4th Dimension

Language Reference
Windows®/Mac O5®

4)

4th Dimension®
© 1985 - 2005 4D SA / 4D, Inc. All Rights Reserved.

4th Dimension Language Reference
Version 2004.3 for Windows® and Mac OS®

Copyright © 1985-2005 4D SA/4D, Inc.
All rights reserved

The Software described in this manual is governed by the grant of license in the 4D
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the 4D
Product Line License Agreement.

4th Dimension, 4D, the 4D logo and 4D Server are registered trademarks of 4D SA.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac, Mac OS, Laser Writer and QuickTime are trademarks or registered
trademarks of Apple Computer, Inc.

All other referenced trade names are trademarks or registered trademarks of their
respective holders.

Mac2Win Software Copyright © 1990-2005 is a product of Altura Software, Inc.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

4th Dimension includes cryptographic software written by Eric Young
(eay@cryptsoft.com)
4th Dimension includes software written by Tim Hudson (tjh@cryptsoft.com).

Spellchecker © Copyright SYNAPSE Développement, Toulouse, France, 1994-2005.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the 4D Product Line License Agreement, which is
provided in electronic form with the Software. Please read the 4D Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. Introduction 39
Preface 41
Introduction 43
Building a 4D Application 53

2. Language Definition 65
Introduction to the 4D Language 67
Data Types 72
Constants 77
Variables 81
System Variables 86
Pointers 88
Identifiers 97
Control Flow. 107
If...Else...End if 109
Case of...Else...End case 111
While...End while 115
Repeat...Until 116
For...End for. 117
Methods 123
Project Methods 128

3. 4D Environment 137
Application type 139
Version type 140
Application version 141
Compiled application 143
Application file 144
Structure file 145
Data file 147
Is data file locked 149

4th Dimension Language Reference

Get 4D folder. 150

DATA SEGMENT LIST. 153
ADD DATA SEGMENT. 155
FLUSH BUFFERS 157
OPEN DATA FILE 158
CREATE DATA FILE 159
QUIT 4D 160
GET SERIAL INFORMATION 162
Is license available 163
OPEN 4D PREFERENCES 165
4. Arrays 169
Arrays 171
Creating Arrays 172
Arrays and Form Objects 174
Grouped Scrollable Areas 182
Arrays and the 4D Language 185
Arrays and Pointers 187
Using the element zero of an array. 189
Two-dimensional Arrays 191
Arrays and Memory. 193
ARRAY INTEGER 195
ARRAY LONGINT, 196
ARRAY REAL 197
ARRAY STRING 198
ARRAY TEXT 200
ARRAY DATE 201
ARRAY BOOLEAN 202
ARRAY PICTURE 204
ARRAY POINTER 206
Size of array. 208
SORT ARRAY 209
MULTI SORT ARRAY. 211
Find in array. 214
Count in array 216

4 4th Dimension Language Reference

INSERT ELEMENT 217

DELETE ELEMENT 218
APPEND TO ARRAY 219
COPY ARRAY 220
LIST TO ARRAY. 221
ARRAY TO LIST 222
SELECTION TO ARRAY. 224
SELECTION RANGE TO ARRAY. 226
ARRAY TO SELECTION 229
DISTINCT VALUES 231
LONGINT ARRAY FROM SELECTION 233
BOOLEAN ARRAY FROM SET 234
5. Backup 235
BACKUP. 237
GET BACKUP INFORMATION 238
RESTORE 239
GET RESTORE INFORMATION 241
SELECT LOG FILE 242
Log File 243
On Backup Startup Database Method 244
On Backup Shutdown Database Method 245
New log file 246
INTEGRATE LOG FILE 247
6. BLOB 249
BLOB Commands 251
SET BLOB SIZE 255
BLOB size 256
COMPRESS BLOB 257
EXPAND BLOB 259
BLOB PROPERTIES 261
DOCUMENT TO BLOB 263

4th Dimension Language Reference

6

BLOB TO DOCUMENT

265

VARIABLE TO BLOB 267
BLOB TO VARIABLE 270
LIST TO BLOB 271
BLOB to list 272
INTEGER TO BLOB 274
LONGINT TO BLOB 276
REAL TO BLOB 278
TEXT TO BLOB 281
BLOB to integer. 283
BLOB to longint 285
BLOB to real 287
BLOB to text 289
INSERT IN BLOB 291
DELETE FROM BLOB 292
COPY BLOB 293
ENCRYPT BLOB 294
DECRYPT BLOB 299
/. Boolean 301
Boolean Commands 303
True 304
False 305
Not 306
8. Clipboard 307
APPEND TO CLIPBOARD 309
CLEAR CLIPBOARD 315
GET CLIPBOARD 316
GET PICTURE FROM CLIPBOARD 318
Get text from clipboard 319
SET PICTURE TO CLIPBOARD 321
SET TEXT TO CLIPBOARD 322
Test clipboard 323

4th Dimension Language Reference

9. Communications 325

SET CHANNEL 327
SET TIMEOUT 331
USE ASCII MAP. 332
GET SERIAL PORT MAPPING 334
SEND PACKET. 335
RECEIVE PACKET. 337
RECEIVE BUFFER 340
SEND VARIABLE 342
RECEIVE VARIABLE 343
SEND RECORD. 344
RECEIVE RECORD 345
10. Compiler 349
Compiler Commands 351
Using Compiler Directives 355
Typing Guide 364
Syntax Details 376
Optimization Hints 387
Error messages 391
C_BLOB 400
C_BOOLEAN 401
C_DATE 402
C_GRAPH 403
C_INTEGER 404
C_LONGINT 405
C_PICTURE 406
C_POINTER 407
C_REAI 408
C_STRING 409
C_TEXT. 410
C_TIME 411
IDLE 412

4th Dimension Language Reference 7

11. Database Methods 413

Database Methods 415
On Startup Database Method 417
On Exit Database Method 419
12. Data Entry 425
ADD RECORD 427
MODIFY RECORD 429
ADD SUBRECORD 431
MODIFY SUBRECORD 433
DIALOG 434
Modified 436
Old 438
13. Date and Time 439
Current date 441
Day of 443
Month of. 444
Year of. 446
Day number. 447
Add to date 449
Date 450
Current time 451
Time string 452
Time 453
Tickcount 454
Milliseconds 455
SET DEFAULT CENTURY. 456

8 4th Dimension Language Reference

14. Debugging 459

Why a Debugger? 461
Syntax Error Window 465
Debugger. 467
Watch Pane 472
Call Chain Pane 478
Custom Watch Pane 479
Source Code Pane 483
Break Points 487
Break List 490
Catching Commands 492
Debugger Shortcuts 496
15. Drag and Drop 499
Drag and Drop 501
Drop position 508
DRAG AND DROP PROPERTIES 510
16. Entry Control 517
ACCEPT 519
CANCEI 520
Keystroke 522
FILTER KEYSTROKE 527
GOTO AREA 533
REJECT. 534
EDIT ITEM 536

4th Dimension Language Reference 9

17. External Data Source.... 539

ODBC LOGIN 541
ODBC LOGOUT 543
ODBC SET OPTION 544
ODBC GET OPTION 545
ODBC EXECUTE 546
ODBC End selection 548
ODBC LOAD RECORD 549
ODBC CANCEL LOAD 550
ODBC SET PARAMETER 551
ODBC GET LAST ERROR 554
ODBC IMPORT. 555
ODBC EXPORT 557
18. Form Events 559
Form event 561
Before 579
During 580
After 581
In header 582
In break 583
In footer. 584
Activated 585
Deactivated 586
Outside call 587
Get edited text 588
SET TIMER 590
Right click 592
Contextual click 593

10 4th Dimension Language Reference

19. Forms 595
GET FORM PROPERTIES 597
SET FORM SIZE 598
SET FORM HORIZONTAL RESIZING 602
SET FORM VERTICAL RESIZING 603
GET FORM OBJECTS 604
GOTO PAGE 605
FIRST PAGE 606
LAST PAGE 607
NEXT PAGE 608
PREVIOUS PAGE 609
Current form page 610
INPUT FORM 612
OUTPUT FORM 614

20. Graphs 617
GRAPH 619
GRAPH SETTINGS 624
GRAPH TABLE 626

21. Formulas 629
SET ALLOWED METHODS 631
GET ALLOWED METHODS 632
EDIT FORMULA 633

22. Hierarchical Lists 635
Load list 637
SAVE LIST. 639
New list 640

4th Dimension Language Reference

Copy list 641

CLEAR LIST 642
Count list items 644
Is a list 646
REDRAW LIST. 647
SET LIST PROPERTIES 648
GET LIST PROPERTIES 657
SORT LIST 660
APPEND TO LIST. 663
INSERT LIST ITEM 670
SET LIST ITEM PROPERTIES 671
GET LIST ITEM PROPERTIES 673
List item position 674
List item parent 675
DELETE LIST ITEM 677
GET LIST ITEM 678
SET LIST ITEM 680
Selected list items 682
SELECT LIST ITEMS BY POSITION 686
SELECT LIST ITEMS BY REFERENCE 689
23. Import and Export 691
IMPORT TEXT 693
EXPORT TEXT. 695
IMPORT SYLK 697
EXPORT SYLK 699
IMPORT DIF 701
EXPORT DIF 703
IMPORT DATA 705
EXPORT DATA 707
24. Interruptions 709
ON EVENT CALI 711
Method called on event 715
FILTER EVENT 716

12 4th Dimension Language Reference

ON ERR CALL 717

Method called on error 721
ABORT 722
25. Language 723
Count parameters 725
Type 727
Self. 730
RESOLVE POINTER 731
Nil 733
Is a variable 734
Get pointer 735
EXECUTE 736
Command name 737
Current method name 740
TRACE 741
NO TRACE 743
26. List Box 745
Management of List box objects 747
INSERT LISTBOX COLUMN 752
DELETE LISTBOX COLUMN 754
Get number of listbox columns 755
SORT LISTBOX COLUMNS 756
SET LISTBOX COLUMN WIDTH 757
Get listbox column width 758
MOVED LISTBOX COLUMN NUMBER 759
SELECT LISTBOX ROW. 760
INSERT LISTBOX ROW. 761
DELETE LISTBOX ROW. 762
Get number of listbox rows 763
SET LISTBOX ROWS HEIGHT. 764
Get listbox rows height 765
MOVED LISTBOX ROW NUMBER 766

4th Dimension Language Reference 13

14

GET LISTBOX ARRAYS 767
Get listbox information 768
SHOW LISTBOX GRID 770
SET LISTBOX GRID COLOR 771
27. Math 773
Abs 775
Int 776
Dec 777
Round 778
Trunc 779
Random 780
Mod 781
Square root 782
Log 783
Exp 784
Sin 785
Cos 786
Tan 787
Arctan 788
SET REAL COMPARISON LEVEI 789
Display of Real Numbers 790
Euro converter 792
28. Menus 795
Managing Menus 797
MENU BAR 800
HIDE MENU BAR 802
SHOW MENU BAR 803
SET ABOUT. 804
Menu selected 805
Count menus 807

4th Dimension Language Reference

Count menu items 808

Get menu title 809
Get menu item 810
SET MENU ITEM 811
Get menu item style 812
SET MENU ITEM STYLE 813
Get menu item mark 814
SET MENU ITEM MARK 815
Get menu item key 816
SET MENU ITEM KEY, 817
DISABLE MENU ITEM 818
ENABLE MENU ITEM 819
APPEND MENU ITEM 820
INSERT MENU ITEM 822
DELETE MENU ITEM 823
29. Messages 825
MESSAGES OFF 827
MESSAGES ON 828
ALERT 829
CONFIRM 832
Request 835
MESSAGE 837
GOTO XY. 841
DISPLAY NOTIFICATION 843
30. Named Selections 845
Named Selections 847
COPY NAMED SELECTION 849
CUT NAMED SELECTION 851
USE NAMED SELECTION 852
CLEAR NAMED SELECTION 853
CREATE SELECTION FROM ARRAY. 854

4th Dimension Language Reference 15

16

31. Object Properties 855
Object Properties 857
FONT. 858
FONT SIZE 859
FONT STYLE 860
ENABLE BUTTON 862
DISABLE BUTTON 863
BUTTON TEXT 865
Get format 867
SET FORMAT 869
SET FILTER 876
SET CHOICE LIST. 878
SET ENTERABLE 879
SET VISIBLE 881
SET SCROLLBAR VISIBLE 883
SET COLOR 884
SET RGB COLORS 886
GET OBJECT RECT. 891
MOVE OBJECT. 892
BEST OBJECT SIZE 894
Get alignment 896
SET ALIGNMENT 897

32. Obsolete commands......... 899
SEARCH BY INDEX 901
SORT BY INDEX 902
SAVE OLD RELATED ONE 903

33. On a Series 905
On a Series 907
Sum 908
Average 909

4th Dimension Language Reference

Min 910

Max 911
Std deviation 912
Variance 913
Sum squares 914
34. Operators 915
Operators 917
String Operators 919
Numeric Operators 920
Date Operators 921
Time Operators 922
Comparison Operators 924
Logical Operators 928
Picture Operators 929
Bitwise Operators 938
35. Printing 943
PRINT LABEI 945
PRINT SELECTION 948
Print form 950
PAGE BREAK 953
PRINT RECORD 954
Printing page 956
PRINTERS LIST. 957
SET CURRENT PRINTER 958
Get current printer. 959
BREAK LEVEL 960
SET PRINT OPTION 961
GET PRINT OPTION 964
PRINT OPTION VALUES 966
ACCUMULATE 968
Subtotal 969
Level 972

4th Dimension Language Reference 17

18

36. Pictures

PAGE SETUP

974

Get print marker.

976

PRINT SETTINGS

977

SET PRINT PREVIEW.
SET PRINT MARKER

978
979

GET PRINTABLE MARGIN

984

SET PRINTABLE MARGIN

986

GET PRINTABLE AREA

987

Get printed height

988

Pictures

989

991

COMPRESS PICTURE

994

LOAD COMPRESS PICTURE FROM FILE

995

COMPRESS PICTURE FILE

997

SAVE PICTURE TO FILE

998

PICTURE TO GIF

999

PICTURE TO BLOB

1001

BLOB TO PICTURE

1002

WRITE PICTURE FILE

1003

READ PICTURE FILE

1004

PICTURE TYPE LIST.

1005

Picture size

1006

PICTURE PROPERTIES

1007

CREATE THUMBNAIL

1008

PICTURE LIBRARY LIST.

1011

GET PICTURE FROM LIBRARY

1013

SET PICTURE TO LIBRARY.

1014

REMOVE PICTURE FROM LIBRARY.

1017

Semaphore

37. Process (Communications) 1019

1021

CLEAR SEMAPHORE

1023

Test semaphore

4th Dimension Language Reference

1024

CALL PROCESS 1025

GET PROCESS VARIABLE 1026
SET PROCESS VARIABLE 1029
VARIABLE TO VARIABLE 1032
38. Process (User Interface)...1035
HIDE PROCESS 1037
SHOW PROCESS 1038
BRING TO FRONT 1039
Frontmost process 1040
39. Processes 1041
Processes 1043
New process 1047
Execute on server. 1050
DELAY PROCESS 1054
PAUSE PROCESS 1055
RESUME PROCESS 1056
Process aborted 1057
Current process 1058
Process state 1059
PROCESS PROPERTIES 1061
Process number. 1063
Count users 1065
Count tasks 1066
Count user processes 1067
EXECUTE ON CLIENT. 1068
REGISTER CLIENT 1070
UNREGISTER CLIENT. 1073
GET REGISTERED CLIENTS 1074

4th Dimension Language Reference 19

20

40. Queries

41. Quick Report

QUERY BY EXAMPLE

1075

1077

QUERY

1078

QUERY SELECTION

1084

QUERY BY FORMULA

1086

1088

QUERY SELECTION BY FORMULA
QUERY WITH ARRAY.

1089

SET QUERY DESTINATION

1090

SET QUERY LIMIT

1095

Find index key

1096

ORDER BY.

1097

ORDER BY FORMULA

1102

QR REPORT

1105

1107

QR REPORT TO BLOB

1110

QR BLOB TO REPORT

1111

QR New offscreen area

1112

1113

QR DELETE OFFSCREEN AREA
QR SET DESTINATION

1114

QR GET DESTINATION

1116

QR SET DOCUMENT PROPERTY

1117

1118

QR Get document property.

1119

QR SET REPORT KIND
QR Get report kind

1120

QR SET AREA PROPERTY.

1121

QR Get area property.

1122

QR SET REPORT TABLE

1123

QR Get report table
QR SET TEXT PROPERTY

1124
1125

QR Get text property.

1127

QR RUN

1129

1130

QR EXECUTE COMMAND.
QR Get command status

1131

4th Dimension Language Reference

QR ON COMMAND 1132

QR Find column 1133
QR SET SELECTION 1134
QR GET SELECTION 1135
QR SET HEADER AND FOOTER 1136
QR GET HEADER AND FOOTER 1138
QR SET BORDERS 1140
QR GET BORDERS 1142
QR SET INFO COLUMN 1144
QR GET INFO COLUMN 1147
QR SET INFO ROW 1150
QR Get info row. 1151
QR SET SORTS 1152
QR GET SORTS 1153
QR SET TOTALS DATA 1154
QR GET TOTALS DATA 1157
QR SET TOTALS SPACING 1159
QR GET TOTALS SPACING 1160
QR INSERT COLUMN 1161
QR Get drop column 1162
QR Count columns 1163
QR DELETE COLUMN 1164
QR SET HTML TEMPLATE 1165
QR Get HTML template 1167
42. Record Locking 1169
Record Locking 1171
READ WRITE 1177
READ ONLY 1178
Read only state 1179
LOAD RECORD 1180
UNLOAD RECORD 1181
Locked 1182
LOCKED ATTRIBUTES 1183

4th Dimension Language Reference 21

43. Records 1185

DISPLAY RECORD 1187
CREATE RECORD 1188
DUPLICATE RECORD 1189
Is new record 1190
Modified record 1191
Is record loaded 1192
SAVE RECORD 1193
DELETE RECORD 1194
Records in table 1195
Record number. 1196
GOTO RECORD 1197
Sequence number. 1198
About Record Numbers 1200
PUSH RECORD 1203
POP RECORD 1204
Using the Record Stack 1205
44, Relations 1207
Relations 1209
SET AUTOMATIC RELATIONS 1212
GET AUTOMATIC RELATIONS 1213
SET FIELD RELATION 1214
GET FIELD RELATION 1216
RELATE ONE 1219
RELATE MANY 1221
CREATE RELATED ONE 1224
SAVE RELATED ONE 1225
OLD RELATED ONE 1226
OLD RELATED MANY. 1227
RELATE ONE SELECTION 1228
RELATE MANY SELECTION 1229

22 4th Dimension Language Reference

45. Resources 1231

Resources 1233
Resources and 4D Insider: an Example 1240
Open resource file 1246
Create resource file 1249
CLOSE RESOURCE FILE 1251
RESOURCE TYPE LIST 1252
RESOURCE LIST. 1254
STRING LIST TO ARRAY 1256
ARRAY TO STRING LIST 1257
Get indexed string 1259
Get string resource 1260
SET STRING RESOURCE 1261
Get text resource 1262
SET TEXT RESOURCE 1263
GET PICTURE RESOURCE 1264
SET PICTURE RESOURCE 1265
GET ICON RESOURCE 1266
GET RESOURCE 1268
SET RESOURCE 1270
Get resource name 1272
SET RESOURCE NAME 1274
Get resource properties 1275
SET RESOURCE PROPERTIES 1276
DELETE RESOURCE 1279
Get component resource 1D 1282
46. Secured Protocol 1285
GENERATE ENCRYPTION KEYPAIR 1287
GENERATE CERTIFICATE REQUEST 1289

4th Dimension Language Reference 23

47. Selection 1293

ALL RECORDS 1295
Records in selection 1296
DELETE SELECTION 1297
Selected record number 1299
GOTO SELECTED RECORD 1300
FIRST RECORD 1302
Displayed line number. 1303
NEXT RECORD 1304
LAST RECORD 1305
PREVIOUS RECORD 1306
Before selection 1307
End selection 1309
DISPLAY SELECTION 1311
MODIFY SELECTION 1314
APPLY TO SELECTION 1315
REDUCE SELECTION 1317
SCAN INDEX 1319
ONE RECORD SELECT. 1320
HIGHLIGHT RECORDS 1321
GET HIGHLIGHTED RECORDS 1323
48. Sets 1325
Sets 1327
CREATE EMPTY SET. 1332
CREATE SET. 1333
CREATE SET FROM ARRAY. 1334
USE SET. 1335
ADD TO SET 1336
REMOVE FROM SET 1337
CLEAR SET. 1338
Is in set 1339
Records in set 1340
SAVE SET 1341

24 4th Dimension Language Reference

LOAD SET. 1342

DIFFERENCE 1343
INTERSECTION 1345
UNION 1347
COPY SET. 1349
49. String 1351
String 1353
Num 1356
Position 1358
Substring 1359
Length 1361
Ascii 1362
Char 1364
Character Reference Symbols, 1365
Uppercase 1368
Lowercase 1369
Change string 1370
Insert string 1371
Delete string 1372
Replace string 1373
Mac to Win 1374
Win to Mac 1375
Mac to ISO. 1376
ISO to Mac 1379
50. Structure Access 1381
Structure Access 1383
Count tables 1384
Count fields 1385
Table name 1386
Field name 1387
Table 1388

4th Dimension Language Reference 25

GET TABLE PROPERTIES 1389

Field 1390
GET FIELD PROPERTIES 1391
GET FIELD ENTRY PROPERTIES 1393
GET RELATION PROPERTIES 1394
SET INDEX 1395
Get database parameter 1397
SET DATABASE PARAMETER 1399
51. Subrecords 1409
CREATE SUBRECORD 1411
DELETE SUBRECORD 1412
ALL SUBRECORDS 1413
Records in subselection 1414
APPLY TO SUBSELECTION 1415
FIRST SUBRECORD 1416
LAST SUBRECORD 1417
NEXT SUBRECORD 1418
PREVIOUS SUBRECORD 1419
Before subselection 1420
End subselection 1421
ORDER SUBRECORDS BY 1422
QUERY SUBRECORDS 1423
52. System Documents.... 1425
System Documents 1427
Document type 1434
SET DOCUMENT TYPE 1435
Document creator 1436
SET DOCUMENT CREATOR 1437
Open document 1438
Create document 1441
Append document 1443

26 4th Dimension Language Reference

CLOSE DOCUMENT. 1444

COPY DOCUMENT 1445
MOVE DOCUMENT 1446
DELETE DOCUMENT. 1447
Select document 1448
Test path name 1451
SHOW ON DISK 1452
CREATE FOLDER 1454
Select folder. 1455
DELETE FOLDER 1458
CREATE ALIAS 1459
RESOLVE ALIAS 1461
VOLUME LIST. 1462
VOLUME ATTRIBUTES 1463
FOLDER LIST. 1466
DOCUMENT LIST 1467
MAP FILE TYPES 1468
GET DOCUMENT PROPERTIES 1470
SET DOCUMENT PROPERTIES 1476
GET DOCUMENT ICON 1477
Get document size 1478
SET DOCUMENT SIZE 1479
Get document position 1480
SET DOCUMENT POSITION 1481
53. System Environment.... 1483
Screen height 1485
Screen width 1486
Count screens. 1487
SCREEN COORDINATES 1488
SCREEN DEPTH 1489
SET SCREEN DEPTH 1491
Menu bar screen 1492
Menu bar height 1493
FONT LIST 1494

4th Dimension Language Reference 27

28

4th Dimension Language Reference

Font name 1495
Font number 1496
PLATFORM PROPERTIES 1497
System folder. 1502
Temporary folder. 1504
Current machine 1505
Current machine owner 1506
Gestalt 1507
LOG EVENT 1508
SET ENVIRONMENT VARIABLE 1509
LAUNCH EXTERNAL PROCESS 1510
54. Table 1513
DEFAULT TABLE 1515
Current default table 1517
Current form table 1518
55. Tool Bar 1521
HIDE TOOL BAR 1523
SHOW TOOL BAR 1524
56. Tools 1525
BUILD APPLICATION 1527
ENCODE 1528
DECODE 1529
SPELL CHECKING 1530
SET DICTIONARY 1531

57. Transactions 1535
Using Transactions 1537
START TRANSACTION 1541
VALIDATE TRANSACTION 1542
CANCEL TRANSACTION 1543
In transaction 1544

58. Triggers 1545
Triggers 1547
Database event 1558
Trigger level 1560
TRIGGER PROPERTIES 1561

59. User forms 1563
Overview of user forms 1565
EDIT FORM 1567
CREATE USER FORM 1569
LIST USER FORMS 1570
DELETE USER FORM 1571

60. User Interface 1573
BEEP 1575
PLAY. 1576
Get platform interface 1578
SET PLATFORM INTERFACE 1579
SET TABLE TITLES 1581
GET TABLE TITLES 1585
SET FIELD TITLES 1586
GET FIELD TITLES 1588

4th Dimension Language Reference

29

Shift down 1589

Caps lock down 1590
Windows Ctrl down 1591
Windows Alt down 1592
Macintosh command down 1593
Macintosh option down 1594
Macintosh control down 1595
GET MOUSE 1596
Pop up menu 1597
POST KEY 1600
POST CLICK 1601
POST EVENT 1602
SCROLL LINES 1603
GET HIGHLIGHT. 1604
HIGHLIGHT TEXT 1605
SET CURSOR 1606
Focus object 1607
REDRAW 1608
INVERT BACKGROUND 1609
61. Users and Groups 1611
EDIT ACCESS 1613
CHANGE CURRENT USER 1614
Validate password 1616
CHANGE PASSWORD 1617
Current user 1618
Get default user. 1619
User in group 1620
DELETE USER 1621
Is user deleted 1622
GET USER LIST. 1623
GET USER PROPERTIES 1624
Set user properties 1626
USERS TO BLOB 1629
BLOB TO USERS 1630
GET GROUP LIST. 1631

30 4th Dimension Language Reference

GET GROUP PROPERTIES 1632

Set group properties 1634
CHANGE LICENSES 1636
SET PLUGIN ACCESS 1637
Get plugin access 1638
GET PLUGIN LIST 1639
62. Variables 1641
SAVE VARIABLES 1643
LOAD VARIABLES 1644
CLEAR VARIABLE 1645
Undefined 1647
63. Web Server 1649
Web Server, Overview. 1651
Web server configuration and connection management........ 1655
Your First Time with the Web Server. 1666
Connection Security. 1676
On Web Authentication Database Method 1684
On Web Connection Database Method 1689
Binding 4D objects with HTML obijects 1697
URLs and Form Actions 1708
4D HTML Tags 1715
Web Server Settings 1724
Information about the Web Site 1736
Using the Contextual Mode 1740
Using SSL Protocol 1757
XML and WML Support 1762
Using CGils 1763
START WEB SERVER 1771
STOP WEB SERVER 1772
SET WEB TIMEOUT. 1773
SET HTML ROOT. 1774

4th Dimension Language Reference 31

32

SET WEB DISPLAY LIMITS

1775

SET HOME PAGE

1778

SEND HTML FILE

1779

SEND HTML BLOB

1782

SEND HTML TEXT.

1785

PROCESS HTML TAGS

1786

GET WEB FORM VARIABLES

1788

Web Context

1790

SET HTTP HEADER

1791

GET HTTP HEADER

1793

GET HTTP BODY

1796

SEND HTTP RAW DATA

1798

SEND HTTP REDIRECT

1801

WEB CACHE STATISTICS

1803

Secured Web connection

1804

SET CGI EXECUTABLE

1805

OPEN WEB URL

1806

64. Web Services (Client)

Web Services (Client) Commands
SET WEB SERVICE PARAMETER

SET WEB SERVICE OPTION

.......................... 1807

1809

1810

1812

CALL WEB SERVICE

1814

GET WEB SERVICE RESULT

1818

AUTHENTICATE WEB SERVICE

Get Web Service error info

1820

1821

Web Services (Server) Commands

SOAP DECLARATION

65. Web Services (Server)........ 1823

1825
1826

SEND SOAP FAULT.

1830

Is SOAP request

1831

Get SOAP info

1832

4th Dimension Language Reference

66. Windows 1833

Managing Windows 1835
Window Types 1837
Open window 1845
Open external window 1849
CLOSE WINDOW. 1851
ERASE WINDOW, 1852
REDRAW WINDOW 1853
DRAG WINDOW 1854
HIDE WINDOW. 1856
SHOW WINDOW. 1857
MAXIMIZE WINDOW. 1858
MINIMIZE WINDOW. 1860
Get window title 1862
SET WINDOW TITLE 1863
WINDOW LIST. 1864
Window kind 1865
Window process 1866
GET WINDOW RECT. 1867
SET WINDOW RECT 1868
Frontmost window 1870
Next window. 1871
Find window 1872
Open form window 1873
Current form window. 1875
RESIZE FORM WINDOW 1876
67. XML 1879
Presentation of XML Commands 1881
DOM Create XML Ref 1886
DOM SET XML OPTIONS 1888
DOM Parse XML source 1889
DOM Parse XML variable 1891
DOM Create XML element 1893
DOM Find XML element 1895
DOM Count XML elements 1897

4th Dimension Language Reference 33

DOM Get XML element 1898

DOM Get parent XML element 1899
DOM Get first child XML element 1900
DOM Get next sibling XML element 1902
DOM Get previous sibling XML element 1904
DOM Get last child XML element 1905
DOM SET XML ELEMENT NAME 1906
DOM GET XML ELEMENT NAME 1907
DOM SET XML ELEMENT VALUE 1908
DOM GET XML ELEMENT VALUE 1909
DOM REMOVE XML ELEMENT 1910
DOM Count XML attributes 1911
DOM SET XML ATTRIBUTE 1913
DOM GET XML ATTRIBUTE BY INDEX 1914
DOM GET XML ATTRIBUTE BY NAME 1915
DOM Get XML information 1917
DOM EXPORT TO FILE 1918
DOM EXPORT TO VAR 1919
DOM CLOSE XMLl 1920
SAX SET XML OPTIONS 1921
SAX GET XML DOCUMENT VALUES 1922
SAX ADD XML DOCTYPE 1923
SAX Get XML node 1924
SAX ADD XML COMMENT 1925
SAX GET XML COMMENT 1926
SAX OPEN XML ELEMENT 1927
SAX OPEN XML ELEMENT ARRAYS 1928
SAX CLOSE XML ELEMENT 1929
SAX GET XML ELEMENT 1930
SAX ADD XML ELEMENT VALUE 1932
SAX GET XML ELEMENT VALUE 1933
SAX ADD XML CDATA 1934
SAX GET XML CDATA 1936
SAX ADD PROCESSING INSTRUCTION 1937
SAX GET XML PROCESSING INSTRUCTION 1938
SAX GET XML ENTITY. 1939
GET XML ERROR 1940
APPLY XSLT TRANSFORMATION 1941
SET XSLT PARAMETER 1943
GET XSLT ERROR 1945

34 4th Dimension Language Reference

68. Error Codes 1947
Syntax Errors 1949
Database Engine Errors 1952
Network Errors 1956
Backup management system errors 1957
OS File Manager Errors 1958
OS Memory Manager Errors 1959
OS Printing Manager Errors 1960
OS Resource Manager Errors 1961
SANE NaN Errors 1962
OS Sound Manager Errors 1963
OS Serial Ports Manager Errors 1964
Mac OS System Errors 1965

69. ASCII Codes 1967
ASCII Codes 1969
ASCII Codes 0..63 1970
ASCII Codes 64..127 1971
ASCIl Codes 128..191 1972
ASCII Codes 192..255 1975
Function Key Codes. 1978

70. Command Syntax 1979
Command Syntax by Name 1981

Constants 2003
4D Environment 2005
ASCII Codes 2006
Backup and Restore 2008
BLOB 2009
Clipboard 2010
Colors 2011
Communications 2012

4th Dimension Language Reference

35

36

Database Engine

Database Events

Database Parameters

Date Display Formats

Days and Months

Dictionaries

Euro currencies

Events (Modifiers)
Events (What)

Expressions

External data source

Field and Variable Types

Find window

Font Styles

Form area

Form Events

Form options

Function Keys
Hierarchical Lists

Is license available

ISO Latin Character Entities

List box

Math

Object alignment

Open form window

Open window

Picture Compression

Picture Display Formats
Platform Interface

Platform Properties

Print options

Process state

Process Type
QR Area Properties

QR Borders.

QR Commands

QR Document Properties.
QR Operators

QR Output Destination

QR Report Types

QR Rows for Properties

QR Text Properties

4th Dimension Language Reference

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2030
2031
2032
2033
2034
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2052
2053
2054
2055
2056
2057

Relations 2059

Resources Properties 2060
SCREEN DEPTH 2061
SET RGB COLORS 2062
Standard System Signatures 2063
System Documents 2064
System Folder. 2065
TCP Port Numbers 2066
Time Display Formats 2067
Web Services (Client) 2068
Web Services (Server) 2069
Window kind 2070
Windows Log Events 2071
XMl 2072
Command Index 2073

4th Dimension Language Reference 37

38 4th Dimension Language Reference

Introduction

4th Dimension Language Reference 39

40 4th Dimension Language Reference

Preface Introduction

version 6.0

4th Dimension has its own programming language. This built-in language, consisting of
over 500 commands, makes 4th Dimension a powerful development tool for database
applications on desktop computers. You can use the 4th Dimension language for many
different tasks—from performing simple calculations to creating complex custom user
interfaces. For example, you can:

e Programmatically access any of the editors available to the user in the User
environment,

* Create and print complex reports and labels with the information from the database,
e Communicate with other devices,

e Manage documents,

e Import and export data between 4th Dimension databases and other applications,

e Incorporate procedures written in other languages into the 4th Dimension
programming language.

The flexibility and power of the 4th Dimension programming language make it the ideal
tool for all levels of users and developers to accomplish a complete range of information
management tasks. Novice users can quickly perform calculations. Experienced users
without programming experience can customize their databases. Experienced developers
can use this powerful programming language to add sophisticated features and capabilities
to their databases, including file transfer and communications. Developers with
programming experience in other languages can add their own commands to the

4th Dimension language.

The 4th Dimension programming language is expanded when any of the 4th Dimension
modules are added to the application. Each module includes language commands that are
specific to the capabilities they provide.

About the Manuals

The manuals described here provide a guide to the features of both 4th Dimension and
4D Server. The only exception is the 4D Server Reference, which describes features exclusive
to 4D Server.

e The Language Reference is a guide to using the 4th Dimension language. Use this manual
to learn how to customize your database by incorporating 4th Dimension commands and
functions.

e The Design Reference provides detailed descriptions of the operations you can perform in
the Design environment to create forms for managing data.

e The User Reference provides a description of the User environment, in which users enter
and manipulate data in forms.

4th Dimension Language Reference 41

¢ The Quickstart manual leads you through example lessons in which you create and use a
4th Dimension database. These examples provide hands-on experience and help you
become familiar with the concepts and features of 4th Dimension and 4D Server.

e The 4D Server Reference, which is included only in the 4D Server package, is a guide to
managing multi-user databases with 4D Server.

About this Manual

This manual describes the 4th Dimension language. It assumes that you are familiar with
terms such as table, field, and form. Before you read this manual, you should:

e Use the Quickstart manual to work through the database example.

¢ Begin creating your own databases, referring to the Design Reference manual when
necessary.

¢ Be comfortable with managing your database in the User environment. See the User
Reference manual for more information on the User environment.

Writing conventions
In this manual, several writing conventions are used:

e Following the example of the 4th Dimension Method editor, commands are written in
all caps using special characters, e.g.: OPEN DOCUMENT. Functions (commands that return
a value) start with a capital letter and continue in lower case, e.g.: Change string.

¢ In the command syntax, the { } characters (braces) indicate optional parameters. For
example, SET DEFAULT CENTURY (century{; pivotYear}) means that the pivotYear parameter
may be omitted when calling the command.

e In the command syntax, the | character indicates an alternative. For example, Table
(tableNum | aPtr) indicates that the function accepts either a table number or a pointer as
parameter.

e In certain examples in this documentation, a line of code may be continued onto the
following line(s) due to lack of space. However, you should type these examples as a single
line of code without using carriage returns.

Where to go from here?
If you are reading this manual for the first time, read the Introduction section.

42 4th Dimension Language Reference

Introduction Introduction

version 2003 (Modified)

This topic introduces you to the 4th Dimension programming language. The following
topics are discussed:

e What the language is and what it can do for you,
e How you will use methods,
e How to develop an application with 4th Dimension.

These topics are covered here in general terms; they are covered in greater detail in other
sections.

What is a Language?

The 4th Dimension language is not very different from the spoken language we use every
day. It is a form of communication used to express ideas, inform, and instruct. Like a
spoken language, 4th Dimension has its own vocabulary, grammar, and syntax; you use it
to tell 4th Dimension how to manage your database and data.

You do not need to know everything in the language in order to work effectively with
4th Dimension. In order to speak, you do not need to know the entire English language;
in fact, you can have a small vocabulary and still be quite eloquent. The 4th Dimension
language is much the same—you only need to know a small part of the language to
become productive, and you can learn the rest as the need arises.

Why Use a Language?

At first it may seem that there is little need for a programming language in 4th
Dimension. The Design and User environments provide flexible tools, which require no
programming to perform a wide variety of data management tasks. Fundamental tasks,
such as data entry, queries, sorting, and reporting are handled with ease. In fact, many
extra capabilities are available, such as data validation, data entry aids, graphing, and label
generation.

Then why do we need a 4th Dimension language? Here are some of its uses:

¢ Automate repetitive tasks: These tasks include data modification, generation of complex
reports, and unattended completion of long series of operations.

e Control the user interface: You can manage windows and menus, and control forms
and interface objects.

e Perform sophisticated data management: These tasks include transaction processing,
complex data validation, multi-user management, sets, and named selection operations.

e Control the computer: You can control serial port communications, document
management, and error management.

4th Dimension Language Reference 43

¢ Create applications: You can create easy-to-use, customized databases that use the
Runtime environment.

¢ Add functionality to the built-in 4D Web Services: Create dynamic HTML pages in
addition to those automatically translated from forms by 4D.

The language lets you take complete control over the design and operation of your
database. While the User environment gives you powerful “generic” tools, the language
lets you customize your database to whatever degree you require.

Taking Control of Your Data

The 4th Dimension language lets you take complete control of your data in a powerful
and elegant manner. The language is easy enough for a beginner, and sophisticated
enough for an experienced application developer. It provides smooth transitions from
built-in database functions to a completely customized database.

The commands in the 4th Dimension language provide access to the User environment
editors, with which you are already familiar. For example, when you use the QUERY
command, you are presented with the Query Editor. Using this language command is
almost as easy as choosing the Query command from the Queries menu, but the QUERY
command is even more useful. You can tell the QUERY command to search for explicitly
described data. For example, QUERY ([People];[People]Last Name="Smith") will find all the
people named Smith in your database.

The 4th Dimension language is very powerful—one command often replaces hundreds or
even thousands of lines of code written in traditional computer languages. Surprisingly
enough, with this power comes simplicity—commands have plain English names. For
example, to perform a query, you use the QUERY command; to add a new record, you use
the ADD RECORD command.

The language is designed for you to easily accomplish almost any task. Adding a record,
sorting records, searching for data, and similar operations are specified with simple and
direct commands. But the language can also control the serial ports, read disk documents,
control sophisticated transaction processing, and much more.

The 4th Dimension language accomplishes even the most sophisticated tasks with relative
simplicity. Performing these tasks without using the language would be unimaginable for
many.

Even with the language’s powerful commands, some tasks can be complex and difficult. A
tool by itself does not make a task possible; the task itself may be challenging and the
tool can only ease the process. For example, a word processor makes writing a book faster
and easier, but it will not write the book for you. Using the 4th Dimension language will
make the process of managing your data easier and will allow you to approach
complicated tasks with confidence.

44 4th Dimension Language Reference

Is it a “Traditional” Computer Language?

If you are familiar with traditional computer languages, this section may be of interest. If
not, you may want to skip it.

The 4th Dimension language is not a traditional computer language. It is one of the most
innovative and flexible languages available on a computer today. It is designed to work
the way you do, and not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning is one of
the major steps in development. 4th Dimension allows you to start using the language at
any time and in any part of your database. You may start by adding a method to a form,
then later add a few more methods. As your database becomes more sophisticated, you
might add a project method controlled by a menu. You can use as little or as much of the
language as you want. It is not “all or nothing,” as is the case with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic
terms. In 4th Dimension, you simply create an object, such as a button, and use it.

4th Dimension automatically manages the object for you. For example, to use a button,
you draw it on a form and name it. When the user clicks the button, the language
automatically notifies your methods.

Traditional languages are often rigid and inflexible, requiring commands to be entered in

a very formal and restrictive style. The 4th Dimension language breaks with tradition,
and the benefits are yours.

Methods are the Gateway to the Language

A method is a series of instructions that causes 4th Dimension to perform a task. Each
line of instruction in a method is called a statement. Each statement is composed of parts
of the language.

Because you have already worked through the Quickstart tutorials (you did go through
Quickstart, didn’t you?), you have already written and used methods.

You can create five types of methods with 4th Dimension:

¢ Object Methods: Usually short methods used to control form objects.

* Form Methods: Manage the display or printing of a form.

e Table Methods/Triggers: Used to enforce the rules of your database.

* Project methods: Methods that are available for use throughout your database. For
example, methods that can be attached to menus.

e Database methods: Execute initializations or special actions when a database is opened
or closed, or when a Web browser connects to your database published as a Web Server on
Internet an Intranet.

4th Dimension Language Reference 45

The following sections introduce each of these method types and give you a feel for how
you can use them to automate your database.

Getting started with object methods

Any form object that can perform an action (that is, any active object) can have a
method associated with it. An object method monitors and manages the active object
during data entry and printing. A object method is bound to its active object even when
the object is copied and pasted. This allows you to create reusable libraries of scripted
objects. The object method takes control exactly when needed.

Object methods are the primary tools for managing the user interface, which is the
doorway to your database. The user interface consists of the procedures and conventions
by which a computer communicates with the user. The goal is to make the user interface
of your database as simple and easy to use as possible. The user interface should make
interaction with the computer a pleasant process, one that the user enjoys or does not
even notice.

There are two basic types of active objects in a form:

e Those for entering, displaying, and storing data; such as fields and subfields

¢ Those for control; such as enterable areas, buttons, scrollable areas, hierarchical lists, and
meters

4th Dimension enables you to build classic forms, such as the one shown here:

iz4] Entry for, Employees Q@@

SS9 e

Employees i @i
Department : [FANR
First Marne @ [James

Last Mame : [Rutherford

W
1Y

Position ISupervisur
Salary : [55000 |
S5 MNurnber W
Start date : m

46 4th Dimension Language Reference

You can also build forms with multiple graphic controls, such as this one:

rForeground color rBackground color

= 1———
=1 ——
= |—— 81

Yalue : Dx00000000 Value : Dx009CA951 -

-40 -20 0 20 40

o

I I
-40 -20 0O 20 40

-40 -20 0 20 40 -40 -20 0 20 40

4th Dimension Language Reference

47

You can even build forms that incorporate a graphical flair limited only by your
imagination:

rColors and Tights Popup, popdown, who cares?

JAU@ 2T oo

e [

rLights and Magics Useful objects

Ty Ed

@E e 1o 1 | D|E]
s % . &b

R T B TN T P T PR e o PR e M i A I

Whatever your style in building forms, all active objects have built-in aids, like range
checking and entry filters for data entry areas, and automatic actions for controls, menus,
and buttons. Always use these aids before adding object methods. The built-in aids are
similar to methods in that they remain associated with the active object and are active
only when the active object is being used. You will typically use a combination of built-in
aids and object methods to control the user interface.

An object method associated with an active object used for data entry typically performs a
data-management task specific to the field or variable. The method can perform data
validation, data formatting, or calculations. It may even get related information from
other files. Some of these tasks can, of course, also be performed with the built-in data
entry aids for objects. Use object methods when the task is too complex for the built-in
data entry aids to manage. For more information about the built-in data entry aids, refer
to the 4th Dimension Design Reference.

48 4th Dimension Language Reference

Object methods are also associated with active objects used for control, such as buttons.
Active objects used for control are essential to navigating within your database. Buttons
allow you to move from record to record, move to different forms, and add and delete
data. These active objects simplify the use of a database and reduce the time required to
learn it. Buttons also have built-in aids and, as with data entry, you should use these built-
in aids before adding methods. Object methods enable you to add actions that are not
built-in, to your controls. For example, the following window is the object method for a
button that, when clicked, displays the Query editor.

\=i| Method: bQuery E@El

1 ‘hQuery button object method :‘
2 QUERY([Departments])

BE | J_‘

As you become more proficient with scripts, you will find that you can create libraries of
objects with associated methods. You can copy and paste these objects and their methods
between forms, tables, and databases. You can even keep them in the Clipbook
(Windows) or Scrapbook (Macintosh), ready to be used when you need them.

Controlling forms with form methods

In the same way that object methods are associated with the active objects in a form, a
form method is associated with a form. Each form can have one form method. A form is
the means through which you can enter, view, and print your data. Forms allow you to
present the data to the user in different ways. Through the use of forms, you can create
attractive and easy-to-use data entry screens and printed reports. A form method monitors
and manages the use of an individual form both for data entry and for printing.

Form methods manage forms at a higher level than do object methods. Object methods
are activated only when the object is used, whereas a form method is activated when
anything in the form is used. Form methods are typically used to control the interaction
between the different objects and the form as a whole.

As forms are used in so many different ways, it is informative to monitor what is
happening while your form is in use. You use the various form events for this purpose.
They tell you what is currently happening with the form. Each type of event (i.e., clicks,
double-clicks, keystrokes...) enables or disables the execution of the form method as well
as the object method of each object of the form.

For more information about form, objects, events and methods, see the section Form
event.

4th Dimension Language Reference 49

Enforcing the rules of your database using the table methods/triggers

A Trigger is attached to a table; for this reason, it is also called a Table Method. Triggers are
automatically invoked by the 4D database engine each you manipulate the records of a
table (Add, Delete, Modify and Load). Triggers are methods that can prevent “illegal”
operations with the records of your database. For example, in an invoicing system, you
can prevent anyone from adding an invoice without specifying the customer to whom
the invoice is billed. Triggers are a very powerful tool to restrict operations on a table as
well as to prevent accidental data loss or tampering. You can write very simple triggers,
then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

Using project method throughout the database

Unlike object methods, form methods, and triggers, which are all associated with a
particular object, form, or table, project methods are available for use throughout your
database. Project methods are reusable, and available for use by any other method. If you
need to repeat a task, you do not have to write identical methods for each case. You can
call project methods wherever you need them—from other project methods or from
object or form methods. When you call a project method, it acts as if you had written the
method at the location where you called it. Project methods called from other method are
often referred to as “subroutines.”

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

Handling working sessions with database methods

In the same way object and form methods are invoked when events occur in a form,
there are methods associated with the database which are invoked when a working
session event occurs. These are the database methods. For example, each time you open a
database, you may want to initialize some variables that will be used during the whole
working session. To do so, you use the On Startup Database Method, automatically
executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Developing Your Database

Development is the process of customizing a database using the language and other built-
in tools.

50 4th Dimension Language Reference

By simply creating a database, you have already taken the first steps to using the
language. All the parts of your database—the tables and fields, the forms and their objects,
and the menus—are tied to the language. The 4th Dimension language “knows” about all
of these parts of your database.

Perhaps your first use of the language is to add a method to a form object in order to
control data entry. Later, you might add a form method to control the display of your
form. As the database becomes more complex, you can add a menu bar with project
methods to completely customize your database.

As with other aspects of 4th Dimension, development is a very flexible process. There is
no formal path to take during development—you can develop in a manner with which
you are comfortable. There are, of course, some general patterns in the process.

e Implementation: Implement your design in the Design environment.

* Testing: You try out the design in the User environment and perhaps stay there to use
your customized database.

e Usage: When your database is fully customized, you use it in the Custom Menus
environment.

e Corrections: If you find errors, you return to the Design environment to fix them.

Special development support tools, hidden until needed, are built into 4th Dimension. As
you use the language more frequently, you will find that these tools facilitate the
development process. For example, the Method Editor catches typing errors and formats
your work; the Interpreter (the engine that runs the language) catches errors in syntax
and shows you where and what they are; and the Debugger lets you monitor the
execution of your methods to catch errors in design.

Building Applications

By now you are familiar with the general uses of a database—data entry, searching,
sorting, and reporting. You have performed these tasks in the User environment, using
the built-in menus and editors.

As you use a database, you perform some sequences of tasks repeatedly. For example, in a
database of personal contacts, you might search for your business associates, order them
by last name, and print a specific report each time information about them is changed.
These tasks may not seem difficult, but they can certainly be time-consuming after you
have done them 20 times. In addition, if you don’t use the database for a couple of weeks,
you may return to find that the steps used to generate the report are not so fresh in your
mind. The steps in methods are chained together, so a single command automatically
performs all the tasks linked to it. Consequently, you do not have to worry about the
specific steps.

4th Dimension Language Reference 51

Applications have custom menus and perform tasks that are specific to the needs of the
person using your database. An application is composed of all the pieces of your database:
the structure, the forms, the object, form and project methods, the menus, and the
passwords.

You can compile your databases and create stand-alone Windows and Macintosh
applications. Compiling databases increases the execution speed of the language, protects
your databases, and allows you to create applications that are completely independent.
The integrated compiler also checks the syntax and the types of variables in methods for
consistency.

An application can be as simple as a single menu that lets you enter people’s names and
print a report, or as complex as an invoicing, inventory, and control system. There are no
limits to the uses of database applications. Typically, an application grows from a database
used in the User environment to a database controlled completely by custom menus.

Where to go from here?

¢ Developing applications can be as simple or complex as you like. For a quick overview
about building a simple 4D application, see the section Building a 4D application.

e If you are new to 4D, refer to the Language Definition sections to learn about the basics
of the 4D language: start with Introduction to the 4D Language.

52 4th Dimension Language Reference

Building a 4D Application Introduction
version 2003 (Modified)

An application is a database designed to fill a specific need. It has a user interface designed
specifically to facilitate its use. The tasks that an application performs are limited to those
appropriate for its purpose. Creating applications with 4th Dimension is smoother and
easier than with traditional programming. 4th Dimension can be used to create a variety
of applications, including:

¢ An invoice system

* An inventory control system

* An accounting system

e A payroll system

* A personnel system

¢ A customer tracking system

¢ A database shared over the Internet or an Intranet

It is possible that a single application could even contain all of these systems. Applications
like these are typical uses of databases. In addition, the tools in 4th Dimension allow you
to create innovative applications, such as:

e A document tracking system

e A graphic image management system

* A catalog publishing application

¢ A serial device control and monitoring system

¢ An electronic mail system (E-mail)

e A multi-user scheduling system

¢ A list such as a menu list, video collection, or music collection

An application typically starts as a database used in the User environment. The database
“evolves” into an application as it is customized. What differentiates an application is that
the systems required to manage the database are hidden from the user. Database
management is automated, and users use menus to perform specific tasks.

When you use a 4th Dimension database in the User environment, you must know the
steps to take to achieve a result. In an application, you use the Custom Menus
environment, in which you need to manage all the aspects that are automatic in the User
Environment. These include:

eTable Navigation: The Choose Table/Form dialog box and List of Tables window are not
available to the user. You can use menu commands and methods to control navigation
between tables.

e Menus: In the Custom Menus environment, you only have the default File menu with
the Quit menu command, Edit menu, and the Help menu (Windows only) or the Apple
menu (Macintosh only). If the application requires more menus, you have to create and
manage them using 4D methods.

4th Dimension Language Reference 53

e Editors: The editors, such as the Query and Order By editors, are no longer automatically
available in the Custom Menus environment. If you want to use them in the Custom
Menus environment, you have to call them using 4D methods.

The following sections include examples showing how the language can automate the use
of a database.

Custom Menus: an Example

Custom Menus are the primary interface in an application. They make it easier for users
to learn and use a database. Creating custom menus is very simple—you associate
methods or automatic actions with each menu command (also called menu items) in the
Menu editor.

“The User's Perspective” section describes what happens when the user chooses a menu
command. Next, “Behind the Scenes” describes the design work that made it happen.
Although the example is simple, it should be apparent how custom menus make the
database easier to use and learn. Rather than the “generic” tools and menu commands in
the User environment, the user sees only things that are appropriate to his or her needs.

The User’s Perspective
The user chooses a menu item called New from the People menu to add a new person to
the database.

4% 4th Dimension
File Edit Company Help

4th Dimension ®
@ 4D S.A. 1985 - 2004. All rights reserved.

54 4th Dimension Language Reference

The Input form for the People table is displayed.

\=4| Entry for People

People

First name :

Last name :

Company

Address

|

|

|

|
City [
State : l_
Zip code

1ofl

£ $$4 @4

The user enters the person’s first name and then tabs to the next field.

\=d| Entry for People

People

First name : [John

Last name

Compary

Address

|

|

|
ity ¢ [
State : l_
Zocode: [|

laofl

£E$SH @SS

4th Dimension Language Reference

55

The user enters the person’s last name.

\=4| Entry for People

1ofl =

People

First name : [John

Last name : [Dillard

Company ;|

Address |

City : [

State : l_
Zpcode: [|

£ $$4 @4

The user tabs to the next field: the last name is converted to uppercase.

\=d| Entry for People

laofl T

People

First name : [John

Last name : [DILLARD

Comparty @ [

Address |

ity ¢ [

State : l_
Zocode: [|

£ESSY @S

56 4th Dimension Language Reference

The user finishes entering the record and clicks the validation button (generally the last
button in the button bar).

\=4| Entry for People

2of2 T

People
First name :

Last name ; [DILLARD

Company : [Printek

Address: [132 Tech way
City : [Surnydale
State [ca)

Zpcode: [92140 |
55633 G334

Another blank record appears, and the user clicks the Cancel button (the one with the
“X") to terminate the “data entry loop.” The user is returned to the menu bar.

Behind the Scenes
The menu bar was created in the Design environment, using the Menu Bar Editor.

4| Menu Bar Editor, :||E|[Z|
List of Menu Bars Current Menu Bar
Fe,
Modify person
by report
Current Meru [tem
Associated Standard Action: [Na Action |
M ethod Mame: |New person
Access Privileges: |AII Groupz ﬂ
Shortcut: ’_
Toolbar lcon: l_
[~ Start a Mew Process [~ Bold
I Line I~ ltalic
¥ Enabled I~ Underline
Add | Delete | Add Menu | Addltem | Delete |

4th Dimension Language Reference 57

The menu item New has a project method named New Person associated with it. This
method was created in the Design environment, using the Method editor.

1 | = Repeat :‘
2 ADD RECORD{[Feople])
3 Until{OK=0)

BE | J_‘

When the user chooses this menu item, the New Person method executes:

Repeat
ADD RECORD([People])
Until (OK=0)

The Repeat...Until loop with an ADD RECORD command within the loop acts just like the
New Record menu item in the User environment. It displays the input form to the user,
so that he or she can add a new record. When the user saves the record, another new
blank record appears. This ADD RECORD loop continues to execute until the user clicks
the Cancel button.

When a record is entered, the following occurs:

e There is no method for the First Name field, so nothing executes.

e There is a method for the Last Name field. This Object Method was created in the Design
environment, using the Form and Method editors. The method executes:

Last Name:=Uppercase(Last Name)
This line converts the Last Name field to uppercase characters.

After a record has been entered, when the user clicks the Cancel button for the next one,
the OK variable is set to zero, thus ending the execution of the ADD RECORD loop.

As there are no more statements to execute, the New Person method stops executing and

control returns to the menu bar.

Comparing an Automated Task with the Actions to be performed in the User
environment

Let’s compare the way a task is performed in the User environment and the way the same
task is performed using the language. The task is a common one:

e Find a group of records
e Sort them
¢ Print a report

58 4th Dimension Language Reference

The next section, “Using a Database in the User Environment,” displays the tasks
performed in the User environment.

The following section, “Using the Built-in Editors within the Custom Menus
environment,” displays the same tasks performed in an application.

Note that although both methods perform the same task, the steps in the second section
are automated using the language.

Using a database in the User environment
The user chooses Query>Query... in the Records menu.

Mew Record Chrl+M

Shiow &ll Ctrl+G

Query Query... Ctrl+F
Order By... Chrl+T GQuery by Example...

Query and Madify...

Query by Formula.., Ckrl4+3Shift+F

Choaose Table/Form

Apply Farmula.. .
v Enter in List Chrl+,

The Query editor is displayed.

‘_\ Guery Editar
Load... |
Awailable Fields: Comparisons:
|Related Tables | s equal ko B
iz hot equal to
AERETINEN | | ot
A Last name iz greater than or equal ta
iz less than
b Company iz lezs than or equal to
A pddress containg
A Cin does not contain
oo = [-
Value
|
drd | 0r | Ewcept] Clear &l | Delline | Insertline | Addline |
Cancel | | |

4th Dimension Language Reference 59

The user enters the criteria and clicks the Query button. The search is performed.

The user chooses Order by from the Records menu.

Records

Mew Record Chrl+h

Shiow &l Chrl+G

Query]

Choose TablefFaorm

Apply Formula, .,
v Enter in List Chrl+,

The Order By editor is displayed.

Order by

(;‘ " 4 Available Fields Ordered by Fieldz/Formulaz

AT =l

/% Last name
T Compang
A pddress
A City

/% State

P Zip code

HH

J Add Formula... |

Cancel | |

The user enters the criteria and clicks the Sort button. The sort is performed.

Then, to print the records, these additional steps are required:

e The user chooses Print from the File menu.

e The Choose Print Form dialog box is displayed, because users need to know which form
to print.

e The Printing dialog boxes are displayed. The user chooses the settings, and the report is
printed.

60 4th Dimension Language Reference

Using the built-in editors within the Custom Menus environment
Let’s examine how this can be performed in the Custom Menus environment.

The User chooses Report from the People menu.

Even at this point, using an application is easier for the users—they did not need to know
that querying is the first step!

A method called My Report is attached to the menu command; it looks like this:

QUERY ([People])

ORDER BY ([People])

OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People])

The first line is executed:

QUERY ([People])

The Query editor is displayed.

‘_\ Query Editor
Load... |
Awailable Fields: Comparisons:
|F|e|ated Tables ﬂ 1z equal ko J
iz not equal ta
Pr e P
A Last name iz greater than or equal to
i% less than
I Company iz less than or equal to
A pddress ciohtaing)
A Cin does hat contain
o - -
Yalue
|
dnd | 0r | Except | Clear&ll | Delline | Insertline | Addline |
Cancel | | |

The user enters the criteria and clicks the Query button. The query is performed.

4th Dimension Language Reference 61

The second line of the My Report method is executed:

ORDER BY ([People])
Note that the user did not need to know that ordering the records was the next step.

The Order By Editor is displayed.

Order by

Q\ " 4 Available Fields Ordered by Fieldz/Formulaz

TR |
/% Last name
T Compang
A pddress
A City

/% State

P Zip code

HH

J Add Formula... |

Cancel | |

The user enters the criteria and clicks the Sort button. The sort is performed.

The third line of the My Report method is executed:
OUTPUT FORM ([People]; "Report")

Once again, the user did not need to know what to do next; the method takes care of
that.

The final line of the My Report method is executed:
PRINT SELECTION ([People])

The Printing dialog boxes are displayed. The User chooses the settings, and the report is
printed.

62 4th Dimension Language Reference

Automating the Application Further

The same commands used in the previous example can be used to further automate the
database.

Let’s take a look at the new version of the My Report method.

The user chooses Report from the People menu. A method called My Report2 is attached
to the menu command. It looks like this:

QUERY([People];[People]Company="Acme")

ORDER BY([People]; [People]Last Name;>;[People]First Name;>)
OUTPUT FORM([People];"Report")

PRINT SELECTION([People];*)

The first line is executed:

QUERY([People];[People]Company="Acme")

The Query editor is not displayed. Instead, the query is specified and performed by the
QUERY command. The user does not need to do anything.

The second line of the My Report2 method is executed:
ORDER BY([People];[People]Last Name;>;[People]First Name;>)

The Order By editor is not displayed, and the sort is immediately performed. Once again,
no user actions are required.

The final lines of the My Report2 method are executed:

OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People]; *)

The Printing dialog boxes are not displayed. The PRINT SELECTION command accepts an
optional asterisk (*) parameter that instructs the command to use the print settings that
were in effect when the report form was created. The report is printed.

This additional automation saved the user from having to enter options in three dialog
boxes. Here are the benefits :

e The query is automatically performed: users may select wrong criteria when making a
query.

e The sort is automatically performed: users may select wrong criteria when defining a
sort.

e The printing is automatically performed: users may select the wrong form to print.

4th Dimension Language Reference 63

Help for Developing 4D Applications

As you develop a 4D application, you will discover many capabilities that you did not
notice when you started. You can even augment the standard version of 4D by adding
other tools and plug-ins to your 4D development environment.

Tools and 4D plug-ins

4D provides several tools and plug-ins that can be used for increasing the capabilities of
your 4D applications.

* 4D Insider allows you to cross-reference your 4th Dimension databases. You can use it to
view and print methods, variables, commands, externals, structures, lists, and forms. The
cross-referencing utility tells you where each of these objects is used throughout your
database. It also helps you to move objects like tables, forms, methods, menu bars, lists,
packages, and styles from one database to another.

4D provides the following plug-ins:

* 4D Write: Word-processor

® 4D Draw: Graphical drawing program

* 4D View: Spreadsheet and list editor

* 4D Internet Commands (built-in): Communication utilities via Internet.

* 4D ODBC Pro: Connectivity via ODBC

* 4D for OCl: Connectivity with ORACLE Call Interface

* 4D Open for Java: Connectivity with Java applications

* 4D Open for 4D: Connectivity (from 4D to 4D) for building distributed 4D information
systems.

For more information, contact 4D or its Partners. Visit our Web Sites:

USA & International:
http://www.4d.com

France:
http://www.4d.fr

The 4D community and third party tools

There is a very active worldwide 4D community, composed of User Groups, Electronic
Forums, and 4D Partners. 4D Partners produce Third Party Tools. Browse your 4D CD—it
contains demos and information from 4D Partners. Find out about them on the Web.
You can suscribe to the user forum of 4th Dimension at the following address:

http://forums.4D.fr

The 4D community offers access to tips and tricks, solutions, information, and additional
tools that will save you time and energy, and increase your productivity.

64 4th Dimension Language Reference

Language Definition

4th Dimension Language Reference 65

66 4th Dimension Language Reference

Introduction to the 4D Language Language Definition

version 6.0

The 4th Dimension language is made up of various components that help you perform
tasks and manage your data.

e Data types: Classifications of data in a database. See discussion in this section as well as
the detailed discussion in the section Data Types.

¢ Variables: Temporary storage places for data in memory. See detailed discussion in the
section Variables.

e Operators: Symbols that perform a calculation between two values. See discussion in this
section as well as the detailed discussion in the section Operators and its subsections.

e Expressions: Combinations of other components that result in a value. See discussion in
this section.

e Commands: Built-in instructions to perform an action. All 4D commands, such as ADD
RECORD, are described in this manual, grouped by theme; when necessary, the theme is
preceded by an introductory section. You can use 4D Plug-ins to add new commands to
your 4D development environment. For example, once you have added the 4D Write
Plug-in to your 4D system, the 4D Write commands become available for creating and
manipulating word-processing documents.

e Methods: Instructions that you write using all parts of the language listed here. See
discussion in the section Methods and its subsections.

This section introduces Data Types, Operators, and Expressions. For the other components,
refer to the sections cited above.

In addition:

e Language components, such as variables, have names called Identifiers. For a detailed
discussion about identifiers and the rules for naming objects, refer to the section
Identifiers.

e To learn more about array variables, refer to the section Arrays.

e To learn more about BLOB variables, refer to the section BLOB commands.

e If you plan to compile your database, refer to the section Compiler Commands as well as
the Design Reference manual of 4th Dimension.

4th Dimension Language Reference 67

Data Types

In the language, the various types of data that can be stored in a 4th Dimension database
are referred to as data types. There are seven basic data types: string, numeric, date, time,
Boolean, picture, and pointer.

e String: A series of characters, such as “Hello there”. Alpha and Text fields, and string and
text variables, are of the string data type.

e Numeric: Numbers, such as 2 or 1,000.67. Integer, Long Integer, and Real fields and
variables are of the numeric data type.

e Date: Calendar dates, such as 1/20/89. Date fields and variables are of the date data type.
e Time: Times, including hours, minutes, and seconds, such as 1:00:00 or 4:35:30 PM.
Time fields and variables are of the time data type.

* Boolean: Logical values of TRUE or FALSE. Boolean fields and variables are of the
Boolean data type.

e Picture: Picture fields and variables are of the picture data type.

e Pointer: A special type of data used in advanced programming. Pointer variables are of
the pointer data type. There is no corresponding field type.

Note that in the list of data types, the string and numeric data types are associated with
more than one type of field. When data is put into a field, the language automatically
converts the data to the correct type for the field. For example, if an integer field is used,
its data is automatically treated as numeric. In other words, you need not worry about
mixing similar field types when using the language; it will manage them for you.

However, when using the language it is important that you do not mix different data
types. In the same way that it makes no sense to store “ABC” in a Date field, it makes no
sense to put “ABC” in a variable used for dates. In most cases, 4th Dimension is very
tolerant and will try to make sense of what you are doing. For example, if you add a
number to a date, 4th Dimension will assume that you want to add that number of days
to the date, but if you try to add a string to a date, 4th Dimension will tell you that the
operation cannot work.

There are cases in which you need to store data as one type and use it as another type. The
language contains a full complement of commands that let you convert from one data
type to another. For example, you may need to create a part number that starts with a
number and ends with characters such as “abc”. In this case, you might write:

[Products]Part Number:=String(Number)+"abc"
If Number is 17, then [Products]Part Number will get the string “17abc”.

The data types are fully defined in the section Data Types.

68 4th Dimension Language Reference

Operators

When you use the language, it is rare that you will simply want a piece of data. It is more
likely that you will want to do something to or with that data. You perform such
calculations with operators. Operators, in general, take two pieces of data and perform an
operation on them that results in a new piece of data. You are already familiar with many
operators. For example, 1 + 2 uses the addition (or plus sign) operator to add two numbers
together, and the result is 3. This table shows some familiar numeric operators:

Operator Operation Example

+ Addition 1 + 2 results in 3
- Subtraction 3-2resultsin 1
* Multiplication 2 * 3 results in 6
/ Division 6 / 2 results in 3

Numeric operators are just one type of operator available to you. 4th Dimension supports
many different types of data, such as numbers, text, dates, and pictures, so there are
operators that perform operations on these different data types.

The same symbols are often used for different operations, depending on the data type. For
example, the plus sign (+) performs different operations with different data:

Data Type Operation Example

Number Addition 1 + 2 adds the numbers and results in 3

String Concatenation “Hello ” + “there” concatenates (joins together)
the strings and results in “Hello there”

Date and Number Date addition 11/1/1989! + 20 adds 20 days to the date

January 1, 1989, and results in the date
January 21, 1989

The operators are fully defined in the section Operators and its subsections.

Expressions

Simply put, expressions return a value. In fact, when using the 4th Dimension language,
you use expressions all the time and tend to think of them only in terms of the value
they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language: commands,
operators, variables, and fields. You use expressions to build statements (lines of code),
which in turn are used to build methods. The language uses expressions wherever it needs
a piece of data.

4th Dimension Language Reference 69

Expressions rarely “stand alone.” There are only a few places in 4th Dimension where an
expression can be used by itself:

e Query by Formula dialog box in the User environment

e Debugger where the value of expressions can be checked

e Apply Formula dialog box

¢ Quick Report editor as a formula for a column

An expression can simply be a constant, such as the number 4 or the string “Hello.” As
the name implies, a constant’s value never changes. It is when operators are introduced
that expressions start to get interesting. In preceding sections you have already seen
expressions that use operators. For example, 4 + 2 is an expression that uses the addition
operator to add two numbers together and return the result 6.

You refer to an expression by the data type it returns. There are seven expression types:

¢ String expression

e Numeric expression (also referred to as number)
¢ Date expression

¢ Time expression

e Boolean expression

¢ Picture expression

¢ Pointer expression

The following table gives examples of each of the seven types of expressions.

Expression Type Explanation

“Hello” String The word Hello is a string constant,
indicated by the double quotation marks.

“Hello ” + “there” String Two strings, “Hello ” and “there”, are added

together (concatenated) with the string
concatenation operator (+).
The string “Hello there” is returned.

“Mr. ” + [People]Name String Two strings are concatenated: the string “Mr. ”
and the current value of the Name field in the
People table.
If the field contains “Smith”, the expression
returns “Mr. Smith”.

Uppercase (“smith”) String This expression uses “Uppercase”, a command
from the language, to convert the string
“smith” to uppercase.
It returns “SMITH”.

4 Number This is a number constant, 4.

4*2 Number Two numbers, 4 and 2, are multiplied using the
multiplication operator (*).
The result is the number 8.

70 4th Dimension Language Reference

My Button

11/25/97!

Current date + 30

78:05:30?
72:03:04? + ?1:02:03?

True

10 # 20

IIABCI/ = HXYZI/

My Picture + SO

->[People]Name

Table (1)

See Also

Number

Date

Date

Time

Time

Boolean

Boolean

Boolean

Picture

Pointer

Pointer

This is the name of a button.
It returns the current value of the button:
1 if it was clicked, O if not.

This is a date constant for the date 1/25/97
(January 25, 1997).

This is a date expression that uses the command
“Current date” to get today’s date.

It adds 30 days to today’s date and returns

the new date.

This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.

This expression adds two times together and
returns the time 3:05:07.

This command returns the Boolean value TRUE.

This is a logical comparison between two
numbers. The number sign (#) means “is not
equal to”.

Since 10 “is not equal to” 20, the expression
returns TRUE.

This is a logical comparison between two
strings. They are not equal, so the expression
returns FALSE.

This expression takes the picture in My Picture,
moves it 50 pixels to the right, and returns
the resulting picture.

This expression returns a pointer to the field
called [People]Name.

This is a command that returns a pointer to
the first table.

Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

4th Dimension Language Reference 71

Data Types Language Definition

version 6.0

4th Dimension fields, variables, and expressions can be of the following data types:

Data Type Field Variable Expression
String (see note 1) Yes Yes Yes
Number (see note 2) Yes Yes Yes
Date Yes Yes Yes
Time Yes Yes Yes
Boolean Yes Yes Yes
Picture Yes Yes Yes
Pointer No Yes Yes
BLOB (see note 3) Yes Yes No
Array (see note 4) No Yes No
Subtable Yes No No
Undefined No Yes Yes
Notes

1. String includes alphanumeric field, fixed length variable, and text field or variable.
2. Number includes Real, Integer, and Long Integer field and variable.

3. BLOB is an acronym for Binary Large OBject. For more information about BLOBs, see
the section BLOB Commands.

4. Array includes all types of arrays. For more information, see the section Arrays.

String

String is a generic term that stands for:
e Alphanumeric field

e Fixed length variable

e Text field or variable

¢ Any string or text expression

A string is composed of characters. Each character can be any of the 256 ASCII codes. For

more information about ASCII codes and how 4D handles them in a cross-platform
environment, see the section ASCIl Codes.

72 4th Dimension Language Reference

* An Alphanumeric field may contain from 0 to 80 characters (limit depends on the field
definition).

¢ A Fixed length variable may contain from O to 255 (limit depends on the variable
declaration).

e A Text field, variable, or expression may contain from 0 to 32,000 characters.

You can assign a string to a text field and vice-versa; 4D does the conversion, truncating
if necessary. You can mix string and text in an expression.

Note: In the 4D Language Reference, both string and text parameters in command
descriptions are denoted as String, except when marked otherwise.

Number

Number is a generic term that stands for:
e Real Field, variable or expression

e Integer field, variable or expression

* Long Integer field, variable or expression

The range for the Real data type is £1.7e+308 (15 digits)
The range for the Integer data type (2-byte Integer) is -32,768..32,767 (2"15..(2"15)-1)
The range for the Long Integer data type (4-byte Integer) is -2731..(2731)-1

You can assign any Number data type to another; 4D does the conversion, truncating or
rounding if necessary. However, when values are out of range, the conversion will not
return a valid value. You can mix Number data types in expressions.

Note: In the 4D Language Reference, no matter the actual data type, the Real, Integer, and

Long Integer parameters in command descriptions are denoted as Number, except when
marked otherwise.

Date

e A Date field, variable or expression can be in the range of 1/1/100 to 12/31/32,767.
* Using the US English version of 4D, a date is ordered month/day/year.

e If a year is given as two digits, it is assumed to be in the 1900’s if the value is greater
than or equal to 30, and the 2000’s if the value is less than 30 (this default can be
changed using the command SET DEFAULT CENTURY).

Note: In the 4D Language Reference, Date parameters in command descriptions are
denoted as Date, except when marked otherwise.

4th Dimension Language Reference 73

Time

e A Time field, variable or expression can be in the range of 00:00:00 to 596,000:00:00.
e Using the US English version of 4D, time is ordered hour:minute:second.

e Times are in 24-hour format.

e A time value can be treated as a number. The number returned from a time is the
number of seconds that time represents. For more information, see the section Time
Operators.

Note: In the 4D Language Reference, Time parameters in command descriptions are
denoted as Time, except when marked otherwise.
Boolean

A Boolean field, variable or expression can be either TRUE or FALSE.

Note: In the 4D Language Reference, Boolean parameters in command descriptions are
denoted as Boolean, except when marked otherwise.

Picture

A Picture field, variable or expression can be any Windows or Macintosh picture. In
general, this includes any picture that can be put on the Clipboard or read from the disk
using 4D or Plug-In commands.

Note: In the 4D Language Reference, Picture parameters in command descriptions are
denoted as Picture, except when marked otherwise.

Pointer

A Pointer variable or expression is a reference to another variable (including arrays and
array elements), table, or field. There is no field of type Pointer.

For more information about Pointers, see the section Pointers.

Note: In the 4D Language Reference, Pointer parameters in command descriptions are
denoted as Pointer except when marked otherwise.

74 4th Dimension Language Reference

BLOB

A BLOB field or variable is a series of bytes (from O to 2 GB in length) that you can address
individually or by using the BLOB Commands. There is no expression of type BLOB.

Note: In the 4D Language Reference, BLOB parameters in command descriptions are
denoted as BLOB.

Array

Array is not actually a data type. The various types of arrays (such as Integer Array, Text
Array, and so on) are grouped under this title. Arrays are variables—there is no field of
type Array, and there is no expression of type Array. For more information about arrays,
see the section Arrays.

Note: In the 4D Language Reference, Array parameters in command descriptions are
denoted as Array, except when marked otherwise (i.e., String Array, Numeric Array, ...).

Subtable

Subtable is not actually a data type. Only fields can be of type Subtable. There is no
variable or expression of type Subtable. For more information about subtables, see the 4th
Dimension Design Reference manual as well as the commands regrouped under the
Subrecords theme.

Undefined

Undefined is not actually a data type. It denotes a variable that has not yet been defined.
A function (a project method that returns a result) can return an undefined value if,
within the method, the function result ($0) is assigned an undefined expression (an
expression calculated with at least one undefined variable). A field cannot be undefined.

Converting Data Types

The 4D language contains operators and commands to convert between data types, where
such conversions are meaningful. The 4D language enforces data type checking. For
example, you cannot write: "abc"+0.5+112/25/96!-700:30:45?. This will generate syntax
erITors.

4th Dimension Language Reference 75

The following table lists the basic data types, the data types to which they can be
converted, and the commands used to do so:

Data Type Convert to Convert to Convert to Convert to
String Number Date Time

String Num Date Time

Number (*) String

Date String

Time String

Boolean Num

(*) Time values can be be treated as numbers.

Note: In addition to the data conversions listed inthis table, more sophisticated data
conversions can be obtained by combining operators and other commands.

See Also
Arrays, Constants, Control Flow, Identifiers, Methods, Operators, Pointers, Type, Variables.

76 4th Dimension Language Reference

Constants Language Definition

version 6.0

A constant is an expression that has a fixed value. There are two types of constants:
predefined constants that you select by name, and literal constants for which you type
the actual value.

Predefined Constants

Version 6 of 4th Dimension introduces predefined constants. These constants are listed in
the Explorer Window:

| Explorer, E][E|E|

=] Tables| = Forms| =l Methods K Constants | g Eommands| 313 Lists| 3. Components

. K. 4D Environment - Abbreviated : 2
B} K ASCIl Codes
B K BLOB
B+ K Clipboard
- K Colors
- K Communications
- K Database Engine
- K Database Events
- K Database Parameters
E K Date Display Formats
{23 Abbr Morth Day
- Abbreviated
- 28 Long
- X MM DD Y
- 2% WM DD v Foreed
b 23 Month Day Year j

The predefined constants are listed by theme. To use a predefined constant in a Method
editor window:

* Drag and drop the constant from the Explorer window to the Method Editor window.
e Directly type its name in the Method Editor window.

Predefined constant names can contain up to 31 characters.
Tip: If you directly enter the name of a predefined constant, you can use the @ symbol (at
sign) to avoid typing the entire constant name. For example, if you type “No such da@”,

4D will fill the line with the constant “No such data in clipboard” when you press Return
or Enter to validate the line of code.

4th Dimension Language Reference 77

Note: The predefined constants (about 500) are listed by theme in this manual. See the
section About this manual for more information. When appropriate, predefined constants
are also listed in the command descriptions.

Predefined constants appeared underlined by default within the Method Editor and
Debugger windows:

\=4| Method: Input

$evt=Form event
E Case of :‘
E: ($evi=0n Load)

B: {(§evi=0n Close Box)

| canceL
End case

BE 4] J_‘

In the window shown here, On Load, for example, is a predefined constant.

1
2
3
4
5
B
T

Literal Constants

Literal Constants can be of four data types:
e String

e Numeric

* Date

e Time

String Constants

A string constant is enclosed in double, straight quotation marks ("..."). Here are some
examples of string constants:

"Add Records"
"No records found."
"Invoice"

An empty string is specified by two quotation marks with nothing between them ("").

78 4th Dimension Language Reference

Numeric Constants

A numeric constant is written as a real number. Here are some examples of numeric
constants:

27
123.76
0.0076

Negative numbers are specified with the minus sign(-). For example:

=27
-123.76
-0.0076

Date Constants

A date constant is enclosed by exclamation marks (!...!). In the US English version of 4D,
a date is ordered month/day/year, with a slash (/) setting off each part. Here are some
examples of date constants:

11/1/76!

14/4/04!

112/25/96!

A null date is specified by 100/00/00!

Tip: The Method Editor includes a shortcut for entering a null date. To type a null date,
enter the exclamation (!) character and press Enter.

Note: A two-digit year is assumed to be in the 1900’s. Unless this default setting has been
changed using the command SET DEFAULT CENTURY.
Time Constants

A time constant is enclosed by question marks (?...7).

Note: This syntax can be used on both Windows and Macintosh. On Macintosh, you can
also use the Dagger symbol (Option-T on a US keyboard).

In the US English version of 4D, a time constant is ordered hour:minute:second, with a
colon (:) setting off each part. Times are specified in 24-hour format.

4th Dimension Language Reference 79

Here are some examples of time constants:

700:00:007 ° midnight

709:30:007 © 9:30 am

713:01:59? ° 1 pm, 1 minute, and 59 seconds

A null time is specified by ?700:00:00?

Tip: The Method Editor includes a shortcut for entering a null time. To type a null time,
enter the question mark (?) character and press Enter.

See Also
Control Flow, Data Types, Identifiers, Methods, Operators, Pointers, Variables.

80 4th Dimension Language Reference

Variables Language Definition

version 6.0

Data in 4th Dimension is stored in two fundamentally different ways. Fields store data
permanently on disk; variables store data temporarily in memory.

When you set up your 4th Dimension database, you specify the names and types of fields
that you want to use. Variables are much the same—you also give them names and
different types.

The following variable types correspond to each of the data types:

e String: Fixed alphanumeric string of up to 255 characters

e Text: Alphanumeric string of up to 32,000 characters

e Integer: Integer from -32768 to 32767

e Long Integer: Integer from -2"31 to (2731)-1

e Real: A number to +1.7e+308 (15 digits)

e Date: 1/1/100 to 12/31/32767

e Time: 00:00:00 to 596000:00:00 (seconds from midnight)

* Boolean: True or False

e Picture: Any Windows or Macintosh picture

¢ BLOB (Binary Large OBject): Series of bytes up to 2 GB in size
e Pointer: A pointer to a table, field, variable, array, or array element

You can display variables (except Pointer and BLOB) on the screen, enter data into them,
and print them in reports. In these ways, enterable and non-enterable area variables act
just like fields, and the same built-in controls are available when you create them:

e Display formats

e Data validation, such entry filters and default values
e Character filters

¢ Choice lists (hierarchical lists)

¢ Enterable or non-enterable values

Variables can also do the following:

¢ Control buttons (buttons, check boxes, radio buttons, 3D buttons, and so on)
e Control sliders (meters, rulers, and dials)

e Control scrollable areas, pop-up menus, and drop-down list boxes

* Control hierarchical lists and hierarchical pop-up menus

e Control button grids, tab controls, picture buttons, and so on

e Display results of calculations that do not need to be saved.

4th Dimension Language Reference 81

Creating Variables

You create variables simply by using them; you do not need to formally define them as
you do with fields. For example, if you want a variable that will hold the current date plus
30 days, you write:

MyDate:=Current date+30

4th Dimension creates MyDate and holds the date you need. The line of code reads
“MyDate gets the current date plus 30 days.” You could now use MyDate wherever you
need it in your database. For example, you might need to store the date variable in a field
of same type:

[MyTable]MyField:=MyDate

Sometimes you may want a variable to be explicitly defined as a certain type. For more
information about typing variables for a database that you intend to compile, see the
section Compiler Commands.

Assigning Data to Variables

Data can be put into and copied out of variables. Putting data into a variable is called
assigning the data to the variable and is done with the assignment operator (:=). The
assignment operator is also used to assign data to fields.

The assignment operator is the primary way to create a variable and to put data into it.
You write the name of the variable that you want to create on the left side of the
assignment operator. For example:

MyNumber:=3

creates the variable MyNumber and puts the number 3 into it. If MyNumber already exists,
then the number 3 is just put into it.

Of course, variables would not be very useful if you could not get data out of them. Once
again, you use the assignment operator. If you need to put the value of MyNumber in a
field called [Products]Size, you would write MyNumber on the right side of the assignment
operator:

[Products]Size:=MyNumber

In this case, [Products]Size would be equal to 3. This example is rather simple, but it
illustrates the fundamental way that data is transferred from one place to another by
using the language.

Important: Be careful not to confuse the assignment operator (:=) with the comparison

operator, equal (=). Assignment and comparison are very different operations. For more
information about the comparison operators, see the section Operators.

82 4th Dimension Language Reference

Local, Process, and Interprocess Variables

You can create three types of variables: local variables, process variables, and interprocess
variables. The difference between the three types of variables is their scope, or the objects
to which they are available.

Local variables

A local variable is, as its name implies, local to a method—accessible only within the
method in which it was created and not accessible outside of that method. Being local to
a method is formally referred to as being “local in scope.” Local variables are used to
restrict a variable so that it works only within the method.

You may want to use a local variable to:

¢ Avoid conflicts with the names of other variables
e Use data temporarily

¢ Reduce the number of process variables

The name of a local variable always starts with a dollar sign ($) and can contain up to 31
additional characters. If you enter a longer name, 4th Dimension truncates it to the
appropriate length.

When you are working in a database with many methods and variables, you often find
that you need to use a variable only within the method on which you are working. You
can create and use a local variable in the method without worrying about whether you

have used the same variable name somewhere else.

Frequently, in a database, small pieces of information are needed from the user. The
Request command can obtain this information. It displays a dialog box with a message
prompting the user for a response. When the user enters the response, the command
returns the information the user entered. You usually do not need to keep this
information in your methods for very long. This is a typical way to use a local variable.
Here is an example:

$vsiD:=Request("Please enter your ID:")
If (OK=1)

QUERY ([People];[People]ID =$vsID)
End if

This method simply asks the user to enter an ID. It puts the response into a local variable,
$vsID, and then searches for the ID that the user entered. When this method finishes, the
$vsID local variable is erased from memory. This is fine, because the variable is needed
only once and only in this method.

4th Dimension Language Reference 83

Process variables
A process variable is available only within a process. It is accessible to the process method
and any other method called from within the process.

A process variable does not have a prefix before its name. A process variable name can
contain up to 31 characters.

In interpreted mode, variables are maintained dynamically, they are created and erased
from memory “on the fly.” In compiled mode, all processes you create (user processes)
share the same definition of process variables, but each process has a different instance for
each variable. For example, the variable myVar is one variable in the process P_1 and
another one in the process P_2.

Starting with version 6, a process can “peek and poke” process variables from another
process using the commands GET PROCESS VARIABLE and SET PROCESS VARIABLE. It is
good programming practice to restrict the use of these commands to the situation for
which they were added to 4D:

e Interprocess communication at specific places or your code

¢ Handling of interprocess drag and drop

e In Client/Server, communication between processes on client machines and the stored
procedures running on the server machines

For more information, see the section Processes and the description of these commands.

Interprocess variables

Interprocess variables are available throughout the database and are shared by all
processes. They are primarily used to share information between processes.

The name of an interprocess variable always begins with the symbols (<>) — a “less than”
sign followed by a “greater than” sign— followed by 31 characters.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

In Client/Server, each machine (Client machines and Server machine) share the same

definition of interprocess variables, but each machine has a different instance for each
variable.

84 4th Dimension Language Reference

Form Object Variables

In the Form editor, naming an active object—button, radio button, check box, scrollable
area, meter bar, and so on—automatically creates a variable with the same name. For
example, if you create a button named MyButton, a variable named MyButton is also
created. Note that this variable name is not the label for the button, but is the name of
the button.

The form object variables allow you to control and monitor the objects. For example,
when a button is clicked, its variable is set to 1; at all other times, it is 0. The variable
associated with a meter or dial lets you read and change the current setting. For example,
if you drag a meter to a new setting, the value of the variable changes to reflect the new
setting. Similarly, if a method changes the value of the variable, the meter is redrawn to
show the new value.

For more information about variables and forms, see the 4th Dimension Design Reference
Manual as well as the section Form event.

System Variables

4th Dimension maintains a number of variables called system variables. These variables
let you monitor many operations. System variables are all process variables, accessible only
from within a process.

The most important system variable is the OK system variable. As its name implies, it tells
you if everything is OK in the particular process. Was the record saved? Has the importing
operation been completed? Did the user click the OK button? The OK system variable is
set to 1 when a task is completed successfully, and to O when it is not.

For more information about system variables, see the section System Variables.

See Also
Arrays, Constants, Control Flow, Data Types, Identifiers, Methods, Operators, Pointers.

4th Dimension Language Reference 85

System Variables Language Definition

version 2004 (Modified)

4th Dimension manages system variables, which allow you to control the execution of
different operations. All system variables are process variables that can only be accessed
within one process. This section describes 4th Dimension system variables.

OK

This is the most commonly used system variable. Usually it is set to 1 when an operation
is successfully executed. It is set to O when the operation fails. Most of the 4D commands
modify the value of the OK system variable. Refer to the description of each command to
find out whether it affects this system variable.

Document
Document contains either the "long name" (access path+name) or the name (depending

on the value passed as parameter) of the last file opened or created using the following

commands:

Append document
Create document
Create resource file
EXPORT DIF
EXPORT TEXT
IMPORT DIF
IMPORT TEXT
LOAD VARIABLES
Open resource file
QR REPORT

SAVE VARIABLES
Select document
SET CHANNEL
WRITE PICTURE FILE

FldDelimit

BUILD APPLICATION

EXPORT DATA
EXPORT SYLK
IMPORT DATA
IMPORT SYLK
LOAD SET

Open document
PRINT LABEL
READ PICTURE FILE
SAVE SET

SELECT LOG FILE
USE ASCII MAP

FIdDelimit contains the ASCII code that will be used as a field separator when importing or
exporting text. By default, this value is set to 9, which is the ASCII code for the Tab key.
To use a different field separator, assign a new value to FldDelimit.

RecDelimit

RecDelimit contains the ASCII code that will be used as a record separator when importing
or exporting text. By default, this value is set to 13, which is the ASCII code for the
Carriage Return key. To use a different record separator, assign a new value to RecDelimit.

Error

Error can only be used in a method installed by the ON ERR CALL command. This variable

86 4th Dimension Language Reference

MouseDown, MouseX, MouseY, KeyCode, Modifiers and MouseProc

These system variables can only be used in a method installed by the ON EVENT CALL
command.

e MouseDown is set to 1 when the mouse button is pushed. Otherwise, it is set to O.

e If the event is a MouseDown (MouseDown=1), the MouseX and MouseY system variables
are respectively set to the vertical and horizontal coordinates of the location where the
click took place. Both values are expressed in pixels and use the local coordinate system of
the window.

e KeyCode is set to the ASCII code of the key that was just pressed. If the key is a function
key, KeyCode is set to a special code. ASCII codes and function key codes are listed in the
sections ASCII Codes and Function Key Codes.

¢ Modifiers is set to the keyboard modifier keys (Ctrl/Command, Alt/Option, Shift, Caps
Lock). This variable is only significant in an "interruption on event" installed by the
command ON EVENT CALL.

* MouseProc is set to the process number in which the last event took place.

See Also
Sets, Variables.

4th Dimension Language Reference 87

Pointers Language Definition

version 2004.1 (Modified)

Pointers provide an advanced way (in programming) to refer to data.

When you use the language, you access various objects—in particular, tables, fields,
variables, and arrays—by simply using their names. However, it is often useful to refer to
these elements and access them without knowing their names. This is what pointers let
you do.

The concept behind pointers is not that uncommon in everyday life. You often refer to
something without knowing its exact identity. For example, you might say to a friend,
“Let’s go for a ride in your car” instead of “Let’s go for a ride in the car with license plate
123ABD.” In this case, you are referencing the car with license plate 123ABD by using the
phrase “your car.” The phrase “car with license plate 123ABD” is like the name of an
object, and using the phrase “your car” is like using a pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful. In fact,
your friend could get a new car, and the phrase “your car” would still be accurate—it
would still be a car and you could still take a ride in it. Pointers work the same way. For
example, a pointer could at one time refer to a numeric field called Age, and later refer to
a numeric variable called Old Age. In both cases, the pointer references numeric data that
could be used in a calculation.

You can use pointers to reference tables, fields, variables, arrays, and array elements. The
following table gives an example of each data type:

Object To Reference To Use To Assign

Table vpTable:=->[Table] DEFAULT TABLE(vpTable->) n/a

Field vpField:=->[Table]Field = ALERT(vpField->) vpField->:="John"
Variable vpVar:=->Variable ALERT(vpVar->) vpVar->:="John"

Array VPArr:=->Array SORT ARRAY(vpArr->;>) COPY ARRAY (Arr;vpArr-
>)

Array element vpElem:=->Array{1} ALERT (vpElem->) vpElem->:="John"

Using Pointers: An Example

It is easiest to explain the use of pointers through an example. This example shows how
to access a variable through a pointer. We start by creating a variable:

MyVar:="Hello"

88 4th Dimension Language Reference

MyVar is now a variable containing the string “Hello.” We can now create a pointer to
MyVar:

MyPointer:=->MyVar
The -> symbol means “get a pointer to.” This symbol is formed by a dash followed by a

“greater than” sign. In this case, it gets the pointer that references or “points to” MyVar.
This pointer is assigned to MyPointer with the assignment operator.

MyPointer is now a variable that contains a pointer to MyVar. MyPointer does not contain
“Hello”, which is the value in MyVar, but you can use MyPointer to get this value. The
following expression returns the value in MyVar:

MyPointer->

In this case, it returns the string “Hello”. The -> symbol, when it follows a pointer,
references the object pointed to. This is called dereferencing.

It is important to understand that you can use a pointer followed by the -> symbol
anywhere that you could have used the object that the pointer points to. This means that
you could use the expression MyPointer-> anywhere that you could use the original MyVar
variable.

For example, the following line displays an alert box with the word Hello in it:

ALERT(MyPointer->)

You can also use MyPointer to change the data in MyVar. For example, the following
statement stores the string "Goodbye" in the variable MyVar:

MyPointer->:="Goodbye"

If you examine the two uses of the expression MyPointer->, you will see that it acts just as
if you had used MyVar instead. In summary, the following two lines perform the same
action—both display an alert box containing the current value in the variable MyVar:

ALERT(MyPointer->)
ALERT(MyVar)

The following two lines perform the same action— both assign the string "Goodbye" to
MyVar:

MyPointer->:="Goodbye"
MyVar:="Goodbye"

4th Dimension Language Reference 89

Using Pointers to Buttons

This section describes how to use a pointer to reference a button. A button is (from the
language point of view) nothing more than a variable. Although the examples in this
section use pointers to reference buttons, the concepts presented here apply to the use of
all types of objects that can be referenced by a pointer.

Let’s say that you have a number of buttons in your forms that need to be enabled or
disabled. Each button has a condition associated with it that is TRUE or FALSE. The
condition says whether to disable or enable the button. You could use a test like this each
time you need to enable or disable the button:

If (Condition) ~ If the condition is TRUE...

ENABLE BUTTON (MyButton) ~ enable the button
Else = Otherwise...

DISABLE BUTTON (MyButton) "~ disable the button
End if

You would need to use a similar test for every button you set, with only the name of the
button changing. To be more efficient, you could use a pointer to reference each button
and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the button’s
variables in any other way. For example, here is a project method called SET BUTTON,
which references a button with a pointer:

* SET BUTTON project method

* SET BUTTON (Pointer ; Boolean)

* SET BUTTON (-> Button ; Enable or Disable)

* $1 — Pointer to a button

* $2 — Boolean. If TRUE, enable the button. If FALSE, disable the button

If ($2) ° If the condition is TRUE...

ENABLE BUTTON($1->) ~ enable the button
Else = Otherwise...

DISABLE BUTTON($1->) " disable the button
End if

90 4th Dimension Language Reference

You can call the SET BUTTON project method as follows:

~

SET BUTTON (->bValidate; True)
SE7: t.?'l.JTTON (->bValidate;False)
SE7i B“L./TTON (->bValidate;([Employee]Last Name#"")
For &leadioButtonﬂ;ZO)
$vpRadioButton:=Get pointer("r"+String($vIRadioButton))

SET BUTTON ($vpRadioButton;False)
End for

Using Pointers to Tables

Anywhere that the language expects to see a table, you can use a dereferenced pointer to
the table.
You create a pointer to a table by using a line like this:

TablePtr:=->[anyTable]

You can also get a pointer to a table by using the Table command. For example:

TablePtr:=Table(20)

You can use the dereferenced pointer in commands, like this:

DEFAULT TABLE(TablePtr->)

Using Pointers to Fields

Anywhere that the language expects to see a field, you can use a dereferenced pointer to
reference the field. You create a pointer to a field by using a line like this:

FieldPtr:=->[aTable]ThisField

You can also get a pointer to a field by using the Field command. For example:
FieldPtr:=Field(1; 2)

You can use the dereferenced pointer in commands, like this:

FONT(FieldPtr->; "Arial")

4th Dimension Language Reference 91

Using Pointers to Variables

The example at the beginning of this section illustrates the use of a pointer to a variable:

MyVar:="Hello"
MyPointer:=->MyVar

You can use pointers to interprocess, process and, starting with version 2004.1, local
variables.

When you use pointers to process or local variables, you must be sure that the variable
pointed to is already set when the pointer is used. Keep in mind that local variables are
deleted when the method that created them has completed its execution and process
variables are deleted at the end of the process that created them. When a pointer calls a
variable that no longer exists, this causes a syntax error in interpreted mode (variable not
defined) but it can generate a more serious error in compiled mode.

Note about local variables: Pointers to local variables allow you to save process variables
in many cases. Pointers to local variables can only be used within the same process.

In the debugger, when you display a pointer to a local variable that has been declared in
another method, the original method name is indicated in parentheses, after the pointer.
For example, if you write in Method1:

$MyVar:="Hello world"
Method2(->$MyVar)

In Method2, the debugger will display $1 as follows:
$1 ->$MyVar (Method1)

The value of $1 will be:
$MyVar (Method1) "Hello world"

Using Pointers to Array Elements

You can create a pointer to an array element. For example, the following lines create an
array and assign a pointer to the first array element to a variable called ElemPtr:

ARRAY REAL(anArray; 10) ~ Create an array
ElemPtr:=->anArray{1} ~ Create a pointer to the array element

You could use the dereferenced pointer to assign a value to the element, like this:

ElemPtr->:=8

92 4th Dimension Language Reference

Using Pointers to Arrays

You can create a pointer to an array. For example, the following lines create an array and
assign a pointer to the array to a variable called ArrPtr:

ARRAY REAL(anArray; 10) ~ Create an array
ArrPtr := ->anArray ~ Create a pointer to the array

It is important to understand that the pointer points to the array; it does not point to an
element of the array. For example, you can use the dereferenced pointer from the
preceding lines like this:

SORT ARRAY(ArrPtr->; >) ~ Sort the array

If you need to refer to the fourth element in the array by using the pointer, you do this:

ArrPtr->{4} := 84

Using an Array of Pointers
It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a form. Each variable in
the grid is sequentially numbered, for example: Var1,Var2,..., Var10. You often need to
reference these variables indirectly with a number. If you create an array of pointers, and
initialize the pointers to point to each variable, you can then easily reference the
variables. For example, to create an array and initialize each element, you could use the
following lines:

ARRAY POINTER(apPointers; 10) ~ Create an array to hold 10 pointers
For ($i; 1, 10) ~ Loop once for each variable

apPointers{$i}:=Get pointer("Var"+String($i)) ° Initialize the array element
End for

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill the
variables with the next ten dates (assuming they are variables of the date type), you could
use the following lines:

For ($i; 1; 10) ~ Loop once for each variable
apPointers{$i}->:=Current date+3$i = Assign the dates
End for

4th Dimension Language Reference 93

Setting a Button Using a Pointer

If you have a group of related radio buttons in a form, you often need to set them
quickly. It is inefficient to directly reference each one of them by name. Let’s say you
have a group of radio buttons named Button1, Button2,..., Button5.

In a group of radio buttons, only one radio button is on. The number of the radio button
that is on can be stored in a numeric field. For example, if the field called
[Preferences]Setting contains 3, then Button3 is selected. In your form method, you could
use the following code to set the button:

Case of
:(Form event=0n Load)

Case of
: ([Preferences]Setting = 1)
Button1:=1
: ([Preferences]Setting = 2)
Button2:=1
: ([Preferences]Setting = 3)
Button3:=1
: ([Preferences]Setting = 4)
Button4:=1
: ([Preferences]Setting = 5)
Button5:=1
End case

End case

A separate case must be tested for each radio button. This could be a very long method if
you have many radio buttons in your form. Fortunately, you can use pointers to solve
this problem. You can use the Get pointer command to return a pointer to a radio button.
The following example uses such a pointer to reference the radio button that must be set.
Here is the improved code:

Case of
:(Form event=0n Load)

$va';dio:=Get pointer("Button"+String([Preferences]Setting))
$vpRadio->:=1

End case

The number of the set radio button must be stored in the field called [Preferences]Setting.
You can do so in the form method for the On Clicked event:

[Preferences]Setting:=Button1+(Button2*2)+(Button3*3)+(Button4*4)+(Button5*5)

94 4th Dimension Language Reference

Passing Pointers to Methods

You can pass a pointer as a parameter to a method. Inside the method, you can modity
the object referenced by the pointer. For example, the following method, TAKE TWO,
takes two parameters that are pointers. It changes the object referenced by the first
parameter to uppercase characters, and the object referenced by the second parameter to
lowercase characters. Here is the method:

* TAKE TWO project method
" $1 - Pointer to a string field or variable. Change this to uppercase.
" $2 - Pointer to a string field or variable. Change this to lowercase.
$1->:=Uppercase($1->)
$2->:=Lowercase($2->)

The following line uses the TAKE TWO method to change a field to uppercase characters
and to change a variable to lowercase characters:

TAKE TWO (->[My Table]My Field; ->MyVar)

If the field [My Table]My Field contained the string "jones", it would be changed to the
string "JONES". If the variable MyVar contained the string "HELLO", it would be changed to
the string "hello".

In the TAKE TWO method, and in fact, whenever you use pointers, it is important that
the data type of the object being referenced is correct. In the previous example, the
pointers must point to an object that contains a string or text.

Pointers to Pointers

If you really like to complicate things, you can use pointers to reference other pointers.
Consider this example:

MyVar := "Hello"

PointerOne := ->MyVar
PointerTwo := ->PointerOne
(PointerTwo->)-> := "Goodbye"
ALERT((Point Two->)->)

It displays an alert box with the word “Goodbye” in it.
Here is an explanation of each line of the example:

e MyVar:="Hello"
— This line puts the string "Hello" into the variable MyVar.

* PointerOne:=->MyVar
— PointerOne now contains a pointer to MyVar.

4th Dimension Language Reference 95

¢ PointerTwo:=->PointerOne
— PointerTwo (a new variable) contains a pointer to PointerOne, which in turn points to
MyVar.

¢ (PointerTwo->)->:="Goodbye"

— PointerTwo-> references the contents of PointerOne, which in turn references MyVar.
Therefore (PointerTwo->)-> references the contents of MyVar. So in this case, MyVar is
assigned "Goodbye".

e ALERT ((PointerTwo->)->)

— Same thing: PointerTwo-> references the contents of PointerOne, which in turn
references MyVar. Therefore (PointerTwo->)-> references the contents of MyVar. So in this
case, the alert box displays the contents of myVar.

The following line puts "Hello" into MyVar:

(PointerTwo->)->:="Hello"

The following line gets "Hello" from MyVar and puts it into NewVar:

NewVar:=(PointerTwo->)->
Important: Multiple dereferencing requires parentheses.

See Also

Arrays, Arrays and Pointers, Constants, Control Flow, Data Types, Identifiers, Methods,
Operators, Variables.

96 4th Dimension Language Reference

Identifiers Language Definition

version 6.0

This section describes the conventions for naming various objects in the 4th Dimension
language. The names for all objects follow these rules:

e A name must begin with an alphabetic character.

e Thereafter, the name can include alphabetic characters, numeric characters, the space
character, and the underscore character.

e Periods, slashes, and colons are not allowed.

e Characters reserved for use as operators, such as * and +, are not allowed.

e 4th Dimension ignores any trailing spaces.

Tables

You denote a table by placing its name between brackets: [...]. A table name can contain
up to 31 characters.

Examples

DEFAULT TABLE ([Orders])
INPUT FORM ([Clients]; "Entry")
ADD RECORD ([Letters])

Fields

You denote a field by first specifying the table to which the field belongs. The field name
immediately follows the table name. A field name can contain up to 31 characters.

Do not start a field name with the underscore character (_). The underscore character is
reserved for plug-ins. When 4th Dimension encounters this character at the beginning of
a field in the Method editor, it removes the underscore.

Examples

[Orders]Total:=Sum([Line]Amount)
QUERY([Clients];[Clients]Name="Smith")
[Letters]Text:=Capitalize text ([Letters]Text)

It is a good programming technique to specify the table name before the field, even
though it is not absolutely necessary in a table, form, or object method.

4th Dimension Language Reference 97

Subtables

You denote a subtable by first specifying the parent table to which the subtable belongs.
The subtable name immediately follows the table name. A subtable name can contain up
to 31 characters.

Examples

ALL SUBRECORDS ([People]Children)
ADD SUBRECORD ([Clients]Phones;"Add One")
NEXT SUBRECORD ([Letters]Keywords)

A subtable is treated as a type of field; therefore, it follows the same rules as a field when
used in a form. If you are specifying a subtable in the table, form, or object method of the
parent table, you do not need to specify the parent table name. However, it is a good
programming technique to specify the name of the table before the subtable name.

Subfields

You denote a subfield in the same way as a field. You denote the subfield by first
specifying the subtable to which the subfield belongs. The subfield name follows, and is
separated from the subtable name by an apostrophe ('). A subfield name can contain up to
31 characters.

Examples

[People]Children'First Name:=Uppercase([People]Children'First Name)
[Clients]Phones'Number:="408 555-1212"
[Letters]Keywords'Word:=Capitalize text ([Letters]Keywords'Word)

If you are specifying a subfield in a subtable, form, or object method of the subfile, you
do not need to specify the subtable name. However it is a good programming technique
to specify the table name and the subtable name before the name of the subfield.

Interprocess Variables

You denote an interprocess variable by preceding the name of the variable with the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess variable can have up to 31 characters, not including the <> symbols.

Examples

<>VIProcessID:=Current process
<>vsKey:=Char(KeyCode)
If (<>vtName#"")

98 4th Dimension Language Reference

Process Variables

You denote a process variable by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process variable name can contain up to 31 characters.

Examples

<>vrGrandTotal:=Sum([Accounts]Amount)
If (bValidate=1)
vsCurrentName:=

nn

Local Variables

You denote a local variable with a dollar sign ($) followed by its name. A local variable
name can contain up to 31 characters, not including the dollar sign.

Examples
For ($vIRecord; 1; 100)
If ($vsTempVar="No")
$vsMyString:="Hello there"

Arrays

You denote an array by using its name, which is the name you passed to the array
declaration (such as ARRAY LONGINT) when you created the array. Arrays are variables,
and from the scope point of view, like variables, there are three different types of arrays:

¢ Interprocess arrays,
® Process arrays,
e Local arrays.

Interprocess Arrays
The name of an interprocess array is preceded by the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess array name can contain up to 31 characters, not including the <>
symbols.

Examples

ARRAY TEXT(<>atSubjects;Records in table([Topics]))
SORT ARRAY (<>asKeywords; >)
ARRAY INTEGER(<>aiBigArray;10000)

4th Dimension Language Reference 99

Process Arrays
You denote a process array by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process array name can contain up to 31 characters.

Examples

ARRAY TEXT(atSubjects;Records in table([Topics]))
SORT ARRAY (asKeywords; >)
ARRAY INTEGER(aiBigArray;10000)

Local Arrays
The name of a local array is preceded by the dollar sign ($). An local array name can
contain up to 31 characters, not including the dollar sign.

Examples

ARRAY TEXT($atSubjects;Records in table([Topics]))
SORT ARRAY ($asKeywords; >)
ARRAY INTEGER($aiBigArray;10000)

Elements of arrays
You reference an element of an interprocess, process or local array by using the curly
braces({...}). The element referenced is denoted by a numeric expression.

Examples

* Addressing an element of an interprocess array
If (<>asKeywords{1}="Stop")
<>atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{Size of array(<>aiBigArray)}

* Addressing an element of a process array
If (asKeywords{1}="Stop")
atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=aiBigArray{Size of array(aiBigArray)}

* Addressing an element of a local array
If ($asKeywords{1}="Stop")
$atSubjects{$vIElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{Size of array($aiBigArray)}

100 4th Dimension Language Reference

Elements of two-dimensional arrays

You reference an element of a two-dimensional array by using the curly braces ({...})
twice. The element referenced is denoted by two numeric expressions in two sets of curly
braces.

Examples

" Addressing an element of a two-dimensional interprocess array
If (<>asKeywords{$vINextRow}{1}="Stop")
<>atSubjects{10}{$vIElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{$viSet}{Size of array(<>aiBigArray{$viSet})}

" Addressing an element of a two-dimensional process array
If (asKeywords{$vINextRow}{1}="Stop")
atSubjects{10}{$vIElem}:=[Topics]Subject
$viNextValue:=aiBigArray{$vISet}{Size of array(aiBigArray{$viSet})}

* Addressing an element of a two-dimensional local array
If ($asKeywords{$vINextRow}{1}="Stop")
$atSubjects{10}{$vIElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{$viSet}{Size of array($aiBigArray{$viSet})}

Forms

You denote a form by using a string expression that represents its name. A form name
can contain up to 31 characters.

Examples

INPUT FORM([People];"Input")
OUTPUT FORM([People]; "Output")
DIALOG([Storage];"Note box"+String($viIStage))

Methods

You denote a method (procedure and function) by using its name. A method name can
contain up to 31 characters.

Note: A method that does not return a result is also called a procedure. A method that
returns is a result is also called a function.

Examples

If (New client)
DELETE DUPLICATED VALUES
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

4th Dimension Language Reference 101

Tip: It is a good programming technique to adopt the same naming convention as the
one used by 4D for built-in commands. Use uppercase characters for naming your
methods; however if a method is function, capitalize the first character of its name. By
doing so, when you reopen a database for maintenance after a few months, you will
already know if a method returns a result by simply looking at its name in the Explorer
window.

Note: When you call a method, you just type its name. However, some 4D built-in
commands, such as ON EVENT CALL, as well as all the Plug-In commands, expect the
name of a method as a string when a method parameter is passed. Example:

Examples

" This command expects a method (function) or formula
QUERY BY FORMULA ([aTable];Special query)

* This command expects a method (procedure) or statement
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

* But this command expects a method name
ON EVENT CALL ("HANDLE EVENTS")

" And this Plug-In command expects a method name
WR ON ERROR ("WR HANDLE ERRORS")

Methods can accept parameters (arguments). The parameters are passed to the method in
parentheses, following the name of the method. Each parameter is separated from the
next by a semicolon (;). The parameters are available within the called method as
consecutively numbered local variables: $1, $2,..., $n. In addition, multiple consecutive
(and last) parameters can be addressed with the syntax ${n}where n, numeric expression,
is the number of the parameter.

Inside a function, the $0 local variable contains the value to be returned.

Examples

* Within DROP SPACES $1 is a pointer the field [People]Name
DROP SPACES (->[People]Name)

* Within Calc creator:

* - $1 is numeric and equal to 1

* - $2 is numeric and equal to 5

" - $3 is text or string and equal to "Nice"

* - The result value is assigned to $0
$vsResult:=Calc creator (1; 5; "Nice")

* Within Dump:

* - The three parameters are text or string

* - They can be addressed as $1, $2 or $3

* - They can also be addressed as, for instance,

* ${$vIParam} where $vIParam is 1, 2 or 3

* - The result value is assigned to $0
vtClone:=Dump ("is"; "the"; "it")

102 4th Dimension Language Reference

Plug-In Commands (External Procedures, Functions and Areas)

You denote a plug-in command by using its name as defined by the plug-in. A plug-in
command name can contain up to 31 characters.

Examples

WR BACKSPACE (wrArea; 0)
$pvNewArea:=PV New offscreen area

Sets

From the scope point of view, there are two types of sets:
e Interprocess sets
* Process sets

4D Server also includes:
e Client sets

Interprocess Sets
A set is an interprocess set if the name of the set is preceded symbols (<>) — a “less than”
sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess set name can contain up to 80 characters, not including the <> symbols.
Process Sets

You denote a process set by using a string expression that represents its name (which
cannot start with the <> symbols or the dollar sign $). A set name can contain up to 80
characters.

Client Sets
The name of a client set is preceded by the dollar sign ($). A client set name can contain
up to 80 characters, not including the dollar sign.

Note: In 4D Client/Server up to version 6, a set was maintained on the Client machine
where it was created. Starting with version 6, sets are maintained on the Server machine.
In certain cases, for efficiency or special purposes, you may need to work with sets locally
on the Client machine. To do so, you use Client sets.

4th Dimension Language Reference 103

Examples

* Interprocess sets

USE SET("<>Deleted Records")

CREATE SET([Customers];"<>Customer Orders")

If (Records in set("<>Selection"+String($i))>0)
* Process sets

USE SET("Deleted Records")

CREATE SET([Customers];"Customer Orders")

If (Records in set("<>Selection"+String($i))>0)
* Client sets

USE SET("$Deleted Records")

CREATE SET([Customers];"$Customer Orders")

If (Records in set("$Selection"+String($i))>0)

Named Selections

From the scope point of view, there are two types of named selections:
¢ Interprocess named selections
* Process named selections

Interprocess Named Selections
A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess named selection name can contain up to 80 characters, not including the
<> symbols.

Process Named Selections

You denote a process named selection by using a string expression that represents its
name (which cannot start with the <> symbols nor the dollar sign $). A named selection
name can contain up to 80 characters.

Examples

" Interprocess Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")
" Process Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")

104 4th Dimension Language Reference

Processes

In the single-user version, or in Client/Server on the Client side, there are two types of
processes:

¢ Global processes

¢ Local processes

Global Processes
You denote a global process by using a string expression that represents its name (which
cannot start with the dollar sign $). A process name can contain up to 31 characters.

Local Processes
You denote a local process if the name of the process is preceded by a dollar ($) sign. The
process name can contain up to 31 characters, not including the dollar sign.

Example

* Starting the global process "Add Customers"
$vIProcessID:=New process("P_ADD_CUSTOMERS";48*1024;"Add Customers")
* Starting the local process "$Follow Mouse Moves"
$vIProcessID:=New process("P_MOUSE_SNIFFER";16*1024;"$Follow Mouse Moves")

Summary of Naming Conventions

The following table summarizes 4th Dimension naming conventions.

Type Max. Length Example

Table 31 [Invoices]

Field 31 [Employees]Last Name
Subtable 31 [Friends]Kids

Subfield 31 [Documents]Keyword'Keyword
Interprocess Variable <> + 31 <>vINextProcessID
Process Variable 31 vsCurrentName

Local Variable $+ 31 $viLocalCounter

Form 31 "My Custom Web Input"
Interprocess Array <>+ 31 <>apTables

Process Array 31 asGender

Local Array $+31 $atValues

Method 31 M_ADD_CUSTOMERS
Plug-in Routine 31 WR INSERT TEXT
Interprocess Set <>+ 80 "<>Records to be Archived"
Process Set 80 "Current selected records"
Client Set $+80 "$Previous Subjects"
Named Selection 80 "Employees A to Z"
Interprocess Named Selection <>+ 80 "<>Employees Z to A"
Local Process $+31 "$Follow Events"

Global Process 31 "P_INVOICES_MODULE"

4th Dimension Language Reference 105

Resolving Naming Conflicts

If a particular object has the same name as another object of a different type (for
example, if a field is named Person and a variable is also named Person), 4th Dimension
uses a priority system to identify the object. It is up to you to ensure that you use unique
names for the parts of your database.

4th Dimension identifies names used in procedures in the following order:

. Fields

. Commands

. Methods

. Plug-in routines

. Predefined constants
. Variables

NN W

For example, 4th Dimension has a built-in command called Date. If you named a method
Date, 4th Dimension would recognize it as the built-in Date command, and not as your
method. This would prevent you from calling your method. If, however, you named a
field “Date”, 4th Dimension would try to use your field instead of the Date command.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

106 4th Dimension Language Reference

Control Flow Language Definition

version 6.0

Regardless of the simplicity or complexity of a method, you will always use one or more
of three types of programming structures. Programming structures control the flow of
execution, whether and in what order statements are executed within a method. There
are three types of structures:

¢ Sequential
* Branching
¢ Looping

The 4th Dimension language contains statements that control each of these structures.

Sequential structure
The sequential structure is a simple, linear structure. A sequence is a series of statements
that 4th Dimension executes one after the other, from first to last. For example:

OUTPUT FORM([People]; "Listing")
ALL RECORDS([People])
DISPLAY SELECTION([People])

A one-line routine, frequently used for object methods, is the simplest case of a sequential
structure. For example:

[People]Last Name:=Uppercase([People]Last Name)

Branching structures

A branching structure allows methods to test a condition and take alternative paths,
depending on the result. The condition is a Boolean expression, an expression that
evaluates TRUE or FALSE. One branching structure is the If...Else...End if structure, which
directs program flow along one of two paths. The other branching structure is the Case
of...Else...End case structure, which directs program flow to one of many paths.

Looping structures

When writing methods, it is very common to find that you need a sequence of
statements to repeat a number of times. To deal with this need, the language provides
three looping structures:

¢ While...End while
¢ Repeat...Until
e For...End for

4th Dimension Language Reference 107

The loops are controlled in two ways: either they loop until a condition is met, or they
loop a specified number of times. Each looping structure can be used in either way, but
While loops and Repeat loops are more appropriate for repeating until a condition is met,
and For loops are more appropriate for looping a specified number of times.

Note: 4th Dimension allows you to embed programming structures (If/While/For/Case
of/Repeat) up to a "depth" of 512 levels.

See Also
Logical Operators, Methods.

108 4th Dimension Language Reference

If...Else...End if Language Definition

version 6.0

The formal syntax of the If...Else...End if control flow structure is:

If (Boolean_Expression)
statements(s)

Else
statement(s)

End if

Note that the Else part is optional; you can write:

If (Boolean_Expression)
statements(s)
End if

The If...Else...End if structure lets your method choose between two actions, depending on
whether a test (a Boolean expression) is TRUE or FALSE.

When the Boolean expression is TRUE, the statements immediately following the test are
executed. If the Boolean expression is FALSE, the statements following the Else statement
are executed. The Else statement is optional; if you omit Else, execution continues with
the first statement (if any) following the End if.

Example

" Ask the user to enter the name
$Find:=Request(“Type a name:")
If (OK=1)

QUERY([People]; [People]LastName=$Find)
Else

ALERT("You did not enter a name.")
End if

4th Dimension Language Reference 109

Tip: Branching can be performed without statements to be executed in one case or the
other. When developing an algorithm or a specialized application, nothing prevents you
from writing:

If (Boolean_Expression)
Else

statement(s)
End if

or:

If (Boolean_Expression)
statements(s)

Else

End if

See Also
Case of...Else...End case, Control Flow, For...End for, Repeat...Until, While...End while.

110 4th Dimension Language Reference

Case of...Else...End case Language Definition

version 6.0

The formal syntax of the Case of...Else...End case control flow structure is:

Case of
: (Boolean_Expression)
statement(s)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
Else
statement(s)
End case

Note that the Else part is optional; you can write:

Case of
: (Boolean_Expression)
statement(s)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
End case

As with the If...Else...End if structure, the Case of...Else...End case structure also lets your
method choose between alternative actions. Unlike the If...Else...End if structure, the Case
of...Else...End case structure can test a reasonable unlimited number of Boolean expressions
and take action depending on which one is TRUE.

4th Dimension Language Reference 111

Each Boolean expression is prefaced by a colon (:). This combination of the colon and the
Boolean expression is called a case. For example, the following line is a case:

: (bValidate=1)

Only the statements following the first TRUE case (and up to the next case) will be
executed. If none of the cases are TRUE, none of the statements will be executed (if no
Else part is included).

You can include an Else statement after the last case. If all of the cases are FALSE, the
statements following the Else will be executed.

Example
This example tests a numeric variable and displays an alert box with a word in it:

Case of
: (VResult = 1) ~ Test if the number is 1
ALERT("One.") " Ifitis 1, display an alert
: (VResult = 2) ° Test if the number is 2
ALERT("Two.") " Ifitis 2, display an alert
: (VResult = 3) * Test if the number is 3
ALERT("Three.") " Ifitis 3, display an alert
Else °Ifitisnot 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")
End case

For comparison, here is the If...Else...End if version of the same method:

If (vResult = 1) ~ Test if the number is 1
ALERT("One.") " Ifitis 1, display an alert
Else
If (vResult = 2) ~ Test if the number is 2
ALERT("Two.") " If it is 2, display an alert
Else
If (vResult = 3) ° Test if the number is 3
ALERT("Three.") " If itis 3, display an alert
Else " Ifitisnot 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")
End if
End if
End if

Remember that with a Case of...Else...End case structure, only the first TRUE case is
executed. Even if two or more cases are TRUE, only the statements following the first
TRUE case will be executed.

112 4th Dimension Language Reference

Consequently, when you want to implement hierarchical tests, you should make sure the
condition statements that are lower in the hierarchical scheme appear first in the test
sequence. For example, the test for the presence of conditionl covers the test for the
presence of conditionl&condition2 and should therefore be located last in the test
sequence. For example, the following code will never see its last condition detected:

Case of
: (VResult = 1)
... statement(s)
: ((vResult = 1) & (vCondition#2)) “this case will never be detected
“statement(s)
End case

In the code above, the presence of the second condition is not detected since the test
"vResult=1" branches off the code before any further testing. For the code to operate
properly, you can write it as follows:

Case of
: ((vResult = 1) & (vCondition#2)) “this case will be detected first
... statement(s)
: (VResult = 1)
“statement(s)
End case

Also, if you want to implement hierarchical testing, you may consider using hierarchical
code.

Tip: Branching can be performed without statements to be executed in one case or
another. When developing an algorithm or a specialized application, nothing prevents
you from writing:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

: (Boolean_Expression)
statement(s)
Else
statement(s)
End case

4th Dimension Language Reference 113

or:

Case of
: (Boolean_Expression)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
Else
End case

or:

Case of

Else
statement(s)

End case

See Also
Control Flow, For...End for, If...Else...End if, Repeat...Until, While...End while.

114 4th Dimension Language Reference

While...End while Language Definition

version 6.0

The formal syntax of the While...End while control flow structure is:

While (Boolean_Expression)
statement(s)
End while

A While...End while loop executes the statements inside the loop as long as the Boolean
expression is TRUE. It tests the Boolean expression at the beginning of the loop and does
not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately before
entering the While...End while loop. Initializing the value means setting it to something
appropriate, usually so that the Boolean expression will be TRUE and While...End while
executes the loop.

The Boolean expression must be set by something inside the loop or else the loop will
continue forever. The following loop continues forever because NeverStop is always TRUE:

NeverStop:=True
While (NeverStop)
End while

If you find yourself in such a situation, where a method is executing uncontrolled, you
can use the trace facilities to stop the loop and track down the problem. For more
information about tracing a method, see the section Debugging.

Example

CONFIRM ("Add a new record?") ~ The user wants to add a record?
While (OK =1) " Loop as long as the user wants to

ADD RECORD([aTable]) ~ Add a new record
End while " The loop always ends with End while

In this example, the OK system variable is set by the CONFIRM command before the loop
starts. If the user clicks the OK button in the confirmation dialog box, the OK system
variable is set to 1 and the loop starts. Otherwise, the OK system variable is set to 0 and
the loop is skipped. Once the loop starts, the ADD RECORD command keeps the loop
going because it sets the OK system variable to 1 when the user saves the record. When
the user cancels (does not save) the last record, the OK system variable is set to O and the
loop stops.

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, Repeat...Until.

4th Dimension Language Reference 115

Repeat...Until Language Definition

version 6.0

The formal syntax of the Repeat...Until control flow structure is:

Repeat
statement(s)
Until (Boolean_Expression)

A Repeat...Until loop is similar to a While...End while loop, except that it tests the Boolean
expression after the loop rather than before. Thus, a Repeat...Until loop always executes
the loop once, whereas if the Boolean expression is initially False, a While...End while loop
does not execute the loop at all.

The other difference with a Repeat...Until loop is that the loop continues until the Boolean
expression is TRUE.

Example

Compare the following example with the example for the While...End while loop. Note
that the Boolean expression does not need to be initialized—there is no CONFIRM
command to initialize the OK variable.

Repeat
ADD RECORD([aTable])
Until (OK=0)

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, While...End while.

116 4th Dimension Language Reference

For...End for Language Definition

version 6.0

The formal syntax of the For...End for control flow structure is:

For (Counter_Variable; Start_Expression; End_Expression {; Increment_Expression})
statement(s)
End for

The For...End for loop is a loop controlled by a counter variable:

e The counter variable Counter_Variable is a numeric variable (Real, Integer, or Long
Integer) that the For...End for loop initializes to the value specified by Start_Expression.

e Each time the loop is executed, the counter variable is incremented by the value
specified in the optional value Increment_Expression. If you do not specify
Increment_Expression, the counter variable is incremented by one (1), which is the default.

e When the counter variable passes the End_Expression value, the loop stops.

Important: The numeric expressions Start_Expression, End_Expression and
Increment_Expression are evaluated once at the beginning of the loop. If these expressions
are variables, changing one of these variables within the loop will not affect the loop.

Tip: However, for special purposes, you can change the value of the counter variable
Counter_Variable within the loop; this will affect the loop.

e Usually Start_Expression is less than End_Expression.
e [f Start_Expression and End_Expression are equal, the loop will execute only once.

e If Start_Expression is greater than End_Expression, the loop will not execute at all unless
you specify a negative Increment_Expression. See the examples.

Basic Examples
1. The following example executes 100 iterations:

For (vCounter;1;100)
" Do something
End for

2. The following example goes through all elements of the array anArray:

For ($viElem;1;Size of array(anArray))
" Do something with the element
anArray{$viElem}:=...
End for

4th Dimension Language Reference 117

3. The following example goes through all the characters of the text vtSomeText:

For ($viChar;1;Length(vtSomeText))
* Do something with the character if it is a TAB
If (Ascii(vtSomeText<$viChar=)=Char(Tab))

End if
End for

4. The following example goes through the selected records for the table [aTable]:

FIRST RECORD([aTable])
For ($vIRecord;1;Records in selection([aTable]))
* Do something with the record
SEND RECORD([aTable])

) ao to the next record
NEXT RECORD([aTable])
End for

Most of the For...End for loops you will write in your databases will look like the ones
listed in these examples.

Decrementing variable counter

In some cases, you may want to have a loop whose counter variable is decreasing rather
than increasing. To do so, you must specify Start_Expression greater than End_Expression
and a negative Increment_Expression. The following examples do the same thing as the
previous examples, but in reverse order:

5. The following example executes 100 iterations:

For (vCounter;100;1;-1)
" Do something
End for

6. The following example goes through all elements of the array anArray:

For ($viElem;Size of array(anArray);1;-1)
" Do something with the element
anArray{$vlElem}:=...
End for

118 4th Dimension Language Reference

7. The following example goes through all the characters of the text vtSomeText:

For ($vIiChar;Length(vtSomeText);1;-1)
* Do something with the character if it is a TAB
If (Ascii(vtSomeText<$viChar=)=Char(Tab))

End if
End for

8. The following example goes through the selected records for the table [aTable]:

LAST RECORD([aTable])
For ($vIRecord;Records in selection([aTable]);1;-1)
" Do something with the record
SEND RECORD([aTable])

* Go to the previous record
PREVIOUS RECORD([aTable])
End for

Incrementing the counter variable by more than one

If you need to, you can use an Increment_Expression (positive or negative) whose absolute
value is greater than one.

9. The following loop addresses only the even elements of the array anArray:

For ($vlElem;2;((Size of array(anArray)+1)\2)*2;2)
" Do something with the element #2,#4...#2n
anArray{$vilElem}:=...
End for

Note that the ending expression ((Size of array(anArray)+1)\2)*2 takes care of even and
odd array sizes.

Getting out of a loop by changing the counter variable

In some cases, you may want to execute a loop for a specific number of iterations, but
then get out of the loop when another condition becomes TRUE. To do so, you can test
this condition within the loop and if it becomes TRUE, explicitly set the counter variable
to a value that exceeds the end expression.

4th Dimension Language Reference 119

10. In the following example, a selection of the records is browsed until this is actually
done or until the interprocess variable <>vbWeStop, intially set to FALSE, becomes TRUE.
This variable is handled by an ON EVENT CALL project method that allows you to interrupt
the operation:

<>vbWeStop:=False
ON EVENT CALL ("HANDLE STOP")
" HANDLE STOP sets <>vbWeStop to True if Ctrl-period (Windows) or
“Cmd-Period (Macintosh) is pressed
$vINbRecords:=Records in selection([aTable])
FIRST RECORD([aTable])
For ($vIRecord;1;$vINbRecords)
" Do something with the record
SEND RECORD([aTable])

* Go to the next record
If (<>vbWeStop)
$viRecord:=$vINbRecords+1 ~ Force the counter variable to get out of the loop
Else
NEXT RECORD([aTable])
End if
End for
ON EVENT CALL("")
If (<>vbWeStop)
ALERT("The operation has been interrupted.")
Else
ALERT("The operation has been successfully completed.")
End if

Comparing looping structures
Let's go back to the first For...End for example:
The following example executes 100 iterations:

For (vCounter;1;100)
" Do something
End for

It is interesting to see how the While...End while loop and Repeat...Until loop would
perform the same action.

120 4th Dimension Language Reference

Here is the equivalent While...End while loop:

$i := 1~ Initialize the counter
While ($i<=100) * Loop 100 times

" Do something

$i := $i + 1~ Need to increment the counter
End while

Here is the equivalent Repeat...Until loop:

$i := 1~ Initialize the counter
Repeat

" Do something

$i := $i + 1~ Need to increment the counter
Until ($i=100) * Loop 100 times

Tip: The For...End for loop is usually faster than the While...End while and Repeat...Until
loops, because 4th Dimension tests the condition internally for each cycle of the loop and
increments the counter. Therefore, use the For...End for loop whenever possible.

Optimizing the execution of the For...End for loops

You can use Real, Integer, and Long Integer variables as well as interprocess, process, and
local variable counters. For lengthy repetitive loops, especially in compiled mode, use local
Long Integer variables.

11. Here is an example:

C_LONGINT($vICounter) use local Long Integer variables
For ($viCounter;1;10000)

" Do something
End for

Nested For...End for looping structures

You can nest as many control structures as you (reasonably) need. This includes nesting
For...End for loops. To avoid mistakes, make sure to use different counter variables for each
looping structure.

4th Dimension Language Reference 121

Here are two examples:
12. The following example goes through all the elements of a two-dimensional array:

For ($viElem;1;Size of array(anArray))
* Do something with the row

For ($vISubElem;1;Size of array(anArray{$viElem}))
" Do something with the element
anArray{$viElem}{$vISubElem}:=...
End for
End for

13. The following example builds an array of pointers to all the date fields present in the
database:

ARRAY POINTER($apDateFields;0)
$vIElem:=0
For ($viTable;1;Count table)
For($viField;1;Count fields($viTable))
$vpField:=Field($vITable;$vIField)
If (Type($vpField->)=Is Date)
$viElem:=$vIElem+1
INSERT ELEMENT($apDateFields; $vIElem)
$apDateFields{$vIElem}:=$vpField
End if
End for
End for

See Also
Case of...Else...End case, Control Flow, If...Else...End if, Repeat...Until, While...End while.

122 4th Dimension Language Reference

Methods Language Definition
version 2003 (Modified)

In order to make the commands, operators, and other parts of the language work, you
put them in methods. There are several kinds of methods: Object methods, Form
methods, Table methods (Triggers), Project methods, and Database methods. This section
describes features common to all types of methods.

A method is composed of statements; each statement consists of one line in the method.
A statement performs an action, and may be simple or complex. Although a statement is
always one line, that one line can be as long as needed (up to 32,000 characters, which is
probably enough for most tasks).

For example, the following line is a statement that will add a new record to the [People]
table:

ADD RECORD([People])

A method also contains tests and loops that control the flow of the execution. For a
detailed discussion about the control flow programming structures, see the section Control
Flow.

Note: The maximum size of a method is limited to 2 GB of text or 32 000 lines of
command. Beyond these limits, a warning message appears, indicating that the extra lines
will not be displayed.

Types of Methods

There are five types of methods in 4th Dimension:

¢ Object methods: An object method is a property of an object. It is usually a short
method associated with an active form object. Object methods generally “manage” the
object while the form is displayed or printed. You do not call an object method—4D calls
it automatically when an event involves the object to which the object method is
attached.

e Form methods: A form method is a property of a form. You can use a form method to
manage data and objects, but it is generally simpler and more efficient to use an object
method for these purposes. You do not call a form method—4D calls it automatically
when an event involves the form to which the form method is attached.

For more information about Object methods and Form methods, see the 4th Dimension
Design Reference Manual as well as the section Form event.

4th Dimension Language Reference 123

¢ Table methods (Triggers): A Trigger is a property of a table. You do not call a Trigger.
Triggers are automatically called by the 4D database engine each time that you
manipulate the records of a table (Add, Delete, Modify and Load). Triggers are methods
that can prevent “illegal” operations with the records of your database. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying
the customer to whom the invoice is billed. Triggers are a very powerful tool to restrict
operations on a table, as well as to prevent accidental data loss or tampering. You can
write very simple triggers, and then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

* Project methods: Unlike object methods, form methods, and triggers, which are all
associated with a particular object, form, or table, project methods are available for use
throughout your database. Project methods are reusable, and available for use by any
other method. If you need to repeat a task, you do not have to write identical methods
for each case. You can call project methods wherever you need them—from other project
methods or from object or form methods. When you call a project method, it acts as if
you had written the method at the location where you called it. Project methods called
from other methods are often referred to as “subroutines.” A project method that returns
a result can also be called a function.

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu command is chosen. You can think of the menu command as calling the
project method.

For detailed information about Project methods, see the section Project Methods.

e Database methods: In the same way that object and form methods are called when
events occur in a form, there are methods associated with the database that are called
when a working session event occurs. These are the database methods. For example, each
time you open a database, you may want to initialize some variables that will be used
during the whole working session. To do so, you use the On Startup Database Method,
automatically executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Compatibility with previous versions of 4D

You can skip these compatibility notes if you work with new databases created with
version 6 of 4th Dimension.

1. Version 6 introduces many new object and form events (such as On Double Clicked, On
Getting Focus, and so on) that replace the execution cycles from the previous versions. If
you have converted a version 3 database to version 6, your forms have been converted in
order to preserve the “expected behavior” of your forms and objects. If you want to take
advantage of the new events for forms and objects created with a previous version of 4D,
you must enable the new events in the Property List window for the forms and the
objects.

124 4th Dimension Language Reference

2. Table methods, also called triggers, are a new type of method introduced in version 6.
In previous versions of 4th Dimension, table methods (called file procedures) were
executed by 4D only when a form for a table was used for data entry, display, or printing.
They were rarely used. Note that triggers execute at a much lower level that the old file
procedures. No matter what you do to a record via user actions (like data entry) or
programmatically (like a call to SAVE RECORD), the trigger of a table will be called by 4D.
Triggers are truly quite different from the old file procedures. If you have converted a
version 3 database to version 6, and if you want to take advantage of the new Trigger
capability, you must deselect the Use V3.x.x File Procedure Scheme property in the
Preferences dialog box (shown in this section).

3. Database methods are a new type of method introduced in version 6. In previous
versions of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use V3.x.x Startup Method
Scheme property in the Preferences dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be called
by 4D.

Preferences

g Application Skruckure Compatibilicy
Options [JUse ¥3.x.x Startup Method Scheme
Access [[Use ¥3.x.x File Procedure Scheme

CPU Priorities
Shortcuts
L Compatibility
L Design Mode
@ Database
@ Backup
?_5 Client-Server

‘ Web

7% web Services

Fields are not enterable in dislog boxes
[]6.8 compatibilicy For text rendering

‘Web Cannpatibility
Use 4DYAR Comments instead of Brackets
Use new context referencing mode
[Iremove ** on unknown URLS

Cancel] [0K |

4th Dimension Language Reference 125

An Example Project Method

All methods are fundamentally the same—they start at the first line and work their way
through each statement until they reach the last line (i.e., they execute sequentially).
Here is an example project method:

QUERY ([People]) " Display the Query editor
If (OK=1) ° The user clicked OK, not cancel
If (Records in selection([People])=0) ° If no record was found...
ADD RECORD([People]) ~ Let the user add a new record
End if
End if ~ The end

Each line in the example is a statement or line of code. Anything that you write using
the language is loosely referred to as code. Code is executed or run; this means that 4th
Dimension performs the task specified by the code.

We will examine the first line in detail and then move on more quickly:

QUERY([People]) * Display the Query editor

The first element in the line, QUERY, is a command. A command is part of the 4th
Dimension language—it performs a task. In this case, QUERY displays the Query editor.
This is similar to choosing Query from the Records menu in the User environment.

The second element in the line, specified between parantheses, is an argument to the
QUERY command. An argument (or parameter) is data required by a command in order
to complete its task. In this case, [People] is the name of a table. Table names are always
specified inside square brackets ([...]). In our example, the People table is an argument to
the QUERY command. A command can accept several parameters.

The third element is a comment at the end of the line. A comment tells you (and anyone
else who might read your code) what is happening in the code. It is indicated by the
reverse apostrophe (7). Anything (on the line) following the comment mark will be
ignored when the code is run. A comment can be put on a line by itself, or you can put
comments to the right of the code, as in the example. Use comments generously
throughout your code; this makes it easier for you and others to read and understand the
code.

Note: A comment can be up to 32 000 characters long.

The next line of the method checks to see if any records were found:

If (Records in selection([People]) = 0) * If no record was found...

126 4th Dimension Language Reference

The If statement is a control-of-flow statement—a statement that controls the step-by-
step execution of your method. The If statement performs a test, and if the statement is
true, execution continues with the subsequent lines. Records in selection is a function—a
command that returns a value. Here, Records in selection returns the number of records in
the current selection for the table passed as argument.

Note: Notice that only the first letter of the function name is capitalized. This is the
naming convention for 4th Dimension functions.

You should already know what the current selection is—it is the group of records you are
working on at any given time. If the number of records is equal to O (in other words, if
no records were found), then the following line is executed:

ADD RECORD([People]) * Let the user add a new record

The ADD RECORD command displays a form so that the user can add a new record. 4th
Dimension formats your code automatically; notice that this line is indented to show you
that it is dependent on the control-of-flow statement (If).

End if ~ The end

The End if statement concludes the If statement’s section of control. Whenever there is a
control-of-flow statement, you need to have a corresponding statement telling the
language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new, you
may want to review them until they are clear to you.

Where to go from here?

To learn more about:

¢ Object methods and Form methods, see the section Form event.
e Triggers, see the section Triggers.

e Project methods, see the section Project Methods.

e Database methods, see the section Database Methods.

See Also

Arrays, Constants, Control Flow, Data Types, Database Methods, Identifiers, Operators,
Pointers, Triggers, Variables.

4th Dimension Language Reference 127

Project Methods Language Definition

version 6.0

Project methods are aptly named. Whereas form and object methods are bound to forms
and objects, a project method is available anywhere; it is not specifically attached to any
particular object of the database. A project method can have one of the following roles,
depending on how it is executed and used:

¢ Menu method

e Subroutine and function
¢ Process method

e Event catching method
e Error catching method

These terms do not distinguish project methods by what they are, but by what they do.

A menu method is a project method called from a custom menu. It directs the flow of
your application. The menu method takes control—branching where needed, presenting
forms, generating reports, and generally managing your database.

The subroutine is a project method that can be thought of as a servant. It performs those
tasks that other methods request it to perform. A function is a subroutine that returns a
value to the method that called it.

A process method is a project method that is called when a process is started. The process
lasts only as long as the process method continues to execute. For more information
about processes, see the section Processes. Note that a menu method attached to a menu
command whose property Start a New Process is selected, is also the process method for
the newly started process.

An event catching method runs in a separate process as the process method for catching
events. Usually, you let 4D do most of the event handling for you. For example, during
data entry, 4D detects keystrokes and clicks, then calls the correct object and form
methods so you can respond appropriately to the events from within these methods. In
other circumstances, you may want to handle events directly. For example, if you run a
lengthy operation (such as For...End For loop browsing records), you may want to be able
to interrupt the operation by typing Ctrl-Period (Windows) or Cmd-Period (Macintosh).
In this case, you should use an event catching method to do so. For more information,
see the description of the command ON EVENT CALL.

An error catching method is an interrupt-based project method. Each time an error or an

exception occurs, it executes within the process in which it was installed. For more
information, see the description of the command ON ERR CALL.

128 4th Dimension Language Reference

Menu Methods

A menu method is invoked in the Custom Menus environment when you select the
custom menu command to which it is attached. You assign the method to the menu
command using the Menu editor. The menu executes when the menu command is
chosen. This process is one of the major aspects of customizing a database. By creating
custom menus with menu methods that perform specific actions, you personalize your
database. Refer to the 4th Dimension Design Reference manual for more information about
the Menu editor.

Custom menu commands can cause one or more activities to take place. For example, a
menu command for entering records might call a method that performs two tasks:
displaying the appropriate input form, and calling the ADD RECORD command until the
user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the programming
language. Using custom menus, you can automate task sequences that would otherwise be
carried out manually in the User environment. With custom menus, you provide more
guidance to users of the database.

Subroutines

When you create a project method, it becomes part of the language of the database in
which you create it. You can then call the project method in the same way that you call
4th Dimension’s built-in commands. A project method used in this way is called a
subroutine.

You use subroutines to:

¢ Reduce repetitive coding

e Clarity your methods

e Facilitate changes to your methods
* Modularize your code

For example, let’s say you have a database of customers. As you customize the database,
you find that there are some tasks that you perform repeatedly, such as finding a
customer and modifying his or her record. The code to do this might look like this:

* Look for a customer
QUERY BY EXAMPLE([Customers])
* Select the input form
INPUT FORM([Customers];"Data Entry")
" Modify the customer's record
MODIFY RECORD([Customers])

4th Dimension Language Reference 129

If you do not use subroutines, you will have to write the code each time you want to
modify a customer’s record. If there are ten places in your custom database where you
need to do this, you will have to write the code ten times. If you use subroutines, you will
only have to write it once. This is the first advantage of subroutines—to reduce the
amount of code.

If the previously described code was a method called MODIFY CUSTOMER, you would
execute it simply by using the name of the method in another method. For example, to
modify a customer’s record and then print the record, you would write this method:

MODIFY CUSTOMER
PRINT SELECTION([Customers])

This capability simplifies your methods dramatically. In the example, you do not need to
know how the MODIFY CUSTOMER method works, just what it does. This is the second
reason for using subroutines—to clarify your methods. In this way, your methods become
extensions to the 4th Dimension language.

If you need to change your method of finding customers in this example database, you
will need to change only one method, not ten. This is the next reason to use
subroutines—to facilitate changes to your methods.

Using subroutines, you make your code modular. This simply means dividing your code
into modules (subroutines), each of which performs a logical task. Consider the following
code from a checking account database:

FIND CLEARED CHECKS ~ Find the cleared checks
RECONCILE ACCOUNT ~ Reconcile the account
PRINT CHECK BOOK REPORT ~ Print a checkbook report

Even for someone who doesn’t know the database, it is clear what this code does. It is not
necessary to examine each subroutine. Fach subroutine might be many lines long and
perform some complex operations, but here it is only important that it performs its task.

We recommend that you divide your code into logical tasks, or modules, whenever
possible.

130 4th Dimension Language Reference

Passing Parameters to Methods

You'll often find that you need to pass data to your methods. This is easily done with
parameters.

Parameters (or arguments) are pieces of data that a method needs in order to perform its
task. The terms parameter and argument are used interchangeably throughout this
manual. Parameters are also passed to built-in 4th Dimension commands. In this example,
the string “Hello” is an argument to the ALERT command:

ALERT("Hello")

Parameters are passed to methods in the same way. For example, if a method named DO
SOMETHING accepted three parameters, a call to the method might look like this:

DO SOMETHING(WithThis;AndThat; ThisWay)
The parameters are separated by semicolons (;).

In the subroutine (the method that is called), the value of each parameter is automatically
copied into sequentially numbered local variables: $1, $2, $3, and so on. The numbering
of the local variables represents the order of the parameters.

The local variables/parameters are not the actual fields, variables, or expressions passed by
the calling method; they only contain the values that have been passed.

Within the subroutine, you can use the parameters $1, $2... in the same way you would
use any other local variable.

Since they are local variables, they are available only within the subroutine and are cleared
at the end of the subroutine. For this reason, a subroutine cannot change the value of the
actual fields or variables passed as parameters at the calling method level. For example:

* Here is some code from the method MY METHOD

DO S“(.)METHING ([People]Last Name) ~ Let's say [People]Last Name is equal to "williams"
ALERT([People]Last Name)

* Here is the code of the method DO SOMETHING
$1:=Uppercase($1)
ALERT($1)

The alert box displayed by DO SOMETHING will read “WILLIAMS” and the alert box
displayed by MY METHOD will read “williams”. The method locally changed the value of
the parameter $1, but this does not affect the value of the field [People]Last Name passed
as parameter by the method MY METHOD.

4th Dimension Language Reference 131

There are two ways to make the method DO SOMETHING change the value of the field:

1. Rather than passing the field to the method, you pass a pointer to it, so you would
write:

* Here is some code from the method MY METHOD

* Let's say [People]Last Name is equal to "williams"
DO SOMETHING (->[People]Last Name)
ALERT([People]Last Name)

" Here the code of the method DO SOMETHING
$1->:=Uppercase($1->)
ALERT($1->)

Here the parameter is not the field, but a pointer to it. Therefore, within the DO
SOMETHING method, $1 is no longer the value of the field but a pointer to the field. The
object referenced by $1 ($1-> in the code above) is the actual field. Consequently,
changing the referenced object goes beyond the scope of the subroutine, and the actual
field is affected. In this example, both alert boxes will read “WILLIAMS”.

For more information about Pointers, see the section Pointers.

2. Rather than having the method DO SOMETHING “doing something,” you can rewrite
the method so it returns a value. Thus you would write:

* Here is some code from the method MY METHOD

* Let's say [People]Last Name is equal to "williams"
[People]Last Name:=DO SOMETHING ([People]Last Name)
ALERT([People]Last Name)

" Here the code of the method DO SOMETHING
$0:=%1
ALERT($0)

This second technique of returning a value by a subroutine is called “using a function.”
This is described in the next paragraphs.

Advanced note: Parameters within the subroutine are accessible through the local
variables $1, $2... In addition, parameters can be optional and can be referred to using the
syntax ${...}. For more information on parameters, see the description of the command
Count parameters.

132 4th Dimension Language Reference

Functions: Project Methods that return a value

Data can be returned from methods. A method that returns a value is called a function.
4D or 4D Plug-in commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length, to
return the length of a string. The statement puts the value returned by Length in a
variable called MyLength. Here is the statement:

MyLength:=Length("How did | get here?")

Any subroutine can return a value. The value to be returned is put into the local variable
$0.

For example, the following function, called Uppercase4, returns a string with the first four
characters of the string passed to it in uppercase:

$0:=Uppercase(Substring($1; 1; 4))+Substring($1; 5)
The following is an example that uses the Uppercase4 function:
NewPhrase:=Uppercase4 ("This is good.")
In this example, the variable NewPhrase gets “THIS is good.”

The function result, $0, is a local variable within the subroutine. It can be used as such
within the subroutine. For example, in the previous DO SOMETHING example, $0 was first
assigned the value of $1, then used as parameter to the ALERT command. Within the
subroutine, you can use $0 in the same way you would use any other local variable. It is
4D that returns the value of $0 (as it is when the subroutine ends) to the called method.

Recursive Project Methods

Project methods can call themselves. For example:
¢ The method A may call the method B which may call A, so A will call B again and so on.
e A method can call itself.

This is called recursion. The 4D language fully supports recursion.
Here is an example. Let’s say you have a [Friends and Relatives] table composed of this
extremely simplified set of fields:

- [Friends and Relatives]Name
- [Friends and Relatives]Children'Name

4th Dimension Language Reference 133

For this example, we assume the values in the fields are unique (there are no two persons
with the same name). Given a name, you want to build the sentence “A friend of mine,

John who is the child of Paul who is the child of Jane who is the child of Robert who is

the child of Eleanor, does this for a living!”:

1. You can build the sentence in this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)
QUERY/([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)
$vtTheWholeStory:="A friend of mine, "+$vsName
Repeat
QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$vsName)
$viQueryResult:=Records in selection([Friends and Relatives])
If ($vIQueryResult>0)
$vtTheWholeStory:=$vtTheWholeStory+" who is the child of "
+[Friends and Relatives][Name
$vsName:=[Friends and Relatives]Name
End if
Until ($viQueryResult=0)
$vtTheWholeStory:=$vtTheWholeStory+", does this for a living!"
ALERT($vtTheWholeStory)
End if
End if

2. You can also build it this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)
QUERY/([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)
ALERT("A friend of mine, "+Genealogy of ($vsName)+", does this for a living!")
End if
End if

with the recursive function Genealogy of listed here:

" Genealogy of project method
* Genealogy of (String) -> Text
* Genealogy of (Name) -> Part of sentence

$0:=%1
QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$1)
If (Records in selection([Friends and Relatives])>0)
$0:=30+" who is the child of "+Genealogy of ([Friends and Relatives]Name)

End if

134 4th Dimension Language Reference

Note the Genealogy of method which calls itself.
The first way is an iterative algorithm. The second way is a recursive algorithm.

When implementing code for cases like the previous example, it is important to note that
you can always write methods using iteration or recursion. Typically, recursion provides
more concise, readable, and maintainable code, but using it is not mandatory.

Some typical uses of recursion in 4D are:

e Treating records within tables that relate to each other in the same way as in the
example.

e Browsing documents and folders on your disk, using the commands FOLDER LIST and
DOCUMENT LIST. A folder may contain folders and documents, the subfolders can
themselves contain folders and documents, and so on.

Important: Recursive calls should always end at some point. In the example, the method
Genealogy of stops calling itself when the query returns no records. Without this
condition test, the method would call itself indefinitely; eventually, 4D would return a
“Stack Full” error becuase it would no longer have space to “pile up” the calls (as well as
parameters and local variables used in the method).

See Also
Control Flow, Database Methods, Methods.

4th Dimension Language Reference 135

136 4th Dimension Language Reference

4D Environment

4th Dimension Language Reference 137

138 4th Dimension Language Reference

Application type 4D Environment

version 2004 (Modified)

Application type - Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer ~ Numeric value denoting the type of the application

Description

The Application type command returns a numeric value that denotes the type of 4D
environment that you are running. 4D provides the following predefined constants:

Constant Type Value
4th Dimension Long Integer 0
4D Runtime Volume License Long Integer 1

4D Runtime Interpreted Long Integer 2
4D Runtime Single User Long Integer 3
4D Client Long Integer 4
4D Server Long Integer 5
4D First Long Integer 6
Example

Somewhere in your code, other than in the On Server Startup database method, you need
to check if you are running 4D Server. You can write:

O If (Application type=4D Server)
* Perform appropriate actions
End if

See Also
Application version, Version type.

4th Dimension Language Reference 139

Version type 4D Environment

version 6.0

Version type - Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer - 0 -> Full version
1 -> Demo Limited version

Description

The Version type command returns a numeric value that denotes the type of 4D
environment version that you are running. 4D provides the following predefined
constants:

Constant Type Value
Full Version Long Integer 0
Demo Version Long Integer 1
Example

Your 4D application includes some features that are not available when a demo version of
the 4D environment is used. Surround these features with a test that calls Version type:

O If (Version type=Full Version)
* Perform appropriate operations
Else
ALERT("This feature is not available in the Demo version of"
+" Super Management Systems™.")
End if

See Also
Application type, Application version.

140 4th Dimension Language Reference

Application version

4D Environment

version 6.0
Application version {(*)} - String
Parameter Type Description
* * - Long version number if passed, otherwise
Short version number
Function result String - Version number encoded string

Description

The Application version command returns an encoded string value that expresses the
version number of the 4D environment you are running.

e If you do not pass the
follows:

Characters
1-2

3

4

optional * parameter, a 4-character string is returned, formatted as

Description

Version number
Update number
Revision number

Example: The string "0600" stands for version 6.0.0.

e If you pass the optional * parameter, an 8-character string is returned, formatted as

follows:
Characters

Description

"F" denotes a final version

"B" denotes a beta version

Other characters denote an 4D internal version
Internal 4D compilation number

Version number

Update number

Revision number

Example: The string "B0120602" would stand for the Beta 12 of version 6.0.2.

Examples

1. This example displays the 4D environment version number:

O $vs4Dversion:=Application version
ALERT("You are using the version "+String(Num(Substring($vs4Dversion;1;2)))+"."+

$vs4Dversion<32+"."+$vs4Dversion<4=)

4th Dimension Language Reference 141

2. This example tests to verify that you are using a final version:

O If(Substring(Application version(*);1;1)#"F")
ALERT("Please make sure you are using a Final Production version of 4D with
this database!")

QUIT 4D
End if

See Also
Application type, Version type.

142 4th Dimension Language Reference

Compiled application 4D Environment

version 6.0
Compiled application - Boolean
Parameter Type Description
This command does not require any parameters
Function result Boolean - Compiled (True), Interpreted (False)

Description

Compiled application tests whether you are running in compiled mode (True) or
interpreted mode (False).

Example

In one of your routines, you include debugging code useful only when you are running

in interpreted mode, so surround this debugging code with a test that calls Compiled
application:

~

O If (Not(Compiled application))
" Include debugging code here
End if

See Also
IDLE, Undefined.

4th Dimension Language Reference

143

Application file 4D Environment

version 6.0
Application file - String
Parameter Type Description
This command does not require any parameters
Function result String - Long name of the 4D executable file or
application
Description

The Application file command returns the long name of the 4D executable file or
application you are running.

On Windows
If, for example, you are running 4th Dimension located at \4DWIN600\PROGRAM on
the volume E, the command returns E:\4DWIN60O\PROGRAM\4D.EXE.

On Macintosh

If, for example, you are running 4th Dimension in the folder 4th Dimension® 6.0f on
the disk Macintosh HD, the command returns Macintosh HD:4th Dimension® 6.0f:4th
Dimension® 6.0.

Example

At startup on Windows, you need to check if a DLL Library is correctly located at the
same level as the 4D executable file. In the On Startup database method of your
application you can write:
If (On Windows & (Application type#4D Server))
O If (Test path name (Long name to path name (
Application file)+"XRAYCAPT.DLL")#Is a document)
" Display a dialog box explaining that the library XRAYCAPT.DLL
* is missing. Therefore, the X-ray capture capability will not be available.
End if
End if

Note: The project methods On Windows and Long name to path name are listed in the
section System Documents.

See Also
Data file, DATA SEGMENT LIST, Structure file.

144 4th Dimension Language Reference

Structure file 4D Environment

version 2004.2 (Modified)

Structure file - String

Parameter Type Description
This command does not require any parameters

Function result String - Long name of the database structure file

Description

The Structure file command returns the long name of the structure file for the database
with which you are currently working.

On Windows
If, for example, you are working with the database MyCDs located in \DOCS\MyCDs on
the volume G, the command returns G:\DOCS\MyCDs\MyCDs.4DB.

On Macintosh

If, for example, you are are working with the database located in the folder
Documents:MyCDsf: on the disk Macintosh HD, the command returns Macintosh
HD:Documents:MyCDsf:MyCDs.

Note: In the particular case of a database that has been compiled and merged with 4D
Runtime, this command returns the pathname of the application file (executable
application) under Windows and Mac OS. Under Mac OS, this file is located inside the
software package, in the [Contents:Mac OS] folder. This stems from a former mechanism
and is kept for compatibility reasons. If you want to get the full name of the software
package itself, it is preferable to use the Application file command. The technique consists
of testing the application using the Application type command, then executing Structure
file or Application file depending on the context.

WARNING: If you call this command while running 4D Client, only the name of the
structure file is returned; the long name is not returned.

4th Dimension Language Reference 145

Example

This example displays the name and the location of the structure file currently in use:
If (Application type#4D Client)

0 $vsStructureFilename:=Long name to file name (Structure file)

0 $vsStructurePathname:=Long name to path name (Structure file)

ALERT("You are currently using the database "+Char(34)+$vsStructureFilename
+Char(34)+" located at "+Char(34)+$vsStructurePathname+Char(34)+".")

Else

0 ALERT("You are connected to the database "+Char(34)+Structure file+Char(34))
End if

Note: The project methods Long name to file name and Long name to path name are listed
in the section System Documents.

See Also
Application file, Data file, DATA SEGMENT LIST.

146 4th Dimension Language Reference

Data file 4D Environment

version 6.0
Data file {(segment)} - String
Parameter Type Description
segment Number - Segment number
Function result String - Long name of the data file for the database
Description

The Data file command returns the long name of the data file or one data segment for the
database with which you are currently working.

If you do not pass the segment parameter, it returns the long name of the data file or the
first segment (if the database is segmented). If you pass the segment parameter, it returns
the long name of the corresponding data segment. If you pass a segment number greater
than the number of data segments, it returns an empty string.

On Windows

If, for example, you are working with the database MyCDs located at \DOCS\MyCDs on
the volume G, a call to Data file returns G:\DOCS\MyCDs\MyCDs.4DD (provided that
you accepted the default location and name proposed by 4D when you created the
database).

On Macintosh

If, for example, you are working with the database located in the folder
Documents:MyCDsf: on the disk Macintosh HD, a call to Data file returns Macintosh
HD:Documents:MyCDsf:MyCDs.data (provided that you accepted the default location
and name proposed by 4D when you created the database).

WARNING: If you call this command while running 4D Client, only the name of the data
file or the first data segment is returned, not the long name. In addition, even though
the database is segmented, the command returns an empty string for the other data
segments. If you need (for adminstrative purposes) to display a list of the data segments
on a 4D Client station, use a Stored Procedure to build the data segment list and store it in
a variable on the server machine, then get the contents of this variable using the GET
PROCESS VARIABLE command.

4th Dimension Language Reference 147

Example
The following code goes through the data segments of a database.

If (Application type#4D Client)
$viDataSegNum:=0

Repeat
$viDataSegNum:=$viDataSegNum-+1
O $vsDataSegName:=Data file($vIDataSegNum)

If ($vsDataSegName#"")
ALERT ("Data segment "+String($viIDataSegNum)+":"+Char(34)+
$vsDataSegName+Char(34)+".")
End if
Until ($vsDataSegName="")
ALERT("There is/are "+String($viDataSegNum-1)+"data segment(s).")
End if

See Also
Application file, DATA SEGMENT LIST, Structure file.

148 4th Dimension Language Reference

Is data file locked 4D Environment

version 2003

Is data file locked - Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean - True = file/segment locked
False = file/segment not locked

Description
The Is data file locked command returns True if the data file of the open database or at least
one of its segments is locked — i.e. write protected.

Placed, for instance, in the On Startup Database Method, this command enables the
prevention of any risk of accidental opening of a locked data file.

Example
This method will prevent the opening of the database if the data file is locked:

O If(Is data file locked)
ALERT("The data file is locked. Impossible to open database.")
QUIT 4D
End if

4th Dimension Language Reference 149

Get 4D folder 4D Environment

version 2004.1 (Modified)

Get 4D folder {(folder)} — String

Parameter Type Description
folder Longint - Folder type (if omitted = active 4D folder)
Function result String - Pathname to 4D Folder

Description

The Get 4D folder command returns the pathname to the active 4D folder of the current
application, or to the 4D environment folder specified by the folder parameter, if passed.
This command allows you to get the actual pathname of the folders used by the 4D
application. By using this command, you ensure that your code will work on any
platform running any localized system.

In folder, you can pass one of the following constants, which are located in the “4D
Environment” theme:

Constant Type Value
Active 4D Folder Longint 0O (default)
Licenses Folder Longint 1

Extras Folder Longint 2

4D Client Database Folder Longint 3

You will find below a description of each folder:

Active 4D Folder
The 4D environment uses the 4D folder to store the following information:

e User registration files

e Preferences files used by the 4D environment applications, tools, and utility programs
e TCP/IP Network protocol option file

e Local database folders created by 4D Client for storing elements downloaded from

4D Server (resources, plug-ins, Extras folder, etc.).

The 4D folder is created at the following location:

* On Windows: {Disk}:\Documents and Settings\All Users\Application Data\4D

Note for 4D Client: With 4D Client, the active 4D folder is created at the following
location:

{Disk}:\Documents and Settings\ Current user\Application Data\4D

... where Current user is the name of the user that opened the current Windows session.
e On Mac OS: {Disk}:Library:Application Support:4D

150 4th Dimension Language Reference

Licenses Folder

Folder containing the Licenses files of the machine.

The Licenses folder is placed at the following location:

e On Windows: {Disk}:\Documents and Settings\All Users\Application Data\
4D\Licenses

e On Mac OS: {Disk}:Library:Application Support:4D:Licenses

Extras Folder (Client machines)

Folder with customized contents downloaded to each 4D Client machine.

You use this folder for transferring custom items from the server to the client machines
(resources file, text documents, XML preferences files, etc.). The original hierarchy of the
folder is reconstructed on each client machine.

4D Server automatically manages the modifications made to this folder and only transfers
what is necessary. Moreover, the contents of the folder is compressed in order to optimize
network copying time.

On the server side, the original Extras folder should be placed next to the database
structure file. Pay attention to the fact that the command only returns the 4D Client
Extras folder location; it does not work with 4D Server or 4th Dimension single-user.

On each 4D Client, the Extras folder is downloaded to the same location as the other
structure elements, i.e.:

e On Windows: {Disk}:\Documents and Settings\ Current user\Application
Data\4D\DatabaseName_Address\Extras

... where Current user is the name of the user that opened the current Windows session.

e On Mac OS: {Disk}:Library:Application Support:4D:DatabaseName_Address:Extras

4D Client Database Folder (Client machines)

4D database folder created on each 4D Client machine for storing files and folders related
to the database (resources, plug-ins, Extras folder, etc.).

The 4D Client Database Folder is placed at the following location on each client
machine:

e On Windows: {Disk}:\Documents and Settings\ Current user\Application
Data\4D\DatabaseName_Address

... where Current user is the name of the user that opened the current Windows session.

e On Mac OS: {Disk}:Library:Application Support:4D:DatabaseName_Address:

4th Dimension Language Reference 151

Example

During the startup of a single-user database, you want to load (or create) your own
settings in a file located in the 4D folder. To do so, in the On Startup Database Method,
you can write code similar to this:

MAP FILE TYPES("PREF";"PRF";"Preferences file")
" Map PREF Mac OS file type to .PRF Windows file extension
O $vsPrefDocName:=Get 4D folder+"MyPrefs" ~ Build pathname to the Preferences file
* Check if the file exists
If (Test path name($vsPrefDocName+(".PRF"*Num(On Windows)))#ls a document)
$vtPrefDocRef:=Create document($vsPrefDocName;"PREF") ~ If not, create it
Else
$vtPrefDocRef:=Open document($vsPrefDocName;"PREF") ~ If so, open it
End if
If (OK=1)
* Process document contents
CLOSE DOCUMENT($vtPrefDocRef)
Else
* Handle error
End if

See Also
System folder, Temporary folder, Test path name.

152 4th Dimension Language Reference

DATA SEGMENT LIST 4D Environment

version 6.0
DATA SEGMENT LIST (Segments)
Parameter Type Description
Segments String array - Long names of data segments for the database
Description

DATA SEGMENT LIST populates the segments array with the long names of the data
segments for the database with which you are currently working.

WARNING: This command does nothing if executed on 4D Client. If you need (for
administrative purposes) to display a list of the data segments on a 4D Client station, use
a Stored Procedure to build the data segment list and store it in a variable on the server
machine, then get the contents of this variable using the GET PROCESS VARIABLE
command.

Examples

1. In the Data Segments Information form for the [Dialogs] table, you want to display a
drop-down list populated with the names of the data segments. To do so, write:

" [Dialogs];"Data Segments Information" form method
Case of
: (Form event=0On lLoad)

ARRAY STRING(255;asDataSegName;0)
O DATA SEGMENT LIST(asDataSegName)

End case

2. The following method tells you if a database is segmented.

* Is data file segmented -> Boolean
C_BOOLEAN ($0)

0 DATA SEGMENT LIST($asDataSegName)
$0:=(Size of array($asDataSegName)>1)

4th Dimension Language Reference 153

3. After a call to ADD DATA SEGMENT, you want to test whether the user added new
segments.

0 DATA SEGMENT LIST($asBefore)
ADD DATA SEGMENT
O DATA SEGMENT LIST($asAfter)
If(Size of array($asBefore)#Size of array($asAfter))
" Yes, there are more data segments
Else

* Same number of data segments
End if

See Also
Application file, Data file, Structure file.

154 4th Dimension Language Reference

ADD DATA SEGMENT 4D Environment

version 2004.2 (Modified)

ADD DATA SEGMENT

Parameter Type Description
This command does not require any parameters

Description

The ADD DATA SEGMENT command displays the data segment management dialog box
shown here:

() Maximum segment size (2 Gb)
() Segment Size (Mb): o | [st]

If the user clicks the OK button to validate the dialog box, the OK variable is set to 1. If
the user clicks the Cancel button, OK is set to O.

NOTE: This command does nothing when used with 4D Server.

When all data segments are full, 4th Dimension or 4D Server automatically creates a new
segment if the Create new data segments as needed option is checked in the application
Preferences (“Database/Data Management” page). Each automatic segment has a
maximum size of 2 GB and is stored next to the last segment created or the data file.

If this option is not checked, the error -9999 is generated. An error message is displayed,
stating that the disk is full.

If you are using 4th Dimension, you can use the ON ERR CALL method to catch the error

message so you can handle the error procedurally. You can then use ADD DATA SEGMENT
to allow the user to add a new data segment on another volume that has available space.

4th Dimension Language Reference 155

If you are using 4D Server, you can display an alert stating that the Database
Administrator must add a new data segment from the server machine.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the data segment management dialog box is validated.

156 4th Dimension Language Reference

FLUSH BUFFERS 4D Environment

version 3

FLUSH BUFFERS

Parameter Type Description
This command does not require any parameters

Description

The command FLUSH BUFFERS immediately saves the data buffers to disk. All changes that
have been made to the database are stored on disk.

You usually do not need to call this command, as 4D saves data modification on a regular
basis. The database property Flush Data Buffers (in the Design environment), which
specifies how often to save, is typically used to control buffer flushing.

Note: 4D integrates a built-in data cache scheme for accelerating I/O operations. The fact
that data modifications are, for some time, present in the data cache and not on the disk
is transparent to your coding. For example, if you issue a QUERY call, the 4D database
engine integrates the data cache in the query operation.

4th Dimension Language Reference 157

OPEN DATA FILE 4D Environment

version 6.8
OPEN DATA FILE (accessPath)
Parameter Type Description
accessPath String - Name or complete access path of the data file to open
Description

The OPEN DATA FILE command allows changing the data file opened by the 4D
application on-the-fly.

Pass the name or the full access path of the data file to open in the accessPath parameter.
If you pass only the file name, it must be placed next to the structure file of the database.

If the access path sets a valid data file, 4D quits the database in progress and re-opens it
with the specified data file. The On Exit Database Method and the On Startup Database
Method are successively called.

Warning: Since this command causes the application to quit before re-opening with the
specified data file, it is not possible to use it in the On Startup Database Method or in a
method called by this database method.

The command is executed in an asynchronous manner: after its call, 4D continues
executing the rest of the method. Then, the application behaves as if the Quit command
was selected in the File menu: open dialog boxes are cancelled, any open processes have
10 seconds to finish before being terminated, etc.

Before launching the operation, the command checks the validity of the specified data
file: it must have the “.4dd” extension under Windows or have the “dat5” type under
Mac OS. Also, if the file was already open, the command verifies that it corresponds to the
current structure.

If you pass an empty string in accessPath, the command will re-open the database without
changing the data file.

4D Server: This command cannot be used with 4D Client or 4D Server.

See Also
CREATE DATA FILE.

158 4th Dimension Language Reference

CREATE DATA FILE 4D Environment

version 6.8
CREATE DATA FILE (accessPath)
Parameter Type Description
accessPath String - Name or complete access path of the data file
to create
Description

The command CREATE DATA FILE allows creating a new data file to disk and to replace the
data file opened by the 4D application on-the-fly.

The general functioning of this command is identical to that of the OPEN DATA FILE
command; the only difference is that the new data file set by the accessPath parameter is
created just after the structure is re-opened.

Before launching the operation, the command verifies that the specified access path does
not correspond to an existing file.

4D Server: This command cannot be used with 4D Client or 4D Server.

See Also
OPEN DATA FILE.

4th Dimension Language Reference 159

QUIT 4D 4D Environment

version 6.8 (Modified)

QUIT 4D {(time)}

Parameter Type Description
time Number - Time (mn) before quitting the server
Description

The QUIT 4D command exits 4th Dimension/4D Client or 4D Server and returns to the
Desktop.

The command processing is different whether it is executed on 4th Dimension/4D Client
or on 4D Server.

With 4th Dimension and 4D Client:
After you call QUIT 4D, the current process stops its execution, then 4D acts as follows:

e If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. For example, you can use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop the
execution of operations started by the On Startup Database Method (connection from 4D
to another database server). Note that 4D will eventually quit; the On Exit Database
Method can perform all the cleanup or closing operations you wish, but cannot refuse the
quit and will at some point end.

e If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction.

If the user is performing data entry, the records will be cancelled and not saved.

If you want to let the user save data entry modifications made in the current open
windows, you can use interprocess communication to signal all the other user processes
that the database is going to be exited. To do so, you can adopt two strategies:

e Perform these operations from within the current process before calling QUIT 4D
e Handle these operations from within the On Exit Database Method.

A third strategy is also possible. Before calling QUIT 4D, you check whether a window will
need validation; if that is the case, you ask the user to validate or cancel these windows
and then to choose Quit again. However, from a user interface standpoint, the first two
strategies are preferable.

Note: The time parameter cannot be used with 4th Dimension or 4D Client.

160 4th Dimension Language Reference

With 4D Server (Stored procedure)

The QUIT 4D command can be executed on the server machine, in a stored procedure. In
this case, it accepts the time optional parameter.

The time parameter allows setting a timeout to the 4D Server before the application
actually quits, allowing client machines the time to disconnect. You must pass a value in
minutes in time. This parameter is only taken into consideration during an execution on
the server machine. It is ignored in 4D Client or 4th Dimension.

If you do not pass a parameter for time, 4D Server will wait until all client machines are
disconnected before quitting.

Unlike 4th Dimension and 4D Client, the processing of QUIT 4D by 4D Server is
asynchronous: the method where the command is called is not interrupted after is has
been executed.

If there is an On Server Stop Database Method, it is executed after the delay set by the time
parameter, or after all clients have disconnected, depending on your parameters.

The action of the QUIT 4D command used in a stored procedure is the same as the one for
the Quit command of the 4D Server File menu: it causes a dialog box to appear on each
client machine indicating that the server is about to quit.

Example

The project method listed here is associated with the Quit or Exit menu item in the File
menu.

* M_FILE_QUIT Project Method

CONFIRM("Are you sure that you want to quit?")

If (OK=1)

0 QUIT 4D
End if

See Also

On Exit Database Method, On Server Shutdown Database Method.

4th Dimension Language Reference 161

GET SERIAL INFORMATION 4D Environment

version 6.7
GET SERIAL INFORMATION (key; user; company; connected; maxUser)
Parameter Type Description
key Longint - Unique product key (encrypted)
user String - Registered name
company String - Registered organization
connected Longint - Number of connected users
maxUser Longint - Maximum number of connected users
Description

The command GET SERIAL INFORMATION returns various information about the 4D
current version serialization.

e key: unique ID of the installed product. A unique number is associated to a 4D
application (such as 4D Server, 4th Dimension, 4D Runtime, etc.) installed on a machine.
This number is encrypted, of course.

e user: Name application user as defined when installing.

e company: User’s company or organization name as defined during installation.

e connected: Number of connected users when executing the command.

e maxUsers: Maximal number of users concurrently connected.

Note: The last two parameters always return 1 for 4D single user except in demonstration
versions (0 is then returned).

GET SERIAL INFORMATION is part of the general component protection scheme
implemented in 4D starting from version 6.7 (for more information about components,
refer to 4D Insider documentation). Component developers can associate a copy of their
product to a given installed 4D application, in order to avoid any illegal copies.

The serialization works as follows: a user who wants to get a component sends his unique
key generated through the GET SERIAL INFORMATION command to the developer. This
can be done through an Order form included in a demo version of the component. The
generated key is unique and is associated to a specific 4D application.

The component developer can then generate his own serial number combining the key
and a given cipher. The delivered component will offer a function verifying if the
information returned by the GET SERIAL INFORMATION matches this serial number.
Otherwise, the user will not be able to use the component.

Note: Plug-ins developers can use this protection scheme too. For more information, refer
to the 4D Plugin API Reference.

See Also
Get component resource ID.

162 4th Dimension Language Reference

Is license available

4D Environment

version 2004 (Modified)

Is license available {(license)} — Boolean

Parameter
license

Function result

Description

Type
Number

Boolean

Description

Product/plug-in for which license validity testing

is desired

True if product/plug-in is available, otherwise False

The Is license available command enables you to know the availability of a product or plug-
in. It is useful, for instance, for displaying or hiding functions requiring the presence of a

plug-in.

The Is license available command may be used in three different ways:

e The license parameter is omitted: in this case, the command returns False if the 4D

application is in demonstration mode.

* You pass one of the constants of the “Is license available” theme in the license

parameter:
Constant

4D Draw License

4D For OCI License

4D View License
4D Web License
4D Write License

4D Client Web License
4D Client SOAP License

4D SOAP License

4D ODBC Pro License

4D for ADO License

4D for MySQL License

4D for PostgreSQL License
4D for Sybase License

In this case, the command returns True if the corresponding product is loaded and if
(with 4D Server) it has a license available.

Type

Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint
Longint

Value

808464694
808465208
808465207
808464945
808464697
808465209
808465465
808465464
808464946
808465714
808465712
808465713
808465715

4th Dimension Language Reference

163

For instance, if you have a serial number for 4D Draw but no available expansion serial
number, the command returns True with a 4th Dimension single-user system but False
with 4D Server. On the contrary, if you have an expansion serial number for 4D Draw but
not a serial number, the command returns True with 4D Server but False with 4th
Dimension. If you have both a serial number and an expansion serial number, the
command returns True in all cases.

® You pass the ID number of the plug-in “4BNX” resource directly in the license
parameter. In this case, the command behaves as described above.

164 4th Dimension Language Reference

OPEN 4D PREFERENCES 4D Environment

version 2004

OPEN 4D PREFERENCES (selector)

Parameter Type Description

selector String - Key designating a theme or a page or a
group of parameters in the Preferences
dialog box

Description

The OPEN 4D PREFERENCES command provokes the display of the Preferences dialog box
of the current 4th Dimension application and the display of the theme or page
corresponding to the key passed in selector.

The selector parameter must contain one or more “keys” indicating a theme, page or
group of parameters in the Preferences dialog box. The list of keys that can be used is
provided below.

You can pass either a fixed access path or the name of a single element in selector:

e Fixed access path: The selector parameter is put together in the following manner:
/Theme{/Page{/Parameter group}}.

The string must start with the / character and each level must be separated with a /.

For example, to set the Compiler page of the Design Mode theme, selector must contain
"/Design Mode/Compiler".

e Name (relative path): In this case, the selector parameter cannot start with the /
character. Simply pass the name of the desired element and 4th Dimension will open the
first corresponding element in the following search order: parameter group -> page->
theme.

For example, if you pass “Progress Indicator” in selector, 4th Dimension will open the
Options page of the Application theme.

To open the dialog box directly on the first page, simply pass “/” in selector.

The command opens the Preferences page on the element specified in selector; however,
all other themes and pages remain accessible. It is up to the developer to make sure that
user access to Preferences does not hinder the application. To control user actions, it is
recommended that you enable the user access management system.

Path keys

The following is a list of keys that can be used in the selector parameter:
/Application

/Application/Options

/Application/Options/Options

/Application/Options/Temporary Folder Location
/Application/Options/Drag and Drop Highlight

4th Dimension Language Reference 165

/Application/Access

/Application/Access/Data Access
/Application/Access/User Access

/Application/CPU Priorities

/Application/CPU Priorities/Set CPU Priority to:
/Application/Shortcuts

/Application/Shortcuts/Keys
/Application/Compatibility
/Application/Compatibility/Structure Compatibility
/Application/Compatibility/Web Compatibility
/Application/Compatibility/Platform

/Design Mode

/Design Mode/Structure

/Design Mode/Structure/General Font

/Design Mode/Structure/Forms and Methods Automatic Comments
/Design Mode/Form Editor

/Design Mode/Form Editor/Object Templates
/Design Mode/Form Editor/Move

/Design Mode/Form Editor/Auto Alignment

/Design Mode/Form Editor/Default Display

/Design Mode/Method Editor

/Design Mode/Method Editor/Font

/Design Mode/Method Editor/Default Display
/Design Mode/Method Editor/Options

/Design Mode/Method Editor/Structure Style-Sheets
/Design Mode/Compiler

/Design Mode/Compiler/Compilation Options
/Design Mode/Compiler/Compiler Methods for...
/Design Mode/Documentation

/Design Mode/Documentation/Documentation Access from the Explorer
/Database

/Database/Data Management

/Database/Data Management/General
/Database/Data Management/Database Cache Settings
/Database/Data Management/WEDD
/Database/Script Manager

/Database/Script Manager/Script Manager

/Backup

/Backup/Configuration
/Backup/Configuration/Backup Contents
/Backup/Configuration/Backup File Destination Folder
/Backup/Configuration/Last Backup Information
/Backup/Configuration/Log Management
/Backup/Scheduler

/Backup/Scheduler/Backup Frequency
/Backup/Backup

/Backup/Backup/General

/Backup/Backup/Archive

/Backup/Restore

166 4th Dimension Language Reference

/Client-Server

/Client-Server/Configuration
/Client-Server/Configuration/Network
/Client-Server/Configuration/Client-Server Connections Timeout
/Client-Server/Configuration/Client-Server Communication
/Client-Server/Configuration/4D Open
/Client-Server/Publishing
/Client-Server/Publishing/Publishing Information
/Client-Server/Publishing/Allow-Deny Table Configuration
/Client-Server/Publishing/Encryption

/Web

/Web/Configuration

/Web/Configuration/Web Server Publishing
/Web/Configuration/Default HTML Path
/Web/Configuration/Starting Mode

/Web/Advanced

/Web/Advanced/Cache

/Web/Advanced/Web Process

/Web/Advanced/Options

/Web/Advanced/Web Passwords

/Web/Options

/Web/Options/Text Conversion

/Web/Options/4D WebSTAR

/Web/Options/Persisent Connections

/Web Services

/Web Services/SOAP

/Web Services/SOAP/Server Side

/Web Services/SOAP/Client Side

Examples
(1) Open Preferences on the first page:

O OPEN 4D PREFERENCES("/")
(2) Open the “Shortcuts” page of the “Application” theme:
O OPEN 4D PREFERENCES("/Application/Shortcuts")

(3) Open the “Method Editor” page of the “Design Mode” theme:

0 OPEN 4D PREFERENCES("Default Display")

System Variables or Sets

If the requested element is found and opened correctly, the system variable OK returns 1.

Otherwise, it returns 0.

4th Dimension Language Reference

168 4th Dimension Language Reference

Arrays

4th Dimension Language Reference 169

170 4th Dimension Language Reference

Arrays Arrays

version 6.0

An array is an ordered series of variables of the same type. Each variable is called an
element of the array. The size of an array is the number of elements it holds. An array is
given its size when it is created; you can then resize it as many times as needed by adding,
inserting, or deleting elements, or by resizing the array using the same command used to
create it.

You create an array with one of the array declaration commands. For details, see the
section Creating Arrays.

Elements are numbered from 1 to N, where N is the size of the array. An array always has
an element zero that you can access just like any other element of the array, but this
element is not shown when an array is present in a form. Although the element zero is
not shown when an array supports a form object, there is no restriction in using it with
the language. For more information about the element zero, see the section Using the
element zero of an array.

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences. For more information, see the
sections Arrays and the 4D Language and Arrays and Pointers.

Arrays are language objects; you can create and use arrays that will never appear on the
screen. Arrays are also user interface objects. For more information about the interaction
between arrays and form objects, see the sections Arrays and Form Objects and Grouped
Scrollable Areas.

Arrays are designed to hold reasonable amounts of data for a short period of time.

However, because arrays are held in memory, they are easy to handle and quick to
manipulate. For details, see the section Arrays and Memory.

4th Dimension Language Reference 171

Creating Arrays Arrays
version 2004 (Modified)

You create an array with one of the array declaration commands described in this chapter.
The following table lists the array declaration commands:

Command Creates or resizes an array of:

ARRAY INTEGER 2-byte Integer values

ARRAY LONGINT 4-byte Integer values (*)

ARRAY REAL Real values

ARRAY TEXT Text values (from O to 32,000 characters per element) (**)
ARRAY STRING String values (from O to 255 characters per element) (**)
ARRAY DATE Date values

ARRAY BOOLEAN Boolean values

ARRAY PICTURE Pictures values

ARRAY POINTER Pointer values

Each array declaration command can create or resize one-dimensional or two-dimensional
arrays. For more information about two-dimensional arrays, see the section Two-
dimensional Arrays.

(*) Longint arrays allows you to manipulate data of Time type. To display a Time array in a
form, apply to the associated form object the display format &/x, in which x represents
the number of the format in the Time formats list (by order of appearance). For example,
&/4 will display the Hour Min format.

(**) The difference between Text arrays and String arrays lies in the nature of their
elements. In both types of array, elements can hold text values (characters). However:

¢ In a Text array, each element is of variable length and stores its characters in a separate
part of memory.

e In a String array, all elements have the same fixed length (the length passed when the
array was created). All elements are stored one after the other in the same part of
memory, no matter what the contents.

Due to this structural difference, string arrays act faster than text arrays. Note, however,
that an element of a String array can only hold up to 255 characters.

The following line of code creates (declares) an Integer array of 10 elements:
ARRAY INTEGER(aiAnArray;10)

Then, the following code resizes that same array to 20 elements:
ARRAY INTEGER(aiAnArray;20)

Then, the following code resizes that same array to no elements:
ARRAY INTEGER(aiAnArray;0)

172 4th Dimension Language Reference

You reference the elements in an array by using curly braces ({...}). A number is used
within the braces to address a particular element; this number is called the element
number. The following lines put five names into the array called atNames and then
display them in alert windows:

ARRAY TEXT (atNames;5)

atNames{1} := "Richard"
atNames{2} := "Sarah"
atNames{3} := "Sam"
atNames{4} := "Jane"
atNames{5} := "John"

For ($viElem;1;5)
ALERT ("The element #"+String($vIElem)+" is equal to: "+atNames{$vIElem})
End for

Note the syntax atNames{$vIElem}. Rather than specifying a numeric literal such as
atNames{3}, you can use a numeric variable to indicate which element of an array you are
addressing.

Using the iteration provided by a loop structure (For...End for, Repeat...Until or While...End
while), compact pieces of code can address all or part of the elements in an array.

Arrays and other areas of the 4D language
There are other 4D commands that can create and work with arrays. More particularly:

e To work with arrays and selection of records, use the commands SELECTION RANGE TO
ARRAY, SELECTION TO ARRAY, ARRAY TO SELECTION and DISTINCT VALUES.

¢ Objects of the List box type are based on arrays; several commands of the “List box”
theme work with arrays, for instance INSERT LISTBOX ROW.

® You can create graphs and charts on series of values stored in tables, subtables, and
arrays. For more information, see the GRAPH command.

e Although version 6 brings a full set of new commands to work with hierarchical lists,
the commands LIST TO ARRAY and ARRAY TO LIST (from the previous version) have been
retained for compatibility.

e Many commands can build arrays in one call, for example: FONT LIST, WINDOW LIST,
VOLUME LIST, FOLDER LIST, DOCUMENT LIST, GET SERIAL PORT MAPPING, SAX GET XML
ELEMENT, etc.

See Also

ARRAY BOOLEAN, ARRAY DATE, ARRAY INTEGER, ARRAY LONGINT, ARRAY PICTURE, ARRAY
POINTER, ARRAY REAL, ARRAY STRING, ARRAY TEXT, Arrays, Two-dimensional Arrays.

4th Dimension Language Reference 173

Arrays and Form Objects Arrays

version 2004 (Modified)

Arrays are language objects—you can create and use arrays that will never appear on the
screen. However, arrays are also user interface objects. The following types of Form
Objects are supported by arrays:

e Pop-up/Drop-down List
e Combo Box

e Scrollable Area

e Tab Control

e List box

While you can predefine these objects in the Design Environment Form Editor using the

Default Values button of the Property List window (except for the List box) , you can also

define them programmatically using the arrays commands. In both cases, the form object
is supported by an array created by you or 4D.

When using these objects, you can detect which item within the object has been selected
(or clicked) by testing the array for its selected element. Conversely, you can select a
particular item within the object by setting the selected element for the array.

When an array is used to support a form object, it has then a dual nature; it is both a
language object and a user interface object. For example, when designing a form, you
create a scrollable area:

El Form: [Table 1]Input

IDDDI&DDD| —‘J - [E o % o HE M Property List %]
- L1 |atNames (Scrollable Areall
. S
"""" i EIFEIRAE R
- % Table 1 e |
¥ (7} Objects ~
|:A . Figldl : |[Table 1]Field1 Tvpe scrollable Area
= Figldz : |[Tab|e 1Field2 Object Mame Scrollable Areatl
= - Yariable Name athames
% ‘Wariable Type Alpha
' atharnes N A ¥ i Data Source L3
Default Walues [Edit... |
@ - % ¥ #* Coordinates & Sizing
Left 110
- %E I . | 114
—T Nright 318
@] - Bottom 282
width 205
O - () Height 168
| f"l.,'l _ v » i1 Resizing Dptions
.'IT'. M o= » T Display
. ¥ #3 Appearance b
- a0 100 1450 200 250 200
|

174 4th Dimension Language Reference

The name of the associated variable, in this case atNames, is the name of the array you use

for creating and handling the scrollable area.

Notes:

* You cannot display two-dimensional arays or pointer arrays.
e The management of List box type objects (which may contain several arrays) entails
many specific aspects. These particularities are covered in the Management of List Box

objects section.

Example: Creating a drop-down list

The following example shows how to fill an array and display it in a drop-down list. An
array arSalaries is created using the ARRAY REAL command. It contains all the standard

salaries paid to people in a company. When the user chooses an element from the drop-
down list, the [Employees]Salary field is assigned the value chosen in the User or Custom

Menus environment.

Create the arSalaries drop-down list on a form

Create a drop-down list and name it arSalaries. The name of the drop-down list should be

the same as the name of the array.

El Form: [Employees]Form1

100%

...... aEaul
Employees

|:f . Last name : |[Empl0yees]Last nare

) First narme : |[Empl0yees]First nare
- -

Position : |[Empl0yees]PDsition -100

[ax]~ Salary : |[Empl0ye arSalaries v B
® -
[w] -
] -

I L4
8?@

. T T T T T T T T

[< i | £

4th Dimension Language Reference 175

Initializing the array
Initialize the array arSalaries using the On Load event for the object. To do so, remember
to enable that event in the Property List window, as shown:

Property List 5]

L 14 |arSaIaries {Popup Salaries) vl =

B [@%=2nh@]

» @ Help ~
» B2 Action
¥ % Events

On Load

<n Unload

©on Yalidate

On Clicked

<n Double Clicked
on Drop

on Drag Ower

On Header

©On Printing Break.
0n Printing Detail
On Printing Fooker
©On Display Detail
0n Mouse Enter

OOEREEEOO0OERDOOE

On Mouse Leave

Click the Object Method button and create the method, as follows:

« " Object Method: arSalaries leﬁlﬁ__d
P |- MiD- 88
B Case of

1

2 (Form event=Cn Load)

3 ARRAY REAL (arSalaries;10)

4 = For {§¥IElerm;1;10}

a arSalaries{$WIELem}=2000+(FVIElem™*500)
4 End for
7

8

9

0

1

m..
-
-

e

arSalaries:=Find in array{arSalaries;[Employees]Saland
K {arSalaries=-1)
arSalaries:=0
End if
End case

|~
o

The lines:

ARRAY REAL(arSalaries;10)
For($viElem;1;10)

arSalaries{$vIElem}:=2000+($vIElem*500)
End for

176 4th Dimension Language Reference

create the numeric array 2500, 3000... 7000, corresponding to the annual salaries $30,000
up to $84,000, before tax.

The lines:

arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

handle both the creation of a new record or the modification of existing record.

e If you create a new record, the field [Employees]Salary is initially equal to zero. In this
case, Find in array does not find the value in the array and returns -1. The test If
(arSalaries=-1) resets arSalaries to zero, indicating that no element is selected in the drop-
down list.

e If you modify an existing record, Find in array retrieves the value in the array and sets
the selected element of the drop-down list to the current value of the field. If the value
for a particular employee is not in the list, the test If (arSalaries=-1) deselects any element
in the list.

Note: For more information about the array selected element, read the next section.

Reporting the selected value to the [Employees]Salary field

To report the value selected from the drop-down list arSalaries, you just need to handle the
On Clicked event to the object. The element number of the selected element is the value
of the array arSalaries itself. Therefore, the expression arSalaries{arSalaries} returns the value
chosen in the drop-down list.

Complete the method for the object arSalaries as follows:

Case of
: (Form event=0n Load)
ARRAY REAL(arSalaries;10)
For($viElem;1;10)
arSalaries{$vIElem}:=2000+($vIElem*500)
End for
arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)
arSalaries:=0
End if
: (Form event=0n Clicked)
[Employees]Salary:=arSalaries{arSalaries}
End case

4th Dimension Language Reference 177

In the User or Custom Menus environment, the drop-down list looks like this:

4 Entry for Employees

Employess S 4

Last narme : |Sooew |

First name @ [Sam |

Position @ [Enaineer |

Salary : | 4000] (4000 a
e

®

The following section describes the common and basic operations you will perform on
arrays while using them as form objects.

Getting the size of the array

You can obtain the current size of the array by using the Size of array command. Using
the previous example, the following line of code would display 5:

ALERT ("The size of the array atNames is: "+String(Size of array(atNames)))

Reordering the elements of the array

You can reorder the elements of the array using the SORT ARRAY command or of several
arrays using the MULTI SORT ARRAY command. Using the previous example, and provided
the array is shown as a scrollable area:

a. Initially, the area would look like the list on the left.

b. After the execution of the following line of code:
SORT ARRAY(atNames;>)
the area would look like the list in the middle.

178 4th Dimension Language Reference

c. After the execution of the following line of code:
SORT ARRAY(atNames;<)

the area would look like the list on the right.

Richard
Sarah
Sam
Jane
John

=

Jane
John
Richard
Sam
Sarah

-

Sarah _:J

Sarm
Richard
John
Jane

I~ I~ I

Adding or deleting elements

You can add, insert, or delete elements using the commands APPEND TO ARRAY, INSERT
ELEMENT and DELETE ELEMENT.

Handling clicks in the array: testing the selected element

Using the previous example, and provided the array is shown as a scrollable area, you can
handle clicks in this area as follows:

" atNames scrollable area object method
Case of
: (Form event=0n Load)
" Initialize the array (as shown further above)
ARRAY TEXT (atNames;5)

: (Form .e.e.vent=0n Unload)
" We no longer need the array
CLEAR VARIABLE(atNames)

: (Form event=0On Clicked)
If (atNames#0)
vtinfo:="You clicked on: "+atNames{atNames}
End if
: (Form event=0n Double Clicked)
If (atNames#0)
ALERT ("You double clicked on: "+atNames{atNames}
End if
End case

Note: The events must be activated in the properties of the object.

4th Dimension Language Reference 179

While the syntax atNames{$vIElem} allows you to work with a particular element of the
array, the syntax atNames returns the element number of the selected element within
the array. Thus, the syntax atNames{atNames} means “the value of the selected element
in the array atNames.” If no element is selected, atNames is equal to O (zero), so the test If
(atNames#0) detects whether or not an element is actually selected.

Setting the selected element

In a similar fashion, you can programmatically change the selected element by assigning
a value to the array.

Examples

" Selects the first element (if the array is not empty)
atNames:=1

* Selects the last element (if the array is not empty)
atNames:=Size of array(atNames)

" Deselects the selected element (if any) then no element is selected
atNames:=0

If ((0O<atNames)&(atNames<Size of array(atNames))
" If possible, selects the next element to the selected element
atNames:=atNames+1
End if

If (1<atNames)
* If possible, selects the previous element to the selected element
atNames:=atNames-1
End if

Looking for a value in the array

The Find in array command searches for a particular value within an array. Using the
previous example, the following code will select the element whose value is “Richard,” if
that is what is entered in the request dialog box:

$vsName:=Request("Enter the first name:")
If (OK=1)
$viElem:=Find in array (atNames;$vsName)
If ($vIElem>0)
atNames:=$vlElem
Else
ALERT ("This is no "+$vsName+" in that list of first names.")
End if
End if

180 4th Dimension Language Reference

Pop-up menus, drop-down lists, scrollable areas, and tab controls can be usually handled in
the same manner. Obviously, no additional code is required to redraw objects on the
screen each time you change the value of an element, or add or delete elements.

Note: To create and use tab controls with icons and enabled and disabled tabs, you must
use a hierarchical list as the supporting object for the tab control. For more information,
see the example for the New list command.

Handling combo boxes

While you can handle pop-up menus, drop-down lists, scrollable areas, and tab controls
with the algorithms described in the previous section, you must handle combo boxes
differently.

A combo box is actually a text enterable area to which is attached a list of values (the
elements from the array). The user can pick a value from this list, and then edit the text.
So, in a combo box, the notion of selected element does not apply.

With combo boxes, there is never a selected element. Each time the user selects one of
the values attached to the area, that value is put into the element zero of the array. Then,
if the user edits the text, the value modified by the user is also put into that element zero.

Example

" asColors Combo Box object method
Case of
: (Form event=0On Load)
ARRAY STRING(31;asColors;3)
asColors{1}:="Blue"
asColors{2}:="White"
asColors{3}:="Red"
: (Form event=0n Clicked)
If (asColors{0}#"")
* The object automatically changes its value
* Using the On Clicked event with a Combo Box
" is required only when additional actions must be taken
End if
: (Form event=0n Data Change)
* Find in array ignores element 0, so returns -1 or >0
If (Find in array(asColors;asColors{0})<0)
" Entered value is not one the values attached to the object
° Add the value to the list for next time
APPEND TO ARRAY(asColors;asColors{0})
Else

* Entered value is among the values attached to the object
End if
End case

See Also
Arrays, Grouped Scrollable Areas.

4th Dimension Language Reference 181

Grouped Scrollable Areas Arrays

version 2004 (Modified)

Compatibility note: Grouped scrollable areas can still be used in 4th Dimension; however,
starting with version 2004 they can be replaced by List box type objects. For more
information about this, refer to the Overview of List boxes section.

You can group scrollable areas for display in a form. When several scrollable areas are
grouped, they act as one scrollable area. Each scrollable area can have its own font and
style; however, we recommend that you use the same font height (which depends on the
font and font size) for each column. When displayed during data entry, only the
frontmost scrollable area displays a scroll bar. Following are three scrollable areas grouped
together in the Design environment:

t Form: [Departments]Example Grouped SA H[=]
e ———— — o - ;I
: asMame asTitIe asDepartment [_I

lq w

. -<] E
.. 1250
h <11 | « 1] 140 200 250 J LTI 1<11] 400 ”1f
A] 3

Here are some tips on creating grouped scrollable areas:

e Make sure that all the arrays have been given the same size (number of elements).

e Use the same font size for each area.

e Make each area the same height.

e Align the tops of all the areas.

e Make sure the areas do not overlap.

e Make sure that the area on the right is in front, because the scroll bar appears on the
frontmost area.

e Group the areas (using the Group menu command) to make them work as one
scrollable area.

182 4th Dimension Language Reference

The following project method fills the three arrays and displays them on the screen:

ALL RECORDS(Employees)

SELECTION TO ARRAY([Employees]Last
Name;asName;[Employees]Title;asTitle;[Departments]Name;asDepartment)
DIALOG([Departments];"Example Grouped SA")

This method uses the data in the fields of the [People] table and the [Departments] table.
These tables are shown here:

[S tructure for PRSNNL.4DB M=
[Deparmens | —
[Employes Code A
Last Name A Marne A
First Name n Manager A
Start Day D Budget R
Salary R Total Salaries R
Title A
S8 Numher A
Department Code A
-
A 3

Note: The [Departments] table can be used, provided that there is an automatic relation
from [People] to [Departments].

The resulting display:

@Entl}l for Departments

= B

Johnzan
Bentley
Crawis
Ransome
Hanson
“Wenable
Buarrell
Piaft
Heizer
Forbes
Hammons
Smith
Bell

Engineer
Engineer
Salesperzon
Supenrisor
Manager
Engineer
Salesperson
Secretany
Clemk
Secretany
Salesparson
Enginear
Director

Dresign
Transportation
Sales
hlanufacturing
Administration
Art

Sales
Administration
Sales

Art

Sales
Administration
Manufacturing

Cancel

| oK |

4th Dimension Language Reference

183

Note that only a single scroll bar is displayed; it is always on the frontmost scrollable area.
This scroll bar controls the scrolling of all three arrays as if they were one. When the user
clicks a line, all three areas are highlighted simultaneously. The variable associated with
each scrollable area is set to the number of the line that the user clicks; only the object
method for the area that is clicked executes. For example, if the user clicks the name
“Bentley,” asName, asTitle, and asDepartment are all set to two, but only the object
method for asName executes. If you set the selected element of one of the arrays in the
grouped scrollable areas, the other arrays are set to the same selected element for the next
event, and the respective line in the scrollable area is highlighted.

The arrays can be sorted with the command SORT ARRAY. For example:

SORT ARRAY(asTitle;asName;asDepartment;>)

The following is the result of the sort:

@Ently for Departments

I[=1 =

Heizer
Terry
Reed
Garbande
Johnzan
Krause
Mash
Grambo
Crowen
Bell
Conquerar
b ey
Johnsan

Clerk
Clerk
Clerk
Clamk
Clemk
Designer
Designer
Designer
Designer
Director
Enginear
Enginear
Enginear

Sales
Administration
Production
Transporation
Accounting
Dresign
Dresign
Dresign
Dresign
hanufacturing
Transportation
Design
hlanufacturing

Cancel I OK I

Note that the arrays were sorted based on the first argument to the SORT ARRAY
command; the other two arrays were specified in order to keep the rows synchronized.
The command SORT ARRAY always sorts the arrays (if several are specified) on the values
of the first array and keeps the additional arrays synchronized.

Note: SORT ARRAY does not perform a multi-level sort on arrays. To show a table similar to
the one above and also perform multi-level sorts (i.e., by department, then by title, then
by name), use a subform in which you display the table, and then use ORDER BY.

See Also
Arrays, Arrays and Form Objects.

184 4th Dimension Language Reference

Arrays and the 4D Language Arrays

version 6.0

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences.

Local, process and interprocess arrays

You can create and work with local, process, and interprocess arrays. Examples:

ARRAY INTEGER ($aiCodes;100)

* This creates a local array of 100 2-byte Integer values

ARRAY INTEGER (aiCodes;100)

* This creates a process array of 100 2-byte Integer values
ARRAY INTEGER (<>aiCodes;100)

* This creates an interprocess array of 100 2-byte Integer values

The scope of these arrays is identical to the scope of other local, process, and interprocess
variables:

Local arrays
A local array is declared when the name of the array starts with a dollar sign ($).

The scope of a local array is the method in which it is created. The array is cleared when
the method ends. Local arrays with the same name in two different methods can have
different types, because they are actually two different variables with different scopes.

When you create a local array within a form method, within an object method, within or
a project method called as subroutine by the two previous type of method, the array is
created and cleared each time the form or object method is invoked. In other words, the
array is created and cleared for each form event. Consequently, you cannot use local
arrays in forms, neither for display nor printing.

As with local variables, it is a good idea to use local arrays whenever possible. In doing so,
you tend to minimize the amount of memory necessary for running your application.

Process arrays
A process array is declared when the name of the array starts with a letter.

The scope of a process array is the process in which it is created. The array is cleared when
the process ends or is aborted. A process array automatically has one instance created per
process. Therefore, the array is of the same type throughout the processes. However, its
contents are particular to each process.

4th Dimension Language Reference 185

Interprocess arrays

An interprocess array is declared when the name of the array starts with <> (on Windows
and Macintosh) or with the diamond sign, Option-Shift-V on a US keyboard (on
Macintosh only).

The scope of an interprocess array consists of all processes during a working session. They
should be used only to share data and transfer information between processes.

Tip: When you know in advance that an interprocess array will be accessed by several
processes that could possible conflict, protect the access to that array with a semaphore.
For more information, see the example for the Semaphore command.

Note: You can use process and interprocess arrays in forms to create form objects such as
scrollable areas, drop-down lists, and so on.

Passing an Array as parameter

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The

alternative is to pass a pointer to the array as parameter to the method. For details, see the
section Arrays and Pointers.

Assigning and array to another array

Unlike text or string variables, you cannot assign one array to another. To copy (assign)
an array to another one, use COPY ARRAY.

See Also
Arrays, Arrays and Pointers.

186 4th Dimension Language Reference

Arrays and Pointers Arrays

version 6.0

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method.

Note: You can pass process and interprocess arrays as parameters, but not local arrays.
Here are some examples.

¢ Given this example:

If ((0O<atNames)&(atNames<Size of array(atNames))
" If possible, selects the next element to the selected element
atNames:=atNames+1
End if

If you need to do the same thing for 50 different arrays in various forms, you can avoid
writing the same thing 50 times, by using the following project method:

* SELECT NEXT ELEMENT project method

* SELECT NEXT ELEMENT (Pointer)

* SELECT NEXT ELEMENT (-> Array)
C_POINTER ($1)
If ((0<$1->)&($1-><Size of array($1->))

$1->:=$1->+1 " If possible, selects the next element to the selected element
End if

Then, you can write:

SELECT NEXT ELEMENT (->atNames)
SELECT NEXT ELEMENT (->asZipCodes)

SELECT NEXT ELEMENT (->alRecordIDs)
*...and so on

4th Dimension Language Reference 187

* The following project method returns the sum of all the elements of a numeric array
(Integer, Long Integer, or real):

* Array sum
" Array sum (Pointer)
* Array sum (-> Array)

C_REAL ($0)

$0:=0

For ($viElem;1;Size of array($1->))
$0:=30+3%1->{$vIElem}

End for

Then, you can write:
$v|§um:=Array sum (->arSalaries)
$vI\SL;'r'n:=Array sum (->aiDefectCounts)
$v|SJm:=Array sum (->alPopulations)

e The following project method capitalizes of all the elements of a string or text array:

" CAPITALIZE ARRAY
* CAPITALIZE ARRAY (Pointer)
* CAPITALIZE ARRAY (-> Array)

For ($viElem;1;Size of array($1->))
If ($1->{$vIElem}#"")
$1->{$viIElem}:=Uppercase($1->{$vIElem}[[1]])+
Lowercase(Substring($1->{$vIElem};2))
End if
End for
Then, you can write:
CAPITALIZE ARRAY (->atSubjects)
CAPITALIZE ARRAY (->asLastNames)

The combination of arrays, pointers, and looping structures, such as For... End for, allows
you to write many useful small project methods for handling arrays.

See Also
Arrays, Arrays and the 4D Language.

188 4th Dimension Language Reference

Using the element zero of an array Arrays

version 6.0

An array always has an element zero. While element zero is not shown when an array
supports a form object, there is no restriction in using it with the language.

One example of the use of element zero is the case of the combo box discussed in the
section Arrays and Form Objects.

Here are two other examples.

1. If you want to execute an action only when you click on an element other than the
previously selected element, you must keep track of each selected element. One way to do
this is to use a process variable in which you maintain the element number of the selected
element. Another way is to use the element zero of the array:

" atNames scrollable area object method
Case of
: (Form event=0n Load)
* Initialize the array (as shown further above)
ARRAY TEXT (atNames;5)

* Initialize the element zero with the number

* of the current selected element in its string form

" Here you start with no selected element
atNames{0}:="0"

: (Form event=0On Unload)
* We no longer need the array
CLEAR VARIABLE(atNames)

: (Form event=0n Clicked)
If (atNames#0)
If (atNames#Num(atNames{0}))
vtinfo:="You clicked on: "+atNames{atNames}
+" and it was not selected before."
atNames{0}:=String(atNames)
End if
End if
: (Form event=0n Double Clicked)
If (atNames#0)
ALERT ("You double clicked on: "+atNames{atNames}
End if
End case

4th Dimension Language Reference 189

2. When sending or receiving a stream of characters to or from a document or a serial
port, 4D provides a way to filter ASCIl codes between platforms and systems that use
different ASCIl maps— the commands USE ASCIlI MAP, Mac to ISO, ISO to Mac, Mac to Win
and Win to Mac.

In certain cases, you might want to fully control the way ASCII codes are translated. One
way to do this is to use an Integer array of 255 elements, where the Nth element is set to
the translated ASCII code for the character whose source ASCII code is N. For example, if
the ASCII code #187 must be translated as #156, you would write
<>aiCustomOutMap{187}:=156 and <>aiCustomInMap{156}:=187 in the method that
initializes the interprocess arrays used everywhere in the database. You can then send a
stream of characters with the following custom project method:

© X SEND PACKET (Text {; Time })
For ($viChar;1;Length($1))
$1[[vIChar]]:=Char(<>aiCustomOutMap{Ascii($ 1[[vIChar]])})
End for
If (Count parameters>=2)
SEND PACKET ($2;%1)
Else
SEND PACKET ($1)
End if

X Receive packet (Text {; Time }) -> Text
If (Count parameters>=2)
RECEIVE PACKET ($2;3$1)
Else
RECEIVE PACKET ($1)
End if
$0:=%1
For ($viChar;1;Length($1))
$0[[vIChar]]:=Char(<>aiCustomInMap{Ascii($0[[vIChar]])})
End for

In this advanced example, if a stream of characters containing NULL characters (ASCII
code zero) is sent or received, the zero element of the arrays <>aiCustomOutMap and
<>aiCustomInMap will play its role as any other element of the 255 element arrays.

See Also
Arrays.

190 4th Dimension Language Reference

Two-dimensional Arrays Arrays

version 6.0

Each of the array declaration commands can create or resize one-dimensional or two-
dimensional arrays. Example:

" Creates a text array composed of 100 rows of 50 columns
ARRAY TEXT (atTopics;100;50)

Two-dimensional arrays are essentially language objects; you can neither display nor print
them.

In the previous example:

e atTopics is a two-dimensional array

e atTopics{8}{5} is the S5th element (5th column...) of the 8th row

e atTopics{20} is the 20th row and is itself a one-dimensional array

e Size of array(atTopics) returns 100, which is the number of rows

e Size of array(atTopics{17}) returns 50, which the number of columns for the 17th row

In the following example, a pointer to each field of each table in the database is stored in
a two-dimensional array:

* Create as many initially empty rows as tables
ARRAY POINTER (<>apFields;Count tables;0)
* For each table
For ($viTable;1;Size of array(<>apFields))
" Resize the row with as many columns as fields in the table
INSERT ELEMENT (<>apFields{$viTable};1;Count fields($vITable))
* Set the values of the elements
For ($vIField;1;Size of array(<>apFields{$vITable}))
<>apFields{$viTable}{$vlIField}:=Field($viTable; $vIField)
End for
End for

4th Dimension Language Reference 191

Provided that this two-dimensional array has been initialized, you can obtain the pointers
to the fields for a particular table in the following way:

" Get the pointers to the fields for the table currently displayed at the screen:
COPY ARRAY (<>apFields{Table(Current form table)};$apTheFieldslamWorkingOn)

* Initialize Boolean and Date fields
For ($vlElem;1;Size of array($apTheFieldslamWorkingOn))
Case of
: (Type($apTheFieldslamWorkingOn{$vlElem}->)=Is Date)
$apTheFieldslamWorkingOn{$vilElem}->:=Current date
: (Type($apTheFieldslamWorkingOn{$vIElem}->)=Is Boolean)
$apTheFieldslamWorkingOn{$vIElem}->:=True
End case
End for

Note: As this example suggests, rows of a two-dimensional arrays can be the same size or
different sizes.

See Also
Arrays.

192 4th Dimension Language Reference

Arrays and Memory Arrays

version 6.0

Unlike the data you store on disk using tables and records, an array is always held in
memotry in its entirety.

For example, if all US zip codes were entered in the [Zip Codes] table, it would contain
about 100,000 records. In addition, that table would include several fields: the zip code
itself and the corresponding city, county, and state. If you select only the zip codes from
California, the 4D database engine creates the corresponding selection of records within
the [Zip Codes] table, and then loads the records only when they are needed (i.e., when
they are displayed or printed). In order words, you work with an ordered series of values
(of the same type for each field) that is partially loaded from the disk into the memory by
the database engine of 4D.

Doing the same thing with arrays would be prohibitive for the following reasons:

¢ In order to maintain the four information types (zip code, city, county, state), you
would have to maintain four large arrays in memory.

e Because an array is always held in memory in its entirety, you would have to keep all the
zip codes information in memory throughout the whole working session, even though
the data is not always in use.

e Again, because an array is always held in memory in its entirety, each time the database
is started and then quit, the four arrays would have to be loaded and then saved on the
disk, even though the data is not used or modified during the working session.

Conclusion: Arrays are intended to hold reasonable amounts of data for a short period of
time. On the other hand, because arrays are held in memory, they are easy to handle and
quick to manipulate.

However, in some circumstances, you may need to work with arrays holding hundreds or
thousands of elements. The following table lists the formulas used to calculate the
amount of memory used for each array type:

Array Type Formula for determining Memory Usage in Bytes

Boolean (31+number of elements)\8

Date (I1+number of elements) * 6

String (1+number of elements) * Declared length (+1 of odd, +2 if even)
Integer (1+number of elements) * 2

Long Integer (14+number of elements) * 4

Picture (1+number of elements) * 4 + Sum of the size of each picture
Pointer (I+number of elements) * 16

Real (I+number of elements) * 8

Text (1+number of elements) * 6 + Sum of the size of each text

Two-dimemsional (1+number of elements) * 12 + Sum of the size of each array

Note: A few additional bytes are required to keep track of the selected element, the
number of elements, and the array itself.

4th Dimension Language Reference 193

When working with very large arrays, the best way to handle full memory situations is to
surround the creation of the arrays with an ON ERR CALL project method. Example:

" You are going to run a batch operation the whole night
" that requires the creation of large arrays. Instead of risking
" occurrences of errors in the middle of the night, put
* the creation of the arrays at the beginning of the operation
" and test the errors at this moment:
gError:=0 ~ Assume no error
ON ERR CALL ("ERROR HANDLING") " Install a method for catching errors
ARRAY STRING (63;asThisArray;50000) * Roughly 3125K
ARRAY REAL (arThisAnotherArray;50000) ~ 488K
ON ERR CALL ("") * No longer need to catch errors
If (gError=0)
* The arrays could be created
" and let's pursue the operation
Else
ALERT ("This operation requires more memory!")
End if
" Whatever the case, we no longer need the arrays
CLEAR VARIABLE (asThisArray)
CLEAR VARIABLE (arThisAnotherArray)

The ERROR HANDLING project method is listed here:

" ERROR HANDLING project method
gError:=Error ~ Just return the error code

See Also
Arrays, ON ERR CALL.

194 4th Dimension Language Reference

ARRAY INTEGER Arrays

version 3

ARRAY INTEGER (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY INTEGER creates and/or resizes an array of 2-byte Integer elements
in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

* The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY INTEGER to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to O.
e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 2-byte Integer elements:

0 ARRAY INTEGER (aiValues;100)

2. This example creates a local array of 100 rows of 50 2-byte Integer elements:

0 ARRAY INTEGER ($aiValues;100;50)

3. This example creates an interprocess array of 50 2-byte Integer elements, and sets each
element to its element number:

0 ARRAY INTEGER (<>aiValues;50)
For ($vlElem;1;50)
<>aiValues{$vlElem}:=$vIElem
End for

4th Dimension Language Reference 195

ARRAY LONGINT Arrays

version 3

ARRAY LONGINT (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY LONGINT creates and/or resizes an array of 4-byte Long Integer
elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

* The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

When applying ARRAY LONGINT to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to O.
e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 4-byte Long Integer elements:

0 ARRAY LONGINT (alValues;100)

2. This example creates a local array of 100 rows of 50 4-byte Long Integer elements:

0 ARRAY LONGINT ($alValues;100;50)

3. This example creates an interprocess array of 50 4-byte Long Integer elements and sets
each element to its element number:

O ARRAY LONGINT (<>alValues;50)
For ($viElem;1;50)
<>alValues{$vlElem}:=$vIElem
End for

196 4th Dimension Language Reference

ARRAY REAL Arrays

version 3

ARRAY REAL (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY REAL creates and/or resizes an array of Real elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

¢ The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY REAL to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to O.
e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Real elements:

O ARRAY REAL (arValues;100)

2. This example creates a local array of 100 rows of 50 Real elements:

0 ARRAY REAL ($arValues;100;50)

3. This example creates an interprocess array of 50 Real elements and sets each element to
its element number:

0 ARRAY REAL (<>arValues;50)
For ($viElem;1;50)
<>arValues{$vIElem}:=$vIElem
End for

4th Dimension Language Reference 197

ARRAY STRING Arrays

version 3

ARRAY STRING (strLen; arrayName; size{; size2})
Parameter Type Description
strLen Number - Length of string (1... 255)
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY STRING creates and/or resizes an array of String elements in
memory.

e The strLen parameter specifies the maximum number of characters that can be
contained in each array element in a string array. The length can be from 1 to 255
characters.

e The arrayName parameter is the name of the array.

¢ The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY STRING to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 31-character String elements:

0 ARRAY STRING (31;asValues;100)
2. This example creates a local array of 100 rows of 50 63-character String elements:

0 ARRAY STRING (63;%asValues;100;50)

198 4th Dimension Language Reference

3. This example creates an interprocess array of 50 255-character String elements and sets
each element to the value “Element #” followed by its element number:

0 ARRAY STRING (255;<>asValues;50)
For ($viElem;1;50)
<>asValues{$vIElem}:="Element #"+String($vIElem)
End for

4th Dimension Language Reference 199

ARRAY TEXT Arrays

version 3

ARRAY TEXT (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The ARRAY TEXT command creates and/or resizes an array of Text elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

* The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY TEXT to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
e If you reduce the array size, the last elements deleted from the array are lost.

Examples

1. This example creates a process array of 100 Text elements:

O ARRAY TEXT (atValues;100)

2. This example creates a local array of 100 rows of 50 Text elements:
0 ARRAY TEXT ($atValues;100;50)

3. This example creates an interprocess array of 50 Text elements and sets each element to
the value “Element #” followed by its element number:

0 ARRAY TEXT (¢atValues;50)
For ($viElem;1;50)
OatValues{$vlElem}:="Element #"+String($vIElem)
End for

See Also
ARRAY STRING.

200 4th Dimension Language Reference

ARRAY DATE Arrays

version 3

ARRAY DATE (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY DATE creates and/or resizes an array of Date elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY DATE to an existing array:

¢ If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to the null date (00/00/00!).
e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Date elements:

O ARRAY DATE (adValues;100)

2. This example creates a local array of 100 rows of 50 Date elements:

0 ARRAY DATE ($adValues;100;50)

3. This example creates an interprocess array of 50 Date elements, and sets each element
to the current date plus a number of days equal to the element number:

0 ARRAY DATE (<>adValues;50)
For ($viElem;1;50)
<>adValues{$vIElem}:=Current date+$vIElem
End for

4th Dimension Language Reference 201

ARRAY BOOLEAN Arrays

version 3

ARRAY BOOLEAN (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY BOOLEAN creates and/or resizes an array of Boolean elements in
memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

* The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY BOOLEAN to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to False.
e If you reduce the array size, the last elements deleted from the array are lost.

Tip: In some contexts, an alternative to using Boolean arrays is using an Integer array
where each element “means true” if different from zero and “means false” if equal to
Zero.

Examples
1. This example creates a process array of 100 Boolean elements:

0 ARRAY BOOLEAN (abValues;100)

2. This example creates a local array of 100 rows of 50 Boolean elements:

0 ARRAY BOOLEAN ($abValues;100;50)

202 4th Dimension Language Reference

3. This example creates an interprocess array of 50 Boolean elements and sets each even
element to True:

O ARRAY BOOLEAN (<>abValues;100)
For ($viElem;1;50)
<>abValues{$vIElem}:=(($vIElem%2)=0)
End for

4th Dimension Language Reference 203

ARRAY PICTURE Arrays

version 3

ARRAY PICTURE (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array, or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY PICTURE creates and/or resizes an array of Picture elements in
memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

* The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY PICTURE to an existing array:

¢ If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to empty pictures. This means that Picture size applied to one of
these elements will return 0.

e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Picture elements:

g ARRAY PICTURE (agValues;100)

2. This example creates a local array of 100 rows of 50 Picture elements:

0 ARRAY PICTURE ($agValues;100;50)

204 4th Dimension Language Reference

3. This example creates an interprocess array of Picture elements and loads each picture
into one of the elements of the array. The array’s size is equal to the number of 'PICT'
resources available to the database. The array’s resource name starts with "User Intf/":

RESOURCE LIST("PICT";$aiResIDs; $asResNames)
0 ARRAY PICTURE (¢agValues;Size of array($aiResIDs))
$vIPictElem:=0
For ($vlElem;1;Size of array(¢agValues))
If ($asResNames="User Intf/@")
$vIPictElem:=vIPictElem+1
GET PICTURE RESOURCE("PICT";$aiResIDs{$vIElem}; $vgPicture)
OagValues{$vlIPictElem}:=$vgPicture
End if
End for
ARRAY PICTURE (¢agValues;$vIPictElem)

4th Dimension Language Reference 205

ARRAY POINTER Arrays

version 3

ARRAY POINTER (arrayName; size{; size2})
Parameter Type Description
arrayName Array - Name of the array
size Number - Number of elements in the array, or

Number of rows if size2 is specified
size2 Number - Number of columns in a two-dimensional array
Description

The command ARRAY POINTER creates or resizes an array of Pointer elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the firt dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY POINTER to an existing array:

e If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to null pointer. This means that Nil applied to one of these
elements will return True.

e If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Pointer elements:

0 ARRAY POINTER (apValues;100)

2. This example creates a local array of 100 rows of 50 Pointer elements:

0 ARRAY POINTER ($apValues;100;50)

206 4th Dimension Language Reference

3. This example creates an interprocess array of Pointer elements and sets each element
pointing to the table whose number is the same as the element. The size of the array is
equal to the number of tables in the database:

0 ARRAY POINTER (<>apValues;Count tables)
For ($vlElem;1;Size of array(<>apValues))
<>apValues{$vIElem}:=Table($vIElem)
End for

4th Dimension Language Reference 207

Size of array Arrays

version 3
Size of array (array) - Number
Parameter Type Description
array Array - Array whose size is returned
Function result Number - Returns the number of elements in array
Description

The command Size of array returns the number of elements in array.

Example
1. The following example returns the size of the array anArray:

O viSize:=Size of array(anArray) ° viSize gets the size of anArray
2. The following example returns the number of rows in a two-dimensional array:
O vIRows:=Size of array(a2DArray) ~ vIRows gets the size of a2DArray

3. The following example returns the number of columns for a row in a two-dimensional
array:

0 viColumns:=Size of array(a2DArray{10}) ~ viColumns gets the size of a2DArray{10}

See Also
DELETE ELEMENT, INSERT ELEMENT.

208 4th Dimension Language Reference

SORT ARRAY Arrays

version 3
SORT ARRAY (array{; array2; ...; arrayN}{; > or <})
Parameter Type Description
array Array - Arrays to sort
> or < - > to sort in Ascending order, or

< to sort in Descending order, or
Ascending order if omitted

Description
The command SORT ARRAY sorts one or more arrays into ascending or descending order.

Note: You cannot sort Pointer or Picture arrays. You can sort the elements of a two-
dimensional array (i.e., a2DArray{$vIThisElem}) but you cannot sort the two-dimensional
array itself (i.e., a2DArray).

The last parameter specifies whether to sort array in ascending or descending order. The
“greater than” symbol (>) indicates an ascending sort; the “less than” symbol (<)
indicates a descending sort. If you do not specify the sorting order, then the sort is
ascending.

If more than one array is specified, the arrays are sorted following the sort order of the
first array; no multi-level sorting is performed here. This feature is especially useful with
grouped scrollable areas in a form; SORT ARRAY maintains the synchronicity of the arrays
that sustain the scrollable areas.

Examples
1. The following example creates two arrays and then sorts them by company:

ALL RECORDS ([People])
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

O SORT ARRAY (asCompanies; asNames;>)

However, because SORT ARRAY does not perform multi-level sorts, you will end up with
people’s names in random order within each company. To sort people by name within
each company, you would write:

ALL RECORDS ([People])
ORDER BY ([People];[People] Company;>;[People]Name;>)
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

4th Dimension Language Reference 209

2. You display the names from a [People] table in a floating window. When you click on
buttons present in the window, you can sort this list of names from A to Z or from Z to A.
As several people may have the same name, you also can use a [People]ID number field,
which is indexed unique. When you click in the list of names, you will retrieve the record
for the name you clicked. By maintaing a synchronized and hidden array of ID numbers,
you are sure to access the record corresponding to the name you clicked:

" asNames array object method
Case of
: (Form event=0n Load)
ALL RECORDS([People])
SELECTION TO ARRAY([People]Name;asNames;[People]ID number;allDs)
0 SORT ARRAY(asNames;allDs;>)
: (Form event=0On Unload)
CLEAR VARIABLE(asNames)
CLEAR VARIABLE(allDs)
: (Form event=0n Clicked)
If (asNames#0)
" Use the array allDs to get the right record
QUERY([People];[People]ID Number=allDs{asNames})
* Do something with the record
End if
End case

" bA2Z button object method
* Sort the arrays in ascending order and keep them synchronized

0 SORT ARRAY(asNames;allDs;>)

* bZ2A button object method
* Sort the arrays in descending order and keep them synchronized

0 SORT ARRAY(asNames;allDs;<)

See Also
ORDER BY, SELECTION TO ARRAY.

210 4th Dimension Language Reference

MULTI SORT ARRAY Arrays

version 2004 (Modified)

MULTI SORT ARRAY (array{; sort}{; array2; sort2; ...; arrayN; sortN})

Parameter Type Description
array Array - Array(s) to be sorted
sort > or < - > to sort by increasing order or

< to sort by decreasing order
If omitted = no sort

MULTI SORT ARRAY (ptrArrayName; sortArrayName)

Parameter Type Description

ptrArrayName Pointer array — Array of array pointers
sortArrayName Longint array — Sort order array(l = sort by increasing

order, -1 = sort by decreasing order,

0 = synchronization with previous sorts)
Description
The MULTI SORT ARRAY command enables you to carry out a multi-level sort on a set of
arrays. This function is particularly useful in the context of grouped scrolling areas in
forms.

This command accepts two different syntaxes.

e First syntax: MULTI SORT ARRAY (array{; sort}{; array2; sort2; ...; arrayN; sortN})
This syntax is the simplest; it lets you directly pass the names of the synchronized arrays
where you want to apply a multi-criteria sort.

You can pass an unlimited number of pairs (array;> or <) and/or only arrays. All the arrays
passed as parameters are sorted in a synchronized manner.

You can pass arrays of any type except for Pointer or Picture arrays. You can sort an
element of a two-dimensional array (i.e. a2DArray{$vIThisElement}), but you cannot sort
the 2D array itself (i.e. a2DArray).

To use the contents of an array as sort criteria, pass the sort parameter. The value of the
parameter (> or <) determines the order (ascending or descending) in which the array will
be sorted. If the sort parameter is omitted, the contents of the array are not used as sort
criteria.

Note: Keep in mind that at least one sort criterion must be passed in order for the
command to work. If no sort criterion is set, an error is generated.

The sort levels are determined by the order in which the arrays are passed to the

4th Dimension Language Reference 211

* Second syntax: MULTI SORT ARRAY (ptrArrayName; sortArrayName)

This syntax, more complex, is also invaluable for generic developments (for example, you
can create a generic method for sorting arrays of all types, or yet again, create the
equivalent of a generic SORT ARRAY command).

The ptrArrayName parameter contains the name of an array of array pointers; each
element of this array is a pointer designating an array to be sorted. The sorts are
performed in the order of the array pointers defined by ptrArrayName. Warning: all the
arrays pointed to by ptrArrayName must have the same number of elements.

Note: ptrArrayName can be an array of local ($ptrArrayName), process (ptrArrayName) or
inter-process (<>ptrArrayName) pointers. Conversely, the elements of this array must
point to process or inter-process arrays only.

The sortArrayName parameter contains the name of an array in which each element
indicates the sorting order (-1, O or 1) of the element of the corresponding array of
pointers:

-1 = Sort by decreasing order.

0 = The array is not used as a sorting criterion but must be sorted according to the other
sorts.

1 = Sort by increasing order.

Note: You cannot sort arrays of the Pointer or Picture type. You can sort an element of a
two-dimensional array (i.e. a2ZDArray{$vlThisElement}), but you cannot sort the 2D array
itself (i.e. a2DArray).

For each element of the ptrArrayName array, there must be a corresponding element of
the sortArrayName array. Both arrays must therefore have exactly the same number of
elements.

Examples
1. The following example uses the first syntax: it creates four arrays and sorts them by

city (ascending order) then by salary (descending order) with the last two arrays,
names_array and telNum_array, being synchronized according to the previous sort criteria:

ALL RECORDS([Employees])
SELECTION TO ARRAY([Employees]City;cities;[Employees]Salary;salaries;
[Employees]Name;names;[Employees]TelNum;telNums)

0 MULTI SORT ARRAY (cities;>;salaries;<;names;telNums)

If you want for the names array to be used as the third sort criteria, just add > or < after
the names_array parameter.
Note that the syntax:
0 MULTI SORT ARRAY (cities;>;;salaries;names;telNums)
is equivalent to:
SORT ARRAY(cities;salaries;names;telNums;>)

212 4th Dimension Language Reference

2. The following example uses the second syntax: it creates four arrays and sorts them by
city (increasing order) and company (decreasing order); the last two arrays, names_Array
and teINum_Array, being synchronized according to previous sort criteria:

O

ALL RECORDS([Employees])

SELECTION TO ARRAY([Employees]City;cities;[Employees| Company;companies;
[Employees]Name;names;[Employees]TelNum;telNums)

ARRAY POINTER(pointers_Array;4)

ARRAY LONGINT(sorts_Array;4)

pointers_Array{1}:=->cities

sorts_Array{1}:=1

pointers_Array{2}:=->companies

sorts_Array{2}:=-1

pointers_Array{3}:=->names

sorts_Array{3}:=0

pointers_Array{4}:=->telNums

sorts_Array{4}:=0

MULTI SORT ARRAY (pointers_Array;sorts_Array)

If you want the array of names be used as a third sort criterion, you need to assign the
value 1 to the sorts_Array{3} element. Or else, if you want the arrays to be sorted only by
the city criterion, assign the value O to the sorts_Array{2}, sorts_Array{3} and sorts_Array{4}
elements. In this way, you obtain an identical result to SORT
ARRAY((cities;companies;names;telNums;>).

See also
ORDER BY, SELECTION TO ARRAY, SORT ARRAY.

4th Dimension Language Reference 213

Find in array Arrays

version 3
Find in array (array; value{; start}) - Number
Parameter Type Description
array Array - Array to search
value Expression - Value of same type to search in the array
start Number - Element at which to start searching
Function result Number - Number of the first element in array

that matches value

Description

The command Find in array returns the number of the first element in array that matches
value.

Find in array can be used with Text, String, Numeric, Date, Pointer, and Boolean arrays.
The array and value parameters must be of the same type.

If no match is found, Find in array returns -1.

If start is specified, the command starts searching at the element number specified by
start. If start is not specified, the command starts searching at element 1.

Examples

1. The following project method deletes all empty elements from the string or text array
whose pointer is passed as parameter:

" CLEAN UP ARRAY project method
* CLEAN UP ARRAY (Pointer)
" CLEAN UP ARRAY (-> Text or String array)

C_POINTER ($1)
Repeat
0 $vlElem:=Find in array ($1->;"")
If ($vIElem>0)
DELETE ELEMENT ($1->;$vIElem)
End if
Until ($vIElem<0)

214 4th Dimension Language Reference

After this project method is implemented in a database, you can write:

ARRAY TEXT (atSomeValues;...)
* Do plenty of things with the array

* Eliminate empty string elements
CLEAN UP ARRAY (->atSomeValues)

2. The following project method selects the first element of an array whose pointer is
passed as the first parameter that matches the value of the variable or field whose pointer
is passed as parameter:

" SELECT ELEMENT project method
* SELECT ELEMENT (Pointer ; Pointer)
* SELECT ELEMENT (-> Text or String array ; -> Text or String variable or field)

0 $1->:=Find in array ($1->;$2->)
If ($1->=-1)
$1->:=0 " If no element was found, set the array to no selected element
End if

After this project method is implemented in a database, you can write:

" asGender pop-up menu object method
Case of
: (Form Event=0On Load)
SELECT ELEMENT (->asGender;->[People]Gender)

End case

See Also
DELETE ELEMENT, INSERT ELEMENT, Size of array.

4th Dimension Language Reference 215

Count in array Arrays

version 2004

Count in array (array; value) - Longint

Parameter Type Description

array Array - Array where count should occur
value Expression - Value to count

Function result Longint - Number of instances found
Description

The Count in array command returns the number of times value is found in array.

This command can be used with the following array types: Text, Alpha, number, Date,
Pointer and Boolean. The array and value parameters must be the same type or compatible.

If no element in array matches value, the command returns 0.

Example
The following example allows displaying the number of selected lines in a list box:

“tBList is the name of a List box column array
O ALERT(String(Count in array(tBList;True))+" line(s) selected in the list box")

See also
Find in array.

216 4th Dimension Language Reference

INSERT ELEMENT Arrays

version 3
INSERT ELEMENT (array; where{; howMany})
Parameter Type Description
array Array - Name of the array
where Number - Where to insert the elements
howMany Number - Number of elements to be inserted, or

1 element if omitted

Description

The command INSERT ELEMENT inserts one or more elements into the array array. The
new elements are inserted before the element specified by where, and are initialized to the
empty value for the array type. All elements beyond where are consequently moved
within the array by an offset of one or the value you pass in howMany.

If where is greater than the size of the array, the elements are added to the end of the
array.

The howMany parameter is the number of elements to insert. If howMany is not specified,
then one element is inserted. The size of the array grows by howMany.

Example
1. The following example inserts five new elements, starting at element 10:

0 INSERT ELEMENT (anArray;10;5)

2. The following example appends an element to an array:

$vIElem:=Size of array(anArray)+1

0 INSERT ELEMENT (anArray;$vIElem)
anArray{$viElem}:=...

See Also
DELETE ELEMENT, Size of array.

4th Dimension Language Reference 217

DELETE ELEMENT Arrays

version 3
DELETE ELEMENT (array; where{; howMany})
Parameter Type Description
array Array - Array from which to delete elements
where Number - Element at which to begin deletion
howMany Number - Number of elements to delete, or

1 element if omitted

Description

The command DELETE ELEMENT deletes one or more elements from array. Elements are
deleted starting at the element specified by where.

The howMany parameter is the number of elements to delete. If howMany is not specified,
then one element is deleted. The size of the array shrinks by howMany.

Examples
1. The following example deletes three elements, starting at element 5:

0 DELETE ELEMENT (anArray; 5; 3)

2. The following example deletes the last element from an array, if it exists:

$viElem:=Size of array(anArray)
If ($vIElem>0)

O DELETE ELEMENT (anArray;$vIElem)
End if

See Also
INSERT ELEMENT, Size of array.

218 4th Dimension Language Reference

APPEND TO ARRAY Arrays

version 2004

APPEND TO ARRAY (array; value)

Parameter Type Description

array Array - Array to which an element will be appended
value Expression - Value to append

Description

The APPEND TO ARRAY command adds a new element at the end of array and assigns
value to the element. In interpreted mode, if array does not exist, the command creates it
with regard to the type of value.

This command works with all kind of arrays: string, number, Boolean, date, pointer and
picture.

The type of value must match the array type, otherwise the syntax error 54 “Argument
types are incompatible” is generated. The following values will, however, be accepted:

e a string array (Text or String) accepts any value of the Text or String type.

e a number array (Integer, Longint or Real) accepts any value of the Integer, Longint, Real
or Time type.

Example
The following code:

INSERT ELEMENT($myarray;Size of array($myarray)+1)
$myarray{Size of array($myarray)}:=$myvalue

... can be replaced with:
O APPEND TO ARRAY($myarray; $myvalue)

See also
DELETE ELEMENT, INSERT ELEMENT.

4th Dimension Language Reference 219

COPY ARRAY Arrays

version 3

COPY ARRAY (source; destination)

Parameter Type Description

source Array - Array from which to copy
destination Array - Array to which to copy
Description

The command COPY ARRAY creates or overwrites the destination array destination with
the exact contents, size, and type of the source array source.

The source and destination arrays can be local, process, or interprocess arrays. When
copying arrays, the scope of the array does not matter.

Examples

The following example fills the array named C. It then creates a new array, named D, of
the same size as C and with the same contents:

ALL RECORDS ([People]) ~ Select all records in People
SELECTION TO ARRAY ([People]Company; C) ~ Move company field data into array C

O COPY ARRAY (C; D) " Copy the array C to the array D

220 4th Dimension Language Reference

LIST TO ARRAY Arrays

version 3
Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you start using
the command Load list to work with the hierarchical lists defined in the Design
environment List Editor.

LIST TO ARRAY (list; array{; itemRefs})

Parameter Type Description

list String - List from which to copy the first level items
array Array - Array to which to copy the list items
itemRefs Array - List item reference numbers

Description

The command LIST TO ARRAY creates or overrides the array array with the first level items
of the list list.

LIST TO ARRAY creates or overrides an array with a new text array.
The optional itemRefs parameter (a numeric array) returns the list item reference numbers.

Compatibility Note: In the previous version of 4D, this array was filled with the names of
any linked lists. If an element of the list had a linked list, the name of the linked list was
put into the array element with the same number as the list element. If there was no
linked list, then the element was the empty string. The second array was set to the same
size as array. You could use the names in this array to access the linked lists.

You can continue to use LIST TO ARRAY to build an array based on the first level items of a
hierarchical list. However, this command does not provide you with the child items, if
any. To work with hierarchical lists, use the new Hierarchical Lists commands introduced
in version 6.

Example

The following example copies the items of a list called Regions into an array called
atRegions:

O LIST TO ARRAY ("Regions"; atRegions)

See Also
ARRAY TO LIST, Load list, SAVE LIST.

4th Dimension Language Reference 221

ARRAY TO LIST Arrays

version 3

Compatibility Note

Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you use the
command SAVE LIST to work with the hierarchical lists defined in the Design
environment List Editor.

ARRAY TO LIST (array; list{; itemRefs})

Parameter Type Description

array Array - Array from which to copy array elements
list String - List into which to copy array elements
itemRefs Array - Numeric array of item reference numbers
Description

The command ARRAY TO LIST creates or replaces the list list (as defined in the Design
environment List Editor) using the elements of the array array.

This command allows you to define only the first level items of the list.

The optional itemRefs parameter, if specified, must be a numeric array synchronized with
the array array. Each element, then, indicates the list item reference number for the
corresponding element in array. If you omit this parameter, 4D automatically sets the list
item reference numbers to 1, 2... N.

Compatibility Note: In the previous version of 4D, this parameter was used to link other
lists to each element in array. If an element of the links array was the name of an existing
list, then that list was attached to the corresponding item.

You can continue to use ARRAY TO LIST to build a list based on the elements of an array.
However, this command does not provide a means of working with the child items. To
work with hierarchical lists, use the new Hierarchical Lists commands introduced in
version 6.

222 4th Dimension Language Reference

Example
The following example copies the array atRegions to the list called “Regions:”

O ARRAY TO LIST (atRegions;"Regions")

See Also
LIST TO ARRAY, Load list, ON ERR CALL, SAVE LIST.

Error Handling

An error -9957 is generated when ARRAY TO LIST is applied to a list that is currently being
edited in the Design environment List Editor. You can catch this error using an ON ERR
CALL project method.

4th Dimension Language Reference 223

SELECTION TO ARRAY Arrays

version 3

SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...; fieldN | tableN; arrayN})

Parameter Type Description
field | table Field or Table - Field to use for retrieving data or

Table to use for retrieving record numbers
array Array - Array to receive field data or record numbers
Description

The command SELECTION TO ARRAY creates one or more arrays and copies data in the
fields or record numbers from the current selection into the arrays.

The command SELECTION TO ARRAY applies to the selection for the table specified in the
first parameter. SELECTION TO ARRAY, can perform the following:

¢ Load values from one or several fields.

e Load Record numbers using the syntax ...;[table];Array;...

e Load values from related fields, provided that there is a Many to One automatic relation
between the tables or provided that you have previously called SET AUTOMATIC
RELATIONS to make manual Many to One relations automatic. In both cases, values are
loaded from tables through several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:

e If a Text field is copied into a String array, the array will remain a String array.
e A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.
If you load record numbers, they are copied into a Long Integer array.

4D Server: The SELECTION TO ARRAY command is optimized for 4D Server. Each array is
created on the server and then sent, in its entirety, to the client machine.

WARNING: The SELECTION TO ARRAY command can create large arrays, depending on the
range you specify in start and end, and on the type and size of the data you are loading.
Arrays reside in memory, so it is a good idea to test the result after the command is
completed. To do so, test the size of each resulting array or cover the call to the
command, using an ON ERR CALL project method.

Note: After a call to SELECTION TO ARRAY, the current selection and current record
remain the same, but the current record is no longer loaded. If you need to use the values
of the fields in the current record, use the LOAD RECORD command after the SELECTION
TO ARRAY command.

224 4th Dimension Language Reference

Examples

1. In the following example, the [People] table has an automatic relation to the
[Company] table. The two arrays asLastName and asCompanyAddr are sized according to
the number of records selected in the [People] table and will contain information from
both tables:

0 SELECTION TO ARRAY ([People]Last Name;asLastName;[Company]Address;
asCompanyAddr)

2. The following example returns the [Clients] record numbers in the array
alRecordNumbers and the [Clients]Names field values in the array asNames:

0 SELECTION TO ARRAY([Clients];alRecordNumbers;[Clients]Names; asNames)

See Also

ARRAY TO SELECTION, MULTI SORT ARRAY, ON ERR CALL, SELECTION RANGE TO ARRAY,
SET AUTOMATIC RELATIONS.

4th Dimension Language Reference 225

SELECTION RANGE TO ARRAY Arrays

version 3.5.3

SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})

Parameter Type Description
start Number — Selected record number where data retrieval starts
end Number — Selected record number where data retrieval ends
field | table Field or Table - Field to use for retrieving data or

Table to use for retrieving record numbers
array Array — Array to receive field data or record numbers
Description

SELECTION RANGE TO ARRAY creates one or more arrays and copies data from the fields or
record numbers from the current selection into the arrays.

Unlike SELECTION TO ARRAY, which applies to the current selection in its entirety,
SELECTION RANGE TO ARRAY only applies to the range of selected records specified by the
parameters start and end.

The command expects you to pass in start and end the selected record numbers
complying with the formula 1 <= start <= end <= Records in selection ([...]).

If you pass 1 <= start = end < Records in selection ([...]), you will load fields or get the
record number from the record whose selected record is start = end.

If you pass incorrect selected record numbers, the command does the following:

e If end > Records in selection ([...]), it returns values from the selected record specified by
start to the last selected record.

e If start > end, it returns values from the record whose selected record is start only.

e If both parameters are inconsistent with the size of the selection, it returns empty
arrays.

Like SELECTION TO ARRAY, the SELECTION RANGE TO ARRAY command applies to the
selection for the table specified in the first parameter.

Also like SELECTION TO ARRAY, SELECTION RANGE TO ARRAY can perform the following:

¢ Load values from one or several fields.

e Load Record numbers using the syntax ...;[table];Array;...

e Load values from related fields, if there is a Many to One automatic relation between the
tables or if you have previously called SET AUTOMATIC RELATIONS to change manual
Many to One relations to automatic. In both cases, values can be loaded from tables
through several levels of Many to One relations.

226 4th Dimension Language Reference

Each array is typed according to the field type. There are two exceptions:

e If a Text field is copied into a String array. In this case, the array will remain a String
array.
¢ A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.
If you load record numbers, they are copied into a Long Integer array.

4D Server: SELECTION RANGE TO ARRAY is optimized for 4D Server. Each array is created
on the server and then sent, in its entirety, to the client machine.

WARNING: SELECTION RANGE TO ARRAY can create large arrays, depending on the range
you specify in start and end, and on the type and size of the data you are loading. Arrays
reside in memory, so it is a good idea to test the result after the command is completed.

To do so, test the size of each resulting array or cover the call to the command, using an
ON ERR CALL project method.

If the command is successful, the size of each resulting array is equal to (end-start)+1,
except if the end parameter exceeded the number of records in the selection. In such a
case, each resulting array contains (Records in selection(]...])-start)+1 elements.

Examples

1. The following code addresses the first 50 records from the current selection for the
[Invoices] table. It loads the values from the [Invoices]invoice ID field and the
[Customers]Customer ID related field.

a SELECTION RANGE TO ARRAY(1;50;[Invoices]Invoice
ID;allnvolD;[Customers]Customer ID;alCustID)

2. The following code addresses the last 50 records from the current selection for the
[Invoices] table. It loads the record numbers of the [Invoices] records as well as those of the
[Customers] related records:

ISelSize := Records in selection ([Invoices])

0 SELECTION RANGE TO ARRAY (ISelSize-49;lSelSize;[Invoices];allnvRecN;[Customers];
alCustRecN)

4th Dimension Language Reference 227

3. The following code process, in sequential “chunks”of 1000 records, a large selection
that could not be downloaded in its entirety into arrays:

IMaxPage := 1000
ISelSize := Records in selection ([Phone Directory])
For ($IPage ; 1; 1+((ISelSize-1)\IMaxPage))

" Load the values and/or record numbers

| SELECTION RANGE TO ARRAY (1+(IMaxPage*($IPage-1));IMaxPage*$IPage;
SO S O SO SIS |
" Do something with the arrays
End for
See Also

ON ERR CALL, SELECTION TO ARRAY, SET AUTOMATIC RELATIONS.

228 4th Dimension Language Reference

ARRAY TO SELECTION Arrays

version 3
ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})
Parameter Type Description
array Array - Array to copy to the selection
field Field - Field to receive the array data
Description

The ARRAY TO SELECTION command copies one or more arrays into a selection of records.
All fields listed must belong to the same table.

If a selection exists at the time of the call, the elements of the array are put into the
records, based on the order of the array and the order of the records. If there are more
elements than records, new records are created. The records, whether new or existing, are
automatically saved.

If the arrays are of different sizes, the first array is used to determine how many elements
to copy. Any additional arrays are moved into the field that follows each array name.

This command does the reverse of SELECTION TO ARRAY. However, the ARRAY TO
SELECTION command does not allow fields from different tables, including related tables,
even when an automatic relation exists.

WARNING: Use ARRAY TO SELECTION with caution, because it overwrites information in
existing records. If a record is locked by another process during the execution of ARRAY
TO SELECTION, that record is not modified. Any locked records are put into the process set
called LockedSet. After ARRAY TO SELECTION has executed, you can test the set LockedSet
to see if any records were locked.

4D Server: The command is optimized for 4D Server. Arrays are sent by the client
machine to the server, and the records are modified or created on the server machine. As
such a request is handled synchronously, the client machine must wait for the operation
to be completed successfully. In the multi-user or multi-process environment, any records
that are locked will not be overwritten.

4th Dimension Language Reference 229

Example

In the following example, the two arrays asLastNames and asCompanies place data in the
[People] table. The values from the array asLastNames area placed in the field [People]Last
Name and the values from the array asCompanies are placed in the field [People]Company:

O ARRAY TO SELECTION (asLastNames;[People]Last
Name;asCompanies;[People] Company)

See Also
SELECTION TO ARRAY.

230 4th Dimension Language Reference

DISTINCT VALUES Arrays

version 6.0 (modified)

DISTINCT VALUES (field; array)

Parameter Type Description

field Field or Subfield - Indexable field or subfield to use for data
array Array - Array to receive field data

Description

The DISTINCT VALUES command creates and populates the array array with non-repeated
(unique) values coming from the field field for the current selection of the table to which
the field or subfield belongs.

You can pass to DISTINCT VALUES any indexable field or subfield, that is, whose type
supports indexing without necessarily being indexed.

However, executing this command on unindexed fields will be slower. Also note that, in
this case, the command looses the current record.

Note: As this command now functions with indexed and unindexed fields, its execution
mode can now be set by using the SET DATABASE PARAMETER command.

If you pass the field of a table, DISTINCT VALUES browses and retains the non-repeated
values present only in the currently selected records. However, if you pass a subfield,
DISTINCT VALUES browses all the subrecords present in each currently selected record.

Note: Starting from 4D 6.5, when the DISTINCT VALUES command is called during a
transaction (that has not yet finished), it will take into account records created during
that transaction.

If you create the array prior to the call, DISTINCT VALUES expects an array type compatible
with the field or subfield you pass. Otherwise, in interpreted mode, DISTINCT VALUES will
create an array of the proper type. However, if the field or subfield is of type Time, the
command expects or creates a LongInt array.

After the call, the size of the array is equal to the number of distinct values found in the
selection. The command does not change the current selection or the current record. The
DISTINCT VALUES command uses the index of the field, so the elements in array are
returned sorted in ascending order. If this is the order you need, you do not need to call
SORT ARRAY after using DISTINCT VALUES.

WARNING: DISTINCT VALUES can create large arrays depending on the size of the
selection and the number of different values in the records. Arrays reside in memory,
therefore it is a good idea to test the result after the completion of the command. To do
so, test the size of the resulting array or cover the call to the command, using an ON ERR
CALL project method.

4th Dimension Language Reference 231

4D Server: The command is optimized for 4D Server. The array is created and the values
are calculated on the server machine; the array is then sent, in its entirety, to the client.

Examples

1. The following example creates a list of cities from the current selection and tells the
user the number of cities in which the firm has stores:

ALL RECORDS([Retail Outlets]) * Create a selection of records
0 DISTINCT VALUES([Retail Outlets]City;asCities)
ALERT("The firm has stores in " +String(Size of array(asCities))+" cities.")

2. The following example returns in asKeywords all the keywords that are attached (using
a subtable) to the 4D Write documents stored in the table [Documentation] and whose
theme is “Economy”:

QUERY ([Documentation];[Documentation]Theme="Economy")
O DISTINCT VALUES([Documentation]Keywords'Keyword;asKeywords)

After this array has been built, you can reuse it to quickly locate all the documents
associated with the selected keyword:

QUERY ([Documentation];[Documentation]Keywords'Keyword=
asKeywords{asKeywords})
SELECTION TO ARRAY ([Documentation]Subject;asSubjects)

See Also

ON ERR CALL, SELECTION RANGE TO ARRAY, SELECTION TO ARRAY, SET DATABASE
PARAMETER.

232 4th Dimension Language Reference

LONGINT ARRAY FROM SELECTION Arrays

version 6.7 (Modified)

LONGINT ARRAY FROM SELECTION (table; recordArray{; selection})

Parameter Type Description

table Table — Table of the current selection
recordArray Longint Array —~ Array of record numbers
selection String — Name of the named selection or

the current selection if this parameter is omitted

Description
The LONGINT ARRAY FROM SELECTION command fills the recordArray array with the
(absolute) record numbers that are in selection.

If you do not pass the selection parameter, the command will use the current selection of
table.

Note: The array element number O is initialized to -1.

See Also
CREATE SELECTION FROM ARRAY.

4th Dimension Language Reference 233

BOOLEAN ARRAY FROM SET Arrays

version 6.5
BOOLEAN ARRAY FROM SET (booleanArr{; set})
Parameter Type Description
booleanArr Boolean Array Array to indicate if a record is in the set or not
set String - Name of the set or

UserSet if this parameter is omitted

Description

The command BOOLEAN ARRAY FROM SET fills an array of booleans indicating if each
record in the table is or is not in set.

The elements in the array are ordered in the order in which the records are created in the
table (absolute record numbers). If N is the number of records in the table, element O of
the array corresponds to record number O, element 1 of the array corresponds to record
number 1, etc.

Each element of the array is:

e True if the corresponding record belongs to the set.

e False if the corresponding record does not belong to the set.

Warning: The total number of elements in the booleanArr array is not significant. For
structural reasons, this number can be different from the number of records actually
present in the table. Possible extra elements are set to False.

If you don't pass the set parameter, the command will use UserSet in the current process.

See Also
CREATE SET FROM ARRAY.

234 4th Dimension Language Reference

Backup

4th Dimension Language Reference 235

236 4th Dimension Language Reference

BACKUP Backup

version 2004

BACKUP

Parameter Type Description
This command does not require any parameters

Description

The BACKUP command starts the backup of the database using the current backup
settings. No confirmation dialog is displayed; however, a progress bar appears on screen.

Backup settings are set in the application Preferences. They are also stored in the
Backup.XML file located in the subfolder Preferences/Backup of the database.

The BACKUP command calls the On Backup Startup database method at the beginning of
its execution and the On Backup Shutdown database method at the end of its execution.
Because of this mechanism, the command should not be called from one of these
database methods.

4D Server: When called from a client machine, BACKUP is considered as a stored
procedure; it is still executed on the server.

See also
GET BACKUP INFORMATION, On Backup Startup database method, RESTORE.

System Variables or Sets

If the backup is performed correctly, the system variable OK is set to 1; otherwise, it is set
to O.

Error Handling

In case of any incidents, an error is generated which you can intercept by means of an
error-handling method installed using the ON ERR CALL command.

4th Dimension Language Reference 237

GET BACKUP INFORMATION Backup

version 2004

GET BACKUP INFORMATION (selector; infol; info2)

Parameter Type Description

selector Longint - Type of information to get
infol Date | Integer Value 1 of the selector
info2 Time | String Value 2 of the selector
Description

The GET BACKUP INFORMATION command allows getting information related to the last
backup performed on the database data.

Pass the type of information to get in selector. You can use one of the following
constants, placed in the “Backup and Restore” theme:

Constant Type Value
Last Backup Date Longint 0
Last Backup Status Longint 2
Next Backup Date Longint 4

The type and content of the infol and info2 parameters depend on the value of selector.
o If selector = 0 (Last Backup Date), infol returns the date and info2 the time of the last
backup.

e If selector = 2 (Last Backup Status), info1 returns the number and info2 the text of the
status of the last backup.

e If selector = 4 (Next Backup Date), infol returns the date and info2 the time of the next
scheduled backup.

See also
RESTORE.

238 4th Dimension Language Reference

RESTORE Backup

version 2004

RESTORE

Parameter Type Description
This command does not require any parameters

Description

The RESTORE command provokes the display of the Restore page of the 4D Welcome
dialog box:

4D Welcome

Restoring a database...
. ~ Backup File

Choose a structure. .. @
11/09/2005 - 11:14:52

1402004 Employess \Employees[0009], 46K

N 4view.408
w Company . 408

D \Q hase20042, 408

w Company 406

@ ﬁ Contents of the backup file

“ Ernplovees, 400
Employees, 4DR
Employees, RSR
Employees, 4DB
Preferences\BackupiBackup, XML

Choose a backup. ..

‘ Employees[0005]. 4Bk
‘ Employees[0007]. 4Bk
~ 4DView[0015].4BK

‘ base20042[0010].4BK

h test[0001].4BK

o

Other backup W

w Browse. ..

Restore

Done

This product is licensed to: 4D SA

The user can then select an archive to restore.

4th Dimension Language Reference 239

This command is useful with customized interfaces for managing backups.

Note: In a 4D application that is compiled and merged with 4D Runtime Volume License,
the RESTORE command causes the display of a standard open file dialog box that lists by
default any files having the “4BK” extension.

See also
BACKUP, GET RESTORE INFORMATION.

240 4th Dimension Language Reference

GET RESTORE INFORMATION Backup

version 2004

GET RESTORE INFORMATION (selector; info1; info2)

Parameter Type Description

selector Longint - Type of information to get
infol Date | Integer Value 1 of the selector
info2 Time | String - Value 2 of the selector
Description

The GET RESTORE INFORMATION command allows getting information related to the last
automatic database restore.

Pass the type of information to get in selector. You can use one of the following
constants, placed in the “Backup and Restore” theme:

Constant Type Value
Last Restore Date Longint 0
Last Restore Status Longint 2

The type and content of the infol and info2 parameters depend on the value of selector.
o If selector = O (Last Restore Date), infol returns the date and info2 the time of the last
automatic database restore.

o If selector = 2 (Last Restore Status), info1 returns the number and info2 the text of the
status of the last automatic database restore.

Note: This command does not take manual database restores into account.

See also
RESTORE.

4th Dimension Language Reference 241

SELECT LOG FILE Backup

version 2004.3 (Modified)

SELECT LOG FILE (logFile | *)

Parameter Type Description

logFile | * String | * - Name of the Log file or
"*" for closing the current Log file

Description

The SELECT LOG FILE command opens, creates, or closes the Log File according to the
value you pass in logFile.

Note: Calling SELECT LOG FILE is the same as selecting/deselecting the Use Log File option
on the Backup/Configuration page of the application Preferences.

In logFile, pass the name or the full pathname of the log file to be opened or created. If
you only pass a name, the file will be searched for or created next to the database
structure file.

If you pass an empty string in logFile, SELECT LOG FILE presents an Open File dialog box,
allowing the user to open a log file or to create a new one. If the user clicks the Open
button and the file is opened correctly, the OK variable is set to 1. Otherwise, if the user
clicks Cancel or if the Log File could not be opened or created, OK is set to O.

If you pass "*" in logFile, SELECT LOG FILE closes the current Log File for the database. The
OK variable is set to 1 when the log file is closed.

If you use SELECT LOG FILE to create or open a Log File when a full backup has not yet
been performed and the data file already contains records, 4D then generates an error -
4447, which you can intercept with an ON ERR CALL method.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Log File is correctly opened, created, or closed.

Error Handling

An error -4447 is generated if the operation cannot be performed because the database
needs to be backed up. You can intercept the error with an ON ERR CALL method.

242 4th Dimension Language Reference

Log File Backup

version 2004.3

Log File - String

Parameter Type Description
This command does not require any parameters

Function result String - Long name of the database log file

Description

The Log File command returns the long name (i.e. the complete pathname of the file,
including its name) of the current log file of the open database.

If the database is operating without a log file, the command returns an empty string and
the system variable OK is set to O.

If the database operates with a log file, the system variable OK is set to 1. The pathname
returned by the command is expressed with the syntax of the current platform.

WARNING: If you execute this command from a 4D Client machine, only the log file
name is returned, not the long name

See also
SELECT LOG FILE.

System Variables or Sets

If the database is operating without a log file, the system variable OK is set to 0;
otherwise, it is set to 1.

4th Dimension Language Reference 243

On Backup Startup Database Method Backup

version 2004

The On Backup Startup Database Method is called every time a database backup is about to
start (manual backup, scheduled automatic backup, or using the BACKUP command).
This concerns all 4D environments: 4th Dimension, 4D Server, 4D Client, 4D Runtime
and databases merged with 4D Runtime Volume Licence.

The On Backup Startup Database Method allows verifying that the backup started. In this
method, you should return a value that authorizes or refuses the backup in the $0
parameter:

e If $0 = 0, the backup can be launched.

e If $0 # O, the backup is not authorized. The operation is cancelled and an error is
returned. You can get the error using the GET BACKUP INFORMATION command.

You can use this database method to verify backup execution conditions (user, date of the
last backup, etc.).

Note: You must declare the $0 parameter (longint) in the database method:
C_LONGINT($0).

See also
BACKUP, On Backup Shutdown Database Method.

244 4th Dimension Language Reference

On Backup Shutdown Database Method Backup

version 2004

The On Backup Shutdown Database Method is called every time a database backup ends.
The reasons for the stoppage of a backup can be the end of the copy, user interruption or
an error.

This concerns all 4D environments: 4th Dimension, 4D Server, 4D Client, 4D Runtime
and databases merged with 4D Runtime Volume License.

The On Backup Shutdown Database Method allows verifying that the backup was executed

correctly. It receives, in the $1 parameter, a value representing the status of the backup
once completed:

e If the backup was executed correctly, $1 equals O.

e If the backup was interrupted by the user or following an error, $1 is different from 0. If
the backup was stopped by the On Backup Startup database method ($0 # 0), $1 gets the
value actually returned in the $0 parameter. This allows you to implement a customized
error management system.

In any case, you can get information about the error using the GET BACKUP
INFORMATION command.

Note: You must declare the $1 parameter (longint) in the database method:
C_LONGINT($1)

See also
BACKUP, On Backup Startup Database Method.

4th Dimension Language Reference 245

New log file Backup

version 2004.3

New log file - Text

Parameter Type Description
This command does not require any parameters

Function result Text - Full pathname of closed log file

Preliminary note: This command only works with 4D Server. It can only be executed via
the Execute on server command or in a stored procedure.

Description

The New log file command closes the current log file, renames it and creates a new one
with the same name in the same location as the previous one. This command is meant to
be used for setting up a backup system using a logical mirror (see the section “Setting up a
logical mirror” in the 4D Server Reference Manual).

The command returns the full pathname (access path + name) of the log file being closed
(called the “segment”). This file is stored in the same location as the current log file
(specified on the Configuration page in the Backup theme of the Preferences). The
command does not carry out any processing (compression, segmentation) on the saved
file. No dialog box appears.

The file is renamed with the current backup numbers of the database and of the log file,
as shown in the following example: DatabaseName[BackupNum-LogBackupNum].4DL. For
instance:

e If the MyDatabase.4DD database has been saved 4 times, the last backup file will be
named MyDatabase[0004].4BK. The name of the first “segment” of the log file will
therefore be MyDatabase[0004-0000].4DL.

e If the MyDatabase.4DD database has been saved 3 times and the log file has been saved
5 times since, the name of the 6th backup of the log file will be MyDatabase[0003-
0005].4DL.

Before performing this operation, 4D Server checks that no other critical operation
(transaction or indexing) is underway. If a critical operation is underway, 4D Server
respects the waiting times set on the Backup page in the Backup theme of the Preferences.

See also
INTEGRATE LOG FILE.

Error Handling

In the event of an error, the command generates a code that can be intercepted using the
ON ERR CALL command.

246 4th Dimension Language Reference

INTEGRATE LOG FILE Backup

version 2004.3

INTEGRATE LOG FILE (pathName)

Parameter Type Description

pathName Text - Name or pathname of the log file
to be integrated

Preliminary note: This command only works with 4D Server. It can only be executed via
the Execute on server command or in a stored procedure.

Description

The INTEGRATE LOG FILE command integrates the log file, whose name or pathname was
passed in the pathName parameter, into the current database. Afterwards, the file that was
integrated becomes the new current log file of the database. This command is meant to
be used for setting up a backup system using a logical mirror (see the section “Setting up a
logical mirror” in the 4D Server Reference manual).

Only log files that are not filed (extension .4DL) can be integrated using this command.
No dialog box appears; but a progress bar is displayed on screen.

In the pathName parameter, you can pass an absolute pathname or one that is relative to
the database folder. If you pass an empty string in this parameter, a standard open file
dialog box will be displayed to allow you to indicate the file to be integrated. If this dialog
box is cancelled, no file will be integrated and the system variable OK is set to 0.

When using this command, it is up to the developer to:

e Install the mirror database on the mirror machine and make sure that the data file will
not be modified other than by the integration of the log file using the INTEGRATE LOG
FILE command. In order to detect whether it is the mirror version of the database, it is
possible to place a file in the 4D Extensions folder or database folder and to test for its
presence for instance during the On Startup database method. If the file is present, the
mirror mode is activated.

e Set up a communication system between the operational database and the mirror
database in order to organize the sending and receiving of the log file segments. To do
this, it is possible to use a Web service, the 4D Open for 4D plug-in or the 4D Internet
Commands.

4th Dimension Language Reference 247

* Handle any possible transmission errors that may occur between the two databases.

See also
New log file.

System Variables or Sets

If the integration is carried out correctly, the system variable OK is set to 1; otherwise, it
is set to O.

Error Handling

In the event of an error, the command generates a code that can be intercepted using the
ON ERR CALL command. If there are any locked records in the database, the command
does nothing and the error 1420 is generated.

248 4th Dimension Language Reference

BLOB

4th Dimension Language Reference 249

250 4th Dimension Language Reference

BLOB Commands BLOB

version 6.7 (Modified)

Definition
4th Dimension version 6 introduces the BLOB (Binary Large OBjects) data type.

You can define BLOB fields and BLOB variables:

* To create a BLOB field, select BLOB in the Field type drop-down-list within the Field
Properties window.

e To create a BLOB variable, use the compiler declaration command C_BLOB. You can
create local, process, and interprocess variables of type BLOB.

Note: There is no array for BLOBs.

Within 4th Dimension, a BLOB is a contiguous series of variable length bytes, which can
be treated as one whole object or whose bytes can be addressed individually. A BLOB can
be empty (null length) or can contain up to 2147483647 bytes (2 GB).

BLOBs and Memory

A BLOB is loaded into memory in its entirety. A BLOB variable is held and exists in
memory only. A BLOB field is loaded into memory from the disk, like the rest of the
record to which it belongs.

Like the other field types that can retain a large amount of data (Picture and subtable field
types), BLOB fields are not duplicated in memory when you modify a record.
Consequently, the result returned by the commands Old and Modified is not significant
when applied to a BLOB field.

Displaying BLOBs
A BLOB can retain any type of data, so it has no default representation on the screen. If

you display a BLOB field or variable in a form, it will always appear blank, whatever its
contents.

BLOB fields

You can use BLOB fields to store any kind of data, up to 2 GB. You cannot index a BLOB
field, so you must use a formula in order to search records on values stored in a BLOB
field. Do not use BLOB fields for storing data that you want to retrieve quickly with a
search operation. For example, do not store keywords in a BLOB field; instead, use a subfile
in which you can index the keyword subfield.

4th Dimension Language Reference 251

Parameter passing, Pointers and function results

4th Dimension BLOBs can be passed as parameters to 4D commands or 4D Extensions
routines that expect a BLOB parameters. On the other hand, they cannot be passed as
parameters to a user method. A BLOB cannot be returned as a function result.

To pass a BLOB to your own methods, define a pointer to the BLOB and pass the pointer
as parameter.

Examples:

" Declare a variable of type BLOB
C_BLOB (anyBlobVar)

" The BLOB is passed as parameter to a 4D command
SET BLOB SIZE (anyBlobVar;1024*1024)

" The BLOB is passed as parameter to an external routine
$errCode:= Do Something With This BLOB (anyBlobVar)

* A pointer to the BLOB is passed as parameter to a user method
COMPUTE BLOB (->anyBlobVar)

" Declare a variable of type Pointer
C_POINTER (aPointer)

" Define a pointer to the BLOB
aPointer := ->anyBlobVar

* A pointer to the BLOB is passed as parameter to a user method
COMPUTE BLOB (aPointer)

Note for Plug-ins developers: A BLOB parameter is declared as “&0O” (the letter “O”, not
the digit “0”).

Assignment
You can assign BLOBs to each other.

Example:

" Declare two variables of type BLOB
C_BLOB (vBlobA;vBlobB)

* Set the size of the first BLOB to 10K
SET BLOB SIZE (vBlobA;10*1024)

* Assign the first BLOB to the second one
vBlobB:=vBlobA

However, no operator can be applied to BLOBs; there is no expression of type BLOB.

252 4th Dimension Language Reference

Addressing BLOB contents

You can address each byte of a BLOB individually using the curly brackets symbols {...}.
Within a BLOB, bytes are numbered from 0 to N-1, where N is the size of the BLOB.
Example:

" Declare a variable of type BLOB
C_BLOB (vBlob)

* Set the size of the BLOB to 256 bytes
SET BLOB SIZE (vBlob;256)

" The loop below initializes the 256 bytes of the BLOB to zero
For (vByte ; 0 ; BLOB size (vBlob)-1)

vBlob{vByte}:=0
End for

Because you can address all the bytes of a BLOB individually, you can actually store
whatever you want in a BLOB field or variable.

BLOBs 4th Dimension commands
4th Dimension provides the following commands for working BLOBS:

e SET BLOB SIZE resizes a BLOB field or variable.

® BLOB size returns the size of a BLOB.

e DOCUMENT TO BLOB and BLOB TO DOCUMENT enable you to load and write a whole
document to and from a BLOB (optionally, the data and resource forks on Macintosh).

e VARIABLE TO BLOB and BLOB TO VARIABLE as well as LIST TO BLOB and BLOB to list allow
you to store and retrieve 4D variables in BLOBs.

e COMPRESS BLOB, EXPAND BLOB and BLOB PROPERTIES allow you to work with
compressed BLOBs

e The commands BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO
BLOB, LONGINT TO BLOB, REAL TO BLOB and TEXT TO BLOB enable you to manipulate
any structured data coming from disk, resources, OS, and so on.

e DELETE FROM BLOB, INSERT IN BLOB and COPY BLOB allow quick handling of large
chunks of data within BLOBs.

e ENCRYPT BLOB and DECRYPT BLOB allow you to encrypt and decrypt data in a 4D
database.

These commands are described in this chapter.

4th Dimension Language Reference 253

In addition:

e C_BLOB declares a variable of type BLOB. Refer to the Compiler chapter for more
information.

e GET CLIPBOARD and APPEND CLIPBOARD enable you to deal with any data type stored
in the Clipboard. Refer to the Clipboard chapter for more information.

e GET RESOURCE and SET RESOURCE enable you to work with any type stored of resource
stored on disk. Refer to the Resources chapter for more information.

e SEND HTML BLOB enable you to send any type of data to a Web browser. Refer to the
Web Server chapter for more information.

¢ PICTURE TO BLOB, BLOB TO PICTURE and PICTURE TO GIF allow you to open and
convert pictures. Refer to the Pictures chapter for more information.

e GENERATE ENCRYPTION KEYPAIR and GENERATE CERTIFICATE REQUEST are encryption
commands used by the SSL (Secured Socket Layer) secured connection protocol. Refer to
the Secured Protocol chapter for more information.

254 4th Dimension Language Reference

SET BLOB SIZE BLOB

version 6.0
SET BLOB SIZE (blob; size{; filler})
Parameter Type Description
blob BLOB - BLOB field or variable
size Number - New size of the BLOB
filler Number - ASCII code of filler character
Description

SET BLOB SIZE resizes the BLOB blob according to the value passed in size.

If you want to allocate new bytes to a BLOB and want to have those bytes initialized to a
specific value, pass the value (0..255) into the filler optional parameter.

Examples

1. When you are through with a large process or interprocess BLOB, it is good idea to free
the memory it occupies. To do so, write:

O SET BLOB SIZE(aProcessBLOB;0)
0 SET BLOB SIZE(¢anInterprocessBLOB;0)

2. The following example creates a BLOB of 16K filled of OxFF:

C_BLOB(vxData)
0 SET BLOB SIZE(vxData;16*1024;0xFF)

See Also
BLOB size.

Error Handling

If you cannot resize a BLOB due to insufficient memory, the error -108 is generated. You
can trap this error using an ON ERR CALL interruption method.

4th Dimension Language Reference 255

BLOB size BLOB

version 6.0

BLOB size (blob) — Longint

Parameter Type Description

blob BLOB - BLOB field or variable
Function result Longint - Size in bytes of the BLOB
Description

BLOB size returns the size of blob expressed in bytes.

Examples
The line of code adds 100 bytes to the BLOB myBlob:

0 SET BLOB SIZE (BLOB size(myBlob)+100)

See Also
SET BLOB SIZE.

256 4th Dimension Language Reference

COMPRESS BLOB BLOB

version 6.5.3 (Modified)

COMPRESS BLOB (blob{; compression})

Parameter Type Description
blob BLOB - BLOB to compress
compression Number - If not omitted:

1, compress as compact as possible
2, compress as fast as possible

Description

The COMPRESS BLOB command compresses the BLOB blob using the internal

4th Dimension compression algorithm. This command only compresses BLOB whose size
is over 255 bytes.

The optional compression parameter allows to set the way the BLOB will be compressed:

e If you pass 1, the BLOB is compressed as much as possible, at the expanse of the speed of
compression and decompression operations.

e If you pass 2, the BLOB is compressed as fast as possible (and will be decompressed as fast
as possible), at the expense of the compression ratio (the compressed BLOB will be bigger).
e If you pass another value or if you omit the parameter, the BLOB is compressed as much
as possible, using the compression mode 1.

4th Dimension provides the following predefined constants:

Constant Type Value
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

After the call, the OK variable is set to 1 if the BLOB has been successfully compressed. If
the compression could not be performed, the OK variable is set to 0. If the compression
could not be performed because of a lack of memory or because the actual size of the blob
is less than 255 bytes, no error is generated and the method resumes its execution.

In any other cases (i.e. the BLOB is damaged), the error -10600 is generated. This error can
be trapped using the ON ERR CALL command.

After a BLOB has been compressed, you can expand it using the EXPAND BLOB command.
To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.
WARNING: A compressed BLOB is still a BLOB, so there is nothing to stop you from

modifying its contents. However, if you do so, the EXPAND BLOB command will not be
able to decompress the BLOB properly.

4th Dimension Language Reference 257

Examples

1. This example tests if the BLOB vxMyBlob is compressed, and, if it is not, compresses it:
BLOB PROPERTIES (vxMyBlob;$vICompressed;$vlExpandedSize;$vIiCurrentSize)
If ($viICompressed=Is not compressed)

0 COMPRESS BLOB (vxMyBlob)
End if

Note however, that if you apply COMPRESS BLOB to an already compressed BLOB, the
command detects it and does nothing.

2. This example allows you to select a document and then compress it:

$vhDocRef := Open document ("")
If (OK=1)
CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)
O COMPRESS BLOB (vxBlob)
If (OK=1)
BLOB TO DOCUMENT (Document;vxBlob)
End if
End if
End if

See Also
BLOB PROPERTIES, EXPAND BLOB.

System Variables or Sets

The OK variable is set to 1 if the BLOB has been successfully compressed; otherwise, it is
set to 0.

258 4th Dimension Language Reference

EXPAND BLOB BLOB
version 6.5.3 (Modified)

EXPAND BLOB (blob)

Parameter Type Description
blob BLOB - BLOB to expand
Description

The EXPAND BLOB command expands the BLOB blob that was previously compressed
using the COMPRESS BLOB command.

After the call, the OK variable is set to 1 if the BLOB has been expanded. If the expansion
could not be performed, the OK variable is set to O.

If the expansion could not be performed because of a lack of memory, no error is
generated and the method resumes its execution.

In any other case (i.e. the BLOB has not been compressed or is damaged), the error -10600
is generated. This error can be trapped using the ON ERR CALL command.

To check if a BLOB has been compressed, use the BLOB PROPERTIES command.

Examples
1. This example tests if the BLOB vxMyBlob is compressed and, if so, expands it:

BLOB PROPERTIES (vxMyBlob;$vICompressed;$vlExpandedSize; $vICurrentSize)
If ($viCompressed#ls not compressed)

0 EXPAND BLOB (vxMyBlob)
End if

2. This example allows you to select a document and then expand it, if it is compressed:

$vhDocRef := Open document ("")
If (OK=1)
CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)
BLOB PROPERTIES (vxBlob;$viCompressed;$vIExpandedSize; $vICurrentSize)
If ($viCompressed#ls not compressed)

a EXPAND BLOB (vxBlob)
If (OK=1)
BLOB TO DOCUMENT (Document;vxBlob)
End if
End if
End if
End if

4th Dimension Language Reference 259

See Also
BLOB PROPERTIES, COMPRESS BLOB.

System Variables or Sets

The OK variable is set to 1 if the BLOB has been successfully expanded, otherwise it is set
to 0.

260 4th Dimension Language Reference

BLOB PROPERTIES BLOB
version 6.0

BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})
Parameter Type Description
blob BLOB - BLOB for which to get information
compressed Number - 0 = BLOB is not compressed

1 = BLOB compressed compact

2 = BLOB compressed fast
expandedSize Number - Size of BLOB (in bytes) when not compressed
currentSize Number - Current size of BLOB (in bytes)
Description

The BLOB PROPERTIES command returns information about the BLOB blob.

e The compressed parameter tells whether or not the BLOB is compressed, and returns one
of the following values. Note: 4th Dimension provides the predefined constants.

Constant Type

Value

Is not compressed Long Integer 0

Compact compression mode
Fast compression mode

Long Integer 1
Long Integer 2

e Whatever the compression status of the BLOB, the expandedSize parameter returns the
size of the BLOB when it is not compressed.

e The parameter currentSize returns the current size of the BLOB. If the BLOB is
compressed, you will usually obtain currentSize less than expandedSize. If the BLOB is not
compressed, you will always obtain currentSize equal to expandedSize.

4th Dimension Language Reference 261

Examples
1. See examples for the commands COMPRESS BLOB and EXPAND BLOB.

2. After a BLOB has been compressed, the following project method obtains the
percentage of space saved by the compression:

* Space saved by compression project method
* Space saved by compression (Pointer {; Pointer }) -> Long
* Space saved by compression (-> BLOB {; -> savedBytes }) -> Percentage

C_POINTER (%1;%2)
C_LONGINT ($0;$viCompressed;$viExpandedSize;$vICurrentSize)

0 BLOB PROPERTIES ($1->;$vIiCompressed;$viExpandedSize;$viCurrentSize)
If ($vIExpandedSize=0)

$0:=0
If (Count parameters>=2)
$2->:=0
End if
Else

$0:=100-(($vICurrentSize/$vIExpandedSize)*100)
If (Count parameters>=2)
$2->:=$vlExpandedSize-$vICurrentSize
End if
End if

After this method has been added to your application, you can use it this way:

COMPRESS BLOB (vxBlob)

$vIPercent:=Space saved by compression (->vxBlob;->vIBlobSize)

ALERT ("The compression saved "+String (vIBlobSize)+" bytes, so "+String
($vIPercent;"#0%")+" of space.")

See Also
COMPRESS BLOB, EXPAND BLOB.

262 4th Dimension Language Reference

DOCUMENT TO BLOB BLOB

version 6.0
DOCUMENT TO BLOB (document; blob{; *})
Parameter Type Description
document String - Name of the document
blob BLOB - BLOB field or variable to receive the document
- Document contents
* * - On Macintosh only:

Resource fork is loaded if * is passed
otherwise Data fork is loaded

Description

DOCUMENT TO BLOB loads the whole contents of document into blob. You must pass the
name of an existing document that is not already open, otherwise an error will be
generated. To let the user choose the document to be loaded into the BLOB, use the
command Open document and the process variable document (see Example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command DOCUMENT TO BLOB loads
the Data fork of the document. To load the Resource fork of the document instead, pass
the optional * parameter. On Windows, the optional * parameter is ignored. Note that the
4D environment provides the equivalent of Mac OS resource forks on Windows. For
example, the data fork of a 4D database is stored in a file with the file extension .4DB; the
resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example

You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button that allows you to load a document
into a BLOB field. The method for this button could be:

$vhDocRef:=Open document("") " Select the document of your choice
If (OK=1) " If a document has been chosen

CLOSE DOCUMENT($vhDocRef) * We don't need to keep it open

0 DOCUMENT TO BLOB (Document;[YourTable]YourBLOBField)
If (OK=0)
* Handle error

End if

End if

4th Dimension Language Reference 263

See Also
BLOB TO DOCUMENT, Open document.

System Variables

OK is set to 1 if the document is correctly loaded, otherwise OK is set to O and an error is
generated.

Error Handling

e If you try to load (into a BLOB) a document that does not exist or that is already open
by another process or application, the appropriate File Manager error is generated.

e An I/O error can occur if the document is locked, located on a locked volume, or if there
is problem in reading the document.

e If there is not enough memory to load the document, an error -108 is generated.

In each case, you can trap the error using an ON ERR CALL interruption method.

264 4th Dimension Language Reference

BLOB TO DOCUMENT BLOB

version 6.0
BLOB TO DOCUMENT (document; blob{; *})
Parameter Type Description
document String - Name of the document
blob BLOB - New contents for the document
* * - On Macintosh only:

Resource fork is written if * is passed;
otherwise, Data fork is written

Description
BLOB TO DOCUMENT rewrites the whole contents of document using the data stored in

blob. If you want to let the user choose the document, use the commands Open document
or Create document and use the process variable document (see example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command BLOB TO DOCUMENT rewrites
the Data fork of the document. To rewrite the Resource fork of the document instead,
pass the optional * parameter. On Windows, the optional * parameter is ignored. Note
that the 4D environment provides the equivalent of Mac OS resource forks on Windows.
For example, the data fork of a 4D database is stored in a file with the file extension .4DB;
the resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example

You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button which allows you to save a
document that will contain the data previously loaded into a BLOB field. The method for
this button could be:

$vhDocRef:=Create document("") ~ Save the document of your choice
If (OK=1) " If a document has been created

CLOSE DOCUMENT($vhDocRef) * We don't need to keep it open

0 BLOB TO DOCUMENT (Document;[YourTable]YourBLOBField)
* Write the document contents
If (OK=0)
* Handle error

End if

End if

4th Dimension Language Reference 265

See Also
Create document, DOCUMENT TO BLOB, Open document.

System Variables

OK is set to 1 if the document is correctly written, otherwise OK is set to O and an error is
generated.

Error Handling

e If you try to rewrite a document that does not exist or that is already open by another
process or application, the appropriate File Manager error is generated.

e The disk space may be insufficient for writing the new contents of the document.
e [/O errors can occur while writing the document.
In all cases, you can trap the error using an ON ERR CALL interruption method.

266 4th Dimension Language Reference

VARIABLE TO BLOB BLOB

version 6.0
VARIABLE TO BLOB (variable; blob{; offset | *})
Parameter Type Description
variable Variable - Variable to store in the BLOB
blob BLOB - BLOB to receive the variable
offset | * Character - Offset within the BLOB (expressed in bytes)
or * to append the value
- New offset after writing if not *
Description

The command VARIABLE TO BLOB stores the variable variable in the BLOB blob.

If you specify the * optional parameter, the variable is appended to the BLOB and the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of variables or lists (see other BLOB commands) in a BLOB, as long as
the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the
variable is stored at the beginning of the BLOB, overriding its previous contents; the size
of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the variable is written at the offset (starting from
zero) within the BLOB. No matter where you write the variable, the size of the BLOB is
increased according to the location you passed (plus the size of the variable, if necessary).
Newly allocated bytes, other than the ones you are writing, are initialized to zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another variable or list.

VARIABLE TO BLOB accepts any type of variable (including other BLOBs), except the
following:

e Pointer

¢ Array of pointers

¢ Two-dimensional arrays

4th Dimension Language Reference 267

However, if you store a Long Integer variable that is a reference to a hierarchical list
(ListRef), VARIABLE TO BLOB will store the Long Integer variable, not the list. To store and
retrieve hierarchical lists in and from a BLOB, use the commands LIST TO BLOB and BLOB
to list.

WARNING: If you use a BLOB for storing variables, you must later use the command
BLOB TO VARIABLE for reading back the contents of the BLOB, because variables are stored
in BLOBs using a 4D internal format.

After the call, if the variable has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, there was not
enough memory.

Note regarding Platform Independence: VARIABLE TO BLOB and BLOB TO VARIABLE use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Examples

1. The two following project methods allow you to quickly store and retrieve arrays into
and from documents on disk:

" SAVE ARRAY project method
* SAVE ARRAY (String ; Pointer)
" SAVE ARRAY (Document ; -> Array)
C_STRING (255;%1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
0 VARIABLE TO BLOB ($2->;$vxArrayData) ~ Store the array into the BLOB
COMPRESS BLOB ($vxArrayData) = Compress the BLOB
BLOB TO DOCUMENT ($1;$vxArrayData) ~ Save the BLOB on disk

" LOAD ARRAY project method
" LOAD ARRAY (String ; Pointer)
" LOAD ARRAY (Document ; -> Array)
C_STRING (255;%1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
DOCUMENT TO BLOB ($1;$vxArrayData) ~ Load the BLOB from the disk
EXPAND BLOB ($vxArrayData) "~ Expand the BLOB

O BLOB TO VARIABLE ($vxArrayData;$2->) ~ Retrieve the array from the BLOB

268 4th Dimension Language Reference

After these methods have been added to your application, you can write:
ARRAY STRING (...;asAnyArray;...)

SAVE ARRAY ($vsDocName;->asAnyArray)
LOAb“ARRAY ($vsDocName;->asAnyArray)

2. The two following project methods allow you to quickly store and retrieve any set of
variables into and from a BLOB:

* STORE VARIABLES INTO BLOB project method
* STORE VARIABLES INTO BLOB (Pointer { ; Pointer ... {; Pointer}})
* STORE VARIABLES INTO BLOB (BLOB {; Varl ... {; Var2}})
C_POINTER (${1})
C_LONGINT ($vIParam)

SET BLOB SIZE ($1->;0)
For ($vIParam;2;Count parameters)

0 VARIABLE TO BLOB (${$vIParam}->;$1->;*)
End for

" RETRIEVE VARIABLES FROM BLOB project method
* RETRIEVE VARIABLES FROM BLOB (Pointer { ; Pointer ... {; Pointer}})
* RETRIEVE VARIABLES FROM BLOB (BLOB {; Varl ... {; Var2 } })
C_POINTER (${1})
C_LONGINT ($vIParam;$vIOffset)

$vIOffset:=0
For ($vIiParam;2;Count parameters)

0 BLOB TO VARIABLE ($1->;${$vIParam}->; $vIOffset)
End for

After these methods have been added to your application, you can write:
STORE VARIABLES INTO BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

RETRIEVE VARIABLES FROM BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

See Also
BLOB to list, BLOB TO VARIABLE, LIST TO BLOB.

System Variables or Sets

The OK variable is set to 1 if the variable has been successfully stored, otherwise it is set to
0.

4th Dimension Language Reference 269

BLOB TO VARIABLE BLOB

version 6.0

BLOB TO VARIABLE (blob; variable{; offset})
Parameter Type Description
blob BLOB - BLOB containing 4D variables
variable Variable - Variable to write with BLOB contents
offset Number - Position of variable within BLOB

- Position of following variable within BLOB
Description

The command BLOB TO VARIABLE rewrites the variable variable with the data stored within
the BLOB blob at the byte offset (starting at zero) specified by offset.

The BLOB data must be consistent with the destination variable. Typically, you will use
BLOBs that you previously filled out using the command VARIABLE TO BLOB.

If you do not specify the optional offset parameter, the variable data is read starting from
the beginning of the BLOB. If you deal with a BLOB in which several variables have been
stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the variable has been successfully rewritten, the OK variable is set to 1. If
the operation could not be performed, the OK variable is set to 0; for example, if there
was not enough memory.

Note regarding Platform Independence: BLOB TO VARIABLE and VARIABLE TO BLOB use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Example
See the examples for the command VARIABLE TO BLOB.

See Also
VARIABLE TO BLOB.

System Variables or Sets

The OK variable is set to 1 if the variable has been successfully rewritten, otherwise it is set
to 0.

270 4th Dimension Language Reference

LIST TO BLOB BLOB

version 6.0
LIST TO BLOB (list; blob{; *})
Parameter Type Description
list ListRef - Hierarchical list to store in the BLOB
blob BLOB - BLOB to receive the Hierarchical list
* * - * to append the value
Description

The command LIST TO BLOB stores the hierarchical list list in the BLOB blob.

If you specify the * optional parameter, the hierarchical list is appended to the BLOB and
the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of variables or lists (see other BLOB commands) in a BLOB,
as long as the BLOB fits into memory.

If you do not specity the * optional parameter, the hierarchical list is stored at the
beginning of the BLOB, overriding its previous contents; the size of the BLOB is adjusted
accordingly.

Wherever the hierarchical list is stored, the size of the BLOB will be increased if necessary
according to the specified location (plus up to the size of the list if necessary). Modified
bytes (other than the ones you set) are reset to O (zero).

WARNING: If you use a BLOB for storing lists, you must later use the command BLOB to
list for reading back the contents of the BLOB, because lists are stored in BLOBs using a
4D internal format.

After the call, if the list has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to O; for example, if there was
not enough memory.

Note regarding Platform Independence: LIST TO BLOB and BLOB to list use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those commands can be reused on Macintosh, and vice-
versa.

Examples
See example for the command BLOB to list.

See Also
BLOB to list, BLOB TO VARIABLE, VARIABLE TO BLOB.

4th Dimension Language Reference 271

BLOB to list BLOB

version 6.0

BLOB to list (blob{; offset}) — ListRef
Parameter Type Description
blob BLOB - BLOB containing a hierarchical list
offset Number - Offset within the BLOB (expressed in bytes)

- New offset after reading
Function result ListRef - Reference to newly created list
Description

The command BLOB to list creates a new hierarchical list with the data stored within the
BLOB blob at the byte offset (starting at zero) specified by offset and returns a List
Reference number for that new list.

The BLOB data must be consistent with the command. Typically, you will use BLOBs that
you previously filled out using the command LIST TO BLOB.

If you do not specify the optional offset parameter, the list data is read starting from the
beginning of the BLOB. If you deal with a BLOB in which several variables or lists have
been stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the hierarchical list has been successfully created, the OK variable is set to
1. If the operation could not be performed, the OK variable is set to O; for example, if
there was not enough memory.

Note regarding Platform Independence: BLOB to list and LIST TO BLOB use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those two commands can be reused on Macintosh and
vice-versa.

272 4th Dimension Language Reference

Example

In this example, the form method for a data entry form extracts a list from a BLOB field
before the form appears on the screen, and stores it back to the BLOB field if the data
entry is validated:

* [Things To Do];"Input" Form Method
Case of

: (Form event=0n Load)

0 hList:=BLOB to list([Things To Do]Other Crazy Ideas)
If (OK=0)
hList:=New list
End if

: (Form event=0On Unload)
CLEAR LIST(hList;*)

: (bValidate=1)
O LIST TO BLOB(hList;[Things To Do]Other Crazy Ideas)

End case

See Also
LIST TO BLOB.

System Variables and Sets
The OK variable is set to 1 if the list has been successfully created, otherwise it is set to O.

4th Dimension Language Reference 273

INTEGER TO BLOB BLOB

version 6.0

INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})
Parameter Type Description
integer Number - Integer value to write into the BLOB
blob BLOB - BLOB to receive the Integer value
byteOrder Number - 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset | * Variable | * - New offset after writing if not *
Description

The command INTEGER TO BLOB writes the 2-byte Integer value integer into the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be written.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between the Macintosh
and PC platforms, it is up to you to manage byte swapping issues when using this
command.

If you specify the * optional parameter, the 2-byte Integer value is appended to the BLOB
and the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of Integer, Long Integer, Real or Text values (see other BLOB
commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the 2-byte
Integer value is stored at the beginning of the BLOB, overriding its previous contents; the
size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 2-byte Integer value is written at the byte
offset (starting from zero) within the BLOB. No matter where you write the 2-byte
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 2 bytes, if necessary). Newly allocated bytes, other than the ones you are writing,
are initialized to zero.

274 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

0 INTEGER TO BLOB (0x0206;vxBlob;Native byte ordering)

e The size of vxBlob is 2 bytes
e On Macintosh vxBLOB{0} = $02 and vxBLOB{1} = $06
e On PC vxBLOB{0} = $06 and vxBLOB{1} = $02

2. After executing this code:
0 INTEGER TO BLOB (0x0206;vxBlob;Macintosh byte ordering)

e The size of vxBlob is 2 bytes
e On all platforms vxBLOB{0} = $02 and vxBLOB{1} = $06

3. After executing this code:
0 INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering)

¢ The size of vxBlob is 2 bytes
® On all platforms vxBLOB{0} = $06 and vxBLOB{1} = $02

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
0 INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering;*)

e The size of vxBlob is 102 bytes
e On all platforms vxBLOB{100} = $06 and vxBLOB{101} = $02
e The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vIOffset:=50
0 INTEGER TO BLOB (518;vxBlob;Macintosh byte ordering;vIOffset)

¢ The size of vxBlob is 100 bytes

® On all platforms vxBLOB{50} = $02 and vxBLOB{51} = $06

e The other bytes of the BLOB are left unchanged

e The variable vIOffset has been incremented by 2 (and is now equal to 52)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, LONGINT TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 275

LONGINT TO BLOB BLOB

version 6.0

LONGINT TO BLOB (longint; blob; byteOrder{; offset | *})
Parameter Type Description
longint Number - Long Integer value to write into the BLOB
blob BLOB - BLOB to receive the Long Integer value
byteOrder Number - 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset | * Variable | * . Offset within the BLOB (expressed in bytes)

or * to append the value

- New offset after writing if not *

Description

The command LONGINT TO BLOB writes the 4-byte Long Integer value integer into the
BLOB blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
written. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the * optional parameter, the 4-byte Long Integer value is appended to the
BLOB and the size of the BLOB is extended accordingly. Using the * optional parameter,
you can sequentially store any number of Integer, Long Integer, Real or Text values (see
other BLOB commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the 4-
byte Long Integer value is stored at the beginning of the BLOB, overriding its previous
contents; the size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 4-byte Long Integer value is written at the
offset (starting from zero) within the BLOB. No matter where you write the 4-byte Long
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 4 bytes, if necessary). New allocated bytes, other than the ones you are writing, are
initialized to zero.

276 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

0 LONGINT TO BLOB (0x01020304;vxBlob;Native byte ordering)

e The size of vxBlob is 4 bytes
* On Macintosh vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=%$03, vxBLOB{3}=$04
¢ On PC vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

2. After executing this code:
0 LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering)

e The size of vxBlob is 4 bytes
¢ On all platforms vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=$04

3. After executing this code:
0 LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering)

¢ The size of vxBlob is 4 bytes
e On all platforms vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
0 LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering;*)

e The size of vxBlob is 104 bytes

* On all platforms vxBLOB{100}=$04, vxBLOB{101}=$03, vxBLOB{102}=$02,
vxBLOB{103}=$01

e The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vIOffset:=50
0 LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering;vIOffset)

¢ The size of vxBlob is 100 bytes

¢ On all platforms vxBLOB{50}=$01, vxBLOB{51}=$02, vxBLOB{52}=$03, vxBLOB{53}=$04
e The other bytes of the BLOB are left unchanged

e The variable vIOffset has been incremented by 4 (and is now equal to 54)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 277

REAL TO BLOB BLOB

version 6.0

REAL TO BLOB (real; blob; realFormat{; offset | *})
Parameter Type Description
real Number - Real value to write into the BLOB
blob BLOB - BLOB to receive the Real value
realFormat Number - 0 Native real format

1 Extended real format

2 Macintosh Double real format

3 Windows Double real format
offset | * Variable | * . Offset within the BLOB (expressed in bytes)

or * to append the value

- New offset after writing if not *

Description

The command REAL TO BLOB writes the Real value real into the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be written. You pass one of the following predefined constants provided by 4th
Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Platform Independence Note: If you exchange BLOBs between Macintosh and PC
platforms, it is up to you to manage real formats and byte swapping issues when using
this command.

If you specify the * optional parameter, the Real value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the Real

value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

278 4th Dimension Language Reference

If you pass the offset variable parameter, the Real value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Real value, the size of the
BLOB is increased according to the location you passed (plus up to 8 or 10 bytes, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

C_REAL (vrValue)
vrValue := ...

0 REAL TO BLOB (vrValue;vxBlob;Native real format)

e On PC and Power Macintosh, the size of vxBlob is 8 bytes
¢ On Macintosh 68K, the size of vxBlob is 10 bytes

2. After executing this code:
C_REAL (vrValue)
vrValue := ...
0 REAL TO BLOB (vrValue;vxBlob;Extended real format)

e On all platforms, the size of vxBlob is 10 bytes

3. After executing this code:

C_REAL (vrValue)
vrValue := ...
* or Windows double real format

0 REAL TO BLOB (vrValue;vxBlob;Macintosh Double real format)

e On all platforms, the size of vxBlob is 8 bytes

4. After executing this code:

SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...

* or Macintosh double real format

0 INTEGER TO BLOB (vrValue;vxBlob;Windows Double real format)

e On all platforms, the size of vxBlob is 8 bytes

4th Dimension Language Reference 279

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
O REAL TO BLOB (vrValue;vxBlob;Extended real format;*)

e On all platforms, the size of vxBlob is 110 bytes
e On all platforms, the real value is stored at the bytes #100 to #109
e The other bytes of the BLOB are left unchanged

6. After executing this code:

SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...
vlOffset:=50
* or Macintosh double real format

0 REAL TO BLOB (vrValue;vxBlob;Windows Double real format;vIOffset)

* On all platforms, the size of vxBlob is 100 bytes

® On all platforms, the real value is stored in the bytes #50 to #57

e The other bytes of the BLOB are left unchanged

e The variable vIOffset has been incremented by 8 (and is now equal to 58)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, TEXT TO BLOB.

280 4th Dimension Language Reference

TEXT TO BLOB BLOB
version 6.0

TEXT TO BLOB (text; blob; textFormat{; offset | *})
Parameter Type Description
text String - Text value to write into the BLOB
blob BLOB - BLOB to receive the text value
textFormat Number - 0 C String

1 Pascal String

2 Text with length

3 Text without length
offset | * Variable | * . Offset within the BLOB (expressed in bytes)

or * to append the value

- New offset after writing if not *

Description

The command TEXT TO BLOB writes the Text value text into the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be written. You
pass one of the following predefined constants provided by 4th Dimension:

Constant

C string

Pascal string

Text with length
Text without length

Type Value
Long Integer 0
Long Integer 1
Long Integer 2
Long Integer 3

The following table describes each of these formats:

Text format
C string

Pascal string

Text with length

Description and Examples

The text is ended by a NULL character (ASCII code $00)

n N OO

"Hello ?}Vorldl" — $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00
The text is preceded by a 1-byte length

nn N $00

"Hello World!" — $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is preceded by a 2-byte length

nm N $00 00
"Hello World!" - $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 281

Text without length The text is composed only of its characters.

" - No data
"Hello World!" - $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Note: The command accepts both Text (declared with C_TEXT) and String (declared with
C_STRING) expressions. Remember that a Text variable can contain up to 32,000
characters and a String variable can contain up to the number of characters in its
declaration, with a maximum of 255 characters.

If you specify the * optional parameter, the Text value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the Text
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the Text value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Text value, the size of the
BLOB is, increased according to the location you passed (plus up to the size of the text, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therfore, you can reuse that same variable with another
BLOB writing command to write another value.

Example
After executing this code:

SET BLOB SIZE (vxBlob;0)
C_TEXT (vtValue)
vtValue := "Hello World!" ~ Length of vtValue is 12 bytes

TEXT TO BLOB (vtValue;vxBlob;C string) ~ Size of BLOB becomes 13 bytes

TEXT TO BLOB (vtValue;vxBlob;Pascal string) ~ Size of BLOB becomes 13 bytes

TEXT TO BLOB (vtValue;vxBlob;Text with length) ~ Size of BLOB becomes 14 bytes
TEXT TO BLOB (vtValue;vxBlob;Text without length) "~ Size of BLOB becomes 12 bytes

O Ooodg

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, REAL TO BLOB.

282 4th Dimension Language Reference

BLOB to integer BLOB

version 6.0
BLOB to integer (blob; byteOrder{; offset}) -~ Number
Parameter Type Description
blob BLOB - BLOB from which to get the integer value
byteOrder Number - 0 Native byte ordering
1 Macintosh byte ordering
2 PC byte ordering
offset Variable - Offset within the BLOB (expressed in bytes)
- New offset after reading
Function result Number - 2-byte Integer value
Description

The command BLOB to integer returns a 2-byte Integer value read from the BLOB blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be read.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues when using this command.

If you specify the optional offset variable parameter, the 2-byte Integer value is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first two bytes of the BLOB are read.

Note: You should pass an offset (in bytes) value between 0 (zero) and the size of the BLOB
minus 2. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read, Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 283

Example
The following example reads 20 Integer values from a BLOB, starting at the offset 0x200:

$vlOffset:=0x200
For ($viLoop;0;19)
| $viValue:=BLOB to integer(vxSomeBlob;PC byte ordering;$vIOffset)
* Do something with $viValue
End for

See Also

BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

284 4th Dimension Language Reference

BLOB to longint BLOB

version 6.0

BLOB to longint (blob; byteOrder{; offset}) — Number
Parameter Type Description
blob BLOB - BLOB from which to get

the Long Integer value
byteOrder Number - 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset Variable . Offset within the BLOB (expressed in bytes)

- New offset after reading

Function result Number - 4-byte Long Integer value
Description

The command BLOB to longint returns a 4-byte Long Integer value read from the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specity the optional offset variable parameter, the 4-byte Long Integer is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first four bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 4.
If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 285

Example

The following example reads 20 Long Integer values from a BLOB, starting at the offset
0x200:

$vIOffset:=0x200
For ($viLoop;0;19)
0 $viValue:=BLOB to longint(vxSomeBlob;PC byte ordering; $vIOffset)
* Do something with $viIValue
End for

See Also

BLOB to integer, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

286 4th Dimension Language Reference

BLOB to real BLOB

version 6.0

BLOB to real (blob; realFormat{; offset}) — Real
Parameter Type Description
blob BLOB - BLOB from which to get the Real value
realFormat Number - 0 Native real format

1 Extended real format

2 Macintosh Double real format

3 Windows Double real format
offset Variable . Offset within the BLOB (expressed in bytes)

- New offset after reading

Function result Real - Real value
Description

The command BLOB to real returns a Real value read from the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage real formats and byte swapping issues while using
this command.

If you specify the optional offset variable parameter, the Read value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the first 8 or 10 bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus §
or 10. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 287

Example

The following example reads 20 Real values from a BLOB, starting at the offset 0x200:
$vIOffset:=0x200
For ($viLoop;0;19)

| $vrValue:=BLOB to real(vxSomeBlob;PC byte ordering; $vIOffset)

* Do something with $vrValue
End for

See Also

BLOB to integer, BLOB to longint, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB,
REAL TO BLOB, TEXT TO BLOB.

288 4th Dimension Language Reference

BLOB to text BLOB
version 6.0
BLOB to text (blob; textFormat{; offset{; textLength}}) - Text
Parameter Type Description
blob BLOB - BLOB from which to get the Text value
textFormat Number - 0 C String
1 Pascal String
2 Text with length
3 Text without length
offset Variable . Offset within the BLOB (expressed in bytes)
- New offset after reading
textLength Number - Number of characters to be read
Function result Text - Text value

Description

The BLOB to text command returns a Text value read from the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be read. You pass
one of the following predefined constants provided by 4th Dimension:

Constant

C string

Pascal string

Text with length
Text without length

Type Value
Long Integer 0
Long Integer 1
Long Integer 2
Long Integer 3

The following table describes each of these formats:

Text format
C string

Pascal string

Text with length

Text without length

Description & Examples

The text is ended by a NULL character (ASCII code $00)
"~ $00

"Hello World!" - $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00
The text is preceded a 1-byte length

"~ $00

"Hello World!" - $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is preceded by a 2-byte length

" - $00 00

"Hello World!" - $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is only composed of its characters.

" - No data

"Hello World!" - $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 289

WARNING: The number of characters to be read is determined by the textFormat
parameter, EXCEPT for the format Text without length, for which you MUST specity the
number of characters to be read in the parameter textLength. For the other formats,
textLength is ignored and you can omit it.

Remember that a Text variable can contain up to 32,000 characters and a String variable
can contain up to the number of characters in its declaration, with a maximum of 255
characters. If you try to read more data than a variable can hold, 4D will truncate the
result of the command when placing it into the variable.

If you specify the optional offset variable parameter, the Text value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the beginning of the BLOB is read according to the value you pass in
textFormat. Note that you must pass the offset variable parameter when you are reading
text without length.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus
the size of the text to be read. If you do not do so, the function result is unpredictable.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

Example

The following example reads an hypothetical Mac OS-based resource whose internal
format is identical to that of the 'STR#' resources:

GET RESOURCE ("ABCD";viResID;vxResData;viMyResFile)
vISize:=BLOB Size(vxResData)
If (vISize>0)
" The resource starts with a 2-byte integer specifying the number of strings
vlOffset:=0
viNbEntries:=BLOB to integer(vxResData;Macintosh Byte Ordering;vIOffset)
" Then the resource contains concatenated, not padded, Pascal strings
For (viEntry;1;viNbEntries)
If (vIOffset<vlSize)
0 vsEntry:=BLOB to text(vxResData;Pascal string;vIOffset)
* Do something with vsEntry

Else
" Resource data is invalid, get out of the loop
viEntry:=viNbEntries+1
End if
End for
End if

See Also

BLOB to integer, BLOB to longint, BLOB to real, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

290 4th Dimension Language Reference

INSERT IN BLOB BLOB

version 6.0
INSERT IN BLOB (blob; offset; len{; filler})
Parameter Type Description
blob BLOB - BLOB into which bytes will be inserted
offset Variable - Starting position where bytes will be inserted
len Number - Number of bytes to be inserted
filler Number - Default byte value (0x00..0xFF)

0x00 if omitted

Description

The command INSERT IN BLOB inserts the number of bytes specified by len into the BLOB
blob at the position specified by offset. The BLOB then becomes len bytes larger.

If you do not specify the optional filler parameter, the bytes inserted into the BLOB are set
to 0x00. Otherwise, the bytes are set to the value you pass in filler (modulo 256 — 0..255).

Before the call, you pass in the offset variable parameter the position of the insertion
relative to the beginning of the BLOB.

See Also
DELETE FROM BLOB.

4th Dimension Language Reference 291

DELETE FROM BLOB BLOB

version 6.0
DELETE FROM BLOB (blob; offset; len)
Parameter Type Description
blob BLOB - BLOB from which to delete bytes
offset Number - Starting offset where bytes will be deleted
len Number - Number of bytes to be deleted
Description

The command DELETE FROM BLOB deletes the number of bytes specified by len from the
BLOB blob at the position specified by offset (expressed relative to the beginning of the
BLOB). The BLOB then becomes len bytes smaller.

See Also
INSERT IN BLOB.

292 4th Dimension Language Reference

COPY BLOB BLOB

version 6.0
COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)
Parameter Type Description
srcBLOB BLOB - Source BLOB
dstBLOB BLOB - Destination BLOB
srcOffset Variable - Source position for the copy
dstOffset Variable - Destination position for the copy
len Number - Number of bytes to be copied

Description

The COPY BLOB command copies the number of bytes specified by len from the BLOB
srcBLOB to the BLOB dstBLOB.

The copy starts at the position (expressed relative to the beginning of the source BLOB)
specified by srcOffset and takes place at the position (expressed relative to the beginning
of the destination BLOB) specified by dstOffset.

Note: The destination BLOB can be resized if necessary.

See Also
DELETE FROM BLOB, INSERT IN BLOB.

4th Dimension Language Reference 293

ENCRYPT BLOB BLOB

version 6.7

ENCRYPT BLOB (toEncrypt; sendPrivKey{; recipPubKey})

Parameter Type Description
toEncrypt BLOB - Data to encrypt

- Encrypted data
sendPrivKey BLOB - Sender’s private key
recipPubKey BLOB - Recipient’s public key
Description

The command ENCRYPT BLOB encrypts the content of the toEncrypt BLOB with the
sender’s private key sendPrivKey, as well as optionally the recipient’s public key
recipPubKey. These keys should be generated by the command GENERATE ENCRYPTION
KEYPAIR (within the “Secured Protocol” theme).

Note: This command uses the SSL protocol algorithm and encryption features. To be able
to use this command, make sure that the components necessary to the SSL protocol are
installed properly on your machine — even though you do not want to use SSL for 4D
Web server connections. For detailed information on this protocol, please refer to section
Web Services, Using SSL Protocol.

e If one key is used for the encryption (the sender’s private key), only people in
possession of the public key will be able to read the information. This system guarantees
that the sender himself has encrypted the information.

e The simultaneous use of the sender’s private key and recipient’s public key guarantees
that only one recipient will be able to read the information.

The BLOB containing the keys has a PKCS internal forma. This standard cross platform
format allows exchanging or handling keys simply by copy-pasting in an Email or a text
file.

Once the command has been run, the toEncrypt BLOB contains the encrypted data that
will be decrypted only with the DECRYPT BLOB command, with the sender’s public key
passed as parameter.

Moreover, if the optional recipient’s public key has been used to encrypt the information,
the recipient’s private key will also be necessary for decrypting.

294 4th Dimension Language Reference

Encryption principle with public and private keys for message exchange between two
people, “Alice” and “Bob”:

Alice’s |'Bob’spublic' | Alices |1 Bokes !
privata key | = - public key | privata key o

Crigiral l i | Er I Criginal

— Meiage |Scrambled | TRNSMISSION | o0 mrpled | 2392

Alice - Massage 7| Message D
original o Edrigirnal

Alice :'MES-'@EE'E scrrbled |, LT [— azEmce —

helassacey Pelas sy e

| Alices ! |pobrspublic | ! Alices ! {Rakrs private
L privatekey 1| key L public key 1| key

::: Dptioral kays

Note: The cipher contains a checksum functionality in order to avoid any BLOB content
modification (deliberately or not). Consequently, an encrypted BLOB should not be
modified otherwise it might not be decrypted.

Optimizing Encryption Commands

Data encryption slows down the execution of your applications, especially if a pair of keys
is used. However, you can consider the following optimization tips:

¢ Depending on the current available memory, the command will execute in
“synchronous” or “asynchronous” mode.

The asynchronous mode is faster, since it does not freeze the other processes. This mode is
automatically used if the available memory is at least twice the size of the data to encrypt.
Otherwise, for security reasons, the synchronous mode is used. This mode is slower since
it freezes the other processes.

e Regarding large BLOBs, you can encrypt only a small “strategic” part of the BLOB in
order to reduce the size of data to be processed as well as the processing time.

4th Dimension Language Reference 295

Examples

¢ Using a single key

A company wants to keep the data stored in a 4D database private. It has to regularly send
these information to its subsidiaries through files, via the Internet.

1. The company generates a pair of keys with the command GENERATE ENCRYPTION
KEYPAIR:

“Method GENERATE_KEYS_TXT
C_BLOB($BPublicKey; $BPrivateKey)
GENERATE ENCRYPTION KEYPAIR($BPrivateKey; $BPublicKey)
BLOB TO DOCUMENT("PublicKey.txt"; $BPublicKey)
BLOB TO DOCUMENT("PrivateKey.txt"; $BPrivateKey)

2. The company keeps the private key and sends a copy of the document containing the
public key to each subsidiary. For maximum security, the key should be copied on a disk
handed over to the subsidiaries.

3. Then the company copies the private information (stored in the text field, for
example) in BLOBs which will be encrypted with the private key:

“Method ENCRYPT_INFO
C_BLOB($vbEncrypted;$vbPrivateKey)
C_TEXT($vtEncrypted)

$vtEncrypted:=[Private]info
VARIABLE TO BLOB ($vtEncrypted;$vbEncrypted)
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If(OK=1)
O ENCRYPT BLOB ($vbEncrypted; $vbPrivateKey)
BLOB TO DOCUMENT ("Update.txt";$vbEncrypted)
End if

4. The update files can be sent to the subsidiaries (though a non-secured channel such as
the Internet). If a third person gets hold of the encrypted file, he will not be able to
decrypt it without the public key.

5. Each subsidiary can decrypt the document with the public key:

“Method DECRYPT_INFO
C_BLOB($vbEncrypted;$vbPublicKey)
C_TEXT($vtDecrytped)

C_TIME ($vtDocRef)

ALERT ("Please select an encrypted document.")
$vtDocRef:=Open document("") “Select Update.txt

296 4th Dimension Language Reference

If (OK=1)
CLOSE DOCUMENT($vtDocRef)
DOCUMENT TO BLOB(Document;$vbEncrypted)
DOCUMENT TO BLOB("PublicKey.txt"; $vbPublicKey)
If (OK=1)

0 DECRYPT BLOB ($vbEncrypted; $vbPublicKey)
BLOB TO VARIABLE($vbEncrypted; $vtDecrypted)
CREATE RECORD ([Private])
[Private]info:=$vtDecrypted
SAVE RECORD([Private])

End if
End if

¢ Using keypairs

A company wants to use the Internet to exchange information. Each subsidiary receives
private information and also sends information to the corporate office. Consequently
there are two requirements:

- The recipient only should be able to read the message,

- The recipient must have proof that the message was sent by the sender himself.

1. The corporate office and each subsidiary generate their own key pairs (with the
GENERATE_KEYS_TXT method).

2. The private key is kept secret by both sides. Each subsidiary sends its public key to the
corporate office who, in its turn, sends its public key too. This key transfer does not need
to be done through a secured channel as the public key is not enough to decrypt the
message.

3. To encrypt the information to send, the subsidiary or the corporate house executes the
ENCRYPT_INFO_2 method which uses the sender’s private key and the recipient’s public
key to encrypt the information:

"Method ENCRYPT_INFO_2
C_BLOB($vbEncrypted;$vbPrivateKey; $vbPublicKey)
C_TEXT($vtEncrypt)

C_TIME ($vtDocRef)

$vtEncrypt:= [Private]info
VARIABLE TO BLOB ($vtEncrypt;$vbEncrypted)
" Your own private key is loaded...
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If (OK=1)
* ...and the recipient’s public key
ALERT ("Please select the recipient’s public key.")
$vhDocRef:=Open document("") "Public key to load

4th Dimension Language Reference 297

If (OK=1)
CLOSE DOCUMENT($vtDocRef)
DOCUMENT TO BLOB(Document;$vbPublicKey)
"BLOB encryption with the two keys as parameters

0 ENCRYPT BLOB ($vbEncrypted; $vbPrivateKey; $vbPublicKey)
BLOB TO DOCUMENT ("Update.txt";$vbEncrypted)
End if
End if

4. The encrypted file can then be sent to the recipient via the Internet. If a third person
gets hold of it, he or she will not be able to decrypt the message, even if he or she has the
public keys as the recipient’s private key will also be required.

5. Each recipient can decrypt the document by using his/her own private key and the
sender’s public key:

"Method DECRYPT_INFO_2
C_BLOB($vbEncrypted;$vbPublicKey; $vbPrivateKey)
C_TEXT($vtDecrypted)

C_TIME ($vhDocRef)

ALERT ("Please select the encrypted document.")
$vhDocRef:=Open document("") “Select the Update.txt file
If (OK=1)
CLOSE DOCUMENT($vhDocRef)
DOCUMENT TO BLOB(Document;$vbEncrypted)
“Your own private key is loaded
DOCUMENT TO BLOB("PrivateKey.txt"; $vbPrivateKey)
If (OK=1)
* ...and the sender’s public key
ALERT ("Please select the sender’s public key.")
$vhDocRef:=Open document("") "Public key to load
If (OK=1)
CLOSE DOCUMENT($vhDocRef)
DOCUMENT TO BLOB(Document;$vbPublicKey)
“Decrypting the BLOB with two keys as parameters
O DECRYPT BLOB ($vbEncrypted; $vbPublicKey;$vbPrivateKey)
BLOB TO VARIABLE($vbEncrypted; $vtDecrypted)
CREATE RECORD ([Private])
[Private]Info:=$vtDecrypted
SAVE RECORD([Private])
End if
End if
End if

See Also
DECRYPT BLOB, GENERATE ENCRYPTION KEYPAIR.

298 4th Dimension Language Reference

DECRYPT BLOB BLOB

version 6.7

DECRYPT BLOB (toDecrypt; sendPubKey{; recipPrivKey})

Parameter Type Description
toDecrypt BLOB - Data to decrypt

- Decrypted data
sendPubKey BLOB - Sender’s public key
recipPrivKey BLOB - Recipient’s private key
Description

The command DECRYPT BLOB decrypts the content of the BLOB toDecrypt using the
sender’s public key sendPubKey and, optionally, the recipient’s private key recipPrivKey.

The BLOB containing the sender’s public key is passed in the sendPubKey parameter. This
key has been generated by the sender using the GENERATE ENCRYPTION KEYPAIR
command and it has to be sent to the recipient.

The BLOB containing the recipient’s private key can be passed in the optional parameter
recipPrivKey. In this case, the recipient has to generate a pair of encryption keys with the
GENERATE ENCRYPTION KEYPAIR command and has to send his/her public key to the
sender. The keypair-based encryption system guarantees that the message has been
encrypted by the sender only and it can be decrypted by the recipient only. For more
information about the keypair-based encryption system, refer to the routine ENCRYPT
BLOB.

The command DECRYPT BLOB offers a checksum functionality in order to avoid any
BLOB content modification (deliberate or not). If the encrypted BLOB is damaged or
modified, the command will do nothing and an error will be returned.

Example
Refer to the examples given for the ENCRYPT BLOB command.

See Also
ENCRYPT BLOB, GENERATE ENCRYPTION KEYPAIR.

4th Dimension Language Reference 299

300 4th Dimension Language Reference

Boolean

4th Dimension Language Reference 301

302 4th Dimension Language Reference

Boolean Commands Boolean

version 6.0

4D includes Boolean functions, are used for Boolean calculations:

True
False
Not

Examples

This example sets a Boolean variable based on the value of a button. It returns True in
myBoolean if the myButton button was clicked and False if the button was not clicked.
When a button is clicked, the button variable is set to 1.

If (myButton=1) ° If the button was clicked
myBoolean:=True ~ myBoolean is set to True
Else ° If the button was not clicked,
myBoolean:=False ~ myBoolean is set to False
End if

The previous example can be simplified into one line.

myBoolean:=(myButton=1)

See Also
False, Logical Operators, Not, True.

In addition, the following 4D commands return a Boolean result: Activated, After, Before,
Before selection, Before subselection, Caps lock down, Compiled application, Deactivated,
During, End selection, End subselection, In break, In footer, In header, In transaction, Is a list,
Is a variable, Is in set, Is user deleted, Locked, Macintosh command down, Macintosh control
down, Macintosh option down, Modified, Modified record, Nil, Outside call, Read only state,
Semaphore, Shift down, True, Undefined, User in group, Windows Alt down, Windows Ctrl
down.

4th Dimension Language Reference 303

True

Boolean

version 3

True - Boolean

Parameter Type Description
This command does not require any parameters

Description
True returns the Boolean value True.

Example

The following example sets the variable vbOptions to True:

0 vbOptions:=True

See Also
False, Not.

304 4th Dimension Language Reference

False Boolean

version 3

False — Boolean

Parameter Type Description
This command does not require any parameters

Description
False returns the Boolean value False.

Example
The following example sets the variable vbOptions to False:

0 vbOptions:=False

See Also
Not, True.

4th Dimension Language Reference 305

Not Boolean

version 3

Not (boolean) — Boolean

Parameter Type Description
boolean Boolean - Boolean value to negate
Description

The Not function returns the negation of boolean, changing True to False or False to True.

Example

This example first assigns True to a variable, then changes the variable value to False, and
then back to True.

VResult:=True ~ vResult is set to True
O vResult:=Not(vResult) ~ vResult is set to False
0 vResult:=Not(vResult) ~ vResult is set to True

306 4th Dimension Language Reference

Clipboard

4th Dimension Language Reference 307

308 4th Dimension Language Reference

APPEND TO CLIPBOARD Clipboard

version 6.0
APPEND TO CLIPBOARD (dataType; data)
Parameter Type Description
dataType String - 4-character data type string
data BLOB - Data to append to the Clipboard
Description

The APPEND TO CLIPBOARD command appends to the Clipboard the data contained in
the BLOB data under the data type specified in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the BLOB data is correctly appended to the Clipboard, the OK variable is set to 1.
Otherwise the OK variable is set to O and an error may be generated.

Usually, you will use the APPEND TO CLIPBOARD command to append multiple instances
of the same data to the Clipboard or to append data that is not of type TEXT or PICT. To
append new data to the Clipboard, you must first clear the Clipboard using the

CLEAR CLIPBOARD command.

If you want to clear and append:
e text to the Clipboard, use the SET TEXT TO CLIPBOARD command,
e a picture to the Clipboard, use the SET PICTURE TO CLIPBOARD command.

However, note that if a BLOB actually contains some text or a picture, you can use the
APPEND TO CLIPBOARD command to append a text or a picture to the Clipboard.

Example

Using Clipboard commands and BLOBs, you can build sophisticated Cut/Copy/Paste
schemes that deal with structured data rather than a unique piece of data. In the
following example, the two project methods SET RECORD TO CLIPBOARD and GET
RECORD FROM CLIPBOARD enable you to treat a whole record as one piece of data to be
copied to or from the Clipboard.

4th Dimension Language Reference 309

" SET RECORD TO CLIPBOARD project method
* SET RECORD TO CLIPBOARD (Number)
* SET RECORD TO CLIPBOARD (Table number)

C_LONGINT($1;$vIField; $vIFieldType)
C_POINTER($vpTable; $vpField)
C_STRING(255;%vsDocName)
C_TEXT($vtRecordData;$vtFieldData)
C_BLOB($vxRecordData)

" Clear the Clipboard (it will stay empty if there is no current record)

0 CLEAR CLIPBOARD
" Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)
" If there is a current record for that table
If ((Record number($vpTable->)>=0) | (Is new record($vpTable->)))
" Initialize the text variable that will hold the text image of the record
$vtRecordData:=""
" For each field of the record:
For ($viField;1;Count fields($1))
* Get the type of the field
GET FIELD PROPERTIES($1;$vlIField;$vIFieldType)
* Get a pointer to the field
$vpField:=Field($1;$vIField)
" Depending on the type of the field, copy (or not) its data
" in the appropriate manner
Case of
: (($vIFieldType=Is Alpha field) | ($vIFieldType=Is Text))
$vtFieldData:=$vpField->
: (($vIFieldType=Is Real) | ($vIFieldType=Is Integer) |
($viIFieldType=ls Longint) | ($vIFieldType=Is Date) | ($viIFieldType=Is Time))
$vtFieldData:=String($vpField->)
: ($vIFieldType=Is Boolean)
$vtFieldData:=String(Num($vpField->);"Yes;;No")

Else
* Skip and ignore other field data types
$vtFieldData:=""
End case
* Accumulate the field data into the text variable holding
* the text image of the record
$vtRecordData:=$vtRecordData+Field name($1;$vIField)+":"+Char(9)
+$vtFieldData+CR
" Note: The method CR returns Char(13) on Macintosh
* and Char(13)+Char(10) on Windows
End for
" Put the text image of the record into the clipboard
SET TEXT TO CLIPBOARD($vtRecordData)

310 4th Dimension Language Reference

* Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
" Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)
" Create scrap file
SET CHANNEL(10;$vsDocName)
* Send the whole record into the scrap file
SEND RECORD($vpTable->)
* Close the scrap file
SET CHANNEL(11)
" Load the scrap file into a BLOB
DOCUMENT TO BLOB($vsDocName;$vxRecordData)
* We longer need the scrap file
DELETE DOCUMENT($vsDocName)
" Append the full image of the record into the Clipboard
" Note: We use arbitrarily "4Drc" as data type

APPEND TO CLIPBOARD("4Drc";$vxRecordData)
* At this point, the clipboard contains:
" (1) A text image of the record (as shown in the screen shots below)
* (2) A whole image of the record (Picture, Subfile and BLOB fields included)

End if

While entering the following record:

Entry fDr Employees =—————————————— B E
Employees ‘
Employee ID 1 Kids
First Name |Jane P [First Name
Christina
Middle Name [Reberts Sylvester
Arnold
Last Name |DDE
Address 12345 Main Street, Apt 6789
City |cUPERT INO Category []
State E DOE 245761
Zip Code 93014 Hours 0= :00 00
Salary 50000 Full time CiMale (3 Female

SN

1

»

4th Dimension Language Reference

311

If you apply the method SET RECORD TO CLIPBOARD to the [Employees] table, the

Clipboard will contain the text image of the record, as shown, and also the whole image
of the record.

[0 =— diipppard ————FHIH
Employee ID: 1

First Name: lane

Middle Name: Roberta

Last Name: DOE

Address: 12345 Main 5treet, Apt 6789
City: CUPERTINOG

State: CA

Zip Code: 95014

Salary: S0000

Category: 4

DOB: 2/5/61

Hours: 08:00:00

Full Time: No

Photo:

Kids:

“

You can paste this image of the record to another record, using the method GET RECORD
FROM CLIPBOARD, as follows:

* GET RECORD FROM CLIPBOARD method

* GET RECORD FROM CLIPBOARD (Number)

* GET RECORD FROM CLIPBOARD (Table number)
C_LONGINT($1;$vlIField; $vIFieldType; $vIPosCR; $vIPosColon)
C_POINTER($vpTable; $vpField)
C_STRING(255;%vsDocName)

C_BLOB($vxClipboardData)
C_TEXT($vtClipboardData; $vtFieldData)

" Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)
" If there is a current record
If ((Record number($vpTable->)>=0) | (Is new record($vpTable->)))
Case of
" Does the clipboard contain a full image record?
: (Test clipboard("4Drc")>0)
* If so, extract the clipboard contents
GET CLIPBOARD("4Drc";$vxClipboardData)
~ Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
" Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)
* Save the BLOB into the scrap file
BLOB TO DOCUMENT($vsDocName;$vxClipboardData)

312 4th Dimension Language Reference

" Open the scrap file
SET CHANNEL(10;$vsDocName)
" Receive the whole record from the scrap file
RECEIVE RECORD($vpTable->)
" Close the scrap file
SET CHANNEL(11)
" We longer need the scrap file
DELETE DOCUMENT($vsDocName)
" Does the clipboard contain TEXT?
: (Test clipboard("TEXT")>0)
" Extract the text from the clipboard
$vtClipboardData:=Get text from clipboard
* Initialize field number to be increment
$viField:=0
Repeat
* Look for the next field line in the text
$vIPosCR:=Position(CR ;$vtClipboardData)
If ($vIPosCR>0)
* Extract the field line
$vtFieldData:=Substring($vtClipboardData;1;$vIPosCR-1)
" If there is a colon ":"
$viPosColon:=Position(":"; $vtFieldData)
If ($vIPosColon>0)
" Take only the field data (eliminate field name)
$vtFieldData:=Substring($vtFieldData; $vIPosColon+2)
End if
" Increment field number
$viIField:=$vIField+1
" Clipboard may contain more data than we need...
If ($vIField<=Count fields($vpTable))
* Get the type of the field
GET FIELD PROPERTIES($1;$vIField;$vIFieldType)
" Get a pointer to the field
$vpField:=Field($1;$vIField)
" Depending on the type of the field,
* copy (or not) the text in the appropriate manner
Case of
: (($vIFieldType=Is Alpha field) | ($vIFieldType=Is Text))
$vpField->:=$vtFieldData
: (($vIFieldType=Is Real) |
($viIFieldType=lIs Integer) | ($vIFieldType=Is Longint))
$vpField->:=Num($vtFieldData)
: ($vIFieldType=Is Date)
$vpField->:=Date($vtFieldData)
: ($vIFieldType=Is Time)
$vpField->:=Time($vtFieldData)

4th Dimension Language Reference 313

: ($vIFieldType=Is Boolean)
$vpField->:=($vtFieldData="Yes")

Else
* Skip and ignore other field data types
End case
Else

* All fields have been assigned, get out of the loop
$vtClipboardData:=""
End if
" Eliminate text that has just been extracted
$vtClipboardData:=Substring($vtClipboardData; $vIPosCR+Length(CR))
Else
" No delimiter found, get out of the loop
$vtClipboardData:=""
End if
" Repeat as long as we have data
Until (Length($vtClipboardData)=0)
Else
ALERT("The Clipboard does not any data that can be pasted as a record.")

End case
End if

See Also
CLEAR CLIPBOARD, SET PICTURE TO CLIPBOARD, SET TEXT TO CLIPBOARD.

System Variables
If the BLOB data is correctly appended to the clipboard, OK is set to 1; otherwise OK is set
to 0 and an error may be generated.

Error Handling
If there is not enough memory to append the BLOB data to the clipboard, an error -108 is
generated.

314 4th Dimension Language Reference

CLEAR CLIPBOARD Clipboard

version 6.0

CLEAR CLIPBOARD

Parameter Type Description
This command does not require any parameters

Description

The CLEAR CLIPBOARD command clears the Clipboard of its contents. If the Clipboard
contains multiple instances of the same data, all instances are cleared. After a call to
CLEAR CLIPBOARD, the Clipboard becomes empty.

You must call CLEAR CLIPBOARD once before appending new data to the Clipboard using
the command APPEND TO CLIPBOARD, because this latter command does not clear the
Clipboard before appending the new data.

Calling CLEAR CLIPBOARD once and then calling APPEND TO CLIPBOARD several times
enables you to Cut or Copy the same data under different formats.

On the other hand, the commands SET TEXT TO CLIPBOARD and SET PICTURE TO
CLIPBOARD automatically clear the Clipboard before appending the TEXT or PICT data to
it.
Example
(1) The following code clears and then appends data to the clipboard:
O CLEAR CLIPBOARD ° Make sure the clipboard becomes empty
APPEND TO CLIPBOARD('XWKZ';$vxSomeData) ~ Append some data of type 'XWKZ'
APPEND TO CLIPBOARD('SYLK';$vxSylkData) ~ Append same data but as Sylk data
(2) See example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD.

4th Dimension Language Reference 315

GET CLIPBOARD Clipboard

version 6.0
GET CLIPBOARD (dataType; data)
Parameter Type Description
dataType String - 4-character string data type
data BLOB - Requested data extracted from the clipboard
Description

The GET CLIPBOARD command returns into the BLOB field or into the variable data the
data present in the Clipboard and whose type you pass in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the data is correctly extracted from the clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contains any data of the specified type, the
command returns an empty BLOB, sets the OK variable to O and generates an error -102.
If there is not enough memory to extract the data from the clipboard,the command sets
the OK variable to O and generates an error -108.

Example

The following object methods for two buttons copy from and paste data to the array
asOptions (pop-up menu, drop-downlist,...) located in a form:

" bCopyasOptions object method
If (Size of array(asOptions)>0) ~ Is there something to copy?
* Accumulate the array elements in a BLOB
VARIABLE TO BLOB (asOptions;$vxClipData)
CLEAR CLIPBOARD ° Empty the clipboard
APPEND TO CLIPBOARD ("artx";asOptions) ~ Note the data type arbitrarily chosen
End if

" bPasteasOptions object method
If (Test clipboard ("artx")>0) " Is there some "artx" data in the clipboard?
O GET CLIPBOARD ("artx";$vxClipData) ~ Extract the data from the clipboard
* Populate the array with the BLOB data
BLOB TO VARIABLE ($vxClipData;asOptions)
asOptions:=0 ~ Reset the selected element for the array
End if

316 4th Dimension Language Reference

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

System Variables

If the data is correctly extracted, OK is set to 1; otherwise OK is set to O and an error is
generated.

Error Handling

e If there is not enough memory to extract the data, an error -108 is generated.
e If there is no data of the requested type in the clipboard, an error -102 is generated.

4th Dimension Language Reference 317

GET PICTURE FROM CLIPBOARD Clipboard

version 6.0
GET PICTURE FROM CLIPBOARD (picture)
Parameter Type Description
picture Picture - Picture extracted from the Clipboard
Description

GET PICTURE FROM CLIPBOARD returns the picture present in the Clipboard into the
picture field or variable picture.

If the picture is correctly extracted from the Clipboard, the command sets the OK variable
to 1. If the Clipboard is empty or does not contain a picture, the command returns an
empty picture, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the picture from the Clipboard, the command sets the OK
variable to O and generates an error -108.

Examples

The following button’s object method assigns the picture present in the Clipboard (if
any) to the field [Employees]Photo:

If (Test clipboard ("PICT")>0)

O GET PICTURE FROM CLIPBOARD ([Employees]Photo)
Else
ALERT ("The clipboard does not contain any picture.")
End if
See Also

GET CLIPBOARD, Get text from clipboard, Test clipboard.

System Variables

If the picture is correctly extracted, OK is set to 1; otherwise OK is set to O and an error is
generated.

Error Handling

e If there is not enough memory to extract the picture, an error -108 is generated.
e If there is no picture in the Clipboard, an error -102 is generated.

318 4th Dimension Language Reference

Get text from clipboard Clipboard

version 6.0
Get text from clipboard - String
Parameter Type Description
This command does not require any parameters
Function result String - Returns the text (if any) present

in the Clipboard

Description
Get text from clipboard returns the text present in the clipboard.

If the text is correctly extracted from the Clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contain any text, the command returns an
empty string, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the text from the Clipboard, the command sets the OK
variable to O and generates an error -108.

4th Dimension text fields and variables can contain up to 32,000 characters. If there are
more than 32,000 characters in the Clipboard, the result returned by Get text from
clipboard will be truncated when placed into the field or variable receiving the value. To
handle very large Clipboard text contents, first test the size of the data using the
command Test clipboard. Then, if the text exceeds 32,000 characters, use the command
GET CLIPBOARD instead of Get text from clipboard.

Examples

The following example tests the for the presence of text in the Clipboard, then,
depending on the size of the data, extracts the text from the Clipboard as text or as a
BLOB:

$viSize:=Test clipboard ("TEXT")
Case of
: ($vISize<=0)
ALERT ("There is no text in the clipboard.")
: ($vISize<=32000)
O $vtClipData:=Get text from clipboard
If (OK=1)
" Do something with the text
End if

4th Dimension Language Reference 319

: ($viISize>32000)
GET CLIPBOARD ("TEXT";$vxClipData)

If (OK=1)
" Do something with the BLOB
End if
End case

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Test clipboard.

System Variables

If the text is correctly extracted, OK is set to 1; otherwise OK is set to O and an error is
generated.

Error Handling

e If there is not enough memory to extract the text, an error -108 is generated.
e If there is no text in the Clipboard, an error -102 is generated.

320 4th Dimension Language Reference

SET PICTURE TO CLIPBOARD Clipboard

version 6.0
SET PICTURE TO CLIPBOARD (picture)
Parameter Type Description
picture Picture — Picture whose copy is to be put into the Clipboard
Description

SET PICTURE TO CLIPBOARD clears the Clipboard and puts a copy of the picture you passed
in picture into the Clipboard.

After you have put a picture into the Clipboard, you can retrieve it using the command
GET PICTURE FROM CLIPBOARD or by calling GET CLIPBOARD ("PICT";...).

If the picture is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the picture into the Clipboard, the OK variable is set to
0, but no error is generated.

Example

Using a floating window, you display a form that contains the array asEmployeeName,
which lists the names of the employees from an [Employees] table. Each time you click
on a name, you want to copy the employee's picture to the Clipboard. In the object
method for the array, you write:

If (asEmployeeName#0)
QUERY ([Employees];[Employees]Last name=asEmployeeName{asEmployeeName})
If (Picture size ([Employees]Photo)>0)

O SET PICTURE TO CLIPBOARD ([Employees]Photo) ~ Copy the employee's photo
Else
CLEAR CLIPBOARD " No photo or no record found
End if
End if
See Also

APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD.

System Variables or Sets
If a copy of the picture is correctly put into the Clipboard, the OK variable is set to 1.

4th Dimension Language Reference 321

SET TEXT TO CLIPBOARD Clipboard

version 6.0
SET TEXT TO CLIPBOARD (text)
Parameter Type Description
text String - Text whose copy is to be put into the Clipboard
Description

SET TEXT TO CLIPBOARD clears the clipboard and then puts a copy of the text you passed
in text into the Clipboard.

After you have put some text into the Clipboard, you can retrieve it using the Get text
from clipboard command or by calling GET CLIPBOARD ("TEXT";...).

If the text is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the text into the Clipboard, the OK variable is set to O,
but no error is generated.

4th Dimension text expressions can contain up to 32,000 characters. To copy larger text
values, accumulate the text into a BLOB, call CLEAR CLIPBOARD, then call APPEND TO
CLIPBOARD ("TEXT";...).

Example
See the example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD, Get text from clipboard.

System Variables or Sets
If a copy of the text is correctly put into the Clipboard, the OK variable is set to 1.

322 4th Dimension Language Reference

Test clipboard Clipboard

version 6.0
Test clipboard (dataType) — Number
Parameter Type Description
dataType String - 4-character data type string
Function result Number - Size (in bytes) of data stored in Clipboard

or error code result

Description

The Test clipboard command allows you to test if there is data of the type you passed in
dataType present in the Clipboard.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the Clipboard is empty or does not contain any data of the specified type, the
command returns an error -102 (see the table of predefined constants). If the Clipboard
contains data of the specified type, the command returns the size of this data, expressed
in bytes.

After you have detected that the Clipboard contains data of the type in which you are
interested, you can extract that data from the Clipboard using one the following
commands:

e If the Clipboard contains type TEXT data, you can obtain that data using the
Get text from clipboard command, which returns a text value, or the GET CLIPBOARD
command, which returns the text into a BLOB.

e If the Clipboard contains type PICT data, you can obtain that data using the
GET PICTURE FROM CLIPBOARD command, which returns the picture into a picture field
or variable, or the GET CLIPBOARD command, which returns the picture into a BLOB.

e For any other data type, use the GET CLIPBOARD command, which returns the data into
a BLOB.

4th Dimension provides the following predefined constants:

Constant Type Value
No such data in clipboard Long Integer -102
Text data String TEXT
Picture data String PICT

4th Dimension Language Reference 323

Examples

(1) The following code tests whether the Clipboard contains a picture and, if so, copies
that picture into a 4D variable:

O If (Test clipboard (Picture data) > 0) " Is there a picture in the clipboard?
" If so, extract the picture from the clipboard
GET PICTURE FROM CLIPBOARD ($vPicVariable)
Else
ALERT("There is no picture in the clipboard.")
End if

(2) Usually, applications cut and copy data of type TEXT or PICT into the Clipboard,
because most applications recognize two standard data types. However, an application can
append to the Clipboard several instances of the same data in different formats. For
example, each time you cut or copy a part of a spreadsheet, the spreadsheet application
could append the data under the hypothetical ‘SPSH’ format, as well as in SYLK and TEXT
formats. The ‘SPSH’ instance would contain the data formatted using the application’s
data structure. The SYLK form would contain the same data, but using the SYLK format
recognized by most of the other spreadsheet programs. Finally, the TEXT format would
contain the same data, without the extra information included in the SYLK or the
hypothetical ‘SPSH’ format. At this point, while writing Cut/Copy/Paste routines between
4th Dimension and that hypothetical spreadsheet application, assuming you know the
description of the ‘SPSH’ format and that you are ready to parse SYLK data, you could
write something like:

Case of
* First, check whether the clipboard contains data
* from the hypothetical spreadsheet application

O : (Test clipboard ('SPSH') > 0)
: gécond, check whether the clipboard contains Sylk data
0 : (Test clipboard ('SYLK') > 0)
) i:.i.nally check whether the clipboard contains Text data
0 : (Test clipboard ('TEXT') > 0)
End case

In other words, you try to extract from the Clipboard the instance of the data that carries
most of the original information.

(3) See the example for the APPEND TO CLIPBOARD command.

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

324 4th Dimension Language Reference

Communications

4th Dimension Language Reference 325

326 4th Dimension Language Reference

SET CHANNEL Communications

version 3

SET CHANNEL (port | operation{; settings | document})

Parameter Type Description

port | operation Number - Serial port number, or
Document operation to perform

settings | document Number | String - Serial port settings, or
Document name

Description
The SET CHANNEL command opens a serial port or a document. You can open only one

serial port or one document at a time with this command. To close an opened serial port,
pass SET CHANNEL (11).

Historical Note: This command was originally the first 4D command used for working
with serial ports and documents on disks. Since that time, new commands have been
added. Today, you will typically work with documents on disk using the commands Open
document, Create document and Append document. With these commands, you can read
and write characters to and from documents using SEND PACKET or RECEIVE PACKET
(these commands work with SET CHANNEL, too). However, if you want to use the
commands SEND VARIABLE, RECEIVE VARIABLE, SEND RECORD and RECEIVE RECORD, you
must use SET CHANNEL to access the document on disk.

The description of SET CHANNEL is composed of two sections:

e Working with Serial Ports
e Working with Documents

Working with Serial Ports - SET CHANNEL (port;settings)

The first form of the SET CHANNEL command opens a serial port, setting the protocol and
other port information. Data can be sent with SEND PACKET, SEND RECORD or SEND
VARIABLE, and received with RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD or RECEIVE
VARIABLE.

The port Parameter
The first parameter, port, selects the port and the protocol.

4th Dimension Language Reference 327

You can address up to 99 serial ports (one at a time). The following table lists the values
for port:

Value for port Description

0 Printer port (Macintosh) or COM2 (PC) with no protocol

1 Modem port (Macintosh) or COM1 (PC) with no protocol

20 Printer port (Macintosh) or COM2 (PC) with sofware protocol such as
XON/XOFF

21 Modem port (Macintosh) or COM1 (PC) with sofware protocol such as
XON/XOFF

30 Printer port (Macintosh) or COM2 (PC) with hardware protocol such as
RTS/CTS

31 Modem port (Macintosh) or COM1 (PC) with hardware protocol such
as RTS/CTS

101 to 199 Serial communication with no protocol

201 to 299 Serial communication with software protocol such as XON/XOFF

301 to 399 Serial communication with hardware protocol such as RTS/CTS

Important: The value you pass in port must refer to an existing serial COM port
recognized by the operating system. For example, in order to be able to use the values
101, 103 and 125, the serial ports COM1, COM3 and COM25 must have been set up
correctly.

Note on serial ports

In a standard configuration Mac OS and Windows support two serial ports: on Mac OS,
the modem port and the printer port; on Windows, the COM1 and COM2 ports.
However, additional serial ports can be added by the use of extension boards. Originally,
4th Dimension only adressed two standard serial ports and it was only later that the
support of additional ports was implemented. For compatibility reasons, both addressing
systems were kept.

- If you want to address a standard serial port (printer/COM2 or modem/COM1), you can
either pass in the port parameter one of the following values 0, 1, 20, 21, 30 and 31 (that
corresponds to the old addressing method), or a value greater than 100 (please see the
following explanation).

- If you want to address additional serial ports, you need to pass the value N+100 (where N
is the value of the port to address). You may also consider adding 100 or 200 to the value
mentioned above (N+100), if you want to select respectively a software or a hardware
protocol.

Examples :

(1) If you want to use the printer/COM2 port with no protocol, you can use one of the
following syntaxes:

0 SET CHANNEL (0;param)
or

0 SET CHANNEL (102;param)

328 4th Dimension Language Reference

(2) If you want to use the modem/COM1 port with the XON/XOFF protocol, you can use
one of the following syntaxes:

0 SET CHANNEL (21;param)
or

0 SET CHANNEL (201;param)

(3) If you want to use the COM 25 port with the RTS/CTS protocol, you need to use the
following syntax:

0 SET CHANNEL (325;param)

The settings Parameter

The settings parameter sets the speed, number of data bits, number of stop bits, and
parity. You determine the value for settings by adding the speed, data bits, stop bits, and
parity values as listed in the following table. For example, to set 1200 baud, 8 data bits, 1
stop bit, and no parity, you would add 94 + 3072 + 16384 + 0 = 19550. You would then
use 19550 as the value of the setup parameter.

Value to accumulate Description
in settings parameter

Speed 380 300

(in baud) 189 600
94 1200
62 1800
46 2400
30 3600
22 4800
14 7200
10 9600
4 19200
2 28800
1 38400
0 57600
1022 115200
1021 230400

Data bits 0 5
2048 6
1024 7
3072 8

Stop bits 16384 1
-32768 1.5
-16384 2

Parity 0 None
4096 Odd
12288 Even

4th Dimension Language Reference 329

Working with Documents on Disk - SET CHANNEL(operation;document)

The second form of the SET CHANNEL command allows you to create, open, and close a
document. Unlike the System documents commands, it can open only one document at a
time. The document can be read from or written to.

The operation parameter specifies the operation to be performed on the document
specified by document. The following table lists the values of operation and the resulting
operation with different values for document. The first column lists the allowed values for
operation. The second column lists the allowed values for document. The third column
lists the resulting operation.

For example, to display an Open File dialog box to open a text file, you would use the
following line:

0 SET CHANNEL (13; ")

Operation Document Result

10 String Opens the document specified by String.
If the document doesn’t exist, the document is opened
and created.

10 "' (empty string) Displays the Open File dialog box to open a file.
All file types are displayed.
11 none Closes an open file.
12 "" (empty string) Displays the Save File dialog box to create a new file.
13 " (empty string) Displays the Open File dialog box to open a file. Only text

file types are displayed.

All of the operations in this table set the Document system variable if appropriate. They
also set the OK system variable to 1 if the operation was successful. Otherwise, the OK
system variable is set to O.

Examples
See examples for the commands RECEIVE BUFFER, SET TIMEOUT and RECEIVE RECORD.

See Also

Append document, Create document, GET SERIAL PORT MAPPING, Open document, RECEIVE
BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE, SEND PACKET, SEND
RECORD, SEND VARIABLE, SET TIMEOUT.

330 4th Dimension Language Reference

SET TIMEOUT Communications

version 3

SET TIMEOUT (seconds)

Parameter Type Description
seconds Number - Seconds until the timeout
Description

SET TIMEOUT specifies how much time a serial port command has to complete. If the
serial port command does not complete within the specified time, seconds, the serial port
command is canceled, an error -9990 is generated, and the OK system variable is set to O.
You can catch the error with an error-handling method installed using ON ERR CALL.

Note that the time is the total time allowed for the command to execute, not the time
between characters received. To cancel a previous setting and stop monitoring serial port
communication, use a setting of 0 for seconds.

The commands that are affected by the timeout setting are:
e RECEIVE PACKET

e RECEIVE RECORD

e RECEIVE VARIABLE

Example

The following example sets the serial port to receive data. It then sets a time-out. The data
is read with RECEIVE PACKET. If the data is not received in time, an error occurs:

* Open Serial Port
SET CHANNEL (MacOS Serial Port; Speed 9600 + Data Bits 8 + Stop Bits One +

Parity None)

0 SET TIMEOUT (10) ° Set the timeout for 10 seconds
ON ERR CALL ("CATCH COM ERRORS") ~ Do not let the method being interrupted
RECEIVE PACKET (vtBuffer; Char (13)) ~ Read until a carriage return is met

If (OK=0)

ALERT ("Error receiving data.")
Else

[People]Name:=vtBuffer " Save received data in a field
End if

ON ERR CALL("")

See Also
ON ERR CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE.

4th Dimension Language Reference 331

USE ASCII MAP Communications

version 3
USE ASCIl MAP (map | *{; mapInOut})
Parameter Type Description
map | * String | * - Document name of the map to use, or
* to reset to default ASCIl map
mapInOut Number - 0 = Output map
1 = Input map

If omitted, output map

Description
USE ASCII MAP has two forms. The first form loads the ASCII map named map from disk

and uses that ASCII map. If mapInOut is O, the map is loaded as the output map. If
mapInOut is 1, the map is loaded as the input map.

The ASCII map must have been previously created with the ASCII map dialog box in the
User environment. After an ASCII map is loaded, 4th Dimension uses the map during
transfer of data between the database and a document or a serial port. Transfer operations
include the import and export of text (ASCII), DIF, and SYLK files. An ASCII map also
works on data transferred with SEND PACKET, RECEIVE PACKET, and RECEIVE BUFFER. It has
no effect on transfers of data done with SEND RECORD, SEND VARIABLE, RECEIVE RECORD,
and RECEIVE VARIABLE.

If you give an empty string for map, USE ASCIl MAP displays a standard Open File dialog
box so that the user can specify an ASCII map document. Whenever you execute USE
ASCIl MAP, the OK system variable is set to 1 if the map is successfully loaded, and to O if
it is not.

The second form of USE ASCIl MAP, with the asterisk (*) parameter instead of map, restores
the default ASCII map. If mapInOut is O, the map is reset for output. If mapInOut is 1, the
map is reset for input. The default ASCII map has no translation between characters.

Note: When passing "*" the OK system variable is set to 0.

332 4th Dimension Language Reference

Example

The following example loads a special ASCII map from disk. It then exports data. Finally,
the default ASCII map is restored:

0 USE ASCII MAP ("MactoPC"; 0) ~ Load an alternative ASCIl map
EXPORT TEXT ([MyTable]; "MyText") ~ Export data through the map

0 USE ASCII MAP (*; 0) ~ Restore the default map

See Also

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, Mac
to Win, RECEIVE BUFFER, RECEIVE PACKET, SEND PACKET, Win to Mac.

4th Dimension Language Reference 333

GET SERIAL PORT MAPPING Communications

version 2004

GET SERIAL PORT MAPPING (numArray; nameArray)

Parameter Type Description
numaArray Number array Array of port numbers
nameArray String array - Array of port names
Description

The GET SERIAL PORT MAPPING command returns two arrays, numArray and nameArray,
containing the serial port numbers and the serial port names of the current machine.

This command is useful under Mac OS X, where the operating system dynamically
allocates the port number when using a USB serial adapter. You can address any extended
serial port using its name (static), regardless of its actual number.

Note: This command does not return meaningful values with standard ports. If you want
to address a standard port, you must pass its value (0 or 1) directly using the SET CHANNEL
command (former operation of 4D).

Example

This project method can be used to address the same serial port (without protocol),
regardless of the number that has been assigned to it:

ARRAY TEXT($arrPortNames;0)
ARRAY LONGINT($arrPortNums;0)
C_LONGINT($vPortNum)

“Find out the current numbers of the serial ports

0 GET SERIAL PORT MAPPING(S$arrPortNums;$arrPortNames)
$vPortNum:=Find in array($arrPortNums;vPortName)
" vPortName contains the name of the port to be used; it may come from
“a dialog box, a value stored in a field, etc.
If ($vPortNum=>0)
SET CHANNEL($vPortNum+100; params) “params contains the communication
“parameters. Don't forget to add 100 to the number since it is an extended port
End if
... Carry out the desired operations
SET CHANNEL(11) “Closing of port

See also
SET CHANNEL.

334 4th Dimension Language Reference

SEND PACKET Communications

version 3
SEND PACKET ({docRef; }packet)
Parameter Type Description
docRef DocRef - Document reference number, or
Current channel (serial port or document)
packet String - String or Text to be sent
Description

SEND PACKET sends a packet to a serial port or to a document. If docRef is specified, the
packet is written to the document referenced by docRef. If docRef is not specified, the
packet is written to the serial port or document previously opened by the SET CHANNEL
command. A packet is just a piece of data, generally a string of characters.

Before you use SEND PACKET, you must open a serial port or a document with SET
CHANNEL, or open a document with one of the document commands.

When writing to a document, the first SEND PACKET begins writing at the beginning of
the document unless the document was opened with Append document. Until the
document is closed, each subsequent packet is appended to any previously sent packets.

Version 6 Note: This command is still useful for a document opened with SET CHANNEL.
On the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

Important: SEND PACKET writes Mac OS ASCII data on both Windows and Macintosh
platforms. Mac OS ASCII data uses eight bits. Standard ASCII uses only the lower seven
bits. Many devices do not use the eighth bit in the same way as does
Windows/Macintosh. If the string to be sent contains data that uses the eighth bit, be
sure to create an ASCII map to translate the ASCII characters, and execute USE ASCIl MAP
before using SEND PACKET. You can also use the Mac to Win function (for more
information, refer to the example for this function). Protocols like XON/XOFF use some
low ASCII codes to establish communication between machines. Be careful to not send
such ASCII codes, as this may interfere with the protocol or even break communication.

4th Dimension Language Reference 335

Example

The following example writes data from fields to a document. It writes the fields as fixed-
length fields. Fixed-length fields are always of a specific length. If a field is shorter than
the specified length, the field is padded with spaces. (That is, spaces are added to make up
the specified length.) Although the use of fixed-length fields is an inefficient method of
storing data, some computer systems and applications still use them:

$vhDocRef := Create document ("") ~ Create a document
If (OK=1) ~ Was the document created?
For ($vIRecord; 1; Records in selection ([People])) = Loop once for each record
" Send a packet. Create the packet from a string of 15 spaces containing the
* first name field

0 SEND PACKET ($vhDocRef; Change string(15 * Char(Space); [People]First; 1))
* Send a second packet. Create the packet from a string of 15 spaces
* containing the last name field
" This could be in the first SEND PACKET, but is separated for clarity

0 SEND PACKET ($vhDocRef; Change string (15 * Char(Space); [People]last; 1))
NEXT RECORD([People])
End for
* Send a Char(26), which is used as an end-of-file marker for some computers
0 SEND PACKET ($vhDocRef; Char(SUB ASCIl Code))
CLOSE DOCUMENT ($vhDocRef) * Close the document
End if
See Also

Get document position, RECEIVE PACKET, SET DOCUMENT POSITION.

336 4th Dimension Language Reference

RECEIVE PACKET Communications

version 6.8 (Modified)

RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)

Parameter Type Description
docRef DocRef - Document reference number, or
Current channel (serial port or document)
receiveVar Variable - Variable to receive data
stopChar | numChars String | Number - Character(s) at which to stop receiving, or

Number of characters to receive

Description
RECEIVE PACKET reads characters from a serial port or from a document.

If docRef is specified, this command reads characters from a document opened using Open
document, Create document or Append document. If docRef is omitted, this command
reads characters from the serial port or the document opened using SET CHANNEL.

Whatever the source, the characters read are returned in receiveVar, which must be a Text
or String variable. Remember that String variables accept up to 255 characters and have a
fixed size whereas Text variables do not have a set size and can accept up to 32,000
characters.

To read a particular number of characters, pass this number in numChars. You can read up
to 32,000 characters in a single call if the receiveVar variable is of the Text type. To
specify the maximum number of characters, you can pass the MAXTEXTLEN constant in
numcChars.

To read characters until a particular string (composed of one or more characters) is
encountered, pass this string in stopChar (the string is not returned in receiveVar).

In this case, if the character string specified by stopChar is not found:

e When RECEIVE PACKET is reading a document, it will stop reading at the end of the
document.

e When RECEIVE PACKET is reading from a serial port, it will attempt to wait indefinitely
until the timeout (if any) has elapsed (see SET TIMEOUT) or until the user interrupts the
reception (see below).

During execution of RECEIVE PACKET, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL. Usually, you will only have to handle interruption of a reception
when communicating over a serial port.

4th Dimension Language Reference 337

When reading a document, the first RECEIVE PACKET begins reading at the beginning of
the document. The reading of each subsequent packet begins at the character following
the last character read.

Note: This command is useful for document opened with SET CHANNEL. On the other
hand, for a document opened with Open document, Create document and Append
document, you can use the Get document position and SET DOCUMENT POSITION
commands to get and change the location in the document where the next writing
(SEND PACKET) or reading (RECEIVE PACKET) will occur.

When attempting to read past the end of a file, RECEIVE PACKET will return with the data
read up to that point and the variable OK will be set to 1. Then, the next RECEIVE PACKET
will return an empty string and set the OK variable to zero.

Note: When you use the RECEIVE PACKET command to read characters from a Windows
document and do not want to use ASCII maps to convert Windows characters into
Mac OS characters, you can use the Win to Mac function.

Examples

1. The following example reads 20 characters from a serial port into the variable
getTwenty:

g RECEIVE PACKET (getTwenty; 20)

2. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters a carriage return:

0 RECEIVE PACKET (myDoc;vData;Char (Carriage Return))

3. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters the </TD> (end of table cell)
HTML tag:

O RECEIVE PACKET (myDoc;vData;"</TD>")

4. The following example reads data from a document into fields. The data is stored as
fixed-length fields. The method calls a subroutine to strip any trailing spaces (spaces at the
end of the string). The subroutine follows the method:

$vhDocRef := Open document ("";"TEXT") *~ Open a TEXT document
If (OK=1) " If the document was opened
Repeat " Loop until no more data
RECEIVE PACKET ($vhDocRef; $Var1; 15) "~ Read 15 characters

0 RECEIVE PACKET ($vhDocRef; $Var2; 15) ~ Do same as above for second field

O

338 4th Dimension Language Reference

If (OK=1) " If we are not beyond the end of the document
CREATE RECORD([People]) ~ Create a new record
[People]First := Strip ($Var1) ~ Save the first name
[People]lLast := Strip ($Var2) ~ Save the last name
SAVE RECORD([People]) ~ Save the record

End if

Until (OK =0)
CLOSE DOCUMENT ($vhDocRef) * Close the document
End if

The spaces at the end of the data are stripped by the following method, called Strip:
For ($i; Length ($1); 1, -1) ~ Loop from end of string to start
If ($1<$i=#" ") " If it is not a space...
$i :=-$i ~ Force the loop to end
End if
End for
$0 := Delete string ($1; -$i; Length ($1)) " Delete the spaces

See Also

Get document position, RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION, SET
TIMEOUT.

System Variables or Sets

After a call to RECEIVE PACKET, the OK system variable is set to 1 if the packet is received
without error. Otherwise, the OK system variable is set to O.

4th Dimension Language Reference 339

RECEIVE BUFFER Communications

version 6.8.3 (Modified)

RECEIVE BUFFER (receiveVar)

Parameter Type Description
receiveVar Variable - Variable to receive data
Description

RECEIVE BUFFER reads the serial port that was previously opened with SET CHANNEL. The
serial port has a buffer that fills with characters until a command reads from the buffer.
RECEIVE BUFFER gets the characters from the serial buffer, put them into receiveVar then
clears the buffer. If there are no characters in the buffer, then receiveVar will contain
nothing.

On Windows

The Windows serial port buffer is limited in size to 10 Kbytes. This means that the buffer
can overflow. When it is full and new characters are received, the new characters replace

the oldest characters. The old characters are lost; therefore, it is essential that the buffer is
read quickly when new characters are received.

On Mac OS

The Mac OS 9.x serial port buffer is limited in size to 10 Kbytes. Under Mac OS X, its
capacity is, in theory, unlimited (depending on the available memory). If the buffer is full
and new characters are received, the new characters replace the oldest characters. The old
characters are lost; therefore, it is essential that the buffer is read quickly when new
characters are received.

Note: There are 4D plug-ins that enable you to increase the size of the serial buffer.

RECEIVE BUFFER is different from RECEIVE PACKET in that it takes whatever is in the buffer
and then immediately returns. RECEIVE PACKET waits until it finds a specific character or
until a given number of characters are in the buffer.

During the execution of RECEIVE BUFFER, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL.

340 4th Dimension Language Reference

Example

The project method LISTEN TO SERIAL PORT uses RECEIVE BUFFER to get text from the
serial port and accumulate it into a an interprocess variable:

* LISTEN TO SERIAL PORT
* Opening the serial port
SET CHANNEL (201; Speed 9600 + Data Bits 8 + Stop Bits One + Parity None)
<>|P_Listen_Serial_Port:=True
While (<>IP_Listen_Serial_Port)
RECEIVE BUFFER($vtBuffer)
If ((Length($vtBuffer)+Length(<>vtBuffer))>MAXTEXTLEN)
<>vtBuffer:=""
End if
<>vtBuffer:=<>vtBuffer+$Buffer
End while

At this point, any other process can read the interprocess OvtBuffer to work with the data
coming from the serial port.

To stop listening to the serial port, just execute:

* Stop listening to the serial port
OIP_Listen_Serial_Port:=False

Note that access to the interprocess OvtBuffer variable should be protected by a
semaphore, so that processes will not conflict. See the command Semaphore for more
information.

See Also
ON ERR CALL, RECEIVE PACKET, Semaphore, SET CHANNEL, Variables.

4th Dimension Language Reference 341

SEND VARIABLE Communications

version 3

SEND VARIABLE (variable)

Parameter Type Description
variable Variable - Variable to send
Description

SEND VARIABLE sends variable to the document or serial port previously opened by SET
CHANNEL. The variable is sent with a special internal format that can be read only by
RECEIVE VARIABLE. SEND VARIABLE sends the complete variable (including its type and
value).

Notes

1. If you send a variable to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND VARIABLE with a
document opened with Open document, Append document or Create document.

2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND RECORD, SET CHANNEL.

342 4th Dimension Language Reference

RECEIVE VARIABLE Communications

version 3

RECEIVE VARIABLE (variable)

Parameter Type Description
variable Variable - Variable in which to receive
Description

RECEIVE VARIABLE receives variable, which was previously sent by SEND VARIABLE from the
document or serial port previously opened by SET CHANNEL.

In interpreted mode, if the variable does not exist prior to the call to RECEIVE VARIABLE,
the variable is created, typed and assigned according to what has been received. In
compiled mode, the variable must be of the same type as what is received. In both cases,
the contents of the variable are replaced with what is received.

Notes

1. If you receive a variable from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE VARIABLE
with a document opened with Open document, Append document or Create document.

2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.

3. During the execution of RECEIVE VARIABLE, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
See example for the command RECEIVE RECORD.

See Also
ON ERR CALL, RECEIVE RECORD, SEND RECORD, SEND VARIABLE.

System Variables or Sets

The OK system variable is set to 1 if the variable is received. Otherwise, the OK system
variable is set to 0.

4th Dimension Language Reference 343

SEND RECORD Communications

version 3
SEND RECORD {(table)}
Parameter Type Description
table Table - Table from which to send the current record,

or Default table, if omitted

Description

SEND RECORD sends the current record of table to the serial port or document opened by
the SET CHANNEL command. The record is sent with a special internal format that can be
read only by RECEIVE RECORD. If no current record exists, SEND RECORD has no effect.

The complete record is sent. This means that all subrecords, pictures and BLOBs stored in
the record are also sent.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Note: If you send a record to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND RECORD with a
document opened with Open document, Append document or Create document.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND VARIABLE.

344 4th Dimension Language Reference

RECEIVE RECORD Communications

version 3
RECEIVE RECORD {(table)}
Parameter Type Description
table Table - Table into which to receive the record, or

Default table, if omitted

Description

RECEIVE RECORD receives a record into table from the serial port or document opened by
the SET CHANNEL command. The record must have been sent with SEND RECORD. When
you execute RECEIVE RECORD, a new record is automatically created for table. If the record
is received correctly, you must then use SAVE RECORD to save the new record.

The complete record is received. This means that all subrecords, pictures and BLOBs stored
in the record are also received.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Notes

1. If you receive a record from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE RECORD
with a document opened with Open document, Append document or Create document.

2. During the execution of RECEIVE RECORD, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example

A combined use of SEND VARIABLE, SEND RECORD, RECEIVE VARIABLE and RECEIVE RECORD
is ideal for archiving data or for exchanging data between identical single-user databases
used in different places. You can exchange data between 4D databases using the
import/export commands such as EXPORT TEXT and IMPORT TEXT. However, if your data
contains graphics, subtables and/or related tables, using SEND RECORD and RECEIVE
RECORD is far more convenient.

For instance, the documentation you are currently reading has been created using 4D and

4D Write. Because several writers in different locations wordwide were working on it, we
needed a simple way to exchange data between the different databases.

4th Dimension Language Reference 345

Here is a simplified view of the database structure:

[2][cMEee wiza (2]

— |CH Number L
CHM US Name A
CH FR Name A

EI CM US Params EI
oo e C T —
CHM ParmName

CM Number L e A

CHM US Name
WR_Ch_UIS_ P

L
EI CM FR Params EI
L EIe ¢

CH ParmName A

The table [Commands] contains the description of each command or topic. The tables [CM
US Params] and [CM FR Params] respectivily contain the parameter list for each command
in English and in French. The table [CM See Also] contains the commands listed as
reference (See Also section) for each command. Exchanging documentation between
databases therefore consists in sending the [Commands] records and their related records.
To do so, we use SEND RECORD and RECEIVE RECORD. In addition, we use SEND VARIABLE
and RECEIVE VARIABLE in order to mark the import/export document with tags.

Here is the (simplified) project method for exporting the documentation:

* CM_EXPORT_SEL project method
* This method works with the current selection of the [Commands] table

0 SET CHANNEL(12;"") * Let's the user create an open a channel document
If (OK=1)
* Tag the document with a variable that indicates its contents
" Note: the BUILD_LANG process variable indicates if US (English)
* or FR (French) data is sent
$vsTag:="4DV6COMMAND"+BUILD_LANG
0 SEND VARIABLE($vsTag)
" Send a variable indicationg how many [Commands] are sent
$vINbCmd:=Records in selection([Commands])
a SEND VARIABLE($vINbCmd)
FIRST RECORD([Commands])
* For each command
For ($vICmd;1;$vINbCmd)
* Send the [Commands] record
0 SEND RECORD([Commands])
* Select all the related records
RELATE MANY([Commands])

346 4th Dimension Language Reference

* Depending on the language, send a variable indicating
" the number of parameters that will follow
Case of
: (BUILD_LANG="US")
$vINbParm:=Records in selection([CM US Params])
: (BUILD_LANG="FR")
$vINbParm:=Records in selection([CM FR Params])
End case
0 SEND VARIABLE($vINbParm)
* Send the parameter records (if any)
For ($vIParm;1;$vINbParm)
Case of
: (BUILD_LANG="US")
O SEND RECORD([CM US Params])
NEXT RECORD([CM US Params])
: (BUILD_LANG="FR")
O SEND RECORD([CM FR Params])
NEXT RECORD([CM FR Params])
End case
End for
* Send a variable indicating how many “See Also” will follow
$vINbSee:=Records in selection([CM See Also])

O SEND VARIABLE($vINDSee)
" Send the [See Also] records (if any)
For ($viSee;1;$vINbSee)

O SEND RECORD([CM See Also])
NEXT RECORD([CM See Also])
End for
" Go to the next [Commands] record and continue the export
NEXT RECORD([Commands])
End for

SET CHANNEL(11) ° Close the document
End if

O

Here is the (simplified) project method for importing the documentation:

* CM_IMPORT_SEL project method

O SET CHANNEL(10;"") ~ Let's user open an existing document
If (OK=1) " If a document was open

O RECEIVE VARIABLE($vsTag) ~ Try receiving the expected tag variable
If ($vsTag="4DV6COMMAND@") " Did we get the right tag?
$CurLang:=Substring($vsTag;Length($vsTag)-1) “Extract language from the tag
If (($CurLang="US") | ($CurLang="FR")) ~ Did we get a valid language

g RECEIVE VARIABLE($vINbCmd)

4th Dimension Language Reference 347

" How many commands are there in this document?
If ($vINbCmd>0) ° If at least one
For ($viICmd;1;$vINbCmd) ~ For each archived [Commands] record
" Receive the record
0 RECEIVE RECORD([Commands])
* Call a subroutine that saves the new record or copies its values
" into an already existing record
CM_IMP_CMD ($CurlLang)
" Receive the number of parameters (if any)
O RECEIVE VARIABLE($vINbParm)
If ($vINbParm>=0)
* Call a subroutine that calls RECEIVE RECORD then saves the new
" records or copies them into already existing records
CM_IMP_PARM ($vINbParm;$CurlLang)
End if
* Receive the number of “See Also” (if any)
O RECEIVE VARIABLE($vINDbSee)
If ($vINbSee>0)
* Call a subroutine that calls RECEIVE RECORD then saves the new
" records or copies them into already existing records
CM_IMP_SEEA ($vINDbSee;$CurlLang)

End if
End for
Else
ALERT("The number of commands in this export document is invalid.")
End if
Else
ALERT("The language of this export document is unkown.")
End if
Else
ALERT("This document is NOT a Commands export document.")
End if
0 SET CHANNEL(11) ° Close document
End if

Note that we do not test the OK variable while receiving the data nor try to catch the
errors. However, because we stored variables in the document that describes the document
itself, if these variables, once received, made sense, the probability for an error is very low.
If for instance a user opens a wrong document, the first test stops the operation right
away.

See Also
RECEIVE VARIABLE, SEND RECORD, SEND VARIABLE.

System Variables or Sets

The OK system variable is set to 1 if the record is received. Otherwise, the OK system
variable is set to 0.

348 4th Dimension Language Reference

10

Compiler

4th Dimension Language Reference 349

350 4th Dimension Language Reference

Compiler Commands Compiler

version 2003 (Modified)

The integrated compiler of 4th Dimension translates your database applications into
assembly level instructions. The advantages of the compiler are:

e Speed: Your database can run from 3 to 1,000 times faster.

e Code checking: Your database application is scanned for the consistency of code. Both
logical and syntactical conflicts are detected.

¢ Protection: once your database is compiled, you can delete the interpreted code, Then,
the compiled database is functionally identical to the original, except that the structure
and procedures cannot be viewed or modified, deliberately or inadvertently.

e Stand-alone double-clickable applications: compiled databases can also be transformed
into stand-alone applications (.EXE files) with their own icon.

For a description of the operation of the 4th Dimension compiler, refer to the Design
Reference manual.

The commands in this theme relate to the use of the compiler. They enable you to
normalize data types throughout your database. The IDLE command is specifically used in
compiled databases.

C_BLOB C_INTEGER C_REAL IDLE
C_BOOLEAN C_LONGINT C_STRING

C_DATE C_PICTURE C_TEXT

C_GRAPH C_POINTER C_TIME

These commands, except IDLE, declare variables and cast them as a specified data type.
Declaring variables resolves ambiguities concerning a variable’s data type. If a variable is
not declared with one of these commands, the compiler attempts to determine a
variable’s data type. The data type of a variable used in a form is often difficult for the
compiler to determine. Therefore, it is especially important that you use these commands
to declare a variable used in a form.

Note: To save time, you can use the option for generating and updating typing methods
(called “Compiler methods”) found in the compiler window. This option automatically
creates typing methods that take stock of and assign a type to all of the variables used in
the database.

Arrays are variables that must follow the same rules as standard variables with respect to

compilation. The array declaration commands are grouped together in the “Arrays”
theme.

4th Dimension Language Reference 351

General rules about writing code that will be compiled

e You must not give the same name to more than one method or variable. You cannot
have a method with the same name as a variable.

e Variable indirection as used in 4th Dimension version 1 is not allowed. You cannot use
alpha indirection, with the section symbol (§), to indirectly reference variables. Nor can
you use numeric indirection, with the curly braces ({...}), for this purpose. Curly braces
can only be used when accessing specific elements of an array that has been declared.
However, you can use parameter indirection.

e You can't change the data type of any variable or array.

* You can’t change a one-dimensional array to a two-dimensional array, or change a two-
dimensional array to a one-dimensional array.

e You can’t change the length of string variables or of elements in string arrays.

e Although the compiler will type the variable for you, you should specify the data type
of a variable by using compiler directives where the data type is ambiguous, such as in a
form.

e Another reason to explicitly type your variables is to optimize your code. This rule
applies especially to any variable used as a counter. Use variables of a long integer data
type for maximum performance.

e To clear a variable (initialize it to null), use CLEAR VARIABLE with the name of the
variable. Do not use a string to represent the name of the variable in the CLEAR VARIABLE
command.

e The Undefined function will always return False. Variables are always defined.

e Numeric operations on long integer and integer variables are usually much faster than
operations on the default numeric type (real).

These principles are detailed in the following sections:

e Using Compiler Directives, explains when and where to write compiler directives,

e Typing Guide, describes the different types of conflicts that may occur during the
compilation of 4th Dimension databases,

¢ Syntax Details, provides additional information concerning several 4th Dimension
commands,

e Optimization Hints, offers hints to accelerate the running of applications in compiled
mode.

352 4th Dimension Language Reference

Examples

(1) The following are some basic variable declarations for the compiler:

" The process variable vxMyBlob is declared as a variable of type BLOB

O C_BLOB(vxMyBlob)
* The interprocess variable 0OnWindows is declared as a variable of type Boolean

0 C_BOOLEAN(®OnWindows)
" The local variable $vdCurDate is declared as a variable of type Date

0 C_DATE($vdCurDate)
" The 3 process variables vg1, vg2 and vg3 are declared as variables of type Graph

0 C_GRAPH(vg1;vg2;vg3)

(2) In the following example, the project method OneMethodAmongOthers declares 3
parameters:

* OneMethodAmongOthers Project Method
* OneMethodAmongOthers (Real ; Integer {; Long })
* OneMethodAmongOthers (Amount ; Percentage { ; Ratio })

0 C_REAL($1) * 1st parameter is of type Real
0 C_INTEGER($2) * 2nd parameter is of type Integer
O C_LONGINT($3) * 3rd parameter is of type Long Integer

(3) In the following example, the project method Capitalize accepts a string parameter and
returns a string result:

" Capitalize Project Method
* Capitalize (String) -> String
* Capitalize (Source string) -> Capitalized string

0 C_STRING(255;$0;$1)
$0:=Uppercase(Substring($1;1;1))+Lowercase(Substring($1;2))

4th Dimension Language Reference 353

(4) In the following example, the project method SEND PACKETS accepts a time parameter
followed by a variable number of text parameters:

* SEND PACKETS Project Method
* SEND PACKETS (Time ; Text {; Text2... ; TextN })
* SEND PACKETS (docRef ; Data {; Data2... ; DataN })

0 C_TIME (3$1)
C_TEXT (3{2})
0 C_LONGINT ($vIPacket)

O

For ($vIPacket;2;Count parameters)
SEND PACKET ($1;${$vIPacket})
End for

(5) In the following example, the project method COMPILER_Param_Predeclare28
predeclares the syntax of other project methods for the compiler:

" COMPILER_Param_Predeclare28 Project Method

* OneMethodAmongOthers (Real ; Integer { ; Long })

| C_REAL(OneMethodAmongOthers;$1)

| C_INTEGER(OneMethodAmongOthers; $2)

0 C_LONGINT(OneMethodAmongOthers;$3)

0 C_STRING(Capitalize;255;$0;$1) * Capitalize (String) -> String

O C_TIME(SEND PACKETS;$1) * SEND PACKETS (Time ; Text { ; Text2... ; TextN })
0 C_TEXT(SEND PACKETS;${2})

See Also

C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT, C_PICTURE,
C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME, IDLE.

354 4th Dimension Language Reference

Using Compiler Directives Compiler

version 2003 (Modified)

Data types of variables

4th Dimension has three categories of variables:
e Local variables,

e Process variables,

e Interprocess variables.

For more information about this point, refer to the Variables section. Process and
interprocess variables are structurally the same for the compiler.

Since the compiler cannot determine the process in which the variable will be used,
process variables should be used with more care than interprocess variables. All process
variables are systematically duplicated when a new process begins. A process variable can
have a different value in each process, but it has the same type for the entire database.

Variable types
All variables have a type. As described in the Data Types section, there are 12 different
types of variables:
Boolean

Fixed string

Date

Integer

Longint

Graph

Time

Picture

Number (or Real)
Pointer

Text

BLOB

There are nine different types of arrays:
Boolean Array

String Array

Date Array

Integer Array

Longint Array

Picture Array

Real Array

Pointer Array

Text Array

4th Dimension Language Reference 355

Creation of the symbol table

In interpreted mode, a variable can have more than one data type. This is possible because
the code is interpreted rather than compiled. 4th Dimension interprets each statement
separately and comprehends its context. When you work in a compiled environment, the
situation is different. While interpretation is performed line by line, the compilation
process looks at a database in its entirety.

The compiler's approach is the following:

e The compiler systematically analyzes the objects in the database. The objects are
database, project, form, trigger and object methods.

e The compiler scans the objects to determine the data type of each variable used in the
database, and it generates the table of variables and methods (the symbol table).

¢ Once it has established the data types of all variables, the compiler translates (compiles)
the database. However, it cannot compile the database unless it can determine the data
type for each of the variables.

If the compiler comes across the same variable name and two different data types, it has
no reason to favor any particular one. In other words, in order to type an object and give
it a memory address, the compiler must know the precise identity of that object (i.e., its
name and its data type). The compiler determines its size from the data type. For every
compiled database, the compiler creates a map that lists, for each variable, its name (or
identifier), its location (or memory address), and the space it occupies (indicated by its
data type). This map is called the symbol table. An option in the Preferences lets you
choose whether to generate this table in the form of a file during compilation.

This map is also used for the automatic generation of compiler methods.

Typing variables

The compiler must respect the identification criteria of the variables.

There are two possibilities:

e If the variables are not typed, the compiler can do it for you automatically. Whenever
possible—as long as there is no ambiguity—the compiler determines a variable's type from
the way it is used. For example, if you write:

V1 := True
the compiler determines that variable V1 is of data type Boolean.

By the same token, if you write:
V2:= "This is a sample phrase"

the compiler determines that V2 is a Text type variable.

The compiler is also capable of establishing the data type of a variable in less
straightforward situations:

V3:= V1 V3 is of the same type as V1
V4:= 2*V2 V4 is of the same type as V2

356 4th Dimension Language Reference

The compiler also determines the data type of your variables according to calls to

4th Dimension commands and according to your methods. For example if you pass a
Boolean type parameter and a Date type parameter to a method, the compiler assigns the
Boolean type and the Date type to the local variables $1 and $2 in the called method.

When the compiler determines the data type by inference, unless indicated otherwise in
the Preferences, it never assigns the limiting data types: Integer, Longint or String. The
default type assigned by the compiler is always the widest possible. For example, if you
write:

Number:=4

the compiler assigns the Real data type to Number, even though 4 happens to be an
integer. In other words, the compiler does not rule out the possibility that, under other
circumstances, the variable's value might be 4.5.

If it is appropriate to type a variable as Integer, Longint or String, you can do so using a
compiler directive. It is to your advantage to do so, because these data types occupy less
memory and performing operations on them is faster.

If you have already typed your variables and are sure that your typing is coherent and
complete, you may explicitly ask the compiler not to redo this work, using the
compilation Preferences. In case your typing was not complete and exhaustive, at the
time of compilation, the compiler will return errors requesting you to make the necessary
modifications.

e The compiler directive commands enable you to explicitly declare the variables used in
your databases.
They are used in the following manner:

C_BOOLEAN(Var)

Through such directives, you inform the compiler to create a variable Var that will be a
Boolean.

Whenever an application includes compiler directives, the compiler detects them and
thus avoids guesswork.

A compiler directive has priority over deductions made from assignments or use.
Variables declared with the compiler directive C_INTEGER are actually the same as those
declared by the directive C_LONGINT. They are, in fact, long integers between
-2147483648 and +2147483647.

When to use compiler directives

Compiler directives are useful in two cases:

e The compiler is unable to determine the data type of a variable from its context,

* You do not want the compiler to determine a variable's type from its use.
Furthermore, using compiler directives allows you to reduce compilation time.

4th Dimension Language Reference 357

Cases of ambiguity

Sometimes the compiler cannot determine the data type of a variable. Whenever it
cannot make a determination, the compiler generates an appropriate error message.
There are three major causes that prevent the compiler from determining the data type:
multiple data types, ambiguity on a forced deduction and the inability to determine a
data type.

* Multiple data types

If a variable has been retyped in different statements in the database, the compiler
generates an error that is easy to fix.

The compiler selects the first variable it encounters and arbitrarily assigns its data type to
the next occurrence of the variable having the same name but a different data type.

Here is a simple example:

in method A,
Variable:=True

in method B,
Variable:="The moon is green"

If method A is compiled before method B, the compiler considers the statement
Variable:="The moon is green" as a data type change in a previously encountered variable.
The compiler notifies you that retyping has occurred. It generates an error for you to
correct. In most cases, the problem can be fixed by renaming the second occurrence of
the variable.

* Ambiguity on a forced deduction

Sometimes, due to a sequence, the compiler can deduce that an object's type is not the
proper type for it. In this case, you must explicitly type the variable with a compiler
directive.

Here is an example using the default values for an active object:

In a form, you can assign default values for the following objects: combo boxes, pop-up
menus, tab controls, drop-down lists, menu/drop-down lists and scrollable areas using the
Edit button for the Value List (under the Entry Control theme of the Property List) (for
more information, refer to the 4th Dimension Design Reference manual). The default values
are automatically loaded into an array whose name is the same as the name of the object.
If the object is not used in a method, the compiler can deduce the type, without
ambiguity, as a text array.

However, if a display initialization must be performed, the sequence could be:

Case of
: (Form event=0n Load)
MyPopUp:=2

End case

358 4th Dimension Language Reference

In this case, the ambiguity appears—when parsing methods, the compiler will deduce a
Real data type for the object MyPopUp. In this case, it is necessary to explicitly declare the
array in the form method or in a compiler method:

Case of
: (Form event=0n Load)
ARRAY TEXT(MyPopUp;2)
MyPopUp:=2

End ca”s.e

e Inability to determine a data type

This case can arise when a variable is used without having been declared, within a context
that does not provide information about its data type. Here, only a compiler directive can
guide the compiler.

This phenomenon occurs primarily within four contexts:

- when pointers are used,

- when you use a command with more than one syntax,

- when you use a command having optional parameters of different data types,

- when you use a 4D method called via a URL.

- Pointers
A pointer cannot be expected to return a data type other than its own.
Consider the following sequence:

Varl:=5.2 m

Pointer:=->Varl (2)

Var2:=Pointer-> (3)

Although (2) defines the type of variable pointed to by Pointer, the type of Var2 is not
determined. During compilation, the compiler can recognize a pointer, but it has no way
of knowing what type of variable it is pointing to. Therefore it cannot deduce the data
type of Var2. A compiler directive is needed, for example C_REAL(Var2).

- Multi-syntax commands

When you use a variable associated with the function Year of, the variable can only be of
the data type Date, considering the nature of this function. However, things are not
always so simple. Here is an example:

The GET FIELD PROPERTIES command accepts two syntaxes:

GET FIELD PROPERTIES(tableNo;fieldNo;type;length;index)

GET FIELD PROPERTIES(fieldPointer;type;length;index)

When you use a multi-syntax command, the compiler cannot guess which syntax and

parameters you have selected. You must use compiler directives to type variables passed to
the command, if they are not typed according to their use elsewhere in the database.

4th Dimension Language Reference 359

- Commands with optional parameters of different data types

When you use a command that contains several optional parameters of different data
types, the compiler cannot determine which optional parameters have been used. Here is
an example:

The GET LIST ITEM command accepts two optional parameters; the first as a Longint and
the other as a Boolean.

The command can thus either be used as follows:

GET LIST ITEM(list;itemPos;itemRef;itemText;sublist;expanded)

or like this:

GET LIST ITEM(list;itemPos;itemRef;itemText;expanded)

You must use compiler directives to type optional variables passed to the command, if
they are not typed according to their use elsewhere in the database.

- Methods called via URLs

If you write 4D methods that need to be called via a URL, and if you do not use $1 in the
method, you must explicitly declare the text variable $1 with the following sequence:
C_TEXT($1)

In fact, the compiler cannot determine that the 4D method will be called via a URL.

Reducing time needed to compile

If all the variables used in the database are explicitly declared, it is not necessary for the
compiler to check the typing. In this case, you can set the options so that the compiler
only executes the translation phase of the method. This saves at least 50% in compilation
time.

Optimizing code

You can speed up your methods by using compiler directives. For more details on this
subject, refer to the Optimization Hints section. To give a simple example, suppose you
need to increment a counter using a local variable. If you do not declare the variable, the
compiler assumes that is a Real. If you declare it as a Longint, the compiled database will
perform more efficiently. On a PC, for instance, a Real takes 8 bytes, but if you type the
counter as a Longint, it only uses 4 bytes. Incrementing an 8-byte counter obviously
takes longer than incrementing a 4-byte one.

Where to place your compiler directives

Compiler directives can be handled in two different ways, depending on whether or not
you want the compiler to type your variables.

Variables typed by the compiler

If you want the compiler to check the typing of your variables or to type them itself, it is
easy to place a compiler directive for this purpose. You can choose between two different
possibilities, depending on your working methods:

e Either use the directive in the method in which the variable first appears, depending on
whether it is a local, proces or interprocess variable. Be sure to use the directive the very
first time you use the variable, in the first method to be executed. Keep in mind that
during compilation, the compiler takes the methods in the order of their creation in 4th
Dimension, and not in the order in which they are displayed in the Explorer.

360 4th Dimension Language Reference

¢ Or, if you are systematic in your approach, group all the process and interprocess
variables with the different compiler directives in the On Startup Database Method or in a
method called by the On Startup Database Method.

For local variables, group the directives at the beginning of the method in which they
appear.

Variables typed by the developer

If you do not want the compiler to check your typing, you must give it a code to identify
the compiler directives.

The convention to follow is:

Compiler directives for the process and interprocess variables and the parameters should
be placed in one or more methods, the names of which begin with the key word
Compiler.

By default, the compiler lets you automatically generate five types of Compiler methods,
which group together the directives for variables, arrays and method parameters (for
more information about this point, refer to the Design Reference manual).

Note: The syntax for declaring these parameters is the following:
Directive (methodName;parameter). This syntax is not executable in interpreted mode.

Particular parameters

¢ Parameters received by database methods

If these parameters have not been explicitly declared, they are typed by the compiler.
Nevertheless, if you declare them, the declaration must be done inside the database
methods.

This parameter declaration cannot be written in a Compiler method.

Example: On Web Connection Database Method receives six parameters, $1 to $6, of the
data type Text. At the beginning of the database method, you must write:
C_TEXT($1;$2;$3;%4,$5;%6)

¢ Triggers

The $0 parameter (Longint), which is the result of a trigger, is typed by the compiler if
the parameter has not been explicitly declared. Nevertheless, if you want to declare it, you
must do so in the trigger itself.

This parameter declaration cannot be written in a Compiler method.

* Objects that accept the “On Drag Over” form event

The $0 parameter (Longint), which is the result of the “On Drag Over” form event, is
typed by the compiler if the parameter has not been explicitly declared. Nevertheless, if
you want to decalre it, you must do so in the object method.

This parameter declaration cannot be written in a Compiler method.

4th Dimension Language Reference 361

Note: The compiler does not initialize the $0 parameter. So, as soon as you use the On
Drag Over form event, you must initialize $0. For example:

C_LONGINT($0)

If (Form event=0On Drag Over)

$0:=0
If ($DataType=Is Picture)
End$(i)f:=-1

En(.j”if

The C_STRING compiler directive

The C_STRING command uses a different syntax than the other directives because it
accepts an additional parameter—the maximum string length.
C_STRING(length;var1{;var2;...;varN})

Since C_STRING types fixed-length strings, you specify the maximum length of such
strings. In a compiled database, you must specify the length of the string with a constant
rather than with a variable.

In an interpreted database, the following sequence is acceptable:

ThelLength:=15
C_STRING(TheLength;TheString)

4th Dimension interprets TheLength, then replaces TheLength with its value in the
C_STRING compiler directive.

However, the compiler uses this command when typing variables with no specific
assignment in mind. Thus, it is not in a position to know that TheLength equals 15. Not
knowing the string's length, the compiler cannot keep a space for it in the symbol table.

Therefore, with compilation in mind, use a constant to specify the length of the declared
character string. For example, use a statement such as this:

C_STRING(15;TheString)

The same rule applies to declaring fixed string arrays, which are typed with the command:
ARRAY STRING(length;arrayName;size)

The parameter that indicates string lengths in the array must be a constant.

However, you can specify the length of the string with a 4D constant or a hexadecimal
value in these two compiler directives. For example:

C_STRING(4DConstant;TheString)

ARRAY STRING(4DConstant;TheArray;2)

C_STRING(0x000A; TheString)

ARRAY STRING(0x000A;TheArray;2)

362 4th Dimension Language Reference

Do not confuse the length of an Alphanumeric field, which has a maximum of 80
characters, with a fixed string variable. The maximum length of a string declared by a
C_STRING directive, or belonging to an ARRAY STRING, is between 1 and 255.

Note: The syntax of this command allows you to declare several variables of the same
length in a single line. If you want to declare several strings of different lengths, do so on
separate lines.

A certain liberty permitted by the compiler

Compiler directives remove any ambiguity concerning data types and, in the case of
alphanumeric strings, lengths. Although a certain rigor is necessary, this does not
necessarily mean that the compiler is intolerant of any and every inconsistency.

For example, if you assign a real value to a variable declared as an Integer, or if you assign
a string of 30 characters to a variable declared as a 10-character string, the compiler does
not regard either assignment as a type conflict and assigns the corresponding values
according to your directives. So, if you write:

C_INTEGER(vInteger)
vinteger:=2.5

The compiler does not regard it as a data type conflict that will prevent compilation;
instead, the compiler simply rounds off to the closest integer value (3 instead of 2.5).
Similarly, if you declare a string that is shorter than the one you are dealing with, the
compiler will only take the number of characters declared in the directives. Therefore, in
the following sequence:

C_STRING(10;MyString)
MyString:="It is a beautiful day"

the compiler takes the first ten characters of the constant, i.e. “It is a be”.

See also
Optimization Hints, Syntax Details, Typing Guide.

4th Dimension Language Reference 363

Typing Guide Compiler

version 2004 (Modified)

This section describes the main causes of typing conflicts on variables, as well as ways to
avoid them.

Conflicts on simple variables

Simple data type conflicts can be summarized as follows:
e conflict between two uses,

e conflict between use and a compiler directive,

e conflict resulting from implicit retyping,

e conflict between two compiler directives.

Conflicts between two uses
The simplest data type conflict is one that stems from a single variable name designating
two different objects. Suppose that, in an application, you write:

Variable:=5
and that elsewhere, in the same application, you write:

Variable:=True
This generates a data type conflict. The problem can be solved by renaming one of the
variables.

Conflict between use and a compiler directive
Suppose that, in an application, you write:
Variable:=5
and that elsewhere, in the same application, you write:
C_BOOLEAN(Variable)
Since the compiler scans the directives first, it will type Variable as Boolean, but when it
finds the statement:
Variable:=5
it detects a data type conflict. You can solve the problem by renaming your variable or
modifying the compiler directive.

Using variables of different data types in one expression creates inconsistencies. The
compiler points out incompatibilities. Here is a simple example:

vBool:=True “The compiler infers that vBoolean is data type Boolean
C_INTEGER(<>vInteger) "Declaration of an Integer by a compiler directive
<>vinteger:=3 ~Command compatible with the compiler directive

Var:= <>vinteger+vBool “Operation containing variables with incompatible data types

Conflict stemming from implicit retyping

Some functions return variables of a very precise data type. Assigning the result of one of
such variables to a variable already typed differently will cause a data type conflict if you
are not careful.

364 4th Dimension Language Reference

For example, in an interpreted application, you can write:

IdentNo:=Request("ldentification Number") “ldentNo is data type Text
If(Ok=1)

IdentNo:=Num(ldentNo) “IdentNo is data type Real

QUERY ([Contacts]ld=IdentNo)
End if

In this example, you create a type conflict in the third line. The solution consists in
controlling the behavior of the variable. In some cases, you must create an intermediate
variable that uses a different name. In other cases, such as this, your method can be
structured differently:

IdentNo:=Num(Request("ldentification Number")) “ldentNo is data type Real
If(Ok=1)

QUERY([Contacts]ld=IdentNo)
End if

Conflict between two compiler directives
Declaring the same variable through two conflicting compiler directives constitutes a
retyping. If, in the same database, you write:

C_BOOLEAN(Variable)

C_TEXT(Variable)
the compiler detects the conflict and reports an error in the error file. Typically, you can
solve the problem by renaming one of the variables.

Keep in mind that a data type conflict can arise concerning the use of C_STRING if you
modify the maximum string length. Thus, if you write:

C_STRING(5;MyString)

MyString:="Hello"

C_STRING(7;MyString)

MyString:="Flowers"
the compiler identifies a conflict because it must provide an adequately-sized location
when declaring String variables.
The solution is to use a compiler directive that gives the maximum length, since, by
default, the compiler will accept a shorter length. You can write:

C_STRING(7;String)

String:="Flowers"

String:="Hello"

Note: If you have written C_STRING(7;String) twice, i.e.:

C_STRING(7;String)

String:="Flowers"

C_STRING(7;String)

String:="Hello"
the compiler will nevertheless accept the directives; the second directive is simply
redundant.

4th Dimension Language Reference 365

Note concerning local variables
Data type conflicts involving local variables are identical to those in process or
interprocess variables. The only difference is that there must be consistency only within a
specified method.
For process and interprocess variables, conflicts occur at the general leve of teh database.
For local variables, conflicts occur at the level of the method. For example, you cannot
write in the same method:

$Temp:="Flowers"
and then

$Temp:=5
However, you can write:

$Temp:="Flowers"
in method M1, and:

$Temp:=5
in method M2, because the scope of local variables is the method itself and not the entire
database.

Conflicts in arrays

Conflicts concerning an array are never size-related. As in uncompiled databases, arrays
are managed dynamically. The size of an array can vary throughout methods, and you do
not have to declare a maximum size for an array.

Therefore, you can size an array to null, add or remove elements, or delete the contents.

You should follow these guidelines when writing a database intended for compilation:
e Do not change data types of array elements,

¢ Do not change the number of dimensions of an array,

e For a String array, do not change character-string length.

Changing data types of array elements
If you declare an array as an Integer array, it must remain an integer array throughout
the database. It can never contain, for example, Boolean type elements.
If you write:
ARRAY INTEGER(MyArray;5)
ARRAY BOOLEAN(MyArray;5)
the compiler cannot type MyArray.
Just rename one of the arrays.

Changing the number of dimensions of an array
In an uncompiled database, you can change the number of dimensions in an array.
When the compiler sets up the symbol table, one-dimensional arrays and two-
dimensional arrays are managed differently.
Consequently, you cannot redeclare a one-dimensional array as two-dimensional, or vice
versa.
Therefore, in the same database, you cannot have:

ARRAY INTEGER(MyArray1;10)

ARRAY INTEGER(MyArray1;10;10)

366 4th Dimension Language Reference

However, you can write the following statements in the same application:

ARRAY INTEGER(MyArray1;10)

ARRAY INTEGER(MyArray2;10;10)
The number of dimensions in an array cannot be changed in a database. However, you
can change the size of an array. You can resize one array of a two-dimensional array and
write:

ARRAY BOOLEAN(MyArray;5)

ARRAY BOOLEAN(MyArray;10)

Note: A two-dimensional array is, in fact, a set of several one-dimensional arrays. For more
information, refer to the Two-dimensional Arrays section.

Case of fixed string arrays
String arrays follow the same rules as fixed strings, for the same reasons.
If you write:
ARRAY STRING(5;MyArray;10)
ARRAY STRING(10;MyArray;10)
the compiler detects a length conflict. The solution is simple: declare the maximum string
length. The compiler automatically handles shorter length strings.

Implicit retyping

When using commands such as COPY ARRAY, LIST TO ARRAY, ARRAY TO LIST, SELECTION
TO ARRAY, SELECTION RANGE TO ARRAY, ARRAY TO SELECTION, or DISTINCT VALUES, you
may change, voluntarily or not, the data types of elements, the number of dimensions,
or, in a String array, the string length. You will thus find yourself in one of the three
situations previously mentioned.

The compiler generates an error message; the required correction is usually quite obvious.
Examples of implicit array retyping are provided in the Syntax Details section.

Local arrays
If you want to compile a database that uses local arrays (arrays only visible by the
methods that created them), you must explicitly declare them in 4th Dimension before
using them.
Explicitly declaring an array means using a command of the type ARRAY REAL, ARRAY
INTEGER, etc.
For example, if a method creates a local integer array of 10 elements, you should have the
following line in your method:

ARRAY INTEGER($MyArray;10)

4th Dimension Language Reference 367

Typing of variables created in forms

Variables created in a form (e.g., buttons, drop-down list boxes, and so forth) are always
process or interprocess variables.

In an interpreted database, the data type of such variables is not important. However, in
compiled applications, it may have to be taken into consideration. The rules are,
nevertheless, quite clear:

* You can type form variables using compiler directives, or

e The compiler assigns it a default type that can be set in the compilation Preferences (see
the Design Reference manual).

Variables considered by default as Real
The following form variables are typed as Real by default:
Check box

3D check box

Button

Highlight button

Invisible button

3D button

Picture button

Button grid

Radio button

3D radio button

Radio picture

Picture menu

Hierarchical pop-up menu

Hierarchical list

Ruler

Dial

Thermometer.

Note: The Ruler, Dial and Thermometer form variables are always typed as Reals, even if
you choose Long integer as the Default Button Type in the Preferences.

For one of these variables, the only data type conflict that could arise would be if the
name of a variable were identical to that of another one located elsewhere in the database.
In this case, rename the second variable.

Graph variable

A graph area is automatically data type Graph (Longint). This variable never creates a data
type conflict. For a Graph type variable, the only possible data type conflict that could
arise would be if the name of a variable were identical to that of another one located
elsewhere in the database. In this case, rename the second variable.

368 4th Dimension Language Reference

Plug-in area variable

A plug-in area is always a Longint. There can never be a data type conflict.

For a plug-in area, the only possible data type conflict that could arise would be if the
name of a variable were identical to that of another one located elsewhere in the database.
In this case, rename the second variable.

Variables considered by default as Text
These variables are of the following types:
Non-enterable variable,

Enterable variable,

Drop-down list,

Menu/drop-down list,

Scrollable area,

Combo box,

Pop-up Menu,

Tab control.

These variables are divided into two categories:

e simple variables (enterable and non-enterable variables),

e display variables (drop-down lists, menus/drop-down lists, scrollable areas, pop-up
menus, combo boxes and tab controls).

e Simple variables

Their default data type is Text. When used in methods or object methods, they are
assigned the data type selected by you. There is no danger of conflict other than one
resulting from assigning the same name to another variable.

¢ Display variables

Some variables are used to display arrays in forms. If default values have been entered in
the Form editor, you must explicitly declare the corresponding variables using the Array
Declaration commands (ARRAY STRING, ARRAY TEXT...).

Pointers

When you use pointers in your database, you take advantage of a powerful and versatile
4th Dimension tool. The compiler preserves all the benefits of pointers.

A pointer can point to variables of different data types. Do not create a conflict by
assigning different data types to a variable. Be careful not to change the data type of a
variable to which a pointer refers.

Here is an example of this problem:

Variable:=5.3
Pointer:=-> Variable
Pointer->:=6.4
Pointer->:=False

In this case, your dereferenced pointer is a Real variable. By assigning it a Boolean value,
you create a data type conflict.

4th Dimension Language Reference 369

If you need to use pointers for different purposes in the same method, make sure that
your pointers are defined:

Variable:=5.3
Pointer:=-> Variable
Pointer->:=6.4
Bool:=True
Pointer:=->Bool
Pointer->:=False

A pointer is always defined in relation to the object to which it refers. That is why the
compiler cannot detect data type conflicts created by pointers. In case of a conflict, you
will get no error message while you are in the typing phase or in the compilation phase.
This does not mean that the compiler has no way to detect conflicts involving pointers.
The compiler can verify your use of pointers when you check the Range Checking option
in the compilation Preferences (see the Design Reference manual).

Plug-in Commands

General points

During compilation, the compiler analyzes the definitions of the plug-in commands used
in the database, i.e. the number and type of parameters of these commands. There is no
danger of confusion at the typing level if your calls are consistent with the declaration of
the method.

Make sure that your plug-ins are installed in the Pluglns folder, in one of the locations
authorized by 4th Dimension: next to the database structure file or next to the executable
application (Windows) / in the software package (Mac OS). For compatibility reasons, it is
still possible to use the Win4DX or Mac4DX folder next to the structure file. For more
information, refer to the Installation Guide of 4th Dimension.

The compiler does not duplicate these files, but analyzes them to determine the proper
declaration of their routines.

If your plug-ins are located elsewhere, the compiler will ask you to locate them during
typing, via an Open file dialog box.

Plug-in commands receiving implicit parameters

Certain plug-ins, for example 4D Write, implement commands that implicitly call
4th Dimension commands.

Take the example of 4D Write. The syntax for the WR ON EVENT command is:
WR ON EVENT(area;event;eventMethod)

370 4th Dimension Language Reference

The last parameter is the name of the method that you have created in 4th Dimension.
This method is called by 4D Write each time the event is received. It automatically
receives the following parameters:

Parameters Type Description

$0 Longint Function return

$1 Longint 4D Write area

$2 Longint Shift key

$3 Longint Alt key (Windows); Option key (Mac OS)

$4 Longint Ctrl key (Windows), Command key (Mac OS)
$5 Longint Type of event

$6 Longint Value depends on the Event parameter

For the compiler to take these parameters into account, you must make sure that they
have been typed, either by a compiler directive, or by their usage in the method. If they
have been used procedurally, the usage has to be explicit enough to be able to deduce the
type clearly.

4D components

4th Dimension and 4D Insider allow creation and management of 4D components. 4D
components can be compared to 4D object libraries, in which each object is assigned an
attribute (“Private”, “Protected” or “Public”) to indicate if it will be visible, modifiable, etc.
For more information about 4D components management, refer to 4D Insider
documentation.

In principle, the 4D component developer should make sure that the component can be
compiled and will not generate conflicts. However, this possibility can never be totally
excluded. In case of a compilation error caused by an object belonging to a component,
the compiler will display the following information, depending on the object attribute:

e “Private”: the compiler will not provide the name of the object concerned, but only the
name of the 4D component.

e “Protected” or “Public”: the compiler will provide the object name, just as it would for
any other database object (standard behavior).

Handling local variables $0...$N and parameter passing

The handling of local variables follows all the rules that have already been stated. As with
all other variables, their data types cannot be altered while the method executes. In this
section, we examine two instances that could lead to data type conflicts:

e When you actually require retyping. The use of pointers helps avoid data type conflicts.
e When you need to address parameters by indirection.

4th Dimension Language Reference 371

Using pointers to avoid retyping

A variable cannot be retyped. However, it is possible to use a pointer to refer to variables
of different data types.

As an example, consider a function that returns the memory size of a one-dimensional
array. In all but two cases, the result is a Real; for Text arrays and Picture arrays, the
memory size depends on values that cannot be expressed numerically (see the Arrays and
Memory section).

For Text and Picture arrays, the result is returned as a string of characters. This function
requires a parameter: a pointer to the array whose memory size we want to know.

There are two methods to carry out this operation:

e Work with local variables without worrying about their data types; in such case, the
method runs only in interpreted mode.

¢ Use pointers, and proceed in interpreted or in compiled mode.

e MemSize function, only in interpreted mode (example for Macintosh)

$Size:=Size of array($1->)
$Type:=Type($1->)
Case of
:($Type=Real array)
$0:=8+($Size*10) " $0 is a Real
:($Type=Integer array)
$0:=8+($Size*2)
:($Type=Longint array)
$0:=8+($Size*4)
:($Type=Date array)
$0:=8+($Size*6)
:($Type=Text array)
$0:=String(8+($Size*4))+("+Sum of text lengths") ~ $0 is a Text
:($Type=Picture array)
$0:=String(8+($Size*4))+("+Sum of picture sizes") ~ $0 is a Text
:($Type=Pointer array)
$0:=8+($Size*16)
:($Type=Boolean array)
$0:=8+($Size/8)
End case

In the above method, the data type of $0 changes according to the value of $1; therefore,
it is not compatible with the compiler.

372 4th Dimension Language Reference

e MemsSize function in interpreted and compiled modes (example for Macintosh)
Here, the method is written using pointers:

$Size:=Size of array($1->)
$Type:=Type($1->)
VarNum:=0

Case of

:($Type=Real array)
VarNum:=8+($Size*10) ~ VarNum is a Real
:($Type=Integer array)
VarNum:=8+($Size*2)
:($Type=LongInt array)
VarNum:=8+($Size*4)
:($Type=Date array)
VarNum:=8+($Size*6)
:($Type=Text array)
VarText:=String(8+($Size*4))+("+Sum of text lengths")

:($Type=Picture array)
VarText:=String(8+($Size*4))+("+Sum of picture sizes")

:($Type=Pointer array)
VarNum:=8+($Size*16)
:($Type=Boolean array)
VarNum:=8+($Size/8)
End case
If (VarNum#0)
$0:=->VarNum
Else
$0:=->VarText
End if

Here are the key differences between the two functions:

e In the first case, the function's result is the expected variable,

¢ In the second case, the function's result is a pointer to that variable. You simply
dereference your result.

Parameter indirection

The compiler manages the power and versatility of parameter indirection. In interpreted
mode, 4th Dimension gives you a free hand with numbers and data types of parameters.
You retain this freedom in compiled mode, provided that you do not introduce data type
conflicts and that you do not use more parameters than you passed in the calling
method.

To prevent possible conflicts, parameters addressed by indirection must all be of the same
data type.

This indirection is best managed if you respect the following convention: if only some of
the parameters are addressed by indirection, they should be passed after the others.
Within the method, an indirection address is formatted: ${$i}, where $i is a numeric
variable. ${$i} is called a generic parameter.

4th Dimension Language Reference 373

As an example, consider a function that adds values and returns the sum formatted
according to a format that is passed as a parameter. Each time this method is called, the
number of values to be added may vary. We must pass the values as parameters to the
method and the format in the form of a character string. The number of values can vary
from call to call.

This function is called in the following manner:

Result:=MySum("##0.00";125,2;33,5;24)

In this case, the calling method will get the string “182.70”, which is the sum of the
numbers, formatted as specified. The function's parameters must be passed in the correct
order: first the format and then the values.

Here is the function, named MySum:

$Sum:=0

For($i;2;Count parameters)
$Sum:=3$Sum+${$i}

End for

$0:=String($Sum;$1)

This function can now be called in various ways:

Result:=MySum("##0.00";125,2;33,5,24)
Result:=MySum("000";1;18;4;23;17)

As with other local variables, it is not necessary to declare generic parameters by compiler
directive. When required (in cases of ambiguity or for optimization), it is done using the
following syntax:

C_INTEGER(${4})

This command means that all parameters starting from the fourth (included) will be
addressed by indirection and will be of the data type Integer. $1, $2 and $3 can be of any
data type. However, if you use $2 by indirection, the data type used will be the generic
type. Thus, it will be of the data type Integer, even if for you it was, for instance, of the
data type Real.

Note: The compiler uses this command in the typing phase. The number in the
declaration has to be a constant and not a variable.

Reserved variables and constants

Some 4th Dimension variables and constants are assigned a data type and an identity by
the compiler. Therefore, you cannot create a new variable, method, function or plug-in

command using any of these variables or constant names. You can test their values and
use them as you do in interpreted mode.

374 4th Dimension Language Reference

System variables
Here is a complete list of 4th Dimension System Variables with their data types.

Variable Type
OK Longint
Document String (255)
FldDelimit Longint
RecDelimit Longint
Error Longint
MouseDown Longint
KeyCode Longint
Modifiers Longint
MouseX Longint
MouseY Longint
MouseProc Longint

Quick report variables

When you create a calculated column in a report, 4th Dimension automatically creates a
variable C1 for the first one, C2 for the second one, C3 and so forth. This is done
transparently.

If you use these variables in methods, keep in mind that, like other variables, C1, C2, ...
Cn cannot be retyped.

4D predefined constants
A complete list of the predefined constants in 4th Dimension can be found in this
manual. 4D constants are also displayed in the Explorer, in Design mode.

See also
Error messages, Optimization Hints, Syntax Details, Using Compiler Directives.

4th Dimension Language Reference 375

Syntax Details Compiler
version 2003 (Modified)

The compiler expects that the usual syntactic rules for 4th Dimension commands are
followed. It does not require any special modifications for databases that will be compiled.

This section nevertheless provides certain reminders and specific details:

e Some commands that affect a variable's data type may lead, if you are not careful, to
data type conflicts.

e Since certain commands use more than one kind of syntax or parameters, it is to your
advantage to know which is the most appropriate one to select.

Strings

Ascii (character)

For commands operating on strings, only the Ascii function requires special attention. In
interpreted mode, you can pass either a non-empty string or an empty string to this
function.

In compiled mode, you cannot pass an empty string.

If you pass an empty string, and if the argument passed to Ascii is a variable, the compiler
will not be able to detect an error in compilation.

Communications

SEND VARIABLE(variable)

RECEIVE VARIABLE(variable)

These two commands are used for writing and receiving variables sent to disk. Variables
are passed as parameters to these commands.

The parameter you pass must always be of the same data type. Suppose you want to send a
list of variables to a file. To eliminate the risk of changing data types inadvertently, we
recommend that you specify the data type of the variables being sent at the head of the
list. This way, when you receive these variables, you will always begin by getting an
indicator. Then, when you call RECEIVE VARIABLE, the transfer is managed by a Case of
statement.

376 4th Dimension Language Reference

Example:

SET CHANNEL(12;"File")

If (OK=1)
$Type:=Type([Client]Total_TO)
SEND VARIABLE($Type)
For($i;1;Records in selection)

$Send_TO:=[Client]Total_TO
SEND VARIABLE($Send_TO)
End for

End if

SET CHANNEL(11)

SET CHANNEL(13;"MyFile")

If (OK=1)

RECEIVE VARIABLE($Type)
Case of
:($Type=Is_String Var)
RECEIVE VARIABLE($String)
“Processing variable received
:($Type=Is Real)
RECEIVE VARIABLE($Real)
“Processing variable received
:($Type=Is Text)
RECEIVE VARIABLE($Text)
“Processing variable received
End case
End if
SET CHANNEL(11)

Structure access

Field (field pointer) or (table number;field number)

Table(table pointer) or (table number) or (field pointer)

These two commands return results of different data types, according to the parameters
passed to them:

e If you pass a pointer to the Table function, the result returned is a number.

e If you pass a number to the Table function, the result returned is a pointer.

The two functions are not sufficient for the compiler to determine the data type of the
result. In such cases, use a compiler directive to avoid any ambiguity.

Documents

Keep in mind that the document references returned by the Open document, Append
document and Create document functions are of the data type Time.

4th Dimension Language Reference 377

Math

Mod (value;divider)
The expression “25 modulo 3” can be written in two different ways in 4th Dimension:
Variable:=Mod(25;3)
or
Variable:=25%3
The compiler sees a difference between the two: Mod applies to all numerics, while the
operator % applies only to Integers and Long Integers. If the operand of the % operator
exceeds the range of the Long Integer data type, the returned result is likely to be wrong.

Exceptions

IDLE
ON EVENT CALL (Method{; ProcessName})
ABORT

ON EVENT CALL
The IDLE command has been added to 4th Dimension language to manage exceptions.
This command should be used whenever you use the ON EVENT CALL command.

This command could be defined as an event management directive.

Only the kernel of 4th Dimension is able to detect a system event (mouse click, keyboard
activity, and so forth). In most cases, kernel calls are initiated by the compiled code itself,
in a way that is transparent to the user.

On the other hand, when 4th Dimension is waiting passively for an event—for example,
in a waiting loop—it is clear that there will be no call.

Example under Windows

“"MouseClick Method
If (MouseDown=1)

<>vTest:=True

ALERT("Somebody clicked the mouse")
End if

"Wait Method
<>vTest:=False
ON EVENT CALL("MouseClick")
While(<>vTest=False)

“Event's waiting loop
End while
ON EVENT CALL("")

378 4th Dimension Language Reference

In this case, you would add the IDLE command in the following manner:

“Wait Method
<>vTest:=False
ON EVENT CALL("MouseClick")
While(<>vTest=False)

IDLE

“Kernel call to sense an event

End while
ON EVENT CALL("")

ABORT

Use this command only in error-handling project methods. It works exactly as it does in
4th Dimension, except in a method that has been called by one of the following
commands: EXECUTE, APPLY TO SELECTION and APPLY TO SUBSELECTION. Try to avoid
this situation.

Arrays

Seven 4th Dimension commands are used by the compiler to determine the data type of
an array. They are:

COPY ARRAY(source;destination)

SELECTION TO ARRAY(field;array)

ARRAY TO SELECTION(array;field)

SELECTION RANGE TO ARRAY(start;end;field;array)

LIST TO ARRAY (list;array{; itemRefs})

ARRAY TO LIST(array;list{; itemRefs})

DISTINCT VALUES(field;array)

COPY ARRAY

The COPY ARRAY command accepts two array type parameters. If one of the array
parameters is not declared elsewhere, the compiler determines the data type of the
undeclared array from the data type of the declared one.

This deduction is performed in the two following cases:

e The array typed is the first parameter. The compiler assigns the data type of the first
array to the second array.

e The declared array is the second parameter. Here, the compiler assigns the data type of
the second array to the first array.

Since the compiler is strict about data types, COPY ARRAY can be performed only from an
array of a certain data type to an array of the same type.

Consequently, if you want to copy an array of elements whose data types are similar, i.e.,
Integers, Long Integers and Reals, or Texts and Strings, or Strings with different lengths,
you have to copy the elements one by one.

4th Dimension Language Reference 379

Suppose you want to copy elements from an Integer array to a Real array. You can
proceed as follows:

$Size:=Size of array(Arrint)
ARRAY REAL(ArrReal;$Size)
“Set same size for Real array as the Integer array
For($i;1;$Size)
ArrReal{$i}:=ArrInt{$i}
“Copy each of the elements
End for

Remember that you cannot change the number of dimensions of an array during the
process. If you copy a one-dimensional array into a two-dimensional array, the compiler
generates an error message.

SELECTION TO ARRAY, ARRAY TO SELECTION, DISTINCT VALUES, SELECTION RANGE
TO ARRAY
As with 4th Dimension in interpreted mode, these four commands do not require the
declaration of arrays. The undeclared array will be assigned the data type of the field
specified in the command.
If you write:

SELECTION TO ARRAY([MyTable]intField;MyArray)
the data type of MyArray would be an Integer array having one dimension (assuming that
IntField is an integer field).

If the array has been declared, make sure that the field is of the same data type. Although
Integer, Longint and Real are similar types, they are not equivalent.

On the other hand, in the case of Text and String data types, you have a little more
latitude. By default, if an array was not previously declared and you apply a command
that includes a String type field as a parameter, the default data type assigned to the array
is Text. If the array was previously declared as String or Text, these commands will follow
your directives.

The same is true for Text type fields—your directives have priority.

Remember that the SELECTION TO ARRAY, SELECTION RANGE TO ARRAY, ARRAY TO
SELECTION and DISTINCT VALUES commands can only be used with a one-dimensional
array.

The SELECTION TO ARRAY command also has a second syntax:

SELECTION TO ARRAY(table;array).

In this case, the MyArray variable will be an array of Longints. The SELECTION RANGE TO
ARRAY command works in the same way.

LIST TO ARRAY, ARRAY TO LIST

The LIST TO ARRAY and ARRAY TO LIST commands only concern two types of arrays:
e one-dimensional String arrays, and

¢ one-dimensional Text arrays.

380 4th Dimension Language Reference

These commands do not require that the array passed as a parameter be declared. By
default, the non-declared array will be typed as a Text array. If the array was previously
declared as String or Text, these commands will follow your directives.

Using pointers in array-related commands
The compiler cannot detect a data type conflict if you use a dereferenced pointer as a
parameter to an array-declaration command. If you write:

SELECTION TO ARRAY([Table]Field;Pointer->)
where Pointer-> stands for an array, the compiler cannot check whether the field type and
array type are identical. It is up to you to prevent such conflicts; you should type the
array referred to by the pointer.

The compiler issues a warning whenever it encounters an array declaration statement in
which one of the parameters is a pointer. These messages can be helpful in detecting this
type of conflict.

Local arrays

If your database uses local arrays (arrays recognized only in the method in which they
were created), it is necessary to declare them explicitly in 4th Dimension before using
them.

To declare a local array, use one of the array commands such as ARRAY REAL, ARRAY
INTEGER, etc.

For example, if a method creates a local Integer array with 10 elements, you need to
declare the array before using it. Use the command:
ARRAY INTEGER($MyArray;10)

Language

Get pointer(varName)
Type (object)
EXECUTE(statement)
TRACE

NO TRACE

Get pointer

Get pointer is a function that returns a pointer to the parameter that you passed to it.
Suppose you want to initialize an array of pointers. Each element in that array points to a
given variable. Suppose there are twelve such variables named V1, V2, ...V12. You could
write:

ARRAY POINTER(Arr;12)
Arr{1}:=->V1
Arr{2}:=->V2

Arr{12}:=->V12

4th Dimension Language Reference 381

You could also write:

ARRAY POINTER(Arr;12)
For($i;1;12)

Arr{$i}:=Get pointer("V"+String($i))
End for

At the end of this operation, you get an array of pointers where each element points to a
variable Vi.

These two sequences can be compiled. However, if the variables V1 to V12 are not used

explicitly elsewhere in the database, the compiler cannot type them. Therefore, they must

be used or declared explicitly elsewhere.

Such explicit declaration may be performed in two ways:

¢ By declaring V1, V2, ...V12 through a compiler directive:
C_LONGINT(V1,;V2;V3;V4;V5;V6,V7;V8;VI;V10;V11;V12)

* By assigning these variables in a method:

V2:=0
V12:=0

Type (object)

Since each variable in a compiled database has only one data type, this function may
seem to be of no use. However, it can be useful when you work with pointers. For
example, you may need to know the data type of the variable to which a pointer refers;
due to the flexibility of pointers, one cannot always be sure to what object it points.

EXECUTE

This command offers benefits in interpreted mode that are not carried over to compiled
mode.

In compiled mode, a method name passed as a parameter to this command is interpreted.
Therefore, you miss some of the advantages provided by the compiler, and your
parameter's syntax cannot be checked.

Moreover, you cannot pass local variables as parameters to it.

EXECUTE can be replaced by a series of statements. Two examples are given below.

Given the following sequence:

i:= FormFunc
EXECUTE("INPUT FORM (Form"+String(i)+")")

It can be replaced by:

i:==FormFunc
VarForm:="Form"+String(i)
INPUT FORM(VarForm)

382 4th Dimension Language Reference

Below is another example:

$Num:=SelPrinter
EXECUTE("Print"+$Num)

Here, EXECUTE can be replaced with Case of:

Case of
: ($Num=1)
Print1
: ($Num=2)
Print2
: ($Num=3)
Print3
End case

The EXECUTE command can always be replaced. Since the method to be executed is
chosen from the list of the database's project methods or the 4th Dimension commands,
there is a finite number of methods. Consequently, it is always possible to replace
EXECUTE with either Case of or with another command. Furthermore, your code will
execute faster.

TRACE, NO TRACE

These two commands are used in the debugging process. They serve no purpose in a
compiled database. However, you can keep them in your methods; they will simply be
ignored by the compiler.

Variables

Undefined(variable)

SAVE VARIABLES(document;variable1{; variable2...})
LOAD VARIABLES(document;variable1{; variable2...})
CLEAR VARIABLE(variable)

Undefined

Considering the typing process carried out by the compiler, a variable can never be
undefined in compiled mode. In fact, all the variables have been defined by the time
compilation has been completed. The Undefined function therefore always returns False,
whatever parameter it is passed.

Note: To know if your application is running in compiled mode, call the Compiled
application command.

SAVE VARIABLES, LOAD VARIABLES

In interpreted mode, you can check that the document exists by testing if one of the
variables is undefined after performing a LOAD VARIABLES. This is no longer feasible in
compiled databases, because the Undefined function always returns False.

4th Dimension Language Reference 383

This test can be performed in either interpreted or compiled mode by:

1. Initializing the variables that you will receive to a value that is not a legal value for any
of the variables.

2. Comparing one of the received variables to the initialization value after LOAD
VARIABLES.

The method can be written as follows:

VarT:="xxxxxx"
“"xxxxxx" is a value that cannot be returned by LOAD VARIABLES

Var2:="xxxxxx"

Var3:="xxxxxx"

Var4:="xxxxxx"

LOAD VARIABLES("Document";Var1;Var2;Var3;Var4)
If(Var1="xxxxxx")

“Document not found

Else
“Document found

End if

CLEAR VARIABLE

This routine uses two different syntaxes in interpreted mode:

CLEAR VARIABLE(variable)

CLEAR VARIABLE("a")

In compiled mode, the first syntax of CLEAR VARIABLE(variable) reinitializes the variable
(set to null for a numeric; empty string for a character string or a text, etc.), since no
variable can be undefined in compiled mode.

Consequently, CLEAR VARIABLE does not free any memory in compiled mode, except in
four cases: Text, Picture, BLOB and Array type variables.

For an array, CLEAR VARIABLE has the same effect as a new array declaration where the size
is set to null.

For an array MyArray whose elements are of the Integer type, CLEAR VARIABLE(MyArray)
has the same effect as one of the following expressions:

ARRAY INTEGER(MyArray;0)
"if it as a one-dimensional array
ARRAY INTEGER(MyArray;0;0)
“if it is a two-dimensional array

The second syntax, CLEAR VARIABLE("a"), is incompatible with the compiler, since
compilers access variables by address, not by name.

384 4th Dimension Language Reference

Pointers with certain commands

The following commands have one common feature: they accept an optional first
parameter [Table], and the second parameter can be a pointer.

ADD TO SET LOAD SET

APPLY TO SELECTION LOCKED ATTRIBUTES
COPY NAMED SELECTION ORDER BY

CREATE EMPTY SET ORDER BY FORMULA
CREATE SET OUTPUT FORM

CUT NAMED SELECTION PAGE SETUP

DIALOG Print form

EXPORT DIF PRINT LABFEL
EXPORT SYLK QR REPORT

EXPORT TEXT QUERY

GOTO RECORD QUERY BY FORMULA
GOTO SELECTED RECORD QUERY SELECTION
GRAPH TABLE QUERY SELECTION BY FORMULA
IMPORT DIF REDUCE SELECTION
IMPORT SYLK RELATE MANY
IMPORT TEXT REMOVE FROM SET
INPUT FORM

In compiled mode, it is easy to return the optional [Table] parameter. However, when the
first parameter passed to one of these commands is a pointer, the compiler does not know
to what the pointer is referring; the compiler treats it as a table pointer.

Take the case of the QUERY command whose syntax is as follows:
QUERY({table{;formula{;*}})
The first element of the formula parameter must be a field.
If you write :

QUERY(PtrField->=True)
the compiler will look for a symbol representing a field in the second element. When it
finds the "=" sign, it will issue an error message, since it cannot identify the command
with an expression that it knows how to process.

On the other hand, if you write:
QUERY(PtrTable->;PtrField->=True)
or
QUERY([Table];PtrField->=True)
you will avoid any possible ambiguity.

4th Dimension Language Reference 385

Constants

If you create your own 4DK# resources (constants), make sure that numerics are declared
as Longints (L) or Reals (R) and character strings as Strings (S). Any other type will
generate a warning.

See also
Optimization Hints, Typing Guide, Using Compiler Directives.

386 4th Dimension Language Reference

Optimization Hints Compiler

version 2003 (Modified)

It is difficult to state a definitive “good-programming” method, but we wish to stress the
advantages of well-structured programs. The capacity for structured programming in

4th Dimension can be a great help.

The compilation of a well-structured database can yield much better results than the same
effort performed in a poorly-designed one. For instance, if you write a generic method to
manage n object methods, you will get higher quality results in both interpreted and
compiled modes than in a situation where n object methods comprise n times the same
set of statements.

In other words, the quality of the programming does have an impact on the quality of
the compiled code.

With practice, you can gradually improve your 4th Dimension code. Frequent use of the
compiler gives you corrective feedback that enables you to reach instinctively for the
most efficient solution.

In the meantime, we can offer some advice and a few tricks that will save you time in
performing simple, recurring tasks.

Using comments in code

Certain programming techniques may make your code less readable both for yourself or
another person at a later time. Because of this, we encourage you to comment your
methods with a lot of detail. In fact, while excessive comments have a tendency to slow
down interpreted databases, they have absolutely no influence on the execution time in a
compiled database.

Using compiler directives to optimize code

Compiler directives can help you speed up your code considerably. When typing variables
on the basis of their use, the compiler uses the data type with the largest scope possible so
as not to penalize you. For example, if you do not type the variable defined by the
statement: Var:= 5, the compiler will type it as Real, even if it could be declared an
Integer.

Numeric Variables

The compiler gives numeric variables (not typed by compiler directives) the default data
type Real if the Preferences are not set to anything else. But calculations performed on a
Real are slower than on a Longint. If you know that a numeric variable will always be an
integer, it is to your advantage to declare it through the compiler directives C_INTEGER or
C_LONGINT.

For example, it is good practice to declare your loop counters as Integers.

4th Dimension Language Reference 387

Some 4th Dimension functions return Integers (e.g., Ascii, Int...). If you assign the result
of one of these functions to an untyped variable of your database, the compiler types it as
Real rather than as Integer. Remember to declare such variables with compiler directives
whenever you are sure that they will not be used in a different context.

Here is a simple example of a function that returns a random value with a given range:
$0:=Mod(Random;($2-$1+1))+$1
It will always return an integer. Written this way, the compiler will type $0 as Real rather
than Integer or Longint. It is preferable, therefore, to include a compiler directive in the
method:
C_LONGINT($0)
$0:=Mod(Random;($2-$1+1))+$1
The parameter returned by the method will take less space in memory and will be much
faster.

Here is another example. Suppose you typed two variables as Longint:
C_LONGINT($var1;$var2)

and a third non-typed variable receives the sum of the other two variables:
$var3:=$varl+$var2.

The compiler will type the third variable, $var3, as Real. You will have to explicitly declare

it as Longint if you want the result to be a long integer.

Note: Be careful with the computation mode in 4th Dimension. In compiled mode, it is
not the data type of the variable that receives the calculation which determines the
computation mode, but rather the data types of the operands.

e In the following example, the calculation is based on long integers:

C_REAL(S$var3)

C_LONGINT($var1;$var2)

$var1:=2147483647

$var2:=1

$var3:=$varl+$var2
$var3 is equal to —-2147483648 in both compiled mode and interpreted mode.
e However, in this example:

C_REAL(S$var3)

C_LONGINT($var1)

$var1:=2147483647

$var3:=$varl+1
for optimization reasons, the compiler considers the value 1 as an integer. In compiled
mode, $var3 is equal to -2147483648 because the calculation is based on Longints. In
interpreted mode, $var3 is equal to 2147483648 because the calculation is based on Reals.

Buttons are a specific case of a Real that can be declared as Longint.
Strings
The default type assigned to alphanumeric variables is Text if the Preferences are not set

to anything else. For example, if you write:
MyString:="Hello", MyString would be typed as a Text variable by the compiler.

388 4th Dimension Language Reference

If this variable will be processed frequently, it is worthwhile to declare it using C_STRING.
Processing is much faster with String type variables, which have a defined maximum
length, than with Text variables. Keep in mind the rules governing the behavior of this
directive.

If you want to test the value of a character, make the comparison on its Ascii value rather
than on the character itself. The regular character comparison procedure considers all of
the character's alternatives, such as diacritical marks.

Various observations

Two-dimensional arrays
The processing of two-dimensional arrays is better managed if the second dimension is
larger than the first.

For example, an array declared as:
ARRAY INTEGER(Array;5;1000)

will be better managed than an array declared as:
ARRAY INTEGER(Array;1000;5)

Fields

Whenever you need to perform several calculations on a field, you can improve
performance by storing the value of that field in a variable and performing your
calculations on the variable rather than the field. Consider the following method:

Case of
: ([Client]Dest="New York City")
Transport:="Messenger"
: ([Client]Dest="Puerto Rico")
Transport:="Air mail"
: ([Client]Dest="Overseas")
Transport:="Express mail service"
Else
Transport:="Regular mail service"
End case

This method will take longer to execute than if it were written:

$Dest:=[Client]Dest
Case of
: ($Dest="New York City")
Transport:="Messenger"
: ($Dest="Puerto Rico")
Transport:="Air mail"
: ($Dest="Overseas")
Transport:="Express mail service"
Else
Transport:="Regular mail service"
End case

4th Dimension Language Reference 389

Pointers

As is the case with fields, it is faster to work with variables than with dereferenced
pointers. Whenever you need to perform several calculations on a variable referenced by a
pointer, you can save time by storing the dereferenced pointer in a variable.

For example, suppose you use a pointer, MyPtr, to refer to a field or to a variable. Then,
you want to perform a set of tests on the value referenced by MyPtr. You could write:

Case of
: (MyPtr-> = 1)
Sequence 1
1 (MyPtr-> = 2)
Sequence 2
End case

The set of tests would be performed faster if it were written:
Temp:=MyPtr->

Case of
:(Temp=1)
Sequence 1
: (Temp = 2)
Sequence 2
End case

Local variables
Use local variables wherever possible to structure you code. Using local variables has the

following advantages:
e Local variables take less space when used in a database. They are created when the

method in which they are used is entered, and they are destroyed when the method

finishes executing.
e The code generated is optimized for local variables, especially for those of the type
Longint. This is useful for counters in loops.

See also
Syntax Details, Typing Guide, Using Compiler Directives.

390 4th Dimension Language Reference

Error messages Compiler

version 2003 (Modified)

This section describes the different messages generated by the compiler. These messages
are of several different types:

e warnings, that help you avoid common pitfalls;

e errors, that it is up to you to correct;

e range checking messages, generated within 4th Dimension.

Warnings

These messages are generated throughout the compilation process. Each message is
accompanied here with an example of the problem and, when necessary, an additional
explanation.

Pointer in COPY ARRAY
COPY ARRAY(Pointer->;Array)

Pointer in SELECTION TO ARRAY
SELECTION TO ARRAY(Pointer->;MyArray)
SELECTION TO ARRAY([MyTable]MyField;Pointer->)

Pointer in ARRAY TO SELECTION
ARRAY TO SELECTION(Pointer->;[MyTable]MyField)

Pointer in LIST TO ARRAY
LIST TO ARRAY(List;Pointer->)

Pointer in ARRAY TO LIST
ARRAY TO LIST(Pointer->;List)

Pointer in an array declaration

ARRAY REAL(Pointer->;5)
The command ARRAY REAL(Array;Pointer->) does not generate this warning. The value of
the dimension of an array does not have any influence on its type. In this example, the
array referred to by the pointer must have been defined elsewhere.

Pointer in DISTINCT VALUES
DISTINCT VALUES(Pointer->;Array)

Using the function Undefined is not advised.
If(Undefined(Variable))

The Undefined function always returns FALSE in a compiled database.

4th Dimension Language Reference 391

This method is protected by a password.

An automatic action button does not have a name in the MyForm form on page X.
All of your buttons should have names to avoid conflicts.

Assumes that the pointer points to an alphanumeric expression.
Pointer-><2>:="a"

Assumes that the string index is numeric.
String<Pointer->>:="a"

Assumes that the array index is of type real.
ALERT(MyArray{Pointer->})

Missing parameter in the plug-in procedure call.
WR SET FONT(Area)

Error messages

These messages are generated throughout the compilation process. It is up to you to
correct these errors in order to for the compiler to be able to generate a compiled
database. Each message is accompanied here with an example of the problem and, when
necessary, an additional explanation.

The messages are grouped by the following topics: Typing, Syntax, Parameters, Operators,
Plug-in Commands and General Errors.

e Typing
The type of the variable is not compatible with the operator. Cannot make an assignment with
those types.

MyReal:=12.3

MyBoolean:=True
MyReal:=MyBoolean

Changing the maximum length of a string.
C_STRING(3;MyString)
C_STRING(5;MyString)

Changing the number of dimensions of an array.
ARRAY TEXT(MyArray;5;5)
ARRAY TEXT(MyArray;5)

Typing conflict on the MyArray variable in the form.
ARRAY INTEGER(MyArray)

392 4th Dimension Language Reference

Declaring an array without dimensions.
ARRAY INTEGER(MyArray)

Variable expected.
COPY ARRAY(MyArray;"")

Constant number expected.
C_STRING(Variable;MyString)

The type of Variable is unknown. This variable is used in the method M1.
The type of Variable cannot be determined. A compiler directive is necessary.

Invalid constant type
OK:="The weather is nice"

The method M1 is unknown.
The line contains a call to a method that does not exist or no longer exists.

Incorrect usage of a field.
MyDate:=Add to date(BooleanField;1;1;1)

The length of a string cannot be greater than 255 characters.
C_STRING(325;MyString)

The variable Variable is not a method.
Variable(1)

The variable Variable is not an array.
Variable{5}:=12

The result of the function is not compatible with the expression.
Text:="Number"+Num(i)

The types of the variables used in this expression are not compatible.
Integer:=MyDate*Text

Changing the type of the variable $i from type Fixed string to type Real.
H ll3|l

$(8i):=5

The array index is not a number.
IntArray{"3"}:=4

Retyping the variable Variable from type Text to an array of type Text.
C_TEXT(Variable)
COPY ARRAY(TextArray;Variable)

4th Dimension Language Reference

393

Retyping of the variable Variable from type Text to type Real.
Variable:=Num(Variable)

Retyping the array MyBoolean from array of type Boolean to variable of type Real.
Variable:=MyBoolean

Retyping the array IntArray from array of type Integer to array of type Text.
ARRAY TEXT(IntArray;12)
if IntArray was declared elsewhere as an Integer array.

Trying to dereference a variable which is not of type Pointer.
Variable->:=5
if Variable is not of the type Pointer.

Retyping of the variable Varl from type Text to type Number.
Var1:=3.5

Incorrect usage of a field.
Variable:=[MyTable]MyField
[MyTable]MyField is a Date field. Variable is of the type Numbert.

e Syntax
The result of the function is not a pointer.
Variable:=Num("The weather is nice")->
It is not possible to dereference this function.
Syntax error.
If(Boolean)
End for

Too many opening curly brackets ({) .
The line contains more opening brackets than closing brackets.

Too many closing curly brackets (})..
The line contains more closing bracke