Get parent XML element (elementRef{; parentElemName{; parentElemValue}}) → String

Parameter Type Description
elementRef String → XML element reference
parentElemName String ← Name of parent XML element
parentElemValue String ← Value of parent XML element

Function result String ← Parent XML element reference (16 characters)

Description
The DOM Get parent XML element command returns an XML reference to the “parent” of
the XML element passed as reference in elementRef. This reference may be used with the
other XML parsing commands.

The optional parentElemName and parentElemValue parameters, when passed, receive
respectively the name and value of the parent element.

See also
DOM Get first child XML element, DOM Get last child XML element.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

4th Dimension Language Reference 1899

DOM Get first child XML element XML

version 2004.2 (Modified)
__

DOM Get first child XML element (elementRef{; childElemName{; childElemValue}}) → String

Parameter Type Description
elementRef String → XML element reference
childElemName String ← Name of child XML element
childElemValue String ← Value of child XML element

Function result String ← Child XML element reference (16 characters)

Description
The DOM Get first child XML element command returns a reference to the first “child” of
the XML element passed in elementRef. This reference can be used with other XML
parsing commands.

The childElemName and childElemValue parameters, if they are passed, receive respectively
the name and the value of the child element.

Examples
(1) Retrieval of the reference of the first XML element of the parent root. The XML
structure (C:\\import.xml) is first loaded into a BLOB:

C_BLOB(myBlobVar)
C_STRING(16;$xml_Parent_Ref;$xml_Child_Ref)

DOCUMENT TO BLOB("c:\\import.xml";myBlobVar)
$xml_Parent_Ref:=DOM Parse XML variable(myBlobVar)

⇒ $xml_Child_Ref:=DOM Get first child XML element($xml_Parent_Ref)

1900 4th Dimension Language Reference

(2) Retrieval of the reference, name and value of the first XML element of the parent
root. The XML structure (C:\\import.xml) is first loaded into a BLOB:

C_BLOB(myBlobVar)
C_STRING(16;$xml_Parent_Ref;$xml_Child_Ref)
C_TEXT($childName;$childValue)

DOCUMENT TO BLOB("c:\\import.xml";myBlobVar)
$xml_Parent_Ref:=DOM Parse XML variable(myBlobVar)

⇒ $xml_Child_Ref:=DOM Get first child XML element($xml_Parent_Ref;$childName;
$childValue)

See also
DOM Get next sibling XML element.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1.
Otherwise, it is set to 0.

4th Dimension Language Reference 1901

DOM Get next sibling XML element XML

version 2004.2 (Modified)
__

DOM Get next sibling XML element (elementRef{; siblingElemName{; siblingElemValue}}) →
String

Parameter Type Description
elementRef String → XML element reference
siblingElemName String ← Name of sibling XML element
siblingElemValue String ← Value of sibling XML element

Function result String ← Sibling XML element reference (16 characters)

Description
The DOM Get next sibling XML element command returns a reference to the next “sibling”
of the XML element passed as reference. This reference can be used with other XML
parsing commands.

The siblingElemName and siblingElemValue parameters, if they are passed, receive
respectively the name and the value of the “sibling” element.

This command is used to navigate among the “children” of the XML element.

After the last “sibling,” the system variable OK is set to 0.

Examples
(1) Retrieval of the reference of the next sibling XML element following the element
passed as parameter:

C_STRING(16;$xml_Parent_Ref;$next_XML_Ref)
⇒ $next_XML_Ref:=DOM Get next sibling XML element($xml_Parent_Ref)

1902 4th Dimension Language Reference

(2) Retrieval in a reference loop of all the child XML elements following the parent
element passed as parameter, beginning with the first child:

C_STRING(16;$xml_Parent_Ref;$first_XML_Ref;$next_XML_Ref)

$first_XML_Ref:=DOM Get first child XML element($xml_Parent_Ref)
$next_XML_Ref:=$first_XML_Ref
While(OK=1)

⇒ $next_XML_Ref:=DOM Get next sibling XML element($next_XML_Ref)
End while

See also
DOM Get first child XML element.

System Variables or Sets
If the command has been correctly executed and if the parsed element is not the last
“sibling” of the referenced element, the system variable OK is set to 1. If an error occurs
or if the parsed element is the last “sibling” of the referenced element, it is set to 0.

4th Dimension Language Reference 1903

DOM Get previous sibling XML element XML

version 2004.2
__

DOM Get previous sibling XML element (elementRef{; siblingElemName{; siblingElemValue}})
→ String

Parameter Type Description
elementRef String → XML element reference
siblingElemName String ← Name of sibling XML element
siblingElemValue String ← Value of sibling XML element

Function result String ← Sibling XML element reference (16 characters)

Description
The DOM Get previous sibling XML element command returns a reference to the previous
“sibling” of the XML element passed as reference. This reference may be used with the
other XML parsing commands.

The optional siblingElemName and siblingElemValue parameters, when passed, receive
respectively the name and value of the previous “sibling” element.

This command can be used to navigate among the “children” of an XML element.

Before the first “sibling,” the system variable OK is set to 0.

See also
DOM Get next sibling XML element.

System Variables or Sets
If the command has been executed correctly and if the referenced element is not the first
“child” of the structure, the system variable OK is set to 1. If an error occurs or if the
element parsed is the first “child” of the structure, it is set to 0.

1904 4th Dimension Language Reference

DOM Get last child XML element XML

version 2004.2
__

DOM Get last child XML element (elementRef{; childElemName{; childElemValue}}) → String

Parameter Type Description
elementRef String → XML element reference
childElemName String ← Name of child element
childElemValue String ← Value of child element

Function result String ← XML element reference (16 characters)

Description
The DOM Get last child XML element command returns an XML reference to the last
“child” of the XML element passed as reference in elementRef. This reference may be used
with the other XML parsing commands.

The optional childElemName and childElemValue parameters, when passed, receive
respectively the name and value of the “child” element.

Example
Recovery of the reference of the last XML element of the parent root. The XML structure
(C:\\import.xml) is loaded into a BLOB beforehand:

C_BLOB(myBlobVar)
C_STRING(16;$ref_XML_Parent;$ref_XML_Child)
C_TEXT($childName;$childValue)

DOCUMENT TO BLOB("c:\\import.xml";myBlobVar)
$ref_XML_Parent:=DOM Parse XML variable(myBlobVar)

⇒ $ref_XML_Child:=DOM Get last child XML element($ref_XML_Parent;$childName;
$childValue)

See also
DOM Get first child XML element.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

4th Dimension Language Reference 1905

DOM SET XML ELEMENT NAME XML

version 2004
__

DOM SET XML ELEMENT NAME (elementRef; elementName)

Parameter Type Description
elementRef String → XML element reference
elementName String → New name of element

Description
The DOM SET XML ELEMENT NAME command allows you to modify the name of the
element set by elementRef.

Pass the reference of the element to rename in elementRef and the new name of the
element in elementName. The command will also take charge of updating the open and
close tags of the element.

Example
In the following XML source:
<Book>

<Title>The Best Seller</Title>
</Book>

If the following code is executed, with vElemRef containing the reference to the ‘Book’
element:

⇒ DOM SET XML ELEMENT NAME(vElemRef;"BestSeller")

We get:
<BestSeller>

<Title>The Best Seller</Title>
</BestSeller>

See also
DOM GET XML ELEMENT NAME.

System Variables or Sets
If the command was executed correctly, the system variable OK is set to 1. Otherwise, it is
set to 0 and an error is generated.

Error Handling
An error is generated when:
• The element reference is invalid
• The new name of the element to create is invalid (for example, if it starts with a
number).

1906 4th Dimension Language Reference

DOM GET XML ELEMENT NAME XML

version 2004 (Modified)
__

DOM GET XML ELEMENT NAME (elementRef; elementName)

Parameter Type Description
elementRef String → XML element reference
elementName Variable ← Name of the element

Description
The DOM GET XML ELEMENT NAME command returns, in the elementName parameter,
the name of the XML element designated by elementRef. For more information on XML
element names, refer to the Presentation of XML commands section.

Example
This method returns the name of the $xml_Element_Ref element:

C_STRING(16;$xml_Element_Ref)
C_TEXT($name)

⇒ DOM GET XML ELEMENT NAME($xml_Element_Ref;$name)

See also
DOM Get XML element, DOM GET XML ELEMENT VALUE, DOM SET XML ELEMENT NAME.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

4th Dimension Language Reference 1907

DOM SET XML ELEMENT VALUE XML

version 2004
__

DOM SET XML ELEMENT VALUE (elementRef; elementValue)

Parameter Type Description
elementRef String → XML element reference
elementValue String | Variable → New value of element

Description
The DOM SET XML ELEMENT VALUE command allows you to modify the value of the
element set by elementRef.

In elementValue, pass a string or a variable (or a field) containing the new value of the
specified element:
• If you pass a string, the value will be used “as is” in the XML structure.
• If you pass a variable or a field, 4th Dimension will process the value, depending on the
type of elementValue. All data types can be used, except arrays, pictures and pointers.

Example
In the following XML source:
<Book>

<Title>The Best Seller</Title>
</Book>

If the following code is executed, with vElemRef containing the reference to the ‘Title’
element:

⇒ DOM SET XML ELEMENT VALUE(vElemRef;"The Loser")

We get:
<Book>

<Title>The Loser</Title>
</Book>

See also
DOM GET XML ELEMENT VALUE.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated (for example, if the element reference is
invalid).

1908 4th Dimension Language Reference

DOM GET XML ELEMENT VALUE XML

version 2004 (Modified)
__

DOM GET XML ELEMENT VALUE (elementRef; elementValue{; cDATA})

Parameter Type Description
elementRef String → XML element reference
elementValue Variable ← Value of the element
cDATA Variable ← Contents of the CDATA section

Description
The DOM GET XML ELEMENT VALUE command returns, in the elementValue parameter,
the value of the XML element designated by elementRef. 4th Dimension will attempt to
convert the value obtained into the same type as that of the variable passed as parameter.

The optional cDATA parameter is used to retrieve the contents of the CDATA section(s) of
the elementRef XML element. Like with the elementValue parameter, 4th Dimension will
attempt to convert the value obtained into the same type as that of the variable passed as
parameter.

Example
This method returns the value of the $xml_Element_Ref element:

C_STRING(16;$xml_Element_Ref)
C_REAL($value)

⇒ DOM GET XML ELEMENT VALUE($xml_Element_Ref;$value)

See also
DOM Get XML element, DOM GET XML ELEMENT NAME, DOM SET XML ELEMENT VALUE.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

4th Dimension Language Reference 1909

DOM REMOVE XML ELEMENT XML

version 2004
__

DOM REMOVE XML ELEMENT (elementRef)

Parameter Type Description
elementRef String → XML element reference

Description
The DOM REMOVE XML ELEMENT command removes the element designated by
elementRef.

See also
DOM Create XML element.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.
An error is generated when:
• The element reference is invalid,
• The element is empty.

1910 4th Dimension Language Reference

DOM Count XML attributes XML

version 2004 (Modified)
__

DOM Count XML attributes (elementRef) → Longint

Parameter Type Description
elementRef String → XML element reference

Function result Longint ← Number of attributes

Description
The DOM Count XML attributes command returns the number of XML attributes present
in the XML element designated by elementRef. For more information about XML
attributes, refer to the Presentation of XML commands section.

Example
Before retrieving the values of elements in an array, you want to know the number of
attributes in the following XML element:

C_BLOB(myBlobVar)
C_STRING(16;$xml_Parent_Ref;$xml_Child_Ref)
C_TEXT(myResult)
C_LONGINT($numAttributes)

$xml_Parent_Ref:=DOM Parse XML variable(myBlobVar)
$xml_Child_Ref:=DOM Get first child XML element($xml_Parent_Ref)

⇒ $numAttributes:=DOM Count XML attributes($xml_Child_Ref)
ARRAY TEXT(tAttrib;$numAttributes)
For($i;1;$numAttributes)

DOM GET XML ATTRIBUTE BY INDEX($xml_Child_Ref;$i;tAttrib{$i})
End for

4th Dimension Language Reference 1911

In the above example, $numAttributes equals 3, tAttrib{1} contains “Font,” tAttrib{2}
contains “N” and tAttrib{3} contains “size.”
Note: The index number does not correspond to the location of the attribute in the XML
file displayed in text form. In XML, the index of an attribute indicates its position among
the attributes arranged in alphabetical order (according to their name).

See also
DOM Count XML elements.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1912 4th Dimension Language Reference

DOM SET XML ATTRIBUTE XML

version 2004
__

DOM SET XML ATTRIBUTE (elementRef; attrName; attrValue{; attrName2; attrValue2; ...;
attrNameN; attrValueN})

Parameter Type Description
elementRef String → XML element reference
attrName String → Attribute to set
attrValue String → New attribute value

Description
The DOM SET XML ATTRIBUTE command allows adding one or more attributes to the
XML element whose reference is passed in the elementRef parameter. It also allows setting
the value of each attribute defined.

Pass the attriibute to set and its value respectively in the attrName and attrValue
parameters (in the form of variables, fields or literal values). You can pass as many
attribute/value pairs as you want.

Example
In the following XML source:
<Book>

<Title>The Best Seller</Title>
</Book>

If the following code is executed:

vAttrName:="Font"
vAttrVal:="Verdana"

⇒ DOM SET XML ATTRIBUTE(vElemRef;vAttrName;vAttrVal)

We get:
<Book>

<Title Font=Verdana>The Best Seller</Title>
</Book>

See also
DOM GET XML ATTRIBUTE BY INDEX, DOM GET XML ATTRIBUTE BY NAME.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

4th Dimension Language Reference 1913

DOM GET XML ATTRIBUTE BY INDEX XML

version 2004 (Modified)
__

DOM GET XML ATTRIBUTE BY INDEX (elementRef; attribIndex; attribName; attribValue)

Parameter Type Description
elementRef String → XML element reference
attribIndex Longint → Attribute index number
attribName Variable ← Attribute name
attribValue Variable ← Attribute value

Description
The DOM GET XML ATTRIBUTE BY INDEX command is used to get the name of an
attribute specified by its index number as well as its value.

Pass the reference of an XML element in elementRef and the index number of the
attribute that you want to know the name of in attribIndex. The name is returned in the
attribName parameter and its value is returned in the attribValue, parameter. 4th
Dimension will attempt to convert the value obtained into the same type as that of the
variable passed as parameter.

Note: The index number does not correspond to the location of the attribute in the XML
file displayed in text form. In XML, the index of an attribute indicates it position among
the attributes when placed in alphabetical order (based on their names). For an illustration
of this, refer to the example of the DOM Count XML attributes command.

If the value passed in attribIndex is greater than the number of attributes present in the
XML element, an error is returned.

Example
Refer to the example in the DOM Count XML attributes command.

See also
DOM GET XML ATTRIBUTE BY NAME.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1914 4th Dimension Language Reference

DOM GET XML ATTRIBUTE BY NAME XML

version 2004 (Modified)
__

DOM GET XML ATTRIBUTE BY NAME (elementRef; attribName; attribValue)

Parameter Type Description
elementRef String → XML element reference
attribName String → Attribute name
attribValue Variable ← Attribute value

Description
The DOM GET XML ATTRIBUTE BY NAME command is used to get the value of an attribute
specified by name.

Pass the reference of an XML element in elementRef and the name of the attribute that
you want to know the value of in attribName. The value is returned in the attribValue
parameter. 4th Dimension will attempt to convert the value obtained into the same type
as that of the variable passed as parameter.

If no attribName attribute exists in the XML element, an error is returned. If several
attributes of the XML element have the same name as that specified, only the value of
the first attribute is returned.

Examples
This method is used to retrieve the value of an XML attribute using its name:

C_BLOB(myBlobVar)
C_STRING(16;$xml_Parent_Ref;$xml_Child_Ref)
C_LONGINT($LineNum)

$xml_Parent_Ref:=DOM Parse XML variable(myBlobVar)
$xml_Child_Ref:=DOM Get first child XML element($xml_Parent_Ref)

⇒ DOM GET XML ATTRIBUTE BY NAME($xml_Child_Ref;"N";$LineNum)

4th Dimension Language Reference 1915

If this method is applied to the example below, $LineNum contains the value 1:

See also
DOM GET XML ATTRIBUTE BY INDEX.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1916 4th Dimension Language Reference

DOM Get XML information XML

version 2004 (Modified)
__

DOM Get XML information (elementRef; xmlInfo) → String

Parameter Type Description
elementRef String → XML root element reference
xmlInfo Longint → Type of information to get

Function result String ← Value of the XML information

Description
The DOM Get XML information command is used to retrieve diverse information about
the XML element designated by elementRef.

In xmlInfo, pass a code indicating the type of information to be retrieved. You can use the
following predefined constants, located in the “XML” theme:
Constant Type Value
PUBLIC ID Longint 1
SYSTEM ID Longint 2
DOCTYPE Name Longint 3
Encoding Longint 4
Version Longint 5
Document URI Longint 6

These constants indicate the following information:
• PUBLIC ID: Public identifier (FPI) of the DTD to which the document conforms (if the
DOCTYPE xxx PUBLIC tag is present).
• SYSTEM ID: System identifier.
• DOCTYPE Name: Name of the root element as defined in the DOCTYPE marker.
• Encoding: Encoding used (UTF-8, ISO...).
• Version: Accepted XML version.
• Document URI: URL of the DTD.

See also
GET XML ERROR.

Constants
XML theme.

4th Dimension Language Reference 1917

DOM EXPORT TO FILE XML

version 2004
__

DOM EXPORT TO FILE (elementRef; filePath)

Parameter Type Description
elementRef String → Root XML element reference
filePath Text → Full access path of the file

Description
The DOM EXPORT TO FILE command allows you to store an XML tree in a file on disk.

Pass the root element reference to export in the elementRef parameter.
Pass the full access path to use or create of the export file in filePath. If the file does not
already exist, it is created.
If you only pass a file name (without an access path), a search for the file will take place
or it will be created next to the structure file.
If you pass an empty string (""), a standard open file and new file dialog box appears.

Example
This example stores the tree vElemRef in the file MyDoc.xml:

⇒ DOM EXPORT TO FILE(vElemRef;"C:\\folder\MyDoc.xml")

See also
DOM EXPORT TO VAR.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

Error Handling
An error is generated when:
• The element reference is invalid,
• The specified access path is invalid,
• The storage volume returns an error (insufficient disk space, etc.).

1918 4th Dimension Language Reference

DOM EXPORT TO VAR XML

version 2004
__

DOM EXPORT TO VAR (elementRef; vXmlVar)

Parameter Type Description
elementRef String → Root XML element reference
vXmlVar Text | BLOB → Variable to receive XML tree

Description
The DOM EXPORT TO VAR command allows you to save an XML tree in a text or BLOB
variable.

Pass the root element reference to export in elementRef.

Pass the name of the variable that must contain the XML tree in vXmlVar. This variable
must either be a Text or BLOB type. You can select the type depending on what you plan
on doing next or the size that the tree can reach (remember that Text type variables are
limited to 32,000 characters).

Keep in mind that if you use a Text variable to store elementRef, it will be encoded using
the “current” Mac character set (i.e. Mac Roman on most Western systems). This means
that the text returned will lose its original encoding (encoding="xxx"). In this case, the
vVarXml variable allows you to view or store the code but NOT to generate a valid XML
document (using the SEND PACKET command for example).

Example
This example stores the tree vElemRef in a text variable:

C_TEXT(vtMyText)
⇒ DOM EXPORT TO VAR(vElemRef;vtMyText)

See also
DOM EXPORT TO FILE.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated (for example, if the element reference is
invalid).

4th Dimension Language Reference 1919

DOM CLOSE XML XML

version 2004 (Modified)
__

DOM CLOSE XML (elementRef)

Parameter Type Description
elementRef String → XML root element reference

Description
The DOM CLOSE XML command frees up the memory occupied by the XML object
designated by elementRef.

If elementRef is not an XML root object, an error is generated.

See also
DOM Parse XML source, DOM Parse XML variable.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1920 4th Dimension Language Reference

SAX SET XML OPTIONS XML

version 2004
__

SAX SET XML OPTIONS (document; encoding{; standalone{; indentation}})

Parameter Type Description
document DocRef → Reference of open document
encoding String → XML document character set
standalone Boolean → True = the document is standalone

False (default) = document is not standalone
indentation Boolean → True (default) = document is indented

False = document is not indented

Description
The SAX SET XML OPTIONS command initializes the XML document referenced in
document using the values passed in the parameter. These parameters allow determining
the encoding, standalone attribute and document indentation.
• encoding: Indicates the character set used in the document. By default (if the command
is not called), the UTF-8 character set (compressed Unicode) is used.
• standalone: Indicates whether the document is standalone (True) or if it needs other files
or external resources to operate (False). By default (if the command is not called or if the
parameter is omitted), the document is not standalone.
• indentation: Indicates whether the document should display indentations corresponding
to XML key hierarchies (True) or not (False). By default (if the command is not called or if
the parameter is omitted), the document is indented.

This command must be called one time per document and before the first XML set
command in the document; otherwise, an error message will be generated.

Example
The following code:

⇒ SAX SET XML OPTIONS($DocRef;"UTF-16";True)

... will write this line in the document:
<?xml version="1.0" encoding="UTF-16" standalone="yes"?>

See also
SAX GET XML DOCUMENT VALUES.

4th Dimension Language Reference 1921

SAX GET XML DOCUMENT VALUES XML

version 2004
__

SAX GET XML DOCUMENT VALUES (document; encoding; version; standalone)

Parameter Type Description
document DocRef → Reference of open document
encoding String ← XML document character set
version String ← XML version
standalone Boolean ← True = document is standalone,

otherwise False

Description
The SAX GET XML DOCUMENT VALUES command gets basic information from the XML
header of the XML document referenced in the document parameter.

The command returns the type of encoding, version and the “standalone” property of
the document respectively in the encoding, version and standalone parameters. This
command must be used with the SAX event XML Start Document. For more information
about SAX events, refer to the description of the SAX Get XML node command.

See also
SAX Get XML node, SAX SET XML OPTIONS.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

1922 4th Dimension Language Reference

SAX ADD XML DOCTYPE XML

version 2004
__

SAX ADD XML DOCTYPE (document; docType)

Parameter Type Description
document DocRef → Reference of open document
docType String → DocType to be added

Description
The SAX ADD XML DOCTYPE command adds a DocType statement set by the docType
parameter in the XML document referenced by document.

The DocType statement lets you indicate the type of XML in which the document has
been written and to specify the Document Type Declaration (DTD) used. A DocType
statement generally takes the following form: <!DOCTYPE XML_type "DTD_address">.

Example
The following statement:

vDocType := "SYSTEM Books \"Book.DTD\""
⇒ SAX ADD XML DOCTYPE ($DocRef;vDocType)

... will write the following line in the document:
<!DOCTYPE SYSTEM Books "Book.DTD">

See also
SAX ADD XML COMMENT.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

Error Handling
In the event of an error, the the command returns an error which can be intercepted
using an error-handling method.

4th Dimension Language Reference 1923

SAX Get XML node XML

version 2004
__

SAX Get XML node (document) → Longint

Parameter Type Description
document DocRef → Reference of open document

Function result Longint ← Event returned by function

Description
The SAX Get XML node command returns a long integer that indicates the type of SAX
event returned while the XML document referenced in document is parsed.

Events that can be returned are available as “XML” theme constants:
Constant Type Value
XML Start Document Longint 1
XML Comment Longint 2
XML Processing Instruction Longint 3
XML Start Element Longint 4
XML End Element Longint 5
XML DATA Longint 6
XML CDATA Longint 7
XML Entity Longint 8
XML End Document Longint 9

Example
The following example processes an event:

DocRef:=Open document("";"xml";Read Mode)
If (OK=1)

Repeat
MyEvent:=SAX Get XML node(DocRef)
Case of

: (MyEvent=XML Start Document)
DoSomething

: (MyEvent=XML Comment)
DoSomethingElse

End case
Until (MyEvent=XML End Document)

End if
CLOSE DOCUMENT (DocRef)

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

1924 4th Dimension Language Reference

SAX ADD XML COMMENT XML

version 2004
__

SAX ADD XML COMMENT (document; comment)

Parameter Type Description
document DocRef --> Reference of open document
comment String --> Comment to be added

Description
The SAX ADD XML COMMENT command adds a comment in the XML document
referenced by document.

An XML comment is a text whose contents will not be parsed by the XML interpreter.
XML comments must be enclosed between the <!-- and --> characters.

Example
The following statement:

vComment:= "Created by 4th Dimension"
⇒ SAX ADD XML COMMENT ($DocRef;vComment)

... will write the following line in the document:
<!--Created by 4th Dimension-->

See also
SAX ADD XML DOCTYPE.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

Error Handling
In the event of an error, the command returns an error which can be intercepted using
an error-handling method.

4th Dimension Language Reference 1925

SAX GET XML COMMENT XML

version 2004
__

SAX GET XML COMMENT (document; comment)

Parameter Type Description
document DocRef → Reference of open document
comment String ← XML comment

Description
The SAX GET XML COMMENT command returns a comment if an XML Comment SAX
event is generated in the XML document referenced in the document parameter. For
more information about SAX events, refer to the description of the SAX Get XML node
command.

See also
SAX ADD XML COMMENT, SAX Get XML node.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

1926 4th Dimension Language Reference

SAX OPEN XML ELEMENT XML

version 2004
__

SAX OPEN XML ELEMENT (document; tag{; attribName; attribValue}{; attribName2;
attribValue2; ...; attribNameN; attribValueN})

Parameter Type Description
document DocRef → Reference of open document
tag String → Name of element to open
attribName String → Attribute name
attribValue String → Attribute value

Description
The SAX OPEN XML ELEMENT command lets you add a new element in the XML
document referenced by document as well as, optionally, attributes and their values.

The added element is “open” in the document (the end tag is not added). To close an
element created using this command, you must either:
• Use the SAX CLOSE XML ELEMENT command, or
• Close the XML document. In this case, 4th Dimension will automatically add the
necessary XML end tags.

In tag, pass the name of the element to be created. This name may only contain letters,
numbers and the characters “.”, “-“,”_” and “:”. If an invalid character is passed in tag, an
error will be generated.

Optionally, the command can pass one or more attribute/value pairs (in the form of
variables, fields or literal values) using the attribName and attribValue parameters. You can
pass as many attribute/value pairs as you want.

Examples
The following statement:

vElement:="Book"
⇒ SAX OPEN XML ELEMENT($DocRef;vElement)

... will write the following line in the document:
<Book

See also
SAX CLOSE XML ELEMENT, SAX OPEN XML ELEMENT ARRAYS.

Error Handling
If an invalid character is passed in tag, an error is generated.

4th Dimension Language Reference 1927

SAX OPEN XML ELEMENT ARRAYS XML

version 2004
__

SAX OPEN XML ELEMENT ARRAYS (document; tag{; attribNamesArray; attribValuesArray}{;
attribNamesArray2; attribValuesArray2; ...; attribNamesArrayN; attribValuesArrayN})

Parameter Type Description
document DocRef → Reference of open document
tag String → Name of element to open
attribNamesArray Array string → Array of attribute names
attribValuesArray Array string → Array of attribute values

Description
The SAX OPEN XML ELEMENT ARRAYS command is used to add a new element in the XML
document whose reference is passed in document as well as, optionally, attributes and
their values in the form of arrays.

Except for the support of arrays (see below), this command is identical to SAX OPEN XML
ELEMENT. Please refer to the description of this command for more information about its
operation.

Optionally, the SAX OPEN XML ELEMENT ARRAYS command can be used to pass pairs of
attributes and attribute values in the form of arrays in the attribNamesArray and
attribValuesArray parameters.
The arrays must have been created previously and operate in attribute/attribute value
pairs. You can pass as many pairs of arrays, and as many items in each pair, as you want.

Example
The following method:

ARRAY STRING(80;tAttrNames;2)
ARRAY STRING(80;tAttrValues;2)
vElement:="Book"
tAttrNames{1}:="Font"
tAttrValues{1}:="Arial"
tAttrNames{2}:="Style"
tAttrValues{2}:="Bold"

⇒ SAX OPEN XML ELEMENT ARRAYS($DocRef;vElement;tAttrNames;tAttrValues)

... will write in the document:
<Book Font="Arial" Style="Bold">

See also
SAX CLOSE XML ELEMENT, SAX OPEN XML ELEMENT.

1928 4th Dimension Language Reference

SAX CLOSE XML ELEMENT XML

version 2004
__

SAX CLOSE XML ELEMENT (document)

Parameter Type Description
document DocRef → Reference of open document

Description
In the XML document referenced by document, the SAX CLOSE XML ELEMENT command
writes the statements necessary for closing the last element opened using the SAX OPEN
XML ELEMENT command.

The use of this command is optional. In fact, 4th Dimension will automatically add the
necessary end tags for any unclosed elements when XML documents are closed.

Example
If the last element opened is <Book>, the following statement:

⇒ SAX CLOSE XML ELEMENT($DocRef)

... will write the following line in the document:
</Book>

See also
SAX OPEN XML ELEMENT, SAX OPEN XML ELEMENT ARRAYS.

4th Dimension Language Reference 1929

SAX GET XML ELEMENT XML

version 2004
__

SAX GET XML ELEMENT (document; name; prefix; attrNames; attrValues)

Parameter Type Description
document DocRef → Reference of open document
name String ← Element name
prefix String ← Namespace
attrNames Array string ← Attribute names
attrValues Array string ← Attribute values

Description
The SAX GET XML ELEMENT command returns various information about the element
name that is present in the XML document reference in the document parameter. This
command must be called with the XML Start Element or XML End Element SAX events. In
the specific case of XML End Element, the attribute parameters are not handled. For more
information about SAX events, refer to the description of the SAX Get XML node
command.

The name parameter contains the name of the element.

The prefix parameter returns the namespace of the element. This parameter is empty if no
namespace is linked to the element.

The command fills the attrNames array with the names of attributes of the target
element. If necessary, the command creates and sizes the array automatically.

The command also fills the attrValues array with the values of attributes of the target
element. If necessary, the command creates and sizes the array automatically.

Example
Let's look at the following piece of XML code:
<RootElement>

<Child Att1="111" Att2="222" Att3="333">MyText</Child>
</RootElement>

Once the following statement has been executed:

⇒ SAX GET XML ELEMENT (DocRef;vName;vPrefix;tAttrNames;tAttrValues)

...vName will contain “Child”
vPrefix will contain “”

1930 4th Dimension Language Reference

tAttrNames{1} will contain “Att1”, tAttrNames{2} will contain “Att2”, tAttrNames{3} will
contain “Att3”
tAttrValues{1} will contain “111”, tAttrValues{2} will contain “222”, tAttrValues{3} will
contain “333”

See also
SAX Get XML node.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

4th Dimension Language Reference 1931

SAX ADD XML ELEMENT VALUE XML

version 2004
__

SAX ADD XML ELEMENT VALUE (document; data)

Parameter Type Description
document DocRef → Reference of open document
data Text | Variable → Text or variable to insert in the document

Description
In the XML document referenced by document, the SAX ADD XML ELEMENT VALUE
command adds data directly without converting them. This command is equivalent, for
instance, to inserting an attachment in the body of an e-mail.

In data, you can either pass a character string directly, or a 4D variable. The variable
contents will be converted into text before being included in the XML document.
If you want to encode the contents of data, you must use the ENCODE command. In this
case, of course, you must passs a BLOB in data.

In order for this command to operate correctly, an element must be open. Otherwise, an
error will be generated. If the command was executed correctly, the system variable OK is
set to 1. Otherwise, it is set to 0.

Example
This example inserts the whitepaper.pdf file into the open XML element:

C_BLOB(vBMyBLOB)
DOCUMENT TO BLOB ("c:\\whitepaper.pdf";vBMyBLOB)

⇒ SAX ADD XML ELEMENT VALUE($DocRef;vBMyBLOB)

See also
SAX GET XML ELEMENT VALUE.

1932 4th Dimension Language Reference

SAX GET XML ELEMENT VALUE XML

version 2004
__

SAX GET XML ELEMENT VALUE (document; value)

Parameter Type Description
document DocRef → Reference of open document
value Text | BLOB ← Element value

Description
The SAX GET XML ELEMENT VALUE command allows you to get the value of an XML
element that exists in the XML document referenced in the document parameter. This
command must be called with the XML DATA SAX event. For more information about
SAX events, refer to the description of the SAX Get XML node command.

Pass a Text or BLOB type variable in the value parameter. If you pass a BLOB, the text will
be returned as is (it will not be modified).

Example
Let's look at the following piece of XML code:
<RootElement>

<Child Att1="111" Att2="222" Att3="333">MyText</Child>
</RootElement>

The following instruction will return “MyText” in vValue:

⇒ SAX GET XML ELEMENT VALUE(DocRef;vValue)

See also
SAX ADD XML ELEMENT VALUE, SAX Get XML node.

System Variables or Sets
If the command was executed correctly, the system variable OK is set to 1. Otherwise, it is
set to 0 and an error is generated.

4th Dimension Language Reference 1933

SAX ADD XML CDATA XML

version 2004
__

SAX ADD XML CDATA (document; data)

Parameter Type Description
document DocRef → Reference of open document
data Text | BLOB → Text or BLOB to insert in the document

between CData tags

Description
In the XML document referenced by document, the SAX ADD XML CDATA command adds
data of the text or BLOB type. This data will be automatically framed between the
<CData> and </CData> tags.
The text included in a CData section is ignored by the XML interpreter.

If you want to encode the contents of data, you must use the ENCODE command. In this
case, of course, you must pass a BLOB in data.

In order for this command to operate correctly, an element must be open. Otherwise, an
error will be generated.

Example
You want to insert the following lines in your XML document:
function matchwo(a,b)
{
if (a < b && a < 0) then

{
return 1
}

else
{
return 0
}

}

To do this, you just need to execute the following code:

C_TEXT (vtMytext)
... ` place the text in the vtMytext variable here

⇒ SAX ADD XML CDATAL($DocRef;vtMytext)

1934 4th Dimension Language Reference

The result will thus be:
<![CDATA[
function matchwo(a,b)
{
if (a < b && a < 0) then

{
return 1
}

else
{
return 0
}

}
]]>

See also
SAX GET XML CDATA.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

4th Dimension Language Reference 1935

SAX GET XML CDATA XML

version 2004
__

SAX GET XML CDATA (document; value)

Parameter Type Description
document DocRef → Reference of open document
value BLOB ← Element value

Description
The SAX GET XML CDATA command allows you to get the CDATA value of an XML
element that exists in the XML document referenced in the document parameter. This
command must be called with the XML CDATA SAX event. For more information about
SAX events, refer to the description of the SAX Get XML node command.

Data is returned as is (it is not modified).

Example
Let's look at the following piece of XML code:
<RootElement>

<Child>MyText<![CDATA[MyCData]]</Child>
</RootElement>

The following 4D code will return “MyCData” in vTextData:

C_BLOB (vData)
C_TEXT (vTextData)

⇒ SAX GET XML CDATA(DocRef;vData)
vTextData:=BLOB to text(vData;C string)

See also
SAX ADD XML CDATA, SAX Get XML node.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

1936 4th Dimension Language Reference

SAX ADD PROCESSING INSTRUCTION XML

version 2004
__

SAX ADD PROCESSING INSTRUCTION (document; statement)

Parameter Type Description
document DocRef → Reference of open document
statement Text → Text or BLOB to insert in the document

Description
In the XML document referenced by document, the SAX ADD PROCESSING INSTRUCTION
command adds an XML processing statement.

A processing statement lets you indicate the application type and when necessary any
additional parameters allowing you to process an unparsable external entity.

The command formats the data of the statement in conformity with XML. However, the
statements themselves are not parsed and it is up to the developer to make sure that they
are valid.

Example
The following code:

vtInstruct:="xml-stylesheet type="+Char(Quotes)+"text/xsl"+Char (Quotes)+"href="
+Char (Quotes)+"style.xsl"+Char (Quotes)

⇒ SAX ADD PROCESSING INSTRUCTION ($DocRef;vtInstruct)

... will write the following line in the document:
<?xml-stylesheet type="text/xsl" href="style.xsl"?>

See also
SAX GET XML PROCESSING INSTRUCTION.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

4th Dimension Language Reference 1937

SAX GET XML PROCESSING INSTRUCTION XML

version 2004
__

SAX GET XML PROCESSING INSTRUCTION (document; name; value)

Parameter Type Description
document DocRef --> Reference of open document
name String ← Instruction name
value String ← Instruction value

Description
The SAX GET XML PROCESSING INSTRUCTION command returns the name and value of
the XML instruction processed in the XML document referenced in the document
parameter. This command must be called with the XML Processing Instruction event. For
more information about SAX events, refer to the description of the SAX Get XML node
command.

Example
Let's look at the following piece of XML code:
<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v3.0.7 NT (http://www.xmlspy.com) by Myself (4D SA)-->
<?PI TextProcess?>
<!DOCTYPE RootElement SYSTEM "ParseTest.dtd">

The following instruction will return “PI” in vName and “TextProcess” in vValue:

⇒ SAX GET XML PROCESSING INSTRUCTION($DocRef;vName;vValue)

See also
SAX ADD PROCESSING INSTRUCTION, SAX Get XML node.

1938 4th Dimension Language Reference

SAX GET XML ENTITY XML

version 2004
__

SAX GET XML ENTITY (document; name; value)

Parameter Type Description
document DocRef → Reference of open document
name String ← Entity name
value String ← Entity value

Description
The SAX GET XML ENTITY command allows you to get the name and value of an XML
entity that exists in the XML document referenced in the document parameter. This
command must be called with the XML Entity SAX event. For more information about
SAX events, refer to the description of the SAX Get XML node command.

Examples
Let's look at the following piece of XML code:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE body [

<!ELEMENT body (element*)>
<!ELEMENT element (#PCDATA)>
<!ENTITY name "Replacement">

]>
<body>

<element>Entity updated by &name;</element>
</body>

The following instruction will return “name” in vName and “Replacement” in vValue.

⇒ SAX GET XML ENTITY(DocRef;vName;vValue)

See also
SAX Get XML node.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0 and an error is generated.

4th Dimension Language Reference 1939

GET XML ERROR XML

version 2003
__

GET XML ERROR (elementRef; errorText{; row{; column}})

Parameter Type Description
elementRef String → XML element reference
errorText Variable ← Text of the error
row Variable ← Row number
column Variable ← Column number

Description
The GET XML ERROR command returns, in the errorText parameter, a description of the
error encountered when processing the XML element designated by the elementRef
parameter. The information returned is supplied by the Xerces.DLL library.

The optional row and column parameters indicate the location of the error: they retrieve,
respectively, the row number and, in this row, the position of the first character of the
expression at the origin of the error.

See also
DOM Parse XML information.

System Variables or Sets
If the command has been correctly executed, the system variable OK is set to 1. If an
error occurs, it is set to 0.

1940 4th Dimension Language Reference

APPLY XSLT TRANSFORMATION XML

version 2004
__

APPLY XSLT TRANSFORMATION (xmlSource; xslSheet; result)

Parameter Type Description
xmlSource String | BLOB → Name or access path of XML source document, or

BLOB containing the XML source
xslSheet String | BLOB → Name or access path of document containing XSL

 stylesheet, or
BLOB containing the XSL stylesheet

result String | BLOB → Name or access path of the document receiving the
 result of the XSLT transformation, or
BLOB receiving the result of the XSLT transformation

Description
The APPLY XSLT TRANSFORMATION command applies an XSLT transformation to a
document or a BLOB containing XML and generates a document or a BLOB result. The
scope of this command is the current process.

Note: For more information about XSL transformation (or XSLT), refer to the
Presentation of XML Commands section.

The command requires three BLOBs or character string parameters. Warning: This
command only accepts variables or fields as parameters.

If you pass a character string, you designate a document. In this case, you can only pass
the name (the document must be next to the database structure) or the full access path of
the document.
You cannot mix different types of parameters within the same call.

• The xmlSource parameter must contain the XML source to transform. The command
checks the validity of the XML code.
• The xslSheet parameter must contain the XSL style sheet to use for the XSLT
transformation. This style sheet may have been generated manually or using speciality
software. The command checks the validity of the XML code.
• The result parameter must contain the name of the document or the BLOB that must
receive the result of the XSLT transformation. If you pass a document name that does not
exist at the designated location, 4th Dimension creates it automatically. If the document
is already open with write access, an error is generated.

4th Dimension Language Reference 1941

The command parses the XML source and transforms it using the instructions in the XSL
style sheet. If the SET XSLT PARAMETER command was used beforehand, the command
replaces the parameters defined by their value. The result of the transformation is written
in the document or BLOB result.

Note: In order to optimize performance of this command, especially in repeated
applications from the same XSL sheet, 4th Dimension compiles and keeps the latest XSL
sheets used stored in memory.

Example
Refer to the example of the SET XSLT PARAMETER command.

See also
GET XSLT ERROR, SET XSLT PARAMETER.

System Variables or Sets
If the transformation was executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

1942 4th Dimension Language Reference

SET XSLT PARAMETER XML

version 2004
__

SET XSLT PARAMETER (paramName; paramValue)

Parameter Type Description
paramName String → Name of the parameter to look for in the XSL sheet
paramValue String → Value of the parameter to use in the transformed

document

Description
The SET XSLT PARAMETER command must be used jointly with the APPLY XSLT
TRANSFORMATION command. It allows you to define values of variable parameters placed
in an XSL style sheet when the XSLT transformation of an XML document begins. Using
this command, it is possible to insert values coming from 4th Dimension processes in the
XSL style sheets right before using APPLY XSLT TRANSFORMATION.

Notes:
• For more information about XSL transformation (or XSLT), refer to the Presentation of
XML Commands section.
• The scope of this command is the current process. It must be called in the same process
as the associated APPLY XSLT TRANSFORMATION command.

Pass the name of the XSL variable parameter to replace in paramName. This parameter
must be present in the XSL style sheet as $toreplace. However, the $ character is not
necessary in paramName. For example, if the instruction <xsl:template match=$myvar> is
placed in the XSL file, simply pass “myvar” in paramName to set this parameter.

In paramValue, pass the value that you wish to insert instead of the XSL variable in the
transformed file. To use the above example, if you pass “title” in paramValue, the XSLT
traansformation will take into account the <xsl:template match="title"> instruction (which
set “title” elements as subject to style rules).
If the value type is string, you must include it between single quotes (for example
'myvalue') — in addition to the double quotes of the 4D syntax ("'myvalue'").

Note: For a detailed description of XSL language, you can refer to a number of sites on the
Internet dedicated to this language. For example, http://xml.org.

To pass several parameters in an XSL style sheet, simply call the SET XSLT PARAMETER
command several times. The parameters are “piled” until the APPLY XSLT
TRANSFORMATION call in the same process. Once APPLY XSLT TRANSFORMATION is
executed, the “pile” of parameters is automatically deleted.

4th Dimension Language Reference 1943

Example
The following example defines two XSL parameters then transforms the document
mydoc.xml into an HTML file using the style sheet mysheet.xsl:

⇒ SET XSLT PARAMETER("varstyle";"'bold'")
⇒ SET XSLT PARAMETER("varcolor";"'blue'")

$xmldoc:="mydoc.xml"
$xslsheet:="mysheet.xsl"
$htmldoc:="mydoc.html"
APPLY XSLT TRANSFORMATION($xmldoc;$xslsheet;$htmldoc)

See also
APPLY XSLT TRANSFORMATION, GET XSLT ERROR.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1.
Otherwise, it is set to 0.

1944 4th Dimension Language Reference

GET XSLT ERROR XML

version 2004
__

GET XSLT ERROR (errorText{; row{; column}})

Parameter Type Description
errorText Variable ← Text of the error
row Variable ← Row number
column Variable ← Column number

Description
The GET XSLT ERROR command returns, in the errorText parameter, a description of the
last error encountered during the XSLT transformation performed in the current process.
The information returned is supplied by the Xerces.dll library.

The optional row and column parameters indicate the location of the error in the XSL
document: they retrieve, respectively, the row number and, in this row, the position of
the first character of the expression at the origin of the error.

See also
APPLY XSLT TRANSFORMATION, SET XSLT PARAMETER.

System Variables or Sets
If the command has been executed correctly, the system variable OK is set to 1. If an
error occurs, it is set to 0.

4th Dimension Language Reference 1945

1946 4th Dimension Language Reference

68

Error Codes

4th Dimension Language Reference 1947

1948 4th Dimension Language Reference

Syntax Errors Error Codes

version 6.0
__

The following table lists the syntax error codes for errors that may occur during code
execution in the User or Custom Menus environment. Some of these errors may occur in
interpreted mode only, some in compiled mode only, some in both modes. You can
intercept these errors using an error interruption method installed using ON ERR CALL.

Code Description
1 A “(” was expected.
2 A field was expected.
3 The command may be executed only on a field in a subtable.
4 Parameters in the list must all be of the same type.
5 There is no table to which to apply the command.
6 The command may only be executed on a Subtable type field.
7 A Numeric argument was expected.
8 An Alphanumeric argument was expected.
9 The result of a conditional test was expected.
10 The command cannot be applied to this field type.
11 The command cannot be applied between two conditional tests.
12 The command cannot be applied between two Numeric arguments.
13 The command cannot be applied between two Alphanumeric arguments.
14 The command cannot be applied between two Date arguments.
15 The operation is not compatible with the two arguments.
16 The field has no relation.
17 A table was expected.
18 Field types are incompatible.
19 The field is not indexed.
20 An “=” was expected.
21 The method does not exist.
22 The fields must belong to the same table or subtable for a sort or graph.
23 A “<” or “>” was expected.
24 A “;” was expected.
25 There are too many fields for a sort.
26 The field type cannot be Text, Picture, Blob or Subtable.
27 The field must be prefixed by the name of its table.
28 The field type must be Numeric.
29 The value must be 1 or 0.
30 A variable was expected.
31 There is no menu bar with this number.
32 A date was expected.
33 Unimplemented command or function.

4th Dimension Language Reference 1949

34 Accounting files are not open.
35 The sets are from different tables.
36 Invalid table name.
37 A “:=” was expected.
38 This is a function, not a procedure.
39 The set does not exist.
40 This is a procedure, not a function.
41 A variable or field belonging to a subtable was expected.
42 The record cannot be pushed onto the stack.
43 The function cannot be found.
44 The method cannot be found.
45 Field or variable expected.
46 A Numeric or Alphanumeric argument was expected.
47 The field type must be Alphanumeric.
48 Syntax error.
49 This operator cannot be used here.
50 These operators cannot be used together.
51 Module not implemented.
52 An array was expected.
53 Indice out of range.
54 Argument types are incompatible.
55 A Boolean argument was expected.
56 Field, variable, or table expected.
57 An operator was expected.
58 A “)” was expected.
59 This kind of argument was not expected here.
60 A parameter or a local variable cannot be used in an EXECUTE statement

in a compiled database.
61 The type of an array cannot be modified in a compiled database.
62 The command cannot be applied to a subtable.
63 The field is not indexed.
64 A picture field or variable was expected.
65 The value should contain 4 characters.
66 The value should not contain more than characters.
67 This command cannot be executed on 4D Server.
68 A list was expected.
69 An external window references was expected.
__

1950 4th Dimension Language Reference

Tips
Some of these error codes denote plain syntax errors due to mistyping. For example, you
get an error #37 if you execute the statement v=0 when you actually meant v:=0. You
can eliminate the error by fixing your code in the Design Method Editor.

Some of these error codes are due to simple programming errors. For example, you get an
error #5 if you execute an ADD RECORD command, when you have not first set the
default table (using the DEFAULT TABLE command), and do not pass the table parameter.
In this case, there is no table to which to apply the command. You eliminate the error by
checking to see if you forgot to set the default table or if you forgot to pass the table
parameter to the command for this occurrence.

Some of these error codes denote errors due to a flaw in the design. For example, you get
an error #16 if you apply RELATE ONE to a field that is not related to any other field. You
eliminate the error by checking to see if your code is actually wrong or if you simply
forgot to create the relation starting from the field.

Some errors, when they occur, are not always located exactly where your code breaks. For
example, if in a subroutine you get an error #53 (indice out of range) on the line
vpFld:=Field($1;$2), the error is due to a wrong table and/or field number that has been
passed to the subroutine as a parameter. Therefore, the error is located in the caller
method and not where the error actually occurs. In this case, trace your code in the
Debugger window to determine which line of code is the real culprit, then fix it in the
Design Method Editor.

See Also
ON ERR CALL.

4th Dimension Language Reference 1951

Database Engine Errors Error Codes

version 2004 (Modified)
__

This table lists the error codes generated by the 4th Dimension Database Engine. These
codes cover errors that occur at a low level of the database engine, such as user
interruption, privilege errors, and damaged objects.

Code Description

4001 Invalid table number requested by a Plug-In
4002 Invalid record number requested by a Plug-In
4003 Invalid field number requested by a Plug-In
4004 Access to a table's current record requested by a Plug-in while there is no current

record

1006 Program interrupted by user—user pressed Alt-click (Windows) or Option-click
(Mac OS)

-1 Unknown entry point requested by a Plug-In
-9750 The source form is not editable.
-9751 The source form is not accessible by the user.
-9752 The user form cannot be created.
-9753 The source form does not exist.
-9754 This command cannot be used from a dialog window.
-9755 The user form does not have a name.
-9756 There is no user structure file.
-9757 The user form does not exist.
-9758 The user form already exists.
-9759 The Object Library could not be opened.
-9800 One of the processes modified the access rights.
-9850 Invalid area parameter passed to an external command.
-9851 Invalid parameter number 1.
-9852 Invalid parameter number 2.
-9853 Invalid parameter number 3.
-9854 Invalid parameter number 4.
-9855 Invalid parameter number 5.
-9910 Soap fault.
-9911 Parser fault.
-9912 HTTP fault.
-9913 Network fault.
-9914 Internal fault.
-9915 The document's reference is invalid.
-9916 The element is not open.
-9917 The type of the array passed in parameter is invalid.
-9918 The name of the element is invalid.
-9919 This encoding is not supported.

1952 4th Dimension Language Reference

-9920 The type of the node is invalid
-9925 The referenced element is null.
-9926 The referenced element is invalid.
-9927 The referenced element is not the “root”.
-9928 The name of the element is unknown.
-9929 The index for this element is invalid.
-9930 There is no attribute with this name for this element.
-9931 The index for this attribute is invalid.
-9932 The XML DLL is not loaded.
-9933 The XML file is not valid.
-9934 The XML file is not well-formed.
-9935 The XML file is not valid or is not well-formed.
-9937 Password System is locked by another user.
-9938 The current record has been changed from within the trigger.
-9939 External routine not found.
-9940 4D Extension initialization failed.
-9941 Unknown EX_GESTALT selector.
-9942 4D Client licensing scheme is incompatible with this version of 4D Server.
-9943 4D Connectivity Plug-ins version error.
-9944 The user does not belong to the 4D Open access group.
-9945 CD-ROM 4D Runtime error; writing operations are not allowed.
-9946 Unable to clear the named selection because it does not exist.
-9947 The “Allow 4D Open connections” check box has not been selected.
-9948 A modal dialog is activated.
-9949 License or privilege error.
-9950 Invalid data segment number.
-9951 This field has no relation.
-9952 Invalid data segment header.
-9953 There is no Log file.
-9954 There is no current record.
-9955 QuickTime is not installed.
-9956 Versions of 4D Client and 4D Server are different.
-9957 The choice list is locked.
-9958 The process could not be started.
-9959 The backup process has already been started by another user or process.
-9960 4D Backup is not installed on the server.
-9961 The backup process is not currently running.
-9962 The backup cannot be run because the server is shutting down.
-9963 Invalid record number requested by a workstation.
-9964 Bad sort definition table sent by a workstation.
-9965 Bad search definition table sent by a workstation.
-9966 Invalid type requested by a workstation.
-9967 The record could not be modified because it could not be loaded.
-9968 Invalid selected record number requested by workstation.
-9969 Invalid field type requested by workstation.
-9970 Field is not indexed.
-9971 Field number is out of range requested by workstation.
-9972 Table number is out of range requested by workstation.

4th Dimension Language Reference 1953

-9973 The TRIC resources are not the same.
-9974 Record has already been deleted.
-9975 Transaction index page could not be loaded.
-9976 Backup in progress; no modification allowed.
-9977 The selection does not exist.
-9978 Bad user password.
-9979 Unknown user.
-9980 The file cannot be created because the structure is locked.
-9981 Invalid field name/field number definition table sent by the workstation.
-9982 The record was not loaded because it is not in the selection on the workstation.
-9983 The same external package is installed twice.
-9984 Transaction has been cancelled because of a duplicated index key error.
-9985 Recursive integrity.
-9986 Record locked during an automatic deletion action.
-9987 Some other records are already related to this record.
-9988 The form cannot be loaded. Either the form or the structure is damaged.
-9989 Invalid structure (database needs to be repaired).
-9990 Time-out error.
-9991 Privileges error.
-9992 Wrong password.
-9993 Menu bar is damaged (database needs to be repaired).
-9994 Serial communication interrupted by the user—user pressed Ctrl-Alt-Shift

(Windows) or Command-Option-Shift (Mac OS).
-9995 Demo limit has been reached.
-9996 Stack is full (too much recursion or nested calls).
-9997 Maximum number of records has been reached.
-9998 Duplicated key.
-9999 No more room to save the record. (see note 4)
-10500 Invalid record address (database needs to be repaired).
-10501 Invalid index page (index needs to be repaired).
-10502 Invalid record structure (data file needs to be repaired).
-10503 Record # is out of range. (during GOTO RECORD, or data file needs to be

repaired) (see note 3)
-10504 Index page # is out of range (index needs to be repaired).
-10600 This BLOB could not be read. It may be damaged.

Notes
1. While some of the errors listed reflect serious problems, i.e., -10502 Invalid record
structure (data file needs to be repaired), other errors may occur on a regular basis and can
be managed using an ON ERR CALL project method. For example, it is common to handle
the error –9998 Duplicated key if your application offers opportunities to create duplicated
values for a table that includes an indexed field whose Unique property is set.

2. Some of the errors listed never occur at the 4D language level. They can occur and be
handled at a low level by database engine routines or when using 4D Backup or 4D Open.

1954 4th Dimension Language Reference

3. The error -10503 Record # is out of range does NOT always mean that the database
needs to be repaired. This error may occur if you attempt to use the record number (i.e.,
the command GOTO RECORD) for a newly created record in transaction. The reason is
that newly created records, while in a transaction, are assigned temporary record numbers
until the transaction is validated. If this error occurs in that context, your database is fine,
but your algorithm is not.

4. The error -9999 No more room to save the record occurs when all the segments of your
database are full or located on full volumes. This error can also be generated if the data file
is locked or located on a locked volume.

See Also
ON ERR CALL.

4th Dimension Language Reference 1955

Network Errors Error Codes

version 6.8 (Modified)
__

The following table describes the errors that can occur with a network connection.

Code Description
-10001 The actual connection to the database has been disrupted.
-10002 The connection for this process has been disrupted.
-10003 Bad connection parameters.
-10020 No server was selected while using OP Select 4D server.
-10021 No server was found while using OP Find 4D server.
-10030 Desynchronization has occured during the write cycle.
-10031 Desynchronization has occured during the read cycle.
-10033 Incorrect data size during read cycle.
-10050 Unknown option in Get/SetOption.
-10051 Incorrect value in Get/SetOption.

1956 4th Dimension Language Reference

Backup management system errors Error Codes

version 2004
__

The following table lists the specific error codes generated by the backup and restore
module of 4th Dimension.
You can retrieve these errors using a method installed via the ON ERR CALL command.

Code Description
1401 The maximum number of backup attempts has been reached; automatic backup

is temporarily disabled.
1403 No log file.
1404 A transaction is opened in this process.
1405 The maximum timeout for transactions to end in a concurrent process has been

reached.
1406 Backup canceled by user.
1407 Destination folder is not valid.
1408 Error during log file backup.
1409 Error during backup.
1410 Cannot find the backup file to be checked.
1411 Error during backup file check.
1412 Cannot find the log backup file to be checked.
1413 Error during log backup file check.
1414 This command can only be executed on 4D Server.
1415 Cannot back up log file; a critical operation is in progress.
1416 This log file does not correspond to the database opened.
1420 Integration aborted due to detection of locked records.

• Errors 1408 and 1409 generally come from a read error for files to be backed up or a
write error during file backup.
• Errors 1411 and 1413 occur during checking of archives.
When these errors occur, it may be prudent to first check the space remaining on the disk
and the read-write access privileges.

See also
ON ERR CALL.

4th Dimension Language Reference 1957

OS File Manager Errors Error Codes

version 6.0
__

The following table lists codes returned by the Operating System File Manager. These
codes can be returned when you are using, for example, the System Documents
commands. In this list, the word “file” indicates a document on disk and not a file in
your database structure.

Code Description
-33 File directory full. You cannot create new files on disk.
-34 Disk is full. There is no more room available on the disk.
-35 Specified volume doesn’t exist.
-36 I/O error. There is probably a bad block on the disk.
-37 Bad filename or volume name.
-38 Tried to read or write to a file that is not open.
-39 Logical end-of-file reached during read operation.
-40 Attempt to position before start of file.
-41 Not enough memory to open a new file on the disk.
-42 Too many files open at the same time.
-43 File not found.
-44 Volume is locked by a hardware setting.
-45 File is locked.
-46 Volume is locked by an application.
-47 Tried to access a file that has been deleted.
-48 Tried to rename a file with the name of an already deleted file.
-49 Tried to open a file already open with write permission.
-51 Tried to access a document with an invalid document reference number.
-52 Internal file manager error (position of file marker is lost).
-53 Volume not on line.
-54 Attempt to open locked file for writing.
-57 Tried to work with a non-Macintosh disk.
-58 Error in the external file system.
-60 Bad master directory block. Your disk is damaged.
-61 Read/write permission doesn’t allow writing.
-64 There is a hardware problem with the disk (bad installation, incorrect formatting...)
-84 There is a hardware problem with the disk (bad installation, incorrect formatting...)
-120 Tried to access a file by using a pathname that specifies a non existing directory.
-121 An access path could not be created.
-124 Tried to access a disconnected shared volume.

See Also
ON ERR CALL.

1958 4th Dimension Language Reference

OS Memory Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Memory
Manager.

Code Description
-108 Not enough memory to perform an operation.

Give more memory to your 4D application.
-109 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database.
-111 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database. (*)
-117 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database.

Tip: When allocating and working with large arrays, BLOBs, pictures, as well as sets
(objects that can hold large amount of data), use an ON ERR CALL project method to test
the error -108.

(*) Error -111 can also occur when you attempt to read a value from a BLOB with an offset
out of range. In this case, the error is minor and you do not need to terminate the
working session. Just fix the offset you pass to the BLOB command.

See Also
ON ERR CALL.

4th Dimension Language Reference 1959

OS Printing Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Printing
Manager. These codes can be returned during printing.

Code Description
-1 Problem saving file to be printed
-27 Problem opening or closing connection with printer
-128 Printing interrupted by the user
-193 Resource file not found
-4100 Printer connection has been interrupted
-4101 Printer busy or not connected
-8150 A LaserWriter is not selected
-8151 The printer has been initialized with a different driver version
-8192 LaserWriter time-out

See Also
ON ERR CALL.

1960 4th Dimension Language Reference

OS Resource Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Resource
Manager.

Code Description
-1 Resource file could not be opened
-192 Resource not found
-193 Resource map is damaged (file needs to be repaired)
-194 Resource could not be added
-196 Resource could not be deleted

See Also
ON ERR CALL.

4th Dimension Language Reference 1961

SANE NaN Errors Error Codes

version 6.0
__

The following table lists the NaN codes returned by the Operating System. NaN is a
Standard Apple Numeric Environment (SANE) representation which means “Not a
Number.” NaN appears when an operation produces a result that is beyond SANE’s scope.

Code Description
1 Invalid square root
2 Invalid addition
4 Invalid division
8 Invalid multiplication
9 Invalid remainder
17 Converting an invalid ASCII string
20 Converting a Comp type number to floating-point
21 Creating a NaN with a zero code
33 Invalid argument to a trig function
34 Invalid argument to an inverse trig function
36 Invalid argument to a log function
37 Invalid argument to an xi or xy function
38 Invalid argument to a financial function
255 Uninitialized storage

1962 4th Dimension Language Reference

OS Sound Manager Errors Error Codes

version 6.0
__

The following table lists the codes returned by the Operating System Sound Manager.

Code Description
-203 Too many sound commands
-204 The sound resource cannot be loaded
-205 The sound channel is logically corrupted
-206 The format of the sound resource is wrong
-207 Not enough memory to perform the sound
-209 The sound channel is busy

See Also
ON ERR CALL.

4th Dimension Language Reference 1963

OS Serial Ports Manager Errors Error Codes

version 6.0
__

The following table lists error codes returned by the Operating System Serial Ports
Manager.

Code Description
-28 There is no open serial port

See Also
ON ERR CALL.

1964 4th Dimension Language Reference

Mac OS System Errors Error Codes

version 6.0
__

The following table lists some of the Mac OS system errors. It is usually not possible to
recover from these errors.

Code Description
4 Zero divide
15 Segment Loader Error:

4th Dimension failed in loading one of its own code segments.
You must allocate more memory to 4th Dimension.

17 to 24 A system package is missing.
Check if your system directory has been correctly installed

25 Out of memory
You must allocate more memory to 4th Dimension

28 Stack has moved into the application heap.
You must allocate more memory to 4th Dimension

4th Dimension Language Reference 1965

1966 4th Dimension Language Reference

69

ASCII Codes

4th Dimension Language Reference 1967

1968 4th Dimension Language Reference

ASCII Codes ASCII Codes

version 6.0
__

ASCII Code Tables

• The standard ASCII codes, 0 through 127, are common to Windows and Macintosh.
These standard ASCII codes are listed in ASCII Codes 0..63 and ASCII Codes 64..127.

• The ASCII codes 128 through 255 are different on Windows and Macintosh. In order to
maintain platform independence, the Windows version of 4th Dimension automatically
converts ASCII codes from Windows to Macintosh ASCII maps when characters are
entering the 4D environment (Data entry, Edit/Paste, Import, etc.) and from Macintosh
to Windows ASCII maps when characters are leaving the 4D environment (Edit/Cut or
Copy, Export, etc.).

The ASCII codes 128 through 255 are listed in ASCII Codes 128..191 and ASCII Codes
192..255.

Understanding ASCII Codes and 4th Dimension
On both Macintosh and Windows, the internal database engine and the 4D language
work with the Macintosh extended ASCII set. When you enter data using the keyboard
(adding records, editing procedures, etc.), 4th Dimension uses the internal Altura ASCII
conversion scheme to convert what comes from the keyboard (expressed using the
Windows set) to the Macintosh set. For example, to enter an “é”, you type ALT+0233, and
4th Dimension stores ASCII code 142 in the record. This is transparent to the end user,
because when you create a search, you actually type (in the Search editor) the value for
which you are looking. Therefore, the value that you typed (ALT+0233) is also translated
into ASCII code 142, and you find the value.

The codes work the same when you type ALT+0233 in the Procedure editor. However, to
look for a character using its ASCII code, you use the Macintosh ASCII code of the
character.

For example:

QUERY (...; [MyFile]MyField="é") ` é is Alt+0233

is the same as:

QUERY (...;[MyFile]MyField=Char(142)) ` é is ASCII 142

See Also
Ascii, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

4th Dimension Language Reference 1969

ASCII Codes 0..63 ASCII Codes

version 6.0
__

The standard ASCII codes (0 through 127) are common to Windows and Macintosh.

See Also
Char, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

1970 4th Dimension Language Reference

ASCII Codes 64..127 ASCII Codes

version 6.0
__

The standard ASCII codes (0 through 127) are common to Windows and Macintosh.

4th Dimension Language Reference 1971

ASCII Codes 128..191 ASCII Codes

version 6.0
__

The following tables list the characters displayed by 4th Dimension for each ASCII code,
on Macintosh and Windows. In addition, the tables present the key combination required
to produce each character, using a US keyboard.

1972 4th Dimension Language Reference

4th Dimension Language Reference 1973

Note: The cells in the Windows column that are greyed out denote characters that are not
available on Windows or that are different from the Macintosh characters.

See Also
Char, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

1974 4th Dimension Language Reference

ASCII Codes 192..255 ASCII Codes

version 6.0
__

The following tables list the characters displayed by 4th Dimension for each ASCII code,
on Macintosh and Windows. In addition, the tables present the key combination required
to produce each character, using a US keyboard.

4th Dimension Language Reference 1975

1976 4th Dimension Language Reference

Note: The cells in the Windows column that are greyed out denote characters that are not
available on Windows or that are different from the Macintosh characters.

See Also
Ascii, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

4th Dimension Language Reference 1977

Function Key Codes ASCII Codes

version 6.0
__

4th Dimension returns values for Function keys in the KeyCode system variable, which is
used within project methods installed by the ON EVENT CALL command. These project
methods are used to catch events. The values for Function keys are not based on ASCII
codes. They are:

Reminder: The KeyCode system variable is to be used in a project method installed using
ON EVENT CALL.

In addition to the function keys, the following table lists the values returned in KeyCode
when you press one of the common keys, such as Return or Enter.

1978 4th Dimension Language Reference

70

Command Syntax

4th Dimension Language Reference 1979

1980 4th Dimension Language Reference

Command Syntax by Name Command Syntax

version 2004.3 (Modified)
__

The first column indicates the number for each command, used more particularly by the
Command name command.

A

156 ABORT
99 Abs (number) → Number
269 ACCEPT
303 ACCUMULATE (data{; data2; ...; dataN})
346 Activated → Boolean
361 ADD DATA SEGMENT
56 ADD RECORD ({table}{; }{*})
202 ADD SUBRECORD (subtable; form{; *})
393 Add to date (date; years; months; days) → Date
119 ADD TO SET ({table; }set)
31 After → Boolean
41 ALERT (message{; ok button title})
47 ALL RECORDS {(table)}
109 ALL SUBRECORDS (subtable)
265 Append document (document{; type}) → DocRef
411 APPEND MENU ITEM (menu; itemText{; process})
911 APPEND TO ARRAY (array; value)
403 APPEND TO CLIPBOARD (dataType; data)
376 APPEND TO LIST (list; itemText; itemRef{; sublist{; expanded}})
491 Application file → String
494 Application type → Long Integer
493 Application version {(*)} → String
70 APPLY TO SELECTION ({table; }statement)
73 APPLY TO SUBSELECTION (subtable; statement)
882 APPLY XSLT TRANSFORMATION (xmlSource; xslSheet; result)
20 Arctan (number) → Number
223 ARRAY BOOLEAN (arrayName; size{; size2})
224 ARRAY DATE (arrayName; size{; size2})
220 ARRAY INTEGER (arrayName; size{; size2})
221 ARRAY LONGINT (arrayName; size{; size2})
279 ARRAY PICTURE (arrayName; size{; size2})
280 ARRAY POINTER (arrayName; size{; size2})
219 ARRAY REAL (arrayName; size{; size2})
218 ARRAY STRING (strLen; arrayName; size{; size2})
222 ARRAY TEXT (arrayName; size{; size2})
287 ARRAY TO LIST (array; list{; itemRefs})

4th Dimension Language Reference 1981

261 ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})
512 ARRAY TO STRING LIST (strings; resID{; resFile})
91 Ascii (character) → Number
786 AUTHENTICATE WEB SERVICE (name; password)
2 Average (series) → Number

B

887 BACKUP
151 BEEP
29 Before → Boolean
198 Before selection {(table)} → Boolean
199 Before subselection (subtable) → Boolean
717 BEST OBJECT SIZE ({*; }object; bestWidth; bestHeight{; maxWidth})
536 BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})
605 BLOB size (blob) → Longint
526 BLOB TO DOCUMENT (document; blob{; *})
549 BLOB to integer (blob; byteOrder{; offset}) → Number
557 BLOB to list (blob{; offset}) → ListRef
551 BLOB to longint (blob; byteOrder{; offset}) → Number
682 BLOB TO PICTURE (pictureBlob; picture)
553 BLOB to real (blob; realFormat{; offset}) → Real
555 BLOB to text (blob; textFormat{; offset{; textLength}}) → Text
850 BLOB TO USERS (users)
533 BLOB TO VARIABLE (blob; variable{; offset})
646 BOOLEAN ARRAY FROM SET (booleanArr{; set})
302 BREAK LEVEL (level{; pageBreak})
326 BRING TO FRONT (process)
871 BUILD APPLICATION {(projectName)}
194 BUTTON TEXT ({*; }object; buttonText)

C

329 CALL PROCESS (process)
778 CALL WEB SERVICE (accessURL; soapAction; methodName; namespace{;

complexType})
270 CANCEL
241 CANCEL TRANSACTION
547 Caps lock down → Boolean
289 CHANGE CURRENT USER ({user}{; }{password})
637 CHANGE LICENSES
186 CHANGE PASSWORD (password)
234 Change string (source; newChars; where) → String
90 Char (asciiCode) → String
402 CLEAR CLIPBOARD

1982 4th Dimension Language Reference

377 CLEAR LIST (list{; *})
333 CLEAR NAMED SELECTION (name)
144 CLEAR SEMAPHORE (semaphore)
117 CLEAR SET (set)
89 CLEAR VARIABLE (variable)
267 CLOSE DOCUMENT (docRef)
498 CLOSE RESOURCE FILE (resFile)
154 CLOSE WINDOW {(window)}
538 Command name (command) → String
492 Compiled application → Boolean
534 COMPRESS BLOB (blob{; compression})
355 COMPRESS PICTURE (picture; method; quality)
359 COMPRESS PICTURE FILE (document; method; quality)
162 CONFIRM (message{; OK button title{; cancel button title}})
713 Contextual click → Boolean
226 COPY ARRAY (source; destination)
558 COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)
541 COPY DOCUMENT (sourceName; destinationName{; *})
626 Copy list (list) → ListRef
331 COPY NAMED SELECTION ({table; }name)
600 COPY SET (srcSet; dstSet)
18 Cos (number) → Number
255 Count fields (tableNum | tablePtr) → Number
907 Count in array (array; value) → Longint
380 Count list items (list{; *}) → Longint
405 Count menu items (menu{; process}) → Number
404 Count menus {(process)} → Number
259 Count parameters → Number
437 Count screens → Longint
254 Count tables → Number
335 Count tasks → Integer
343 Count user processes → Integer
342 Count users → Integer
694 CREATE ALIAS (targetPath; aliasPath)
313 CREATE DATA FILE (accessPath)
266 Create document (document{; type}) → DocRef
140 CREATE EMPTY SET ({table; }set)
475 CREATE FOLDER (folderPath)
68 CREATE RECORD {(table)}
65 CREATE RELATED ONE (field)
496 Create resource file (resFilename{; fileType}) → DocRef
640 CREATE SELECTION FROM ARRAY (table; recordArray{; selectionName})
116 CREATE SET ({table; }set)
641 CREATE SET FROM ARRAY (table; recordsArray{; setName})
72 CREATE SUBRECORD (subtable)

4th Dimension Language Reference 1983

679 CREATE THUMBNAIL (source; dest{; width{; height{; mode{; depth}}}})
808 CREATE USER FORM (table; form; userForm)
33 Current date {(*)} → Date
363 Current default table → Pointer
276 Current form page → Number
627 Current form table → Pointer
827 Current form window → WinRef
483 Current machine → String
484 Current machine owner → String
684 Current method name → String
322 Current process → Number
178 Current time {(*)} → Time
182 Current user → String
334 CUT NAMED SELECTION ({table; }name)
604 C_BLOB ({method; }variable{; variable2; ...; variableN})
305 C_BOOLEAN ({method; }variable{; variable2; ...; variableN})
307 C_DATE ({method; }variable{; variable2; ...; variableN})
352 C_GRAPH ({method; }variable{; variable2; ...; variableN})
282 C_INTEGER ({method; }variable{; variable2; ...; variableN})
283 C_LONGINT ({method; }variable{; variable2; ...; variableN})
286 C_PICTURE ({method; }variable{; variable2; ...; variableN})
301 C_POINTER ({method; }variable{; variable2; ...; variableN})
285 C_REAL ({method; }variable{; variable2; ...; variableN})
293 C_STRING ({method; }size; variable{; variable2; ...; variableN})
284 C_TEXT ({method; }variable{; variable2; ...; variableN})
306 C_TIME ({method; }variable{; variable2; ...; variableN})

D

490 Data file {(segment)} → String
527 DATA SEGMENT LIST (Segments)
369 Database event → Longint
102 Date (dateString) → Date
114 Day number (date) → Number
23 Day of (date) → Number
347 Deactivated → Boolean
9 Dec (number) → Number
896 DECODE (blob)
690 DECRYPT BLOB (toDecrypt; sendPubKey{; recipPrivKey})
46 DEFAULT TABLE (table)
323 DELAY PROCESS (process; duration)
159 DELETE DOCUMENT (document)
228 DELETE ELEMENT (array; where{; howMany})
693 DELETE FOLDER (folder)

1984 4th Dimension Language Reference

560 DELETE FROM BLOB (blob; offset; len)
624 DELETE LIST ITEM (list; itemRef | *{; *})
830 DELETE LISTBOX COLUMN ({*; }object; colPosition{; number})
914 DELETE LISTBOX ROW ({*; }object; position)
413 DELETE MENU ITEM (menu; menuItem{; process})
58 DELETE RECORD {(table)}
501 DELETE RESOURCE (resType; resID{; resFile})
66 DELETE SELECTION {(table)}
232 Delete string (source; where; numChars) → String
96 DELETE SUBRECORD (subtable)
615 DELETE USER (UserID)
810 DELETE USER FORM (table; form; userForm)
40 DIALOG ({table; }form)
122 DIFFERENCE (set; subtractSet; resultSet)
193 DISABLE BUTTON ({*; }object)
150 DISABLE MENU ITEM (menu; menuItem{; process})
910 DISPLAY NOTIFICATION (title; text{; duration})
105 DISPLAY RECORD {(table)}
59 DISPLAY SELECTION ({table}{; selectMode}{; enterList}{; *}{; *})
897 Displayed line number → Longint
339 DISTINCT VALUES (field; array)
529 Document creator (document) → String
474 DOCUMENT LIST (pathname; documents)
525 DOCUMENT TO BLOB (document; blob{; *})
528 Document type (document) → String
722 DOM CLOSE XML (elementRef)
727 DOM Count XML attributes (elementRef) → Longint
726 DOM Count XML elements (elementRef; elementName) → Longint
865 DOM Create XML element (elementRef; xPath{; attrName{; attrValue}}{; attrName2;

attrValue2; ...; attrNameN; attrValueN}) → String
861 DOM Create XML Ref (root{; nameSpace{; nameSpaceName{; nameSpaceValue}}}

{; nameSpaceName2; nameSpaceValue2; ...; nameSpaceNameN; nameSpaceValueN})
→ String

862 DOM EXPORT TO FILE (elementRef; filePath)
863 DOM EXPORT TO VAR (elementRef; vXmlVar)
864 DOM Find XML element (elementRef; xPath) → elementRef
723 DOM Get First Child XML element (elementRef{; childElemName{; childElemValue}})

→ String
925 DOM Get Last Child XML element (elementRef{; childElemName{; childElemValue}})

→ String
724 DOM Get Next Sibling XML element (elementRef{; childElemName{; childElemValue}})

→ String
923 DOM Get parent XML element (elementRef{; parentElemName{; parentElemValue}})

→ String

4th Dimension Language Reference 1985

924 DOM Get Previous Sibling XML element (elementRef{; siblingElemName
{; siblingElemValue}}) → String

729 DOM GET XML ATTRIBUTE BY INDEX (elementRef; attribIndex; attribName;
attribValue)

728 DOM GET XML ATTRIBUTE BY NAME (elementRef; attribName; attribValue)
725 DOM Get XML element (elementRef; elementName; index; elementValue) → String
730 DOM GET XML ELEMENT NAME (elementRef; elementName)
731 DOM GET XML ELEMENT VALUE (elementRef; elementValue{; cDATA})
721 DOM Get XML information (elementRef; xmlInfo) → String
719 DOM Parse XML source (document{; validation{; dtd}}) → String
720 DOM Parse XML variable (variable{; validation{; dtd}}) → String
869 DOM REMOVE XML ELEMENT (elementRef)
866 DOM SET XML ATTRIBUTE (elementRef; attrName; attrValue{; attrName2; attrValue2;

...; attrNameN; attrValueN})
867 DOM SET XML ELEMENT NAME (elementRef; elementName)
868 DOM SET XML ELEMENT VALUE (elementRef; elementValue)
859 DOM SET XML OPTIONS (elementRef; encoding{; standalone{; indentation}})
607 DRAG AND DROP PROPERTIES (srcObject; srcElement; srcProcess)
452 DRAG WINDOW
608 Drop position {(columnNum)} → Number
225 DUPLICATE RECORD {(table)}
30 During → Boolean

E

281 EDIT ACCESS
807 EDIT FORM (table; form{; userForm{; library}})
806 EDIT FORMULA (table; formula)
870 EDIT ITEM ({*; }object{; item})
192 ENABLE BUTTON ({*; }object)
149 ENABLE MENU ITEM (menu; menuItem{; process})
895 ENCODE (blob)
689 ENCRYPT BLOB (toEncrypt; sendPrivKey{; recipPubKey})
36 End selection {(table)} → Boolean
37 End subselection (subtable) → Boolean
160 ERASE WINDOW {(window)}
676 Euro converter (value; fromCurrency; toCurrency) → Real
63 EXECUTE (statement)
651 EXECUTE ON CLIENT (clientName; methodName{; param}{; param2; ...; paramN})
373 Execute on server (procedure; stack{; name{; param{; param2; ...; paramN}{; *}}})

→ Number
21 Exp (number) → Number
535 EXPAND BLOB (blob)
666 EXPORT DATA (fileName{; project{; *}})

1986 4th Dimension Language Reference

84 EXPORT DIF ({table; }document)
85 EXPORT SYLK ({table; }document)
167 EXPORT TEXT ({table; }document)

F

215 False → Boolean
253 Field (tableNum | fieldPtr{; fieldNum}) → Number | Pointer
257 Field name (fieldPtr | tableNum{; fieldNum}) → String
321 FILTER EVENT
389 FILTER KEYSTROKE (filteredChar)
230 Find in array (array; value{; start}) → Number
653 Find index key (indexedField; value) → Longint
449 Find window (left; top{; windowPart}) → WinRef
250 FIRST PAGE
50 FIRST RECORD {(table)}
61 FIRST SUBRECORD (subtable)
297 FLUSH BUFFERS
278 Focus object → Pointer
473 FOLDER LIST (pathname; directories)
164 FONT ({*; }object; font)
460 FONT LIST (fonts)
462 Font name (fontNumber) → String
461 Font number (fontName) → Longint
165 FONT SIZE ({*; }object; size)
166 FONT STYLE ({*; }object; styles)
388 Form event → Number
327 Frontmost process {(*)} → Integer
447 Frontmost window {(*)} → WinRef

G

691 GENERATE CERTIFICATE REQUEST (privKey; certifRequest; codeArray; nameArray)
688 GENERATE ENCRYPTION KEYPAIR (privKey; pubKey{; length})
488 Gestalt (selector; value) → Number
485 Get 4D folder {(folder)} → String
707 Get alignment ({*; }object) → Number
908 GET ALLOWED METHODS (methodsArray)
899 GET AUTOMATIC RELATIONS (one; many)
888 GET BACKUP INFORMATION (selector; info1; info2)
401 GET CLIPBOARD (dataType; data)
699 Get component resource ID (compName; resType; originalResNum) → Number
788 Get current printer → String
643 Get database parameter ({table; }selector) → Longint

4th Dimension Language Reference 1987

826 Get default user → Number
700 GET DOCUMENT ICON (docPath; icon{; size})
481 Get document position (docRef) → Number
477 GET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;

modified on; modified at)
479 Get document size (document{; *}) → Number
655 Get edited text → Text
685 GET FIELD ENTRY PROPERTIES (fieldPtr|tableNum{; fieldNum; list{; mandatory{;

nonEnterable{; nonModifiable}}})
258 GET FIELD PROPERTIES (fieldPtr | tableNum{; fieldNum}; fieldType{; fieldLength}{;

 indexed}{; unique}{; invisible})
920 GET FIELD RELATION (manyField; one; many{; *})
804 GET FIELD TITLES (table; fieldTitles; fieldNums)
898 GET FORM OBJECTS (objectsArray{; variablesArray{; pagesArray{; *}}})
674 GET FORM PROPERTIES ({table; }formName; width; height{; numPages{; fixedWidth{;

fixedHeight{; title}}}})
894 Get format ({*; }object) → String
610 GET GROUP LIST (groupNames; groupNumbers)
613 GET GROUP PROPERTIES (groupID; name; owner{; members})
209 GET HIGHLIGHT (area; startSel; endSel)
902 GET HIGHLIGHTED RECORDS ({table; }setName)
814 GET HTTP BODY (body)
697 GET HTTP HEADER (header|fieldArray{; valueArray})
517 GET ICON RESOURCE (resID; resData{; fileRef})
510 Get indexed string (resID; strID{; resFile}) → String
378 GET LIST ITEM (list; itemPos | *; itemRef; itemText{; sublist{; expanded}})
631 GET LIST ITEM PROPERTIES (list; itemRef | *; enterable{; styles{; icon{; color}}})
632 GET LIST PROPERTIES (list; appearance{; icon{; lineHeight{; doubleClick{;

multiSelections{; editable}}}}})
832 GET LISTBOX ARRAYS ({*; }object; arrColNames; arrHeaderNames; arrColVars;

arrHeaderVars; arrVisible; arrStyles)
834 Get listbox column width ({*; }object) → Integer
917 Get listbox information ({*; }object; info) → Longint
836 Get listbox rows height ({*; }object) → Integer
422 Get menu item (menu; menuItem{; process}) → String
424 Get menu item key (menu; menuItem{; process}) → Number
428 Get menu item mark (menu; menuItem{; process}) → String
426 Get menu item style (menu; menuItem{; process}) → Number
430 Get menu title (menu{; process}) → String
468 GET MOUSE (mouseX; mouseY; mouseButton{; *})
831 Get number of listbox columns ({*; }object) → Longint
915 Get number of listbox rows ({*; }object) → Longint
663 GET OBJECT RECT ({*; }object; left; top; right; bottom)
522 GET PICTURE FROM CLIPBOARD (picture)
565 GET PICTURE FROM LIBRARY (picRef | picName; picture)

1988 4th Dimension Language Reference

502 GET PICTURE RESOURCE (resID; resData{; resFile})
470 Get platform interface → Number
846 Get plugin access (plugIn) → String
847 GET PLUGIN LIST (numbersArray; namesArray)
304 Get pointer (varName) → Pointer
708 Get print marker (markNum) → Number
734 GET PRINT OPTION (option; value1{; value2})
703 GET PRINTABLE AREA (height{; width})
711 GET PRINTABLE MARGIN (left; top; right; bottom)
702 Get printed height → Number
371 GET PROCESS VARIABLE (process; srcVar; dstVar{; srcVar2; dstVar2; ...; srcVarN;

dstVarN})
650 GET REGISTERED CLIENTS (clientList; methods)
686 GET RELATION PROPERTIES (fieldPtr|tableNum{; fieldNum; oneTable; oneField{;

choiceField{; autoOne{; autoMany}}})
508 GET RESOURCE (resType; resID; resData{; resFile})
513 Get resource name (resType; resID{; resFile}) → String
515 Get resource properties (resType; resID{; resFile}) → Number
889 GET RESTORE INFORMATION (selector; info1; info2)
696 GET SERIAL INFORMATION (key; user; company; connected; maxUser)
909 GET SERIAL PORT MAPPING (numArray; nameArray)
784 Get SOAP info (infoNum) → String
506 Get string resource (resID{; resFile}) → String
687 GET TABLE PROPERTIES (tablePtr|tableNum; invisible{; trigSaveNew{; trigSaveRec{;

trigDelRec{; trigLoadRec}}}})
803 GET TABLE TITLES (tableTitles; tableNums)
524 Get text from clipboard → String
504 Get text resource (resID{; resFile}) → Text
609 GET USER LIST (userNames; userNumbers)
611 GET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{;

memberships{; groupOwner}})
683 GET WEB FORM VARIABLES (nameArray; valueArray)
780 Get Web Service error info (infoType) → String
779 GET WEB SERVICE RESULT (returnValue{; returnName{; *}})
443 GET WINDOW RECT (left; top; right; bottom{; window})
450 Get window title {(window)} → String
732 GET XML ERROR (elementRef; errorText{; row{; column}})
884 GET XSLT ERROR (errorText{; row{; column}})
206 GOTO AREA ({*; }object)
247 GOTO PAGE (pageNumber)
242 GOTO RECORD ({table; }record)
245 GOTO SELECTED RECORD ({table; }record)
161 GOTO XY (x; y)

4th Dimension Language Reference 1989

169 GRAPH (graphArea; graphNumber; xLabels; yElements{; yElements2; ...; yElementsN})
298 GRAPH SETTINGS (graph; xmin; xmax; ymin; ymax; xprop; xgrid; ygrid; title{; title2;

...; titleN})
148 GRAPH TABLE ({table; }graphType; x field; y field{; y field2; ...; y fieldN})

H

432 HIDE MENU BAR
324 HIDE PROCESS (process)
434 HIDE TOOL BAR
436 HIDE WINDOW {(window)}
656 HIGHLIGHT RECORDS ({table}{; setName}{; *})
210 HIGHLIGHT TEXT (area; startSel; endSel)

I

311 IDLE
665 IMPORT DATA (fileName{; project{; *}})
86 IMPORT DIF ({table; }document)
87 IMPORT SYLK ({table; }document)
168 IMPORT TEXT ({table; }document)
113 In break → Boolean
191 In footer → Boolean
112 In header → Boolean
397 In transaction → Boolean
55 INPUT FORM ({table; }form{; userForm}{; *})
227 INSERT ELEMENT (array; where{; howMany})
559 INSERT IN BLOB (blob; offset; len{; filler})
625 INSERT LIST ITEM (list; beforeItemRef | *; itemText; itemRef{; sublist{;

expanded}})
829 INSERT LISTBOX COLUMN ({*; }object; colPosition; colName; colVariable;

headerName; headerVar)
913 INSERT LISTBOX ROW ({*; }object; position)
412 INSERT MENU ITEM (menu; afterItem; itemText{; process})
231 Insert string (source; what; where) → String
8 Int (number) → Number
548 INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})
927 INTEGRATE LOG FILE (pathName)
121 INTERSECTION (set1; set2; resultSet)
93 INVERT BACKGROUND ({*; }textVar | textField)
621 Is a list (list) → Boolean
294 Is a variable (aPointer) → Boolean
716 Is data file locked → Boolean
273 Is in set (set) → Boolean
714 Is license available {(license)} → Boolean

1990 4th Dimension Language Reference

668 Is new record {(table)} → Boolean
669 Is record loaded {(table)} → Boolean
783 Is SOAP request → Boolean
616 Is user deleted (userNumber) → Boolean
520 ISO to Mac (text) → String

K

390 Keystroke → String

L

251 LAST PAGE
200 LAST RECORD {(table)}
201 LAST SUBRECORD (subtable)
811 LAUNCH EXTERNAL PROCESS (fileName{; inputStream{; outputStream{;

errorStream}}})
16 Length (string) → Number
101 Level → Number
633 List item parent (list; itemRef | *) → Longint
629 List item position (list; itemRef) → Number
288 LIST TO ARRAY (list; array{; itemRefs})
556 LIST TO BLOB (list; blob{; *})
809 LIST USER FORMS (table; form; userFormArray)
357 LOAD COMPRESS PICTURE FROM FILE (document; method; quality; picture)
383 Load list (listName) → ListRef
52 LOAD RECORD {(table)}
185 LOAD SET ({table; }set; document)
74 LOAD VARIABLES (document; variable{; variable2; ...; variableN})
147 Locked {(table)} → Boolean
353 LOCKED ATTRIBUTES ({table; }process; user; machine; processName)
22 Log (number) → Number
667 LOG EVENT (message{; importance})
928 Log File → String
647 LONGINT ARRAY FROM SELECTION (table; recordArray{; selection})
550 LONGINT TO BLOB (longInt; blob; byteOrder{; offset | *})
14 Lowercase (string) → String

M

519 Mac to ISO (text) → String
463 Mac to Win (text) → String
546 Macintosh command down → Boolean
544 Macintosh control down → Boolean

4th Dimension Language Reference 1991

545 Macintosh option down → Boolean
366 MAP FILE TYPES (macOS; windows; context)
3 Max (series) → Number
453 MAXIMIZE WINDOW {(window)}
67 MENU BAR (menuBar{; process{; *}})
440 Menu bar height → Longint
441 Menu bar screen → Longint
152 Menu selected → Number
88 MESSAGE (message)
175 MESSAGES OFF
181 MESSAGES ON
704 Method called on error → String
705 Method called on event → String
459 Milliseconds → Longint
4 Min (series) → Number
454 MINIMIZE WINDOW {(window)}
98 Mod (number1; number2) → Number
32 Modified (field) → Boolean
314 Modified record {(table)} → Boolean
57 MODIFY RECORD ({table}{; }{*})
204 MODIFY SELECTION ({table}{; selectMode}{; enterList}{; *}{; *})
203 MODIFY SUBRECORD (subtable; form{; *})
24 Month of (date) → Number
540 MOVE DOCUMENT (srcPathname; dstPathname)
664 MOVE OBJECT ({*; }object; moveH; moveV{; resizeH{; resizeV{; *}}})
844 MOVED LISTBOX COLUMN NUMBER ({*; }object; oldPosition; newPosition)
837 MOVED LISTBOX ROW NUMBER ({*; }object; oldPosition; newPosition)
718 MULTI SORT ARRAY (array{; sort}{; array2; sort2; ...; arrayN; sortN})

N

375 New list → ListRef
926 New log file → Text
317 New process (method; stack{; name{; param{; param2; ...; paramN}{; *}}}) → Number
248 NEXT PAGE
51 NEXT RECORD {(table)}
62 NEXT SUBRECORD (subtable)
448 Next window (window) → WinRef
315 Nil (aPointer) → Boolean
158 NO TRACE
34 Not (boolean) → Boolean
11 Num (expression) → Number

1992 4th Dimension Language Reference

O

824 ODBC CANCEL LOAD
821 ODBC End selection → Boolean
820 ODBC EXECUTE (sqlStatement{; boundObj}{; boundObj2; ...; boundObjN})
881 ODBC EXPORT (sourceTable; project; *)
825 ODBC GET LAST ERROR (errCode; errText; errODBC; errSQLServer)
819 ODBC GET OPTION (option; value)
880 ODBC IMPORT (sourceTable{; project{; *}})
822 ODBC LOAD RECORD {(numRecords)}
817 ODBC LOGIN ({dataEntry}{; userName{; password}})
872 ODBC LOGOUT
818 ODBC SET OPTION (option; value)
823 ODBC SET PARAMETER (object; paramType)
35 Old (field) → Expression
263 OLD RELATED MANY (field)
44 OLD RELATED ONE (field)
155 ON ERR CALL (errorMethod)
190 ON EVENT CALL (eventMethod{; processName})
189 ONE RECORD SELECT {(table)}
903 OPEN 4D PREFERENCES (selector)
312 OPEN DATA FILE (accessPath)
264 Open document (document{; fileType{; mode}}) → DocRef
309 Open external window (left; top; right; bottom; type; title; plugInArea) → Number
675 Open form window ({table; }formName{; type{; hPos{; vPos{; *}}}}) → WinRef
497 Open resource file (resFilename{; fileType}) → DocRef
673 OPEN WEB URL (url{; *})
153 Open window (left; top; right; bottom{; type{; title{; controlMenuBox}}})

{ → WinRef }
49 ORDER BY ({table}{; field{; > or <{; field2; > or <2; ...; fieldN; > or <N}{; *}}})
300 ORDER BY FORMULA (table{; expression{; > or <}}{; expression2; > or <2; ...;

expressionN; > or <N})
107 ORDER SUBRECORDS BY (subtable; subfield{; > or <}{; subfield2; > or <2; ...;

subfieldN; > or <N})
54 OUTPUT FORM ({table; }form{; userForm})
328 Outside call → Boolean

P

6 PAGE BREAK {(* | >)}
299 PAGE SETUP ({table; }form)
319 PAUSE PROCESS (process)
564 PICTURE LIBRARY LIST (picRefs; picNames)
457 PICTURE PROPERTIES (picture; width; height{; hOffset{; vOffset{; mode}}})
356 Picture size (picture) → Number
692 PICTURE TO BLOB (picture; pictureBlob; format)

4th Dimension Language Reference 1993

671 PICTURE TO GIF (pict; blobGIF)
681 PICTURE TYPE LIST (formatArray{; nameArray})
365 PLATFORM PROPERTIES (platform{; system{; machine{; language}}})
290 PLAY (objectName{; channel})
177 POP RECORD {(table)}
542 Pop up menu (contents{; default{; xCoord{; yCoord}}}) → Number
15 Position (find; string) → Number
466 POST CLICK (mouseX; mouseY{; process}{; *})
467 POST EVENT (what; message; when; mouseX; mouseY; modifiers{; process})
465 POST KEY (code{; modifiers{; process}})
249 PREVIOUS PAGE
110 PREVIOUS RECORD {(table)}
111 PREVIOUS SUBRECORD (subtable)
5 Print form ({table; }form{; area1{; area2}}){ → Number }
39 PRINT LABEL ({table}{; document{; * | >}})
785 PRINT OPTION VALUES (option; namesArray{; info1Array{; info2Array}})
71 PRINT RECORD ({table}{; }{* | >})
60 PRINT SELECTION ({table}{; }{* | >})
106 PRINT SETTINGS
789 PRINTERS LIST (namesArray{; altNamesArray{; modelsArray}})
275 Printing page → Number
672 Process aborted → Boolean
816 PROCESS HTML TAGS (inputData; outputData)
372 Process number (name{; *}) → Number
336 PROCESS PROPERTIES (process; procName; procState; procTime{; procVisible{;

uniqueID{; origin}}})
330 Process state (process) → Number
176 PUSH RECORD {(table)}

Q

771 QR BLOB TO REPORT (area; blob)
764 QR Count columns (area) → Longint
749 QR DELETE COLUMN (area; colNumber)
754 QR DELETE OFFSCREEN AREA (area)
791 QR EXECUTE COMMAND (area; command)
776 QR Find column (area; expression) → Longint
795 QR Get area property (area; property) → Longint
798 QR GET BORDERS (area; column; row; border; line{; color})
792 QR Get command status (area; command{; value}) → Longint
756 QR GET DESTINATION (area; type{; specifics})
773 QR Get document property (area; property) → Longint
747 QR Get drop column (area) → Longint
775 QR GET HEADER AND FOOTER (area; selector; leftTitle; centerTitle; rightTitle;

height{; picture{; pictAlignment}})

1994 4th Dimension Language Reference

751 QR Get HTML template (area) → Text
766 QR GET INFO COLUMN (area; colNum; title; object; hide; size; repeatedValue;

displayFormat)
769 QR Get info row (area; row) → Longint
755 QR Get report kind (area) → Longint
758 QR Get report table (area) → Longint
793 QR GET SELECTION (area; left; top{; right{; bottom}})
753 QR GET SORTS (area; aColumns{; aOrders})
760 QR Get text property (area; colNum; rowNum; property) → Longint
768 QR GET TOTALS DATA (area; colNum; breakNum; operator; text)
762 QR GET TOTALS SPACING (area; subtotal; value)
748 QR INSERT COLUMN (area; colNumber; object)
735 QR New offscreen area → Longint
790 QR ON COMMAND (area; methodName)
197 QR REPORT ({table; }document{; hierarchical{; wizard{; search{; *}}}})
770 QR REPORT TO BLOB (area; blob)
746 QR RUN (area)
796 QR SET AREA PROPERTY (area; property; value)
797 QR SET BORDERS (area; column; row; border; line{; color})
745 QR SET DESTINATION (area; type; specifics)
772 QR SET DOCUMENT PROPERTY (area; property; value)
774 QR SET HEADER AND FOOTER (area; selector; leftTitle; centerTitle; rightTitle;

height{; picture{; pictAlignment}})
750 QR SET HTML TEMPLATE (area; template)
765 QR SET INFO COLUMN (area; colNum; title; object; hide; size; repeatedValue;

displayFormat)
763 QR SET INFO ROW (area; row; hide)
738 QR SET REPORT KIND (area; type)
757 QR SET REPORT TABLE (area; table)
794 QR SET SELECTION (area; left; top; right; bottom)
752 QR SET SORTS (area; aColumns{; aOrders})
759 QR SET TEXT PROPERTY (area; colNum; rowNum; property; value)
767 QR SET TOTALS DATA (area; colNum; breakNum; operator | value)
761 QR SET TOTALS SPACING (area; subtotal; value)
277 QUERY ({table}{; queryArgument{; *}})
292 QUERY BY EXAMPLE ({table}{; }{*})
48 QUERY BY FORMULA ({table}{; }{queryFormula})
341 QUERY SELECTION ({table}{; queryArgument{; *}})
207 QUERY SELECTION BY FORMULA ({table}{; }{queryFormula})
108 QUERY SUBRECORDS (subtable; queryFormula)
644 QUERY WITH ARRAY (indexedField; array)
291 QUIT 4D {(time)}

4th Dimension Language Reference 1995

R

100 Random → Number
145 READ ONLY {(table | *)}
362 Read only state {(table)} → Boolean
678 READ PICTURE FILE (fileName; picture)
146 READ WRITE {(table | *)}
552 REAL TO BLOB (real; blob; realFormat{; offset | *})
172 RECEIVE BUFFER (receiveVar)
104 RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)
79 RECEIVE RECORD {(table)}
81 RECEIVE VARIABLE (variable)
243 Record number {(table)} → Number
76 Records in selection {(table)} → Number
195 Records in set (set) → Number
7 Records in subselection (subtable) → Number
83 Records in table {(table)} → Number
174 REDRAW (object)
382 REDRAW LIST (list)
456 REDRAW WINDOW {(window)}
351 REDUCE SELECTION ({table; }number)
648 REGISTER CLIENT (clientName{; period{; *}})
38 REJECT {(field)}
262 RELATE MANY (oneTable | Field)
340 RELATE MANY SELECTION (field)
42 RELATE ONE (manyTable | Field{; choiceField})
349 RELATE ONE SELECTION (manyTable; oneTable)
561 REMOVE FROM SET ({table; }set)
567 REMOVE PICTURE FROM LIBRARY (picRef | picName)
233 Replace string (source; oldString; newString{; howMany}) → String
163 Request (message{; defaultResponse{; OKButtonTitle{; CancelButtonTitle}}})

→ String
890 RESIZE FORM WINDOW (width; height)
695 RESOLVE ALIAS (aliasPath; targetPath)
394 RESOLVE POINTER (pointer; varName; tableNum; fieldNum)
500 RESOURCE LIST (resType; resIDs; resNames{; resFile})
499 RESOURCE TYPE LIST (resTypes{; resFile})
918 RESTORE
320 RESUME PROCESS (process)
712 Right click → Boolean
94 Round (round; places) → Number

1996 4th Dimension Language Reference

S

384 SAVE LIST (list; listName)
45 SAVE OLD RELATED ONE (field)
358 SAVE PICTURE TO FILE (document; picture)
53 SAVE RECORD {(table)}
43 SAVE RELATED ONE (field)
184 SAVE SET (set; document)
75 SAVE VARIABLES (document; variable{; variable2; ...; variableN})
857 SAX ADD PROCESSING INSTRUCTION (document; statement)
856 SAX ADD XML CDATA (document; data)
852 SAX ADD XML COMMENT (document; comment)
851 SAX ADD XML DOCTYPE (document; docType)
855 SAX ADD XML ELEMENT VALUE (document; data)
854 SAX CLOSE XML ELEMENT (document)
878 SAX GET XML CDATA (document; value)
874 SAX GET XML COMMENT (document; comment)
873 SAX GET XML DOCUMENT VALUES (document; encoding; version; standalone)
876 SAX GET XML ELEMENT (document; name; prefix; attrNames; attrValues)
877 SAX GET XML ELEMENT VALUE (document; value)
879 SAX GET XML ENTITY (document; name; value)
860 SAX Get XML node (document) → Longint
875 SAX GET XML PROCESSING INSTRUCTION (document; name; value)
853 SAX OPEN XML ELEMENT (document; tag{; attribName{; attribValue}}{; attribName2;

attribValue2; ...; attribNameN; attribValueN})
921 SAX OPEN XML ELEMENT ARRAYS (document; tag{; attribNamesArray{;

attribValuesArray}}{; attribNamesArray2; attribValuesArray2; ...;
attribNamesArrayN; attribValuesArrayN})

858 SAX SET XML OPTIONS (document; encoding{; standalone{; indentation}})
350 SCAN INDEX (field; number{; > or <})
438 SCREEN COORDINATES (left; top; right; bottom{; screen})
439 SCREEN DEPTH (depth; color{; screen})
188 Screen height {(*)} → Number
187 Screen width {(*)} → Number
906 SCROLL LINES ({*; }object{; position{; *}})
64 SEARCH BY INDEX
698 Secured Web connection → Boolean
905 Select document (directory; fileTypes; title; options{; selected}) → String
670 Select folder {(message)} → String
381 SELECT LIST ITEMS BY POSITION (list; itemPos{; positionsArray})
630 SELECT LIST ITEMS BY REFERENCE (list; itemRef{; refArray})
912 SELECT LISTBOX ROW ({*; }object; position{; action})
345 SELECT LOG FILE (logFile | *)
379 Selected list items (list{; itemsArray}{; *}) → Longint
246 Selected record number {(table)} → Number

4th Dimension Language Reference 1997

368 SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2;
array2; ...; fieldN | tableN; arrayN})

260 SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})

308 Self → Pointer
143 Semaphore (semaphore{; tickCount}) → Boolean
654 SEND HTML BLOB (blob; type{; noContext})
619 SEND HTML FILE (htmlFile)
677 SEND HTML TEXT (htmlText{; noContext})
815 SEND HTTP RAW DATA (data{; *})
659 SEND HTTP REDIRECT (url{; *})
103 SEND PACKET ({docRef; }packet)
78 SEND RECORD {(table)}
781 SEND SOAP FAULT (faultType; description)
80 SEND VARIABLE (variable)
244 Sequence number {(table)} → Number
316 SET ABOUT (itemText; method)
706 SET ALIGNMENT ({*; }object; alignment)
805 SET ALLOWED METHODS (methodsArray)
310 SET AUTOMATIC RELATIONS (one{; many})
606 SET BLOB SIZE (blob; size{; filler})
813 SET CGI EXECUTABLE (url1{; url2})
77 SET CHANNEL (port | operation{; settings | document})
237 SET CHOICE LIST ({*; }object; list)
271 SET COLOR ({*; }object; color{; altColor})
787 SET CURRENT PRINTER (printerName)
469 SET CURSOR {(cursor)}
642 SET DATABASE PARAMETER ({table; }selector; value)
392 SET DEFAULT CENTURY (century{; pivotYear})
904 SET DICTIONARY (dictionary)
531 SET DOCUMENT CREATOR (document; fileCreator)
482 SET DOCUMENT POSITION (docRef; offset{; anchor})
478 SET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;

modified on; modified at)
480 SET DOCUMENT SIZE (document; size)
530 SET DOCUMENT TYPE (document; fileType)
238 SET ENTERABLE ({*; }entryArea; enterable)
812 SET ENVIRONMENT VARIABLE (varName; varValue)
919 SET FIELD RELATION (manyTable | manyField; one; many)
602 SET FIELD TITLES (table | subtable; fieldTitles; fieldNumbers)
235 SET FILTER ({*; }object; entryFilter)
892 SET FORM HORIZONTAL RESIZING (resize{; minWidth{; maxWidth}})
891 SET FORM SIZE ({object; }horizontal; vertical{; *})
893 SET FORM VERTICAL RESIZING (resize{; minHeight{; maxHeight}})
236 SET FORMAT ({*; }object; displayFormat)
614 Set group properties (groupID; name; owner{; members}) → Number
639 SET HOME PAGE (homePage)

1998 4th Dimension Language Reference

634 SET HTML ROOT (pathnameHTML)
660 SET HTTP HEADER (header|fieldArray{; valueArray})
344 SET INDEX (field; index{; mode}{; *})
385 SET LIST ITEM (list; itemRef | *; newItemText; newItemRef{; sublist}{; expanded})
386 SET LIST ITEM PROPERTIES (list; itemRef | *; enterable; styles; icon{; color})
387 SET LIST PROPERTIES (list; appearance{; icon{; lineHeight{; doubleClick{;

multiSelections{; editable}}}}})
833 SET LISTBOX COLUMN WIDTH ({*; }object; width)
842 SET LISTBOX GRID COLOR ({*; }object; color; horizontal; vertical)
835 SET LISTBOX ROWS HEIGHT (*; object; height)
348 SET MENU ITEM (menu; menuItem; itemText{; process})
423 SET MENU ITEM KEY (menu; menuItem; itemKey{; process})
208 SET MENU ITEM MARK (menu; item; mark{; process})
425 SET MENU ITEM STYLE (menu; menuItem; itemStyle{; process})
503 SET PICTURE RESOURCE (resID; resData{; resFile})
521 SET PICTURE TO CLIPBOARD (picture)
566 SET PICTURE TO LIBRARY (picture; picRef; picName)
367 SET PLATFORM INTERFACE (interface)
845 SET PLUGIN ACCESS (plugIn; group)
709 SET PRINT MARKER (markNum; position{; *})
733 SET PRINT OPTION (option; value1{; value2})
364 SET PRINT PREVIEW (preview)
710 SET PRINTABLE MARGIN (left; top; right; bottom)
370 SET PROCESS VARIABLE (process; dstVar; expr{; dstVar2; expr2; ...; dstVarN; exprN})
396 SET QUERY DESTINATION (destinationType{; destinationObject})
395 SET QUERY LIMIT (limit)
623 SET REAL COMPARISON LEVEL (epsilon)
509 SET RESOURCE (resType; resID; resData{; resFile})
514 SET RESOURCE NAME (resType; resID; resName{; resFile})
516 SET RESOURCE PROPERTIES (resType; resID; resAttr{; resFile})
628 SET RGB COLORS ({*; }object; foregroundColor; backgroundColor{;

altBackgrndColor})
537 SET SCREEN DEPTH (depth{; color{; screen}})
507 SET STRING RESOURCE (resID; resData{; resFile})
601 SET TABLE TITLES (tableTitles; tableNumbers)
505 SET TEXT RESOURCE (resID; resData{; resFile})
523 SET TEXT TO CLIPBOARD (text)
268 SET TIMEOUT (seconds)
645 SET TIMER (tickCount)
612 Set user properties (userID; name; startup; password; nbLogin; lastLogin{;

memberships{; groupOwner}}) → Number
603 SET VISIBLE ({*; }object; visible)
843 SET SCROLLBAR VISIBLE ({*; }object; horizontal; vertical)
620 SET WEB DISPLAY LIMITS (numberRecords{; numberPages{; picRef}})
901 SET WEB SERVICE OPTION (option; value)
777 SET WEB SERVICE PARAMETER (name; value{; soapType})
622 SET WEB TIMEOUT (timeout)
444 SET WINDOW RECT (left; top; right; bottom{; window})

4th Dimension Language Reference 1999

213 SET WINDOW TITLE (title{; window})
883 SET XSLT PARAMETER (paramName; paramValue)
543 Shift down → Boolean
841 SHOW LISTBOX GRID ({*; }object; horizontal; vertical)
843 SHOW LISTBOX SCROLLBAR ({*; }object; horizontal; vertical)
431 SHOW MENU BAR
922 SHOW ON DISK (pathname{; *})
325 SHOW PROCESS (process)
433 SHOW TOOL BAR
435 SHOW WINDOW {(window)}
17 Sin (number) → Number
274 Size of array (array) → Number
782 SOAP DECLARATION (variable; type; input_output{; alias})
229 SORT ARRAY (array{; array2; ...; arrayN}{; > or <})
170 SORT BY INDEX
391 SORT LIST (list{; > or <})
916 SORT LISTBOX COLUMNS ({*; }object; colNum; order{; colNum2; order2; ...;

colNumN; orderN})
900 SPELL CHECKING
539 Square root (number) → Number
239 START TRANSACTION
617 START WEB SERVER
26 Std deviation (series) → Number
618 STOP WEB SERVER
10 String (expression{; format}) → String
511 STRING LIST TO ARRAY (resID; strings{; resFile})
489 Structure file → String
12 Substring (source; firstChar{; numChars}) → String
97 Subtotal (data{; pageBreak}) → Number
1 Sum (series) → Number
28 Sum squares (series) → Number
487 System folder {(type)} → String

T

252 Table (tableNum | aPtr) → Pointer | Number
256 Table name (tableNum | tablePtr) → String
19 Tan (number) → Number
486 Temporary folder → String
400 Test clipboard (dataType) → Number
476 Test path name (pathname) → Number
652 Test semaphore (semaphore) → Boolean
554 TEXT TO BLOB (text; blob; textFormat{; offset | *})
458 Tickcount → Number

2000 4th Dimension Language Reference

179 Time (timeString) → Time
180 Time string (seconds) → String
157 TRACE
398 Trigger level → Number
399 TRIGGER PROPERTIES (triggerLevel; dbEvent; tableNum; recordNum)
214 True → Boolean
95 Trunc (number; places) → Number
295 Type (fieldVar) → Number

U

82 Undefined (variable) → Boolean
120 UNION (set1; set2; resultSet)
212 UNLOAD RECORD {(table)}
649 UNREGISTER CLIENT
13 Uppercase (string) → String
205 USE ASCII MAP (map | *{; mapInOut})
332 USE NAMED SELECTION (name)
118 USE SET (set)
338 User in group (user; group) → Boolean
849 USERS TO BLOB (users)

V

638 Validate password (userID; password) → Boolean
240 VALIDATE TRANSACTION
532 VARIABLE TO BLOB (variable; blob{; offset | *})
635 VARIABLE TO VARIABLE (process; dstVar; srcVar{; dstVar2; srcVar2; ...; dstVarN;

srcVarN})
27 Variance (series) → Number
495 Version type → Long Integer
472 VOLUME ATTRIBUTES (volume; size; used; free)
471 VOLUME LIST (volumes)

W

658 WEB CACHE STATISTICS (pages; hits; usage)
657 Web Context → Boolean
464 Win to Mac (text) → String
445 Window kind {(window)}
442 WINDOW LIST (windows{; *})
446 Window process {(window)} → Number

4th Dimension Language Reference 2001

563 Windows Alt down → Boolean
562 Windows Ctrl down → Boolean
680 WRITE PICTURE FILE (fileName; picture{; format})

Y

25 Year of (date) → Number

2002 4th Dimension Language Reference

Constants

4th Dimension Language Reference 2003

2004 4th Dimension Language Reference

4D Environment
Related command(s): Application type, Get 4D folder, Version type.

Constant Type Value

4D Client Long Integer 4
4D Client Database Folder Long Integer 3
4D First Long Integer 6
4D Runtime Interpreted Long Integer 2
4D Runtime Single User Long Integer 3
4D Runtime Volume License Long Integer 1
4D Server Long Integer 5
4th Dimension Long Integer 0
Active 4D Folder Long Integer 0
Demo Version Long Integer 1
Extras Folder Long Integer 2
Full Version Long Integer 0
Licenses Folder Long Integer 1

4th Dimension Language Reference 2005

ASCII Codes
Related command(s): Char, ON EVENT CALL.

Constant Type Value

ACK ASCII code Long Integer 6
At sign Long Integer 64
Backspace Long Integer 8
BEL ASCII code Long Integer 7
BS ASCII code Long Integer 8
CAN ASCII code Long Integer 24
Carriage return Long Integer 13
CR ASCII code Long Integer 13
DC1 ASCII code Long Integer 17
DC2 ASCII code Long Integer 18
DC3 ASCII code Long Integer 19
DC4 ASCII code Long Integer 20
DEL ASCII code Long Integer 127
DLE ASCII code Long Integer 16
Double quote Long Integer 34
EM ASCII code Long Integer 25
ENQ ASCII code Long Integer 5
Enter Long Integer 3
EOT ASCII code Long Integer 4
ESC ASCII code Long Integer 27
Escape Long Integer 27
ETB ASCII code Long Integer 23
ETX ASCII code Long Integer 3
FF ASCII code Long Integer 12
FS ASCII code Long Integer 28
GS ASCII code Long Integer 29
HT ASCII code Long Integer 9
LF ASCII code Long Integer 10
Line feed Long Integer 10
NAK ASCII code Long Integer 21
NBSP Long Integer 202
NUL ASCII code Long Integer 0
Period Long Integer 46
Quote Long Integer 39
RS ASCII code Long Integer 30
SI ASCII code Long Integer 15

2006 4th Dimension Language Reference

ASCII Codes (continued)
Constant Type Value

SO ASCII code Long Integer 14
SOH ASCII code Long Integer 1
SP ASCII code Long Integer 32
Space Long Integer 32
STX ASCII code Long Integer 2
SUB ASCII code Long Integer 26
SYN ASCII code Long Integer 22
Tab Long Integer 9
US ASCII code Long Integer 31
VT ASCII code Long Integer 11

4th Dimension Language Reference 2007

Backup and Restore
Related command(s): GET BACKUP INFORMATION, GET RESTORE INFORMATION.

Constant Type Value

Last Backup Date Long Integer 0
Last Backup Status Long Integer 2
Last Restore Date Long Integer 0
Last Restore Status Long Integer 2
Next Backup Date Long Integer 4

2008 4th Dimension Language Reference

BLOB
Related command(s): BLOB PROPERTIES, BLOB to integer, BLOB to longint, BLOB to real,
BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL TO BLOB, TEXT TO BLOB.

Constant Type Value

C string Long Integer 0
Compact compression mode Long Integer 1
Extended real format Long Integer 1
Fast compression mode Long Integer 2
Is not compressed Long Integer 0
Macintosh byte ordering Long Integer 1
Macintosh double real format Long Integer 2
Native byte ordering Long Integer 0
Native real format Long Integer 0
Pascal string Long Integer 1
PC byte ordering Long Integer 2
PC double real format Long Integer 3
Text with length Long Integer 2
Text without length Long Integer 3

4th Dimension Language Reference 2009

Clipboard
Related command(s): APPEND TO CLIPBOARD, GET CLIPBOARD, Test clipboard.

Constant Type Value

No such data in clipboard Long Integer -102
Picture data String PICT
Text data String TEXT

2010 4th Dimension Language Reference

Colors
Related command(s): SET COLOR.

Constant Type Value

Black Long Integer 15
Blue Long Integer 6
Brown Long Integer 13
Dark Blue Long Integer 5
Dark Brown Long Integer 10
Dark Green Long Integer 9
Dark Grey Long Integer 11
Green Long Integer 8
Grey Long Integer 14
Light Blue Long Integer 7
Light Grey Long Integer 12
Orange Long Integer 2
Purple Long Integer 4
Red Long Integer 3
White Long Integer 0
Yellow Long Integer 1

4th Dimension Language Reference 2011

Communications
Related command(s): SET CHANNEL.

Constant Type Value

Data bits 5 Long Integer 0
Data bits 6 Long Integer 2048
Data bits 7 Long Integer 1024
Data bits 8 Long Integer 3072
MacOS Printer Port Long Integer 0
MacOS Serial Port Long Integer 1
Parity Even Long Integer 12288
Parity None Long Integer 0
Parity Odd Long Integer 4096
Protocol DTR Long Integer 30
Protocol None Long Integer 0
Protocol XONXOFF Long Integer 20
Speed 115200 Long Integer 1022
Speed 1200 Long Integer 94
Speed 1800 Long Integer 62
Speed 19200 Long Integer 4
Speed 230400 Long Integer 1021
Speed 2400 Long Integer 46
Speed 300 Long Integer 380
Speed 3600 Long Integer 30
Speed 4800 Long Integer 22
Speed 57600 Long Integer 0
Speed 600 Long Integer 189
Speed 7200 Long Integer 14
Speed 9600 Long Integer 10
Stop bits One Long Integer 16384
Stop bits One and a half Long Integer -32768
Stop bits Two Long Integer -16384

2012 4th Dimension Language Reference

Database Engine
Related command(s): Record number.

Constant Type Value

New record Long Integer -3
No current record Long Integer -1

4th Dimension Language Reference 2013

Database Events
Related command(s): Database event, TRIGGER PROPERTIES.

Constant Type Value

On Deleting Record Event Long Integer 3
On Loading Record Event Long Integer 4
On Saving Existing Record Event Long Integer 2
On Saving New Record Event Long Integer 1

2014 4th Dimension Language Reference

Database Parameters
Related command(s): Get database parameter, SET DATABASE PARAMETER.

Constant Type Value

4D Client Scheduler Long Integer 12
4D Client Timeout Long Integer 14
4D Server Log Recording Long Integer 28
4D Server Scheduler Long Integer 11
4D Server Timeout Long Integer 13
4th Dimension Scheduler Long Integer 10
Cache writing mode Long Integer 26
Character set Long Integer 17
Client Character set Long Integer 24
Client IP Address to listen Long Integer 23
Client Max Concurrent Web Proc Long Integer 25
Client Max Web requests size Long Integer 21
Client Maximum Web Process Long Integer 20
Client Minimum Web Process Long Integer 19
Client Port ID Long Integer 22
Client Web Log Recording Long Integer 30
Database Cache Size Long Integer 9
Debug Log Recording Long Integer 34
Index Compacting Long Integer 4
IP Address to listen Long Integer 16
Max Concurrent Web Processes Long Integer 18
Maximum Web Process Long Integer 7
Maximum Web requests size Long Integer 27
Minimum Web Process Long Integer 6
Port ID Long Integer 15
Real Display Precision Long Integer 32
Seq Access Optimization Long Integer 2
Seq Distinct Values Ratio Long Integer 3
Seq Order Ratio Long Integer 1
Seq Query Select Ratio Long Integer 5
Table Sequence Number Long Integer 31
Web Conversion Mode Long Integer 8
Web Log Recording Long Integer 29

4th Dimension Language Reference 2015

Date Display Formats
Related command(s): Get format, SET FORMAT, String.

Constant Type Value

Abbr Month Day Long Integer 6
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
MM DD YYYY Forced Long Integer 7
Month Day Year Long Integer 5
Short Long Integer 1

2016 4th Dimension Language Reference

Days and Months
Related command(s): Day number, Month of.

Constant Type Value

April Long Integer 4
August Long Integer 8
December Long Integer 12
February Long Integer 2
Friday Long Integer 6
January Long Integer 1
July Long Integer 7
June Long Integer 6
March Long Integer 3
May Long Integer 5
Monday Long Integer 2
November Long Integer 11
October Long Integer 10
Saturday Long Integer 7
September Long Integer 9
Sunday Long Integer 1
Thursday Long Integer 5
Tuesday Long Integer 3
Wednesday Long Integer 4

4th Dimension Language Reference 2017

Dictionaries
Related command(s): SET DICTIONARY.

Constant Type Value

English Dictionary Long Integer 69632
French Dictionary Long Integer 262144
German Dictionary Long Integer 131584
Spanish Dictionary Long Integer 196608

2018 4th Dimension Language Reference

Euro currencies
Related command(s): Euro converter.

Constant Type Value

Austrian Schilling String ATS
Belgian Franc String BEF
Deutschemark String DEM
Euro String EUR
Finnish Markka String FIM
French Franc String FRF
Greek Drachma String GRD
Irish Pound String IEP
Italian Lira String ITL
Luxembourg Franc String LUF
Netherlands Guilder String NLG
Portuguese Escudo String PTE
Spanish Peseta String ESP

4th Dimension Language Reference 2019

Events (Modifiers)
Related command(s): POST EVENT, POST KEY.

Constant Type Value

Activate window bit Long Integer 0
Activate window mask Long Integer 1
Caps Lock key bit Long Integer 10
Caps Lock key mask Long Integer 1024
Command key bit Long Integer 8
Command key mask Long Integer 256
Control key bit Long Integer 12
Control key mask Long Integer 4096
Mouse button bit Long Integer 7
Mouse button mask Long Integer 128
Option key bit Long Integer 11
Option key mask Long Integer 2048
Right control key bit Long Integer 15
Right control key mask Long Integer 32768
Right option key bit Long Integer 14
Right option key mask Long Integer 16384
Right shift key bit Long Integer 13
Right shift key mask Long Integer 8192
Shift key bit Long Integer 9
Shift key mask Long Integer 512

2020 4th Dimension Language Reference

Events (What)
Related command(s): POST EVENT.

Constant Type Value

Activate event Long Integer 8
Auto key event Long Integer 5
Disk event Long Integer 7
Key down event Long Integer 3
Key up event Long Integer 4
Mouse down event Long Integer 1
Mouse up event Long Integer 2
Null event Long Integer 0
Operating system event Long Integer 15
Update event Long Integer 6

4th Dimension Language Reference 2021

Expressions
Related command(s): RECEIVE BUFFER, RECEIVE PACKET.

Constant Type Value

MAXINT Long Integer 32767
MAXLONG Long Integer 2147483647
MAXTEXTLEN Long Integer 32000

2022 4th Dimension Language Reference

External data source
Related command(s): ODBC GET OPTION, ODBC LOAD RECORD, ODBC SET OPTION,
ODBC SET PARAMETER.

Constant Type Value

ODBC All Records Long Integer -1
ODBC Asynchronous Long Integer 1
ODBC Connection Timeout Long Integer 5
ODBC Max Data Length Long Integer 3
ODBC Max Rows Long Integer 2
ODBC Param In Long Integer 1
ODBC Param In Out Long Integer 2
ODBC Param Out Long Integer 4
ODBC Query Timeout Long Integer 4

4th Dimension Language Reference 2023

Field and Variable Types
Related command(s): GET FIELD PROPERTIES, SOAP DECLARATION, Type.

Constant Type Value

Array 2D Long Integer 13
Boolean array Long Integer 22
Date array Long Integer 17
Integer array Long Integer 15
Is Alpha Field Long Integer 0
Is BLOB Long Integer 30
Is Boolean Long Integer 6
Is Date Long Integer 4
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Picture Long Integer 3
Is Pointer Long Integer 23
Is Real Long Integer 1
Is String Var Long Integer 24
Is Subtable Long Integer 7
Is Text Long Integer 2
Is Time Long Integer 11
Is Undefined Long Integer 5
LongInt array Long Integer 16
Picture array Long Integer 19
Pointer array Long Integer 20
Real array Long Integer 14
String array Long Integer 21
Text array Long Integer 18

2024 4th Dimension Language Reference

Find window
Related command(s): Find window.

Constant Type Value

In contents Long Integer 3
In drag Long Integer 4
In go away Long Integer 6
In grow Long Integer 5
In menu bar Long Integer 1
In system window Long Integer 2
In zoom box Long Integer 8

4th Dimension Language Reference 2025

Font Styles
Related command(s): FONT STYLE, Get menu item style, SET LIST ITEM PROPERTIES, SET
MENU ITEM STYLE.

Constant Type Value

Bold Long Integer 1
Condensed Long Integer 32
Extended Long Integer 64
Italic Long Integer 2
Outline Long Integer 8
Plain Long Integer 0
Shadow Long Integer 16
Underline Long Integer 4

2026 4th Dimension Language Reference

Form area
Related command(s): Get print marker, Print form, SET PRINT MARKER.

Constant Type Value

Form Break0 Long Integer 300
Form Break1 Long Integer 301
Form Break2 Long Integer 302
Form Break3 Long Integer 303
Form Break4 Long Integer 304
Form Break5 Long Integer 305
Form Break6 Long Integer 306
Form Break7 Long Integer 307
Form Break8 Long Integer 308
Form Break9 Long Integer 309
Form Detail Long Integer 0
Form Footer Long Integer 100
Form Header Long Integer 200
Form Header1 Long Integer 201
Form Header10 Long Integer 210
Form Header2 Long Integer 202
Form Header3 Long Integer 203
Form Header4 Long Integer 204
Form Header5 Long Integer 205
Form Header6 Long Integer 206
Form Header7 Long Integer 207
Form Header8 Long Integer 208
Form Header9 Long Integer 209

4th Dimension Language Reference 2027

Form Events
Related command(s): Form event.

Constant Type Value

On Activate Long Integer 11
On After Edit Long Integer 45
On After Keystroke Long Integer 28
On After Sort Long Integer 30
On Arrow Click Long Integer 38
On Before Data Entry Long Integer 41
On Before Keystroke Long Integer 17
On Clicked Long Integer 4
On Close Box Long Integer 22
On Close Detail Long Integer 26
On Collapse Long Integer 44
On Column Moved Long Integer 32
On Column Resize Long Integer 33
On Data Change Long Integer 20
On Deactivate Long Integer 12
On Display Detail Long Integer 8
On Double Clicked Long Integer 13
On Drag Over Long Integer 21
On Drop Long Integer 16
On Expand Long Integer 43
On Getting Focus Long Integer 15
On Header Long Integer 5
On Header Click Long Integer 42
On Load Long Integer 1
On Load Record Long Integer 40
On Long Click Long Integer 39
On Losing Focus Long Integer 14
On Menu Selected Long Integer 18
On Mouse Enter Long Integer 35
On Mouse Leave Long Integer 36
On Mouse Move Long Integer 37
On Open Detail Long Integer 25
On Outside Call Long Integer 10
On Plug in Area Long Integer 19
On Printing Break Long Integer 6
On Printing Detail Long Integer 23

2028 4th Dimension Language Reference

Form Events (continued)
Constant Type Value

On Printing Footer Long Integer 7
On Resize Long Integer 29
On Row Moved Long Integer 34
On Selection Change Long Integer 31
On Timer Long Integer 27
On Unload Long Integer 24
On Validate Long Integer 3

4th Dimension Language Reference 2029

Form options
Related command(s): DISPLAY SELECTION, MODIFY SELECTION.

Constant Type Value

Multiple Selection Long Integer 2
No Selection Long Integer 0
Single Selection Long Integer 1

2030 4th Dimension Language Reference

Function Keys
Related command(s): ON EVENT CALL.

Constant Type Value

Backspace Key Long Integer 8
Down Arrow Key Long Integer 31
End Key Long Integer 4
Enter Key Long Integer 3
Escape Key Long Integer 27
F1 Key Long Integer -122
F10 Key Long Integer -109
F11 Key Long Integer -103
F12 Key Long Integer -111
F13 Key Long Integer -105
F14 Key Long Integer -107
F15 Key Long Integer -113
F2 Key Long Integer -120
F3 Key Long Integer -99
F4 Key Long Integer -118
F5 Key Long Integer -96
F6 Key Long Integer -97
F7 Key Long Integer -98
F8 Key Long Integer -100
F9 Key Long Integer -101
Help Key Long Integer 5
Home Key Long Integer 1
Left Arrow Key Long Integer 28
Page Down Key Long Integer 12
Page Up Key Long Integer 11
Return Key Long Integer 13
Right Arrow Key Long Integer 29
Tab Key Long Integer 9
Up Arrow Key Long Integer 30

4th Dimension Language Reference 2031

Hierarchical Lists
Related command(s): GET LIST PROPERTIES, SET LIST PROPERTIES.

Constant Type Value

Ala Macintosh Long Integer 1
Ala Windows Long Integer 2
Macintosh node Long Integer 860
Use PicRef Long Integer 131072
Use PICT resource Long Integer 65536
Windows node Long Integer 138

2032 4th Dimension Language Reference

Is license available
Related command(s): Get plugin access, GET PLUGIN LIST, Is license available, SET PLUGIN
ACCESS.

Constant Type Value

4D Client SOAP License Long Integer 808465465
4D Client Web License Long Integer 808465209
4D Draw License Long Integer 808464694
4D for ADO License Long Integer 808465714
4D for MySQL License Long Integer 808465712
4D for OCI License Long Integer 808465208
4D for PostgreSQL License Long Integer 808465713
4D for Sybase License Long Integer 808465715
4D ODBC Pro License Long Integer 808464946
4D SOAP License Long Integer 808465464
4D View License Long Integer 808465207
4D Web License Long Integer 808464945
4D Write License Long Integer 808464697

4th Dimension Language Reference 2033

ISO Latin Character Entities
Constant Type Value

ISO L1 a acute String á
ISO L1 a circumflex String â
ISO L1 a grave String à
ISO L1 a ring String å
ISO L1 a tilde String ã
ISO L1 a umlaut String ä
ISO L1 ae ligature String æ
ISO L1 Ampersand String &
ISO L1 c cedilla String ç
ISO L1 Cap A acute String Á
ISO L1 Cap A circumflex String Â
ISO L1 Cap A grave String À
ISO L1 Cap A ring String Å
ISO L1 Cap A tilde String Ã
ISO L1 Cap A umlaut String Ä
ISO L1 Cap AE ligature String &AELig;
ISO L1 Cap C cedilla String Ç
ISO L1 Cap E acute String É
ISO L1 Cap E circumflex String Ê
ISO L1 Cap E grave String È
ISO L1 Cap E umlaut String Ë
ISO L1 Cap Eth Icelandic String Ð
ISO L1 Cap I acute String Í
ISO L1 Cap I circumflex String Î
ISO L1 Cap I grave String Ì
ISO L1 Cap I umlaut String Ï
ISO L1 Cap N tilde String Ñ
ISO L1 Cap O acute String Ó
ISO L1 Cap O circumflex String Ô
ISO L1 Cap O grave String Ò
ISO L1 Cap O slash String Ø
ISO L1 Cap O tilde String Õ
ISO L1 Cap O umlaut String Ö
ISO L1 Cap THORN Icelandic String Þ
ISO L1 Cap U acute String Ú
ISO L1 Cap U circumflex String Û
ISO L1 Cap U grave String Ù
ISO L1 Cap U umlaut String Ü
ISO L1 Cap Y acute String Ý

2034 4th Dimension Language Reference

ISO Latin Character Entities (continued)
Constant Type Value

ISO L1 Copyright String ©
ISO L1 e acute String é
ISO L1 e circumflex String ê
ISO L1 e grave String è
ISO L1 e umlaut String ë
ISO L1 eth Icelandic String ð
ISO L1 Greater than String >
ISO L1 i acute String í
ISO L1 i circumflex String î
ISO L1 i grave String ì
ISO L1 i umlaut String ï
ISO L1 Less than String <
ISO L1 n tilde String ñ
ISO L1 o acute String ó
ISO L1 o circumflex String ô
ISO L1 o grave String ò
ISO L1 o slash String ø
ISO L1 o tilde String õ
ISO L1 o umlaut String ö
ISO L1 Quotation mark String "
ISO L1 Registered String ®
ISO L1 sharp s German String ß
ISO L1 thorn Icelandic String þ
ISO L1 u acute String ú
ISO L1 u circumflex String û
ISO L1 u grave String ù
ISO L1 u umlaut String ü
ISO L1 y acute String ý
ISO L1 y umlaut String ÿ

4th Dimension Language Reference 2035

List box
Related command(s): Get listbox information, SELECT LISTBOX ROW.

Constant Type Value

Add to listbox selection Long Integer 1
Display listbox header Long Integer 0
Display listbox hor scrollbar Long Integer 2
Display listbox ver scrollbar Long Integer 4
Listbox header height Long Integer 1
Listbox hor scrollbar height Long Integer 3
Listbox ver scrollbar width Long Integer 5
Position listbox hor scrollbar Long Integer 6
Position listbox ver scrollbar Long Integer 7
Remove from listbox selection Long Integer 2
Replace listbox selection Long Integer 0

2036 4th Dimension Language Reference

Math
Related command(s): Arctan, Cos, Sin, Tan.

Constant Type Value

Degree Real 0.0174532925199432958
e number Real 2.71828182845904524
Pi Real 3.141592653589793239
Radian Real 57.29577951308232088

4th Dimension Language Reference 2037

Object alignment
Related command(s): Get alignment, SET ALIGNMENT.

Constant Type Value

Align default Long Integer 1
Align left Long Integer 2
Align right Long Integer 4
Center Long Integer 3

2038 4th Dimension Language Reference

Open form window
Related command(s): Open form window.

Constant Type Value

At the Bottom Long Integer 393216
At the Top Long Integer 327680
Horizontally Centered Long Integer 65536
Modal dialog box Long Integer 1
Movable dialog box Long Integer 5
On the Left Long Integer 131072
On the Right Long Integer 196608
Palette window Long Integer 1984
Plain window Long Integer 8
Pop up form window Long Integer 32
Sheet form window Long Integer 33
Vertically Centered Long Integer 262144

4th Dimension Language Reference 2039

Open window
Related command(s): Open external window, Open window.

Constant Type Value

Alternate dialog box Long Integer 3
Has grow box Long Integer 4
Has highlight Long Integer 1
Has window title Long Integer 2
Has zoom box Long Integer 8
Modal dialog box Long Integer 1
Movable dialog box Long Integer 5
Palette window Long Integer 1984
Plain dialog box Long Integer 2
Plain fixed size window Long Integer 4
Plain no zoom box window Long Integer 0
Plain window Long Integer 8
Pop up window Long Integer 32
Resizable sheet window Long Integer 34
Round corner window Long Integer 16
Sheet window Long Integer 33

2040 4th Dimension Language Reference

Picture Compression
Related command(s): COMPRESS PICTURE, COMPRESS PICTURE FILE, LOAD COMPRESS
PICTURE FROM FILE.

Constant Type Value

QT Animation compressor String rle
QT Compact video compressor String cdvc
QT Graphics compressor String smc
QT Photo compressor String jpeg
QT Raw compressor String raw
QT Video compressor String rpza

4th Dimension Language Reference 2041

Picture Display Formats
Related command(s): CREATE THUMBNAIL, Get format, SET FORMAT.

Constant Type Value

On Background Long Integer 3
Replicated Long Integer 7
Scaled to Fit Long Integer 2
Scaled to fit prop centered Long Integer 6
Scaled to fit proportional Long Integer 5
Truncated Centered Long Integer 1
Truncated non Centered Long Integer 4

2042 4th Dimension Language Reference

Platform Interface
Related command(s): Get platform interface, SET PLATFORM INTERFACE.

Constant Type Value

Automatic Platform Long Integer -1
Mac OS 7 Long Integer 0
Mac OS 9 Long Integer 3
Mac Theme Long Integer 4
Windows 3.11, NT 3.51 Long Integer 1
Windows 9x Long Integer 2

4th Dimension Language Reference 2043

Platform Properties
Related command(s): PLATFORM PROPERTIES.

Constant Type Value

INTEL 386 Long Integer 386
INTEL 486 Long Integer 486
Macintosh 68K Long Integer 1
Other G3 and above Long Integer 406
Pentium Long Integer 586
Power Macintosh Long Integer 2
PowerPC 601 Long Integer 601
PowerPC 603 Long Integer 603
PowerPC 604 Long Integer 604
PowerPC G3 Long Integer 510
Windows Long Integer 3

2044 4th Dimension Language Reference

Print options
Related command(s): GET PRINT OPTION, PRINT OPTION VALUES, SET PRINT OPTION.

Constant Type Value

Color option Long Integer 8
Destination option Long Integer 9
Double sided option Long Integer 11
Mac spool file format option Long Integer 13
Number of copies option Long Integer 4
Orientation option Long Integer 2
Paper option Long Integer 1
Paper source option Long Integer 5
Scale option Long Integer 3
Spooler document name option Long Integer 12

4th Dimension Language Reference 2045

Process state
Related command(s): PROCESS PROPERTIES, Process state.

Constant Type Value

Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

2046 4th Dimension Language Reference

Process Type
Related command(s): PROCESS PROPERTIES.

Constant Type Value

Apple Event Manager Long Integer -7
Cache Manager Long Integer -4
Created from Menu Command Long Integer 2
Created from Programming Long Integer 1
Created from User Mode Long Integer 3
Design Process Long Integer -2
Event Manager Long Integer -8
External Task Long Integer -9
Indexing Process Long Integer -5
None Long Integer 0
Other 4D Process Long Integer -10
Other User Process Long Integer 4
Serial Port Manager Long Integer -6
User or Custom Menus Process Long Integer -1
Web Process with Context Long Integer -11
Web Process with no Context Long Integer -3

4th Dimension Language Reference 2047

QR Area Properties
Related command(s): QR Get area property, QR SET AREA PROPERTY.

Constant Type Value

qr view color toolbar Long Integer 5
qr view column toolbar Long Integer 6
qr view contextual menus Long Integer 7
qr view menubar Long Integer 1
qr view operators toolbar Long Integer 4
qr view standard toolbar Long Integer 2
qr view style toolbar Long Integer 3

2048 4th Dimension Language Reference

QR Borders
Related command(s): QR GET BORDERS.

Constant Type Value

qr bottom border Long Integer 8
qr inside horizontal border Long Integer 32
qr inside vertical border Long Integer 16
qr left border Long Integer 1
qr right border Long Integer 4
qr top border Long Integer 2

4th Dimension Language Reference 2049

QR Commands
Related command(s): QR EXECUTE COMMAND, QR Get command status.

Constant Type Value

qr cmd 4D View destination Long Integer 2503
qr cmd add column Long Integer 2608
qr cmd alt back color palette Long Integer 1004
qr cmd automatic width Long Integer 2605
qr cmd average Long Integer 507
qr cmd back color palette Long Integer 1003
qr cmd back colors toolbar Long Integer 2052
qr cmd bold Long Integer 500
qr cmd borders Long Integer 2609
qr cmd center justified Long Integer 504
qr cmd columns toolbar Long Integer 2054
qr cmd count Long Integer 510
qr cmd default justified Long Integer 512
qr cmd delete column Long Integer 2601
qr cmd disk file destination Long Integer 2501
qr cmd edit column Long Integer 2603
qr cmd font color palette Long Integer 1002
qr cmd font dropdown Long Integer 1000
qr cmd format Long Integer 2606
qr cmd generate Long Integer 2008
qr cmd graph destination Long Integer 2502
qr cmd header and footer Long Integer 2005
qr cmd hide column Long Integer 2602
qr cmd hide line Long Integer 2607
qr cmd HTML file destination Long Integer 2504
qr cmd insert column Long Integer 2600
qr cmd italic Long Integer 501
qr cmd left justified Long Integer 503
qr cmd max Long Integer 509
qr cmd min Long Integer 508
qr cmd move left Long Integer 3002
qr cmd move right Long Integer 3003
qr cmd new Long Integer 2000
qr cmd open Long Integer 2001
qr cmd operators toolbar Long Integer 2051
qr cmd page setup Long Integer 2006

2050 4th Dimension Language Reference

QR Commands (continued)
Constant Type Value

qr cmd plain Long Integer 511
qr cmd presentation Long Integer 2611
qr cmd print preview Long Integer 2007
qr cmd printer destination Long Integer 2500
qr cmd repeated values Long Integer 2604
qr cmd revert to save Long Integer 2004
qr cmd right justified Long Integer 505
qr cmd save Long Integer 2002
qr cmd save as Long Integer 2003
qr cmd standard deviation Long Integer 513
qr cmd standard toolbar Long Integer 2053
qr cmd style toolbar Long Integer 2050
qr cmd sum Long Integer 506
qr cmd totals spacing Long Integer 2610
qr cmd underline Long Integer 502

4th Dimension Language Reference 2051

QR Document Properties
Related command(s): QR Get document property, QR SET DOCUMENT PROPERTY.

Constant Type Value

qr printing dialog Long Integer 1
qr unit Long Integer 2

2052 4th Dimension Language Reference

QR Operators
Related command(s): QR GET TOTALS DATA, QR SET TOTALS DATA.

Constant Type Value

qr average Long Integer 2
qr count Long Integer 16
qr max Long Integer 8
qr min Long Integer 4
qr standard deviation Long Integer 32
qr sum Long Integer 1

4th Dimension Language Reference 2053

QR Output Destination
Related command(s): QR GET DESTINATION, QR SET DESTINATION.

Constant Type Value

qr 4D Chart area Long Integer 4
qr 4D View area Long Integer 3
qr HTML file Long Integer 5
qr printer Long Integer 1
qr text file Long Integer 2

2054 4th Dimension Language Reference

QR Report Types
Related command(s): QR Get report kind, QR SET REPORT KIND.

Constant Type Value

qr cross report Long Integer 2
qr list report Long Integer 1

4th Dimension Language Reference 2055

QR Rows for Properties
Related command(s): QR GET BORDERS, QR Get info row, QR SET BORDERS, QR SET INFO
ROW, QR SET TEXT PROPERTY.

Constant Type Value

qr detail Long Integer -2
qr footer Long Integer -5
qr grand total Long Integer -3
qr header Long Integer -4
qr title Long Integer -1

2056 4th Dimension Language Reference

QR Text Properties
Related command(s): QR Get text property, QR SET TEXT PROPERTY.

Constant Type Value

qr alternate background color Long Integer 9
qr background color Long Integer 8
qr bold Long Integer 3
qr font Long Integer 1
qr font size Long Integer 2
qr italic Long Integer 4
qr justification Long Integer 7
qr text color Long Integer 6
qr underline Long Integer 5

4th Dimension Language Reference 2057

Query Destinations
Related command(s): SET QUERY DESTINATION.

Constant Type Value

Into current selection Long Integer 0
Into named selection Long Integer 2
Into set Long Integer 1
Into variable Long Integer 3

2058 4th Dimension Language Reference

Relations
Related command(s): GET FIELD RELATION, SET FIELD RELATION.

Constant Type Value

Automatic Long Integer 3
Do not modify Long Integer 0
Manual Long Integer 2
No relation Long Integer 0
Structure configuration Long Integer 1

4th Dimension Language Reference 2059

Resources Properties
Related command(s): Get resource properties, SET RESOURCE PROPERTIES.

Constant Type Value

Changed resource bit Long Integer 1
Changed resource mask Long Integer 2
Locked resource bit Long Integer 4
Locked resource mask Long Integer 16
Preloaded resource bit Long Integer 2
Preloaded resource mask Long Integer 4
Protected resource bit Long Integer 3
Protected resource mask Long Integer 8
Purgeable resource bit Long Integer 5
Purgeable resource mask Long Integer 32
System heap resource bit Long Integer 6
System heap resource mask Long Integer 64

2060 4th Dimension Language Reference

SCREEN DEPTH
Related command(s): SCREEN DEPTH, SET SCREEN DEPTH.

Constant Type Value

Black and white Long Integer 0
Four colors Long Integer 2
Is color Long Integer 1
Is gray scale Long Integer 0
Millions of colors 24 bit Long Integer 24
Millions of colors 32 bit Long Integer 32
Sixteen colors Long Integer 4
Thousands of colors Long Integer 16
Two fifty six colors Long Integer 8

4th Dimension Language Reference 2061

SET RGB COLORS
Related command(s): SET RGB COLORS.

Constant Type Value

Default background color Long Integer -2
Default dark shadow color Long Integer -3
Default foreground color Long Integer -1
Default light shadow color Long Integer -4
Disable highlight item color Long Integer -11
Highlight menu background color Long Integer -9
Highlight menu text color Long Integer -10
Highlight text background color Long Integer -7
Highlight text color Long Integer -8

2062 4th Dimension Language Reference

Standard System Signatures
The Standard System Signatures are 4-character strings designated standard file types,
resource types, standard data types stored into the Clipboard and so on.

Related command(s): APPEND TO CLIPBOARD, GET CLIPBOARD, Get resource properties,
SET RESOURCE PROPERTIES, Test clipboard.

Constant Type Value

Picture Document String PICT
Text Document String TEXT
Windows MIDI Document String MID
Windows Sound Document String WAV
Windows Video Document String AVI

4th Dimension Language Reference 2063

System Documents
Related command(s): Open document, Select document, Test path name.

Constant Type Value

Alias selection Long Integer 8
Get Pathname Long Integer 3
Is a directory Long Integer 0
Is a document Long Integer 1
Multiple files Long Integer 1
Package open Long Integer 2
Package selection Long Integer 4
Read and Write Long Integer 0
Read Mode Long Integer 2
Use sheet window Long Integer 16
Write Mode Long Integer 1

2064 4th Dimension Language Reference

System Folder
Related command(s): System folder.

Constant Type Value

Apple or Start Menu_All Long Integer 8
Apple or Start Menu_User Long Integer 9
Desktop Win Long Integer 15
Favorites Win Long Integer 14
Fonts Long Integer 1
Mac Control Panels Long Integer 11
Mac Extensions Long Integer 10
Mac Shutdown Items_All Long Integer 6
Mac Shutdown Items_User Long Integer 7
Preferences or Profiles_All Long Integer 2
Preferences or Profiles_User Long Integer 3
Program Files Win Long Integer 16
Startup Items_All Long Integer 4
Startup Items_User Long Integer 5
System Long Integer 0
System Win Long Integer 12
System32 Win Long Integer 13

4th Dimension Language Reference 2065

TCP Port Numbers
Related command(s): Get database parameter, SET DATABASE PARAMETER.

Constant Type Value

TCP Authentication Long Integer 113
TCP DNS Long Integer 53
TCP Finger Long Integer 79
TCP FTP Control Long Integer 21
TCP FTP Data Long Integer 20
TCP Gopher Long Integer 70
TCP HTTP WWW Long Integer 80
TCP IMAP3 Long Integer 220
TCP Kerberos Long Integer 88
TCP KLogin Long Integer 543
TCP Nickname Long Integer 43
TCP NNTP Long Integer 119
TCP NTalk Long Integer 518
TCP NTP Long Integer 123
TCP PMCP Long Integer 1643
TCP PMD Long Integer 1642
TCP POP3 Long Integer 110
TCP Printer Long Integer 515
TCP RADACCT Long Integer 1646
TCP RADIUS Long Integer 1645
TCP Remote Cmd Long Integer 514
TCP Remote Exec Long Integer 512
TCP Remote Login Long Integer 513
TCP Router Long Integer 520
TCP SMTP Long Integer 25
TCP SNMP Long Integer 161
TCP SNMPTRAP Long Integer 162
TCP SUN RPC Long Integer 111
TCP Talk Long Integer 517
TCP Telnet Long Integer 23
TCP TFTP Long Integer 69
TCP UUCP Long Integer 540
TCP UUCP RLOGIN Long Integer 541

2066 4th Dimension Language Reference

Time Display Formats
Related command(s): Get format, SET FORMAT, String.

Constant Type Value

HH MM Long Integer 2
HH MM AM PM Long Integer 5
HH MM SS Long Integer 1
Hour Min Long Integer 4
Hour Min Sec Long Integer 3

4th Dimension Language Reference 2067

Web Services (Client)
Related command(s): CALL WEB SERVICE, Get Web Service error info, SET WEB SERVICE
OPTION.

Constant Type Value

Web Service Detailed Message Long Integer 1
Web Service Dynamic Long Integer 0
Web Service Error Code Long Integer 0
Web Service Fault Actor Long Integer 3
Web Service HTTP Error code Long Integer 2
Web Service HTTP Timeout Long Integer 1
Web Service Manual Long Integer 3
Web Service Manual In Long Integer 1
Web Service Manual Out Long Integer 2
Web Service SOAP Header Long Integer 2
Web Service SOAP Version Long Integer 3
Web Service SOAP_1_1 Long Integer 0
Web Service SOAP_1_2 Long Integer 1

2068 4th Dimension Language Reference

Web Services (Server)
Related command(s): Get SOAP info, SEND SOAP FAULT, SOAP DECLARATION.

Constant Type Value

SOAP Client Fault Long Integer 1
SOAP Input Long Integer 1
SOAP Method Name Long Integer 1
SOAP Output Long Integer 2
SOAP Server Fault Long Integer 2
SOAP Service Name Long Integer 2

4th Dimension Language Reference 2069

Window kind
Related command(s): Window kind.

Constant Type Value

External window Long Integer 5
Floating window Long Integer 14
Modal dialog Long Integer 9
Regular window Long Integer 8

2070 4th Dimension Language Reference

Windows Log Events
Related command(s): LOG EVENT.

Constant Type Value

Error Message Long Integer 2
Information Message Long Integer 0
Warning Message Long Integer 1

4th Dimension Language Reference 2071

XML
Related command(s): DOM Get XML information, SAX Get XML node.

Constant Type Value

DOCTYPE Name Long Integer 3
Document URI Long Integer 6
Encoding Long Integer 4
PUBLIC ID Long Integer 1
SYSTEM ID Long Integer 2
Version Long Integer 5
XML CDATA Long Integer 7
XML Comment Long Integer 2
XML DATA Long Integer 6
XML End Document Long Integer 9
XML End Element Long Integer 5
XML Entity Long Integer 8
XML Processing Instruction Long Integer 3
XML Start Document Long Integer 1
XML Start Element Long Integer 4

2072 4th Dimension Language Reference

Command Index

A
ABORT 722
Abs 775
ACCEPT 519
ACCUMULATE 968
Activated 585
ADD DATA SEGMENT 155
ADD RECORD 427
ADD SUBRECORD 431
Add to date 449
ADD TO SET 1336
After 581
ALERT 829
ALL RECORDS 1295
ALL SUBRECORDS 1413
Append document 1443
APPEND MENU ITEM 820
APPEND TO ARRAY 219
APPEND TO CLIPBOARD 309
APPEND TO LIST 663
Application file 144
Application type 139
Application version 141
APPLY TO SELECTION 1315
APPLY TO SUBSELECTION 1415
APPLY XSLT TRANSFORMATION 1941
Arctan 788
ARRAY BOOLEAN 202
ARRAY DATE 201
ARRAY INTEGER 195
ARRAY LONGINT 196
ARRAY PICTURE 204
ARRAY POINTER 206
ARRAY REAL 197
ARRAY STRING 198
ARRAY TEXT 200
ARRAY TO LIST 222
ARRAY TO SELECTION 229

4th Dimension Language Reference 2073

ARRAY TO STRING LIST 1257
Ascii 1362
AUTHENTICATE WEB SERVICE 1820
Average 909

B
BACKUP 237
BEEP 1575
Before 579
Before selection 1307
Before subselection 1420
BEST OBJECT SIZE 894
BLOB PROPERTIES 261
BLOB size 256
BLOB TO DOCUMENT 265
BLOB to integer 283
BLOB to list 272
BLOB to longint 285
BLOB TO PICTURE 1002
BLOB to real 287
BLOB to text 289
BLOB TO USERS 1630
BLOB TO VARIABLE 270
BOOLEAN ARRAY FROM SET 234
BREAK LEVEL 960
BRING TO FRONT 1039
BUILD APPLICATION 1527
BUTTON TEXT 865

C
CALL PROCESS 1025
CALL WEB SERVICE 1814
CANCEL 520
CANCEL TRANSACTION 1543
Caps lock down 1590
CHANGE CURRENT USER 1614

2074 4th Dimension Language Reference

CHANGE LICENSES 1636
CHANGE PASSWORD 1617
Change string 1370
Char 1364
CLEAR CLIPBOARD 315
CLEAR LIST 642
CLEAR NAMED SELECTION 853
CLEAR SEMAPHORE 1023
CLEAR SET 1338
CLEAR VARIABLE 1645
CLOSE DOCUMENT 1444
CLOSE RESOURCE FILE 1251
CLOSE WINDOW 1851
Command name 737
Compiled application 143
COMPRESS BLOB 257
COMPRESS PICTURE 994
COMPRESS PICTURE FILE 997
CONFIRM 832
Contextual click 593
COPY ARRAY 220
COPY BLOB 293
COPY DOCUMENT 1445
Copy list 641
COPY NAMED SELECTION 849
COPY SET 1349
Cos 786
Count fields 1385
Count in array 216
Count list items 644
Count menu items 808
Count menus 807
Count parameters 725
Count screens 1487
Count tables 1384
Count tasks 1066
Count user processes 1067
Count users 1065
CREATE ALIAS 1459
CREATE DATA FILE 159

4th Dimension Language Reference 2075

Create document 1441
CREATE EMPTY SET 1332
CREATE FOLDER 1454
CREATE RECORD 1188
CREATE RELATED ONE 1224
Create resource file 1249
CREATE SELECTION FROM ARRAY 854
CREATE SET 1333
CREATE SET FROM ARRAY 1334
CREATE SUBRECORD 1411
CREATE THUMBNAIL 1008
CREATE USER FORM 1569
Current date 441
Current default table 1517
Current form page 610
Current form table 1518
Current form window 1875
Current machine 1505
Current machine owner 1506
Current method name 740
Current process 1058
Current time 451
Current user 1618
CUT NAMED SELECTION 851
C_BLOB 400
C_BOOLEAN 401
C_DATE 402
C_GRAPH 403
C_INTEGER 404
C_LONGINT 405
C_PICTURE 406
C_POINTER 407
C_REAL 408
C_STRING 409
C_TEXT 410
C_TIME 411

2076 4th Dimension Language Reference

D
Data file 147
DATA SEGMENT LIST 153
Database event 1558
Date 450
Day number 447
Day of 443
Deactivated 586
Dec 777
DECODE 1529
DECRYPT BLOB 299
DEFAULT TABLE 1515
DELAY PROCESS 1054
DELETE DOCUMENT 1447
DELETE ELEMENT 218
DELETE FOLDER 1458
DELETE FROM BLOB 292
DELETE LIST ITEM 677
DELETE LISTBOX COLUMN 754
DELETE LISTBOX ROW 762
DELETE MENU ITEM 823
DELETE RECORD 1194
DELETE RESOURCE 1279
DELETE SELECTION 1297
Delete string 1372
DELETE SUBRECORD 1412
DELETE USER 1621
DELETE USER FORM 1571
DIALOG 434
DIFFERENCE 1343
DISABLE BUTTON 863
DISABLE MENU ITEM 818
DISPLAY NOTIFICATION 843
DISPLAY RECORD 1187
DISPLAY SELECTION 1311
Displayed line number 1303
DISTINCT VALUES 231
Document creator 1436

4th Dimension Language Reference 2077

DOCUMENT LIST 1467
DOCUMENT TO BLOB 263
Document type 1434
DOM CLOSE XML 1920
DOM Count XML attributes 1911
DOM Count XML elements 1897
DOM Create XML element 1893
DOM Create XML Ref 1886
DOM EXPORT TO FILE 1918
DOM EXPORT TO VAR 1919
DOM Find XML element 1895
DOM Get first child XML element 1900
DOM Get last child XML element 1905
DOM Get next sibling XML element 1902
DOM Get parent XML element 1899
DOM Get previous sibling XML element 1904
DOM GET XML ATTRIBUTE BY INDEX 1914
DOM GET XML ATTRIBUTE BY NAME 1915
DOM Get XML element 1898
DOM GET XML ELEMENT NAME 1907
DOM GET XML ELEMENT VALUE 1909
DOM Get XML information 1917
DOM Parse XML source 1889
DOM Parse XML variable 1891
DOM REMOVE XML ELEMENT 1910
DOM SET XML ATTRIBUTE 1913
DOM SET XML ELEMENT NAME 1906
DOM SET XML ELEMENT VALUE 1908
DOM SET XML OPTIONS 1888
DRAG AND DROP PROPERTIES 510
DRAG WINDOW 1854
Drop position 508
DUPLICATE RECORD 1189
During 580

E
EDIT ACCESS 1613
EDIT FORM 1567

2078 4th Dimension Language Reference

EDIT FORMULA 633
EDIT ITEM 536
ENABLE BUTTON 862
ENABLE MENU ITEM 819
ENCODE 1528
ENCRYPT BLOB 294
End selection 1309
End subselection 1421
ERASE WINDOW 1852
Euro converter 792
EXECUTE 736
EXECUTE ON CLIENT 1068
Execute on server 1050
Exp 784
EXPAND BLOB 259
EXPORT DATA 707
EXPORT DIF 703
EXPORT SYLK 699
EXPORT TEXT 695

F
False 305
Field 1390
Field name 1387
FILTER EVENT 716
FILTER KEYSTROKE 527
Find in array 214
Find index key 1096
Find window 1872
FIRST PAGE 606
FIRST RECORD 1302
FIRST SUBRECORD 1416
FLUSH BUFFERS 157
Focus object 1607
FOLDER LIST 1466
FONT 858
FONT LIST 1494
Font name 1495

4th Dimension Language Reference 2079

Font number 1496
FONT SIZE 859
FONT STYLE 860
Form event 561
Frontmost process 1040
Frontmost window 1870

G
GENERATE CERTIFICATE REQUEST 1289
GENERATE ENCRYPTION KEYPAIR 1287
Gestalt 1507
Get 4D folder 150
Get alignment 896
GET ALLOWED METHODS 632
GET AUTOMATIC RELATIONS 1213
GET BACKUP INFORMATION 238
GET CLIPBOARD 316
Get component resource ID 1282
Get current printer 959
Get database parameter 1397
Get default user 1619
GET DOCUMENT ICON 1477
Get document position 1480
GET DOCUMENT PROPERTIES 1470
Get document size 1478
Get edited text 588
GET FIELD ENTRY PROPERTIES 1393
GET FIELD PROPERTIES 1391
GET FIELD RELATION 1216
GET FIELD TITLES 1588
GET FORM OBJECTS 604
GET FORM PROPERTIES 597
Get format 867
GET GROUP LIST 1631
GET GROUP PROPERTIES 1632
GET HIGHLIGHT 1604
GET HIGHLIGHTED RECORDS 1323
GET HTTP BODY 1796

2080 4th Dimension Language Reference

GET HTTP HEADER 1793
GET ICON RESOURCE 1266
Get indexed string 1259
GET LIST ITEM 678
GET LIST ITEM PROPERTIES 673
GET LIST PROPERTIES 657
GET LISTBOX ARRAYS 767
Get listbox column width 758
Get listbox information 768
Get listbox rows height 765
Get menu item 810
Get menu item key 816
Get menu item mark 814
Get menu item style 812
Get menu title 809
GET MOUSE 1596
Get number of listbox columns 755
Get number of listbox rows 763
GET OBJECT RECT 891
GET PICTURE FROM CLIPBOARD 318
GET PICTURE FROM LIBRARY 1013
GET PICTURE RESOURCE 1264
Get platform interface 1578
Get plugin access 1638
GET PLUGIN LIST 1639
Get pointer 735
Get print marker 976
GET PRINT OPTION 964
GET PRINTABLE AREA 987
GET PRINTABLE MARGIN 984
Get printed height 988
GET PROCESS VARIABLE 1026
GET REGISTERED CLIENTS 1074
GET RELATION PROPERTIES 1394
GET RESOURCE 1268
Get resource name 1272
Get resource properties 1275
GET RESTORE INFORMATION 241
GET SERIAL INFORMATION 162
GET SERIAL PORT MAPPING 334

4th Dimension Language Reference 2081

Get SOAP info 1832
Get string resource 1260
GET TABLE PROPERTIES 1389
GET TABLE TITLES 1585
Get text from clipboard 319
Get text resource 1262
GET USER LIST 1623
GET USER PROPERTIES 1624
GET WEB FORM VARIABLES 1788
Get Web Service error info 1821
GET WEB SERVICE RESULT 1818
GET WINDOW RECT 1867
Get window title 1862
GET XML ERROR 1940
GET XSLT ERROR 1945
GOTO AREA 533
GOTO PAGE 605
GOTO RECORD 1197
GOTO SELECTED RECORD 1300
GOTO XY 841
GRAPH 619
GRAPH SETTINGS 624
GRAPH TABLE 626

H
HIDE MENU BAR 802
HIDE PROCESS 1037
HIDE TOOL BAR 1523
HIDE WINDOW 1856
HIGHLIGHT RECORDS 1321
HIGHLIGHT TEXT 1605

I
IDLE 412
IMPORT DATA 705
IMPORT DIF 701

2082 4th Dimension Language Reference

IMPORT SYLK 697
IMPORT TEXT 693
In break 583
In footer 584
In header 582
In transaction 1544
INPUT FORM 612
INSERT ELEMENT 217
INSERT IN BLOB 291
INSERT LIST ITEM 670
INSERT LISTBOX COLUMN 752
INSERT LISTBOX ROW 761
INSERT MENU ITEM 822
Insert string 1371
Int 776
INTEGER TO BLOB 274
INTEGRATE LOG FILE 247
INTERSECTION 1345
INVERT BACKGROUND 1609
Is a list 646
Is a variable 734
Is data file locked 149
Is in set 1339
Is license available 163
Is new record 1190
Is record loaded 1192
Is SOAP request 1831
Is user deleted 1622
ISO to Mac 1379

K
Keystroke 522

L
LAST PAGE 607
LAST RECORD 1305

4th Dimension Language Reference 2083

LAST SUBRECORD 1417
LAUNCH EXTERNAL PROCESS 1510
Length 1361
Level 972
List item parent 675
List item position 674
LIST TO ARRAY 221
LIST TO BLOB 271
LIST USER FORMS 1570
LOAD COMPRESS PICTURE FROM FILE 995
Load list 637
LOAD RECORD 1180
LOAD SET 1342
LOAD VARIABLES 1644
Locked 1182
LOCKED ATTRIBUTES 1183
Log 783
LOG EVENT 1508
Log File 243
LONGINT ARRAY FROM SELECTION 233
LONGINT TO BLOB 276
Lowercase 1369

M
Mac to ISO 1376
Mac to Win 1374
Macintosh command down 1593
Macintosh control down 1595
Macintosh option down 1594
MAP FILE TYPES 1468
Max 911
MAXIMIZE WINDOW 1858
MENU BAR 800
Menu bar height 1493
Menu bar screen 1492
Menu selected 805
MESSAGE 837
MESSAGES OFF 827

2084 4th Dimension Language Reference

MESSAGES ON 828
Method called on error 721
Method called on event 715
Milliseconds 455
Min 910
MINIMIZE WINDOW 1860
Mod 781
Modified 436
Modified record 1191
MODIFY RECORD 429
MODIFY SELECTION 1314
MODIFY SUBRECORD 433
Month of 444
MOVE DOCUMENT 1446
MOVE OBJECT 892
MOVED LISTBOX COLUMN NUMBER 759
MOVED LISTBOX ROW NUMBER 766
MULTI SORT ARRAY 211

N
New list 640
New log file 246
New process 1047
NEXT PAGE 608
NEXT RECORD 1304
NEXT SUBRECORD 1418
Next window 1871
Nil 733
NO TRACE 743
Not 306
Num 1356

O
ODBC CANCEL LOAD 550
ODBC End selection 548
ODBC EXECUTE 546

4th Dimension Language Reference 2085

ODBC EXPORT 557
ODBC GET LAST ERROR 554
ODBC GET OPTION 545
ODBC IMPORT 555
ODBC LOAD RECORD 549
ODBC LOGIN 541
ODBC LOGOUT 543
ODBC SET OPTION 544
ODBC SET PARAMETER 551
Old 438
OLD RELATED MANY 1227
OLD RELATED ONE 1226
ON ERR CALL 717
ON EVENT CALL 711
ONE RECORD SELECT 1320
OPEN 4D PREFERENCES 165
OPEN DATA FILE 158
Open document 1438
Open external window 1849
Open form window 1873
Open resource file 1246
OPEN WEB URL 1806
Open window 1845
ORDER BY 1097
ORDER BY FORMULA 1102
ORDER SUBRECORDS BY 1422
OUTPUT FORM 614
Outside call 587

P
PAGE BREAK 953
PAGE SETUP 974
PAUSE PROCESS 1055
PICTURE LIBRARY LIST 1011
PICTURE PROPERTIES 1007
Picture size 1006
PICTURE TO BLOB 1001
PICTURE TO GIF 999

2086 4th Dimension Language Reference

PICTURE TYPE LIST 1005
PLATFORM PROPERTIES 1497
PLAY 1576
POP RECORD 1204
Pop up menu 1597
Position 1358
POST CLICK 1601
POST EVENT 1602
POST KEY 1600
PREVIOUS PAGE 609
PREVIOUS RECORD 1306
PREVIOUS SUBRECORD 1419
Print form 950
PRINT LABEL 945
PRINT OPTION VALUES 966
PRINT RECORD 954
PRINT SELECTION 948
PRINT SETTINGS 977
PRINTERS LIST 957
Printing page 956
Process aborted 1057
PROCESS HTML TAGS 1786
Process number 1063
PROCESS PROPERTIES 1061
Process state 1059
PUSH RECORD 1203

Q
QR BLOB TO REPORT 1111
QR Count columns 1163
QR DELETE COLUMN 1164
QR DELETE OFFSCREEN AREA 1113
QR EXECUTE COMMAND 1130
QR Find column 1133
QR Get area property 1122
QR GET BORDERS 1142
QR Get command status 1131
QR GET DESTINATION 1116

4th Dimension Language Reference 2087

QR Get document property 1118
QR Get drop column 1162
QR GET HEADER AND FOOTER 1138
QR Get HTML template 1167
QR GET INFO COLUMN 1147
QR Get info row 1151
QR Get report kind 1120
QR Get report table 1124
QR GET SELECTION 1135
QR GET SORTS 1153
QR Get text property 1127
QR GET TOTALS DATA 1157
QR GET TOTALS SPACING 1160
QR INSERT COLUMN 1161
QR New offscreen area 1112
QR ON COMMAND 1132
QR REPORT 1107
QR REPORT TO BLOB 1110
QR RUN 1129
QR SET AREA PROPERTY 1121
QR SET BORDERS 1140
QR SET DESTINATION 1114
QR SET DOCUMENT PROPERTY 1117
QR SET HEADER AND FOOTER 1136
QR SET HTML TEMPLATE 1165
QR SET INFO COLUMN 1144
QR SET INFO ROW 1150
QR SET REPORT KIND 1119
QR SET REPORT TABLE 1123
QR SET SELECTION 1134
QR SET SORTS 1152
QR SET TEXT PROPERTY 1125
QR SET TOTALS DATA 1154
QR SET TOTALS SPACING 1159
QUERY 1078
QUERY BY EXAMPLE 1077
QUERY BY FORMULA 1086
QUERY SELECTION 1084
QUERY SELECTION BY FORMULA 1088
QUERY SUBRECORDS 1423

2088 4th Dimension Language Reference

QUERY WITH ARRAY 1089
QUIT 4D 160

R
Random 780
READ ONLY 1178
Read only state 1179
READ PICTURE FILE 1004
READ WRITE 1177
REAL TO BLOB 278
RECEIVE BUFFER 340
RECEIVE PACKET 337
RECEIVE RECORD 345
RECEIVE VARIABLE 343
Record number 1196
Records in selection 1296
Records in set 1340
Records in subselection 1414
Records in table 1195
REDRAW 1608
REDRAW LIST 647
REDRAW WINDOW 1853
REDUCE SELECTION 1317
REGISTER CLIENT 1070
REJECT 534
RELATE MANY 1221
RELATE MANY SELECTION 1229
RELATE ONE 1219
RELATE ONE SELECTION 1228
REMOVE FROM SET 1337
REMOVE PICTURE FROM LIBRARY 1017
Replace string 1373
Request 835
RESIZE FORM WINDOW 1876
RESOLVE ALIAS 1461
RESOLVE POINTER 731
RESOURCE LIST 1254
RESOURCE TYPE LIST 1252

4th Dimension Language Reference 2089

RESTORE 239
RESUME PROCESS 1056
Right click 592
Round 778

S
SAVE LIST 639
SAVE OLD RELATED ONE 903
SAVE PICTURE TO FILE 998
SAVE RECORD 1193
SAVE RELATED ONE 1225
SAVE SET 1341
SAVE VARIABLES 1643
SAX ADD PROCESSING INSTRUCTION 1937
SAX ADD XML CDATA 1934
SAX ADD XML COMMENT 1925
SAX ADD XML DOCTYPE 1923
SAX ADD XML ELEMENT VALUE 1932
SAX CLOSE XML ELEMENT 1929
SAX GET XML CDATA 1936
SAX GET XML COMMENT 1926
SAX GET XML DOCUMENT VALUES 1922
SAX GET XML ELEMENT 1930
SAX GET XML ELEMENT VALUE 1933
SAX GET XML ENTITY 1939
SAX Get XML node 1924
SAX GET XML PROCESSING INSTRUCTION 1938
SAX OPEN XML ELEMENT 1927
SAX OPEN XML ELEMENT ARRAYS 1928
SAX SET XML OPTIONS 1921
SCAN INDEX 1319
SCREEN COORDINATES 1488
SCREEN DEPTH 1489
Screen height 1485
Screen width 1486
SCROLL LINES 1603
SEARCH BY INDEX 901
Secured Web connection 1804

2090 4th Dimension Language Reference

Select document 1448
Select folder 1455
SELECT LIST ITEMS BY POSITION 686
SELECT LIST ITEMS BY REFERENCE 689
SELECT LISTBOX ROW 760
SELECT LOG FILE 242
Selected list items 682
Selected record number 1299
SELECTION RANGE TO ARRAY 226
SELECTION TO ARRAY 224
Self 730
Semaphore 1021
SEND HTML BLOB 1782
SEND HTML FILE 1779
SEND HTML TEXT 1785
SEND HTTP RAW DATA 1798
SEND HTTP REDIRECT 1801
SEND PACKET 335
SEND RECORD 344
SEND SOAP FAULT 1830
SEND VARIABLE 342
Sequence number 1198
SET ABOUT 804
SET ALIGNMENT 897
SET ALLOWED METHODS 631
SET AUTOMATIC RELATIONS 1212
SET BLOB SIZE 255
SET CGI EXECUTABLE 1805
SET CHANNEL 327
SET CHOICE LIST 878
SET COLOR 884
SET CURRENT PRINTER 958
SET CURSOR 1606
SET DATABASE PARAMETER 1399
SET DEFAULT CENTURY 456
SET DICTIONARY 1531
SET DOCUMENT CREATOR 1437
SET DOCUMENT POSITION 1481
SET DOCUMENT PROPERTIES 1476
SET DOCUMENT SIZE 1479

4th Dimension Language Reference 2091

SET DOCUMENT TYPE 1435
SET ENTERABLE 879
SET ENVIRONMENT VARIABLE 1509
SET FIELD RELATION 1214
SET FIELD TITLES 1586
SET FILTER 876
SET FORM HORIZONTAL RESIZING 602
SET FORM SIZE 598
SET FORM VERTICAL RESIZING 603
SET FORMAT 869
Set group properties 1634
SET HOME PAGE 1778
SET HTML ROOT 1774
SET HTTP HEADER 1791
SET INDEX 1395
SET LIST ITEM 680
SET LIST ITEM PROPERTIES 671
SET LIST PROPERTIES 648
SET LISTBOX COLUMN WIDTH 757
SET LISTBOX GRID COLOR 771
SET LISTBOX ROWS HEIGHT 764
SET MENU ITEM 811
SET MENU ITEM KEY 817
SET MENU ITEM MARK 815
SET MENU ITEM STYLE 813
SET PICTURE RESOURCE 1265
SET PICTURE TO CLIPBOARD 321
SET PICTURE TO LIBRARY 1014
SET PLATFORM INTERFACE 1579
SET PLUGIN ACCESS 1637
SET PRINT MARKER 979
SET PRINT OPTION 961
SET PRINT PREVIEW 978
SET PRINTABLE MARGIN 986
SET PROCESS VARIABLE 1029
SET QUERY DESTINATION 1090
SET QUERY LIMIT 1095
SET REAL COMPARISON LEVEL 789
SET RESOURCE 1270
SET RESOURCE NAME 1274

2092 4th Dimension Language Reference

SET RESOURCE PROPERTIES 1276
SET RGB COLORS 886
SET SCREEN DEPTH 1491
SET SCROLLBAR VISIBLE 883
SET STRING RESOURCE 1261
SET TABLE TITLES 1581
SET TEXT RESOURCE 1263
SET TEXT TO CLIPBOARD 322
SET TIMEOUT 331
SET TIMER 590
Set user properties 1626
SET VISIBLE 881
SET WEB DISPLAY LIMITS 1775
SET WEB SERVICE OPTION 1812
SET WEB SERVICE PARAMETER 1810
SET WEB TIMEOUT 1773
SET WINDOW RECT 1868
SET WINDOW TITLE 1863
SET XSLT PARAMETER 1943
Shift down 1589
SHOW LISTBOX GRID 770
SHOW MENU BAR 803
SHOW ON DISK 1452
SHOW PROCESS 1038
SHOW TOOL BAR 1524
SHOW WINDOW 1857
Sin 785
Size of array 208
SOAP DECLARATION 1826
SORT ARRAY 209
SORT BY INDEX 902
SORT LIST 660
SORT LISTBOX COLUMNS 756
SPELL CHECKING 1530
Square root 782
START TRANSACTION 1541
START WEB SERVER 1771
Std deviation 912
STOP WEB SERVER 1772
String 1353

4th Dimension Language Reference 2093

STRING LIST TO ARRAY 1256
Structure file 145
Substring 1359
Subtotal 969
Sum 908
Sum squares 914
System folder 1502

T
Table 1388
Table name 1386
Tan 787
Temporary folder 1504
Test clipboard 323
Test path name 1451
Test semaphore 1024
TEXT TO BLOB 281
Tickcount 454
Time 453
Time string 452
TRACE 741
Trigger level 1560
TRIGGER PROPERTIES 1561
True 304
Trunc 779
Type 727

U
Undefined 1647
UNION 1347
UNLOAD RECORD 1181
UNREGISTER CLIENT 1073
Uppercase 1368
USE ASCII MAP 332
USE NAMED SELECTION 852
USE SET 1335

2094 4th Dimension Language Reference

User in group 1620
USERS TO BLOB 1629

V
Validate password 1616
VALIDATE TRANSACTION 1542
VARIABLE TO BLOB 267
VARIABLE TO VARIABLE 1032
Variance 913
Version type 140
VOLUME ATTRIBUTES 1463
VOLUME LIST 1462

W
WEB CACHE STATISTICS 1803
Web Context 1790
Win to Mac 1375
Window kind 1865
WINDOW LIST 1864
Window process 1866
Windows Alt down 1592
Windows Ctrl down 1591
WRITE PICTURE FILE 1003

Y
Year of 446

4th Dimension Language Reference 2095

2096 4th Dimension Language Reference

	Cover Page
	Contents
	Introduction
	Preface
	Introduction
	Building a 4D Application

	Language Definition
	Introduction to the 4D Language
	Data Types
	Constants
	Variables
	System Variables
	Pointers
	Identifiers
	Control Flow
	If...Else...End if
	Case of...Else...End case
	While...End while
	Repeat...Until
	For...End for
	Methods
	Project Methods

	4D Environment
	Application type
	Version type
	Application version
	Compiled application
	Application file
	Structure file
	Data file
	Is data file locked
	Get 4D folder
	DATA SEGMENT LIST
	ADD DATA SEGMENT
	FLUSH BUFFERS
	OPEN DATA FILE
	CREATE DATA FILE
	QUIT 4D
	GET SERIAL INFORMATION
	Is license available
	OPEN 4D PREFERENCES

	Arrays
	Arrays
	Creating Arrays
	Arrays and Form Objects
	Grouped Scrollable Areas
	Arrays and the 4D Language
	Arrays and Pointers
	Using the element zero of an array
	Two-dimensional Arrays
	Arrays and Memory
	ARRAY INTEGER
	ARRAY LONGINT
	ARRAY REAL
	ARRAY STRING
	ARRAY TEXT
	ARRAY DATE
	ARRAY BOOLEAN
	ARRAY PICTURE
	ARRAY POINTER
	Size of array
	SORT ARRAY
	MULTI SORT ARRAY
	Find in array
	Count in array
	INSERT ELEMENT
	DELETE ELEMENT
	APPEND TO ARRAY
	COPY ARRAY
	LIST TO ARRAY
	ARRAY TO LIST
	SELECTION TO ARRAY
	SELECTION RANGE TO ARRAY
	ARRAY TO SELECTION
	DISTINCT VALUES
	LONGINT ARRAY FROM SELECTION
	BOOLEAN ARRAY FROM SET

	Backup
	BACKUP
	GET BACKUP INFORMATION
	RESTORE
	GET RESTORE INFORMATION
	SELECT LOG FILE
	Log File
	On Backup Startup Database Method
	On Backup Shutdown Database Method
	New log file
	INTEGRATE LOG FILE

	BLOB
	BLOB Commands
	SET BLOB SIZE
	BLOB size
	COMPRESS BLOB
	EXPAND BLOB
	BLOB PROPERTIES
	DOCUMENT TO BLOB
	BLOB TO DOCUMENT
	VARIABLE TO BLOB
	BLOB TO VARIABLE
	LIST TO BLOB
	BLOB to list
	INTEGER TO BLOB
	LONGINT TO BLOB
	REAL TO BLOB
	TEXT TO BLOB
	BLOB to integer
	BLOB to longint
	BLOB to real
	BLOB to text
	INSERT IN BLOB
	DELETE FROM BLOB
	COPY BLOB
	ENCRYPT BLOB
	DECRYPT BLOB

	Boolean
	Boolean Commands
	True
	False
	Not

	Clipboard
	APPEND TO CLIPBOARD
	CLEAR CLIPBOARD
	GET CLIPBOARD
	GET PICTURE FROM CLIPBOARD
	Get text from clipboard
	SET PICTURE TO CLIPBOARD
	SET TEXT TO CLIPBOARD
	Test clipboard

	Communications
	SET CHANNEL
	SET TIMEOUT
	USE ASCII MAP
	GET SERIAL PORT MAPPING
	SEND PACKET
	RECEIVE PACKET
	RECEIVE BUFFER
	SEND VARIABLE
	RECEIVE VARIABLE
	SEND RECORD
	RECEIVE RECORD

	Compiler
	Compiler Commands
	Using Compiler Directives
	Typing Guide
	Syntax Details
	Optimization Hints
	Error messages
	C_BLOB
	C_BOOLEAN
	C_DATE
	C_GRAPH
	C_INTEGER
	C_LONGINT
	C_PICTURE
	C_POINTER
	C_REAL
	C_STRING
	C_TEXT
	C_TIME
	IDLE

	Database Methods
	Database Methods
	On Startup Database Method
	On Exit Database Method

	Data Entry
	ADD RECORD
	MODIFY RECORD
	ADD SUBRECORD
	MODIFY SUBRECORD
	DIALOG
	Modified
	Old

	Date and Time
	Current date
	Day of
	Month of
	Year of
	Day number
	Add to date
	Date
	Current time
	Time string
	Time
	Tickcount
	Milliseconds
	SET DEFAULT CENTURY

	Debugging
	Why a Debugger?
	Syntax Error Window
	Debugger
	Watch Pane
	Call Chain Pane
	Custom Watch Pane
	Source Code Pane
	Break Points
	Break List
	Catching Commands
	Debugger Shortcuts

	Drag and Drop
	Drag and Drop
	Drop position
	DRAG AND DROP PROPERTIES

	Entry Control
	ACCEPT
	CANCEL
	Keystroke
	FILTER KEYSTROKE
	GOTO AREA
	REJECT
	EDIT ITEM

	External Data Source
	ODBC LOGIN
	ODBC LOGOUT
	ODBC SET OPTION
	ODBC GET OPTION
	ODBC EXECUTE
	ODBC End selection
	ODBC LOAD RECORD
	ODBC CANCEL LOAD
	ODBC SET PARAMETER
	ODBC GET LAST ERROR
	ODBC IMPORT
	ODBC EXPORT

	Form Events
	Form event
	Before
	During
	After
	In header
	In break
	In footer
	Activated
	Deactivated
	Outside call
	Get edited text
	SET TIMER
	Right click
	Contextual click

	Forms
	GET FORM PROPERTIES
	SET FORM SIZE
	SET FORM HORIZONTAL RESIZING
	SET FORM VERTICAL RESIZING
	GET FORM OBJECTS
	GOTO PAGE
	FIRST PAGE
	LAST PAGE
	NEXT PAGE
	PREVIOUS PAGE
	Current form page
	INPUT FORM
	OUTPUT FORM

	Graphs
	GRAPH
	GRAPH SETTINGS
	GRAPH TABLE

	Formulas
	SET ALLOWED METHODS
	GET ALLOWED METHODS
	EDIT FORMULA

	Hierarchical Lists
	Load list
	SAVE LIST
	New list
	Copy list
	CLEAR LIST
	Count list items
	Is a list
	REDRAW LIST
	SET LIST PROPERTIES
	GET LIST PROPERTIES
	SORT LIST
	APPEND TO LIST
	INSERT LIST ITEM
	SET LIST ITEM PROPERTIES
	GET LIST ITEM PROPERTIES
	List item position
	List item parent
	DELETE LIST ITEM
	GET LIST ITEM
	SET LIST ITEM
	Selected list items
	SELECT LIST ITEMS BY POSITION
	SELECT LIST ITEMS BY REFERENCE

	Import and Export
	IMPORT TEXT
	EXPORT TEXT
	IMPORT SYLK
	EXPORT SYLK
	IMPORT DIF
	EXPORT DIF
	IMPORT DATA
	EXPORT DATA

	Interruptions
	ON EVENT CALL
	Method called on event
	FILTER EVENT
	ON ERR CALL
	Method called on error
	ABORT

	Language
	Count parameters
	Type
	Self
	RESOLVE POINTER
	Nil
	Is a variable
	Get pointer
	EXECUTE
	Command name
	Current method name
	TRACE
	NO TRACE

	List Box
	Management of List box objects
	INSERT LISTBOX COLUMN
	DELETE LISTBOX COLUMN
	Get number of listbox columns
	SORT LISTBOX COLUMNS
	SET LISTBOX COLUMN WIDTH
	Get listbox column width
	MOVED LISTBOX COLUMN NUMBER
	SELECT LISTBOX ROW
	INSERT LISTBOX ROW
	DELETE LISTBOX ROW
	Get number of listbox rows
	SET LISTBOX ROWS HEIGHT
	Get listbox rows height
	MOVED LISTBOX ROW NUMBER
	GET LISTBOX ARRAYS
	Get listbox information
	SHOW LISTBOX GRID
	SET LISTBOX GRID COLOR

	Math
	Abs
	Int
	Dec
	Round
	Trunc
	Random
	Mod
	Square root
	Log
	Exp
	Sin
	Cos
	Tan
	Arctan
	SET REAL COMPARISON LEVEL
	Display of Real Numbers
	Euro converter

	Menus
	Managing Menus
	MENU BAR
	HIDE MENU BAR
	SHOW MENU BAR
	SET ABOUT
	Menu selected
	Count menus
	Count menu items
	Get menu title
	Get menu item
	SET MENU ITEM
	Get menu item style
	SET MENU ITEM STYLE
	Get menu item mark
	SET MENU ITEM MARK
	Get menu item key
	SET MENU ITEM KEY
	DISABLE MENU ITEM
	ENABLE MENU ITEM
	APPEND MENU ITEM
	INSERT MENU ITEM
	DELETE MENU ITEM

	Messages
	MESSAGES OFF
	MESSAGES ON
	ALERT
	CONFIRM
	Request
	MESSAGE
	GOTO XY
	DISPLAY NOTIFICATION

	Named Selections
	Named Selections
	COPY NAMED SELECTION
	CUT NAMED SELECTION
	USE NAMED SELECTION
	CLEAR NAMED SELECTION
	CREATE SELECTION FROM ARRAY

	Object Properties
	Object Properties
	FONT
	FONT SIZE
	FONT STYLE
	ENABLE BUTTON
	DISABLE BUTTON
	BUTTON TEXT
	Get format
	SET FORMAT
	SET FILTER
	SET CHOICE LIST
	SET ENTERABLE
	SET VISIBLE
	SET SCROLLBAR VISIBLE
	SET COLOR
	SET RGB COLORS
	GET OBJECT RECT
	MOVE OBJECT
	BEST OBJECT SIZE
	Get alignment
	SET ALIGNMENT

	Obsolete commands
	SEARCH BY INDEX
	SORT BY INDEX
	SAVE OLD RELATED ONE

	On a Series
	On a Series
	Sum
	Average
	Min
	Max
	Std deviation
	Variance
	Sum squares

	Operators
	Operators
	String Operators
	Numeric Operators
	Date Operators
	Time Operators
	Comparison Operators
	Logical Operators
	Picture Operators
	Bitwise Operators

	Printing
	PRINT LABEL
	PRINT SELECTION
	Print form
	PAGE BREAK
	PRINT RECORD
	Printing page
	PRINTERS LIST
	SET CURRENT PRINTER
	Get current printer
	BREAK LEVEL
	SET PRINT OPTION
	GET PRINT OPTION
	PRINT OPTION VALUES
	ACCUMULATE
	Subtotal
	Level
	PAGE SETUP
	Get print marker
	PRINT SETTINGS
	SET PRINT PREVIEW
	SET PRINT MARKER
	GET PRINTABLE MARGIN
	SET PRINTABLE MARGIN
	GET PRINTABLE AREA
	Get printed height

	Pictures
	Pictures
	COMPRESS PICTURE
	LOAD COMPRESS PICTURE FROM FILE
	COMPRESS PICTURE FILE
	SAVE PICTURE TO FILE
	PICTURE TO GIF
	PICTURE TO BLOB
	BLOB TO PICTURE
	WRITE PICTURE FILE
	READ PICTURE FILE
	PICTURE TYPE LIST
	Picture size
	PICTURE PROPERTIES
	CREATE THUMBNAIL
	PICTURE LIBRARY LIST
	GET PICTURE FROM LIBRARY
	SET PICTURE TO LIBRARY
	REMOVE PICTURE FROM LIBRARY

	Process (Communications)
	Semaphore
	CLEAR SEMAPHORE
	Test semaphore
	CALL PROCESS
	GET PROCESS VARIABLE
	SET PROCESS VARIABLE
	VARIABLE TO VARIABLE

	Process (User Interface)
	HIDE PROCESS
	SHOW PROCESS
	BRING TO FRONT
	Frontmost process

	Processes
	Processes
	New process
	Execute on server
	DELAY PROCESS
	PAUSE PROCESS
	RESUME PROCESS
	Process aborted
	Current process
	Process state
	PROCESS PROPERTIES
	Process number
	Count users
	Count tasks
	Count user processes
	EXECUTE ON CLIENT
	REGISTER CLIENT
	UNREGISTER CLIENT
	GET REGISTERED CLIENTS

	Queries
	QUERY BY EXAMPLE
	QUERY
	QUERY SELECTION
	QUERY BY FORMULA
	QUERY SELECTION BY FORMULA
	QUERY WITH ARRAY
	SET QUERY DESTINATION
	SET QUERY LIMIT
	Find index key
	ORDER BY
	ORDER BY FORMULA

	Quick Report
	QR REPORT
	QR REPORT TO BLOB
	QR BLOB TO REPORT
	QR New offscreen area
	QR DELETE OFFSCREEN AREA
	QR SET DESTINATION
	QR GET DESTINATION
	QR SET DOCUMENT PROPERTY
	QR Get document property
	QR SET REPORT KIND
	QR Get report kind
	QR SET AREA PROPERTY
	QR Get area property
	QR SET REPORT TABLE
	QR Get report table
	QR SET TEXT PROPERTY
	QR Get text property
	QR RUN
	QR EXECUTE COMMAND
	QR Get command status
	QR ON COMMAND
	QR Find column
	QR SET SELECTION
	QR GET SELECTION
	QR SET HEADER AND FOOTER
	QR GET HEADER AND FOOTER
	QR SET BORDERS
	QR GET BORDERS
	QR SET INFO COLUMN
	QR GET INFO COLUMN
	QR SET INFO ROW
	QR Get info row
	QR SET SORTS
	QR GET SORTS
	QR SET TOTALS DATA
	QR GET TOTALS DATA
	QR SET TOTALS SPACING
	QR GET TOTALS SPACING
	QR INSERT COLUMN
	QR Get drop column
	QR Count columns
	QR DELETE COLUMN
	QR SET HTML TEMPLATE
	QR Get HTML template

	Record Locking
	Record Locking
	READ WRITE
	READ ONLY
	Read only state
	LOAD RECORD
	UNLOAD RECORD
	Locked
	LOCKED ATTRIBUTES

	Records
	DISPLAY RECORD
	CREATE RECORD
	DUPLICATE RECORD
	Is new record
	Modified record
	Is record loaded
	SAVE RECORD
	DELETE RECORD
	Records in table
	Record number
	GOTO RECORD
	Sequence number
	About Record Numbers
	PUSH RECORD
	POP RECORD
	Using the Record Stack

	Relations
	Relations
	SET AUTOMATIC RELATIONS
	GET AUTOMATIC RELATIONS
	SET FIELD RELATION
	GET FIELD RELATION
	RELATE ONE
	RELATE MANY
	CREATE RELATED ONE
	SAVE RELATED ONE
	OLD RELATED ONE
	OLD RELATED MANY
	RELATE ONE SELECTION
	RELATE MANY SELECTION

	Resources
	Resources
	Resources and 4D Insider: an Example
	Open resource file
	Create resource file
	CLOSE RESOURCE FILE
	RESOURCE TYPE LIST
	RESOURCE LIST
	STRING LIST TO ARRAY
	ARRAY TO STRING LIST
	Get indexed string
	Get string resource
	SET STRING RESOURCE
	Get text resource
	SET TEXT RESOURCE
	GET PICTURE RESOURCE
	SET PICTURE RESOURCE
	GET ICON RESOURCE
	GET RESOURCE
	SET RESOURCE
	Get resource name
	SET RESOURCE NAME
	Get resource properties
	SET RESOURCE PROPERTIES
	DELETE RESOURCE
	Get component resource ID

	Secured Protocol
	GENERATE ENCRYPTION KEYPAIR
	GENERATE CERTIFICATE REQUEST

	Selection
	ALL RECORDS
	Records in selection
	DELETE SELECTION
	Selected record number
	GOTO SELECTED RECORD
	FIRST RECORD
	Displayed line number
	NEXT RECORD
	LAST RECORD
	PREVIOUS RECORD
	Before selection
	End selection
	DISPLAY SELECTION
	MODIFY SELECTION
	APPLY TO SELECTION
	REDUCE SELECTION
	SCAN INDEX
	ONE RECORD SELECT
	HIGHLIGHT RECORDS
	GET HIGHLIGHTED RECORDS

	Sets
	Sets
	CREATE EMPTY SET
	CREATE SET
	CREATE SET FROM ARRAY
	USE SET
	ADD TO SET
	REMOVE FROM SET
	CLEAR SET
	Is in set
	Records in set
	SAVE SET
	LOAD SET
	DIFFERENCE
	INTERSECTION
	UNION
	COPY SET

	String
	String
	Num
	Position
	Substring
	Length
	Ascii
	Char
	Character Reference Symbols
	Uppercase
	Lowercase
	Change string
	Insert string
	Delete string
	Replace string
	Mac to Win
	Win to Mac
	Mac to ISO
	ISO to Mac

	Structure Access
	Structure Access
	Count tables
	Count fields
	Table name
	Field name
	Table
	GET TABLE PROPERTIES
	Field
	GET FIELD PROPERTIES
	GET FIELD ENTRY PROPERTIES
	GET RELATION PROPERTIES
	SET INDEX
	Get database parameter
	SET DATABASE PARAMETER

	Subrecords
	CREATE SUBRECORD
	DELETE SUBRECORD
	ALL SUBRECORDS
	Records in subselection
	APPLY TO SUBSELECTION
	FIRST SUBRECORD
	LAST SUBRECORD
	NEXT SUBRECORD
	PREVIOUS SUBRECORD
	Before subselection
	End subselection
	ORDER SUBRECORDS BY
	QUERY SUBRECORDS

	System Documents
	System Documents
	Document type
	SET DOCUMENT TYPE
	Document creator
	SET DOCUMENT CREATOR
	Open document
	Create document
	Append document
	CLOSE DOCUMENT
	COPY DOCUMENT
	MOVE DOCUMENT
	DELETE DOCUMENT
	Select document
	Test path name
	SHOW ON DISK
	CREATE FOLDER
	Select folder
	DELETE FOLDER
	CREATE ALIAS
	RESOLVE ALIAS
	VOLUME LIST
	VOLUME ATTRIBUTES
	FOLDER LIST
	DOCUMENT LIST
	MAP FILE TYPES
	GET DOCUMENT PROPERTIES
	SET DOCUMENT PROPERTIES
	GET DOCUMENT ICON
	Get document size
	SET DOCUMENT SIZE
	Get document position
	SET DOCUMENT POSITION

	System Environment
	Screen height
	Screen width
	Count screens
	SCREEN COORDINATES
	SCREEN DEPTH
	SET SCREEN DEPTH
	Menu bar screen
	Menu bar height
	FONT LIST
	Font name
	Font number
	PLATFORM PROPERTIES
	System folder
	Temporary folder
	Current machine
	Current machine owner
	Gestalt
	LOG EVENT
	SET ENVIRONMENT VARIABLE
	LAUNCH EXTERNAL PROCESS

	Table
	DEFAULT TABLE
	Current default table
	Current form table

	Tool Bar
	HIDE TOOL BAR
	SHOW TOOL BAR

	Tools
	BUILD APPLICATION
	ENCODE
	DECODE
	SPELL CHECKING
	SET DICTIONARY

	Transactions
	Using Transactions
	START TRANSACTION
	VALIDATE TRANSACTION
	CANCEL TRANSACTION
	In transaction

	Triggers
	Triggers
	Database event
	Trigger level
	TRIGGER PROPERTIES

	User forms
	Overview of user forms
	EDIT FORM
	CREATE USER FORM
	LIST USER FORMS
	DELETE USER FORM

	User Interface
	BEEP
	PLAY
	Get platform interface
	SET PLATFORM INTERFACE
	SET TABLE TITLES
	GET TABLE TITLES
	SET FIELD TITLES
	GET FIELD TITLES
	Shift down
	Caps lock down
	Windows Ctrl down
	Windows Alt down
	Macintosh command down
	Macintosh option down
	Macintosh control down
	GET MOUSE
	Pop up menu
	POST KEY
	POST CLICK
	POST EVENT
	SCROLL LINES
	GET HIGHLIGHT
	HIGHLIGHT TEXT
	SET CURSOR
	Focus object
	REDRAW
	INVERT BACKGROUND

	Users and Groups
	EDIT ACCESS
	CHANGE CURRENT USER
	Validate password
	CHANGE PASSWORD
	Current user
	Get default user
	User in group
	DELETE USER
	Is user deleted
	GET USER LIST
	GET USER PROPERTIES
	Set user properties
	USERS TO BLOB
	BLOB TO USERS
	GET GROUP LIST
	GET GROUP PROPERTIES
	Set group properties
	CHANGE LICENSES
	SET PLUGIN ACCESS
	Get plugin access
	GET PLUGIN LIST

	Variables
	SAVE VARIABLES
	LOAD VARIABLES
	CLEAR VARIABLE
	Undefined

	Web Server
	Web Server, Overview
	Web server configuration and connection management
	Your First Time with the Web Server
	Connection Security
	On Web Authentication Database Method
	On Web Connection Database Method
	Binding 4D objects with HTML objects
	URLs and Form Actions
	4D HTML Tags
	Web Server Settings
	Information about the Web Site
	Using the Contextual Mode
	Using SSL Protocol
	XML and WML Support
	Using CGIs
	START WEB SERVER
	STOP WEB SERVER
	SET WEB TIMEOUT
	SET HTML ROOT
	SET WEB DISPLAY LIMITS
	SET HOME PAGE
	SEND HTML FILE
	SEND HTML BLOB
	SEND HTML TEXT
	PROCESS HTML TAGS
	GET WEB FORM VARIABLES
	Web Context
	SET HTTP HEADER
	GET HTTP HEADER
	GET HTTP BODY
	SEND HTTP RAW DATA
	SEND HTTP REDIRECT
	WEB CACHE STATISTICS
	Secured Web connection
	SET CGI EXECUTABLE
	OPEN WEB URL

	Web Services (Client)
	Web Services (Client) Commands
	SET WEB SERVICE PARAMETER
	SET WEB SERVICE OPTION
	CALL WEB SERVICE
	GET WEB SERVICE RESULT
	AUTHENTICATE WEB SERVICE
	Get Web Service error info

	Web Services (Server)
	Web Services (Server) Commands
	SOAP DECLARATION
	SEND SOAP FAULT
	Is SOAP request
	Get SOAP info

	Windows
	Managing Windows
	Window Types
	Open window
	Open external window
	CLOSE WINDOW
	ERASE WINDOW
	REDRAW WINDOW
	DRAG WINDOW
	HIDE WINDOW
	SHOW WINDOW
	MAXIMIZE WINDOW
	MINIMIZE WINDOW
	Get window title
	SET WINDOW TITLE
	WINDOW LIST
	Window kind
	Window process
	GET WINDOW RECT
	SET WINDOW RECT
	Frontmost window
	Next window
	Find window
	Open form window
	Current form window
	RESIZE FORM WINDOW

	XML
	Presentation of XML Commands
	DOM Create XML Ref
	DOM SET XML OPTIONS
	DOM Parse XML source
	DOM Parse XML variable
	DOM Create XML element
	DOM Find XML element
	DOM Count XML elements
	DOM Get XML element
	DOM Get parent XML element
	DOM Get first child XML element
	DOM Get next sibling XML element
	DOM Get previous sibling XML element
	DOM Get last child XML element
	DOM SET XML ELEMENT NAME
	DOM GET XML ELEMENT NAME
	DOM SET XML ELEMENT VALUE
	DOM GET XML ELEMENT VALUE
	DOM REMOVE XML ELEMENT
	DOM Count XML attributes
	DOM SET XML ATTRIBUTE
	DOM GET XML ATTRIBUTE BY INDEX
	DOM GET XML ATTRIBUTE BY NAME
	DOM Get XML information
	DOM EXPORT TO FILE
	DOM EXPORT TO VAR
	DOM CLOSE XML
	SAX SET XML OPTIONS
	SAX GET XML DOCUMENT VALUES
	SAX ADD XML DOCTYPE
	SAX Get XML node
	SAX ADD XML COMMENT
	SAX GET XML COMMENT
	SAX OPEN XML ELEMENT
	SAX OPEN XML ELEMENT ARRAYS
	SAX CLOSE XML ELEMENT
	SAX GET XML ELEMENT
	SAX ADD XML ELEMENT VALUE
	SAX GET XML ELEMENT VALUE
	SAX ADD XML CDATA
	SAX GET XML CDATA
	SAX ADD PROCESSING INSTRUCTION
	SAX GET XML PROCESSING INSTRUCTION
	SAX GET XML ENTITY
	GET XML ERROR
	APPLY XSLT TRANSFORMATION
	SET XSLT PARAMETER
	GET XSLT ERROR

	Error Codes
	Syntax Errors
	Database Engine Errors
	Network Errors
	Backup management system errors
	OS File Manager Errors
	OS Memory Manager Errors
	OS Printing Manager Errors
	OS Resource Manager Errors
	SANE NaN Errors
	OS Sound Manager Errors
	OS Serial Ports Manager Errors
	Mac OS System Errors

	ASCII Codes
	ASCII Codes
	ASCII Codes 0..63
	ASCII Codes 64..127
	ASCII Codes 128..191
	ASCII Codes 192..255
	Function Key Codes

	Command Syntax
	Command Syntax by Name

	Constants
	4D Environment
	ASCII Codes
	Backup and Restore
	BLOB
	Clipboard
	Colors
	Communications
	Database Engine
	Database Events
	Database Parameters
	Date Display Formats
	Days and Months
	Dictionaries
	Euro currencies
	Events (Modifiers)
	Events (What)
	Expressions
	External data source
	Field and Variable Types
	Find window
	Font Styles
	Form area
	Form Events
	Form options
	Function Keys
	Hierarchical Lists
	Is license available
	ISO Latin Character Entities
	List box
	Math
	Object alignment
	Open form window
	Open window
	Picture Compression
	Picture Display Formats
	Platform Interface
	Platform Properties
	Print options
	Process state
	Process Type
	QR Area Properties
	QR Borders
	QR Commands
	QR Document Properties
	QR Operators
	QR Output Destination
	QR Report Types
	QR Rows for Properties
	QR Text Properties
	Query Destinations
	Relations
	Resources Properties
	SCREEN DEPTH
	SET RGB COLORS
	Standard System Signatures
	System Documents
	System Folder
	TCP Port Numbers
	Time Display Formats
	Web Services (Client)
	Web Services (Server)
	Window kind
	Windows Log Events
	XML

	Command Index

