
4D Server®

Reference
Windows® and Mac OS® Versions

4D Server® and 4th Dimension®

© 2005 4D SA / 4D, Inc. All Rights Reserved.

__

4D Server Reference
Version 2004 for Windows® and Mac OS®

Copyright © 2005 4D SA / 4D, Inc.
All rights reserved
__

The Software described in this manual is governed by the grant of license in the 4D
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the 4D
Product Line License Agreement.

4D, 4D Draw, 4D Write, 4D View, 4D Insider, 4th Dimension®, 4D Server, as well as the
4th Dimension and 4D logos are registered trademarks of 4D SA.

Windows, Windows NT and Microsoft are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac OS, and QuickTime are trademarks or registered trademarks of
Apple Computer, Inc.

Mac2Win Software Copyright © 1990-2005, is a product of Altura Software, Inc.

ACROBAT © Copyright 1987-2005, Secret Commercial Adobe Systems Inc. All rights
reserved. ACROBAT is a registered trademark of Adobe Systems Inc.

All other referenced trade names are trademarks or registered trademarks of their
respective holders.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the 4D Product Line License Agreement, which is
provided in electronic form with the Software. Please read the 4D Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. Introduction 5
Overview 7
4D Server Architecture 12

2. 4D Server in 10 minutes 17
Checking Your Installation 19
Creating a Server Database 20
Connecting to the Server Database with 4D Client 25
Defining the Database Structure 28
Data Manipulation with 4D Server 31
Adding a Custom Menu Bar 37
Working Concurrently with 4D Server 40
4D Server is a Web Server 49

3. Using 4D Server 57
Creating a New 4D Server Database 59
Exiting 4D Server 61
4D Server Process Window 63
Configuration preferences 67
Publishing preferences 70
Encrypting Client/Server Connections 72
Transferring data to client machines 75
Setting up a logical mirror 76

4. Using 4D Client 79
Connecting to a 4D Server Database 81
Creating a Path Document 85

4D Server Reference 3

5. 4D Server Menus 89
File Menu 91
Edit Menu 94
Process Menu 95
Data Menu 98
Web Server Menu 99
Help Menu 100

6. 4D Server and the 4D Language 103
4D Server and the 4D Language 105
4D Server and Sets 107
On Server Startup Database Method 111
On Server Shutdown Database Method 112
On Server Open Connection Database Method 113
On Server Close Connection Database Method 118

7. Stored Procedures 119
Stored Procedures 121
Registering 4D Client 131
SP-Based Import (Example) 133
SP-Based Services (Example) 136

4 4D Server Reference

1

Introduction

4D Server Reference 5

6 4D Server Reference

Overview Introduction

version 2004.3 (Modified)
__

4D Server is the multi-user, cross-platform data and application server for 4th Dimension.

With 4D Server, you can create and use multi-user databases and custom applications in a
client/server architecture. The platform-independent client/server architecture seamlessly
manages databases for both Windows and Macintosh 4D clients. 4D Server includes
professional-strength development tools, full scalability, data security, and connectivity
options for enterprise systems.

4D Server provides a completely integrated architecture whereby both client and server
use a single 4D application. 4D Server frees developers from the need to design separate
front-end and back-end applications. In addition, 4D Server is a “zero admin” server. It is
easy to install, use, and administer, and is extremely cost-effective.

4D Server fills the gap between low-end file-sharing based systems and complex SQL-based
RDBMS. Any 4D Server application smoothly interfaces with existing enterprise databases
(such as Oracle, Sybase, or any ODBC compatible server) with 4D Connectivity Plug-ins.
4D Server addresses the needs of workgroups in all size businesses.

Integrated Back-end and Front-end Architecture
__

With 4D Server, the front-end and the back-end application are one and the same. The
client software and the server application are two faces of the same product, 4th
Dimension. The 4D Server application itself is divided into two parts—4D Server and 4D
Client—which correspond to the elements in client/server architecture.

The 4D Server portion resides on the server machine. It stores and manages the database
on the server and allows end users to manipulate the database from their own machines
(the clients).

A copy of 4D Client resides on each client machine. Using 4D Client, users access the
database on the server and perform database operations such as adding data, generating
reports, and modifying database design. Anything that can be done with 4th Dimension
can be done using 4D Server and 4D Client.

No additional middleware or development are required to operate in a client/server
environment. 4th Dimension, 4D Client, and 4D Server share the same interface tools,
the same language and the same information management system.

Any single-user application created for one platform (Windows or Macintosh) easily scales
to a workgroup client/server solution. Conversely, an application created with 4D Server
automatically scales down to a stand-alone application.

4D Server Reference 7

“Zero Admin” Data and Application Server
__

4D Server benefits from the user-focused heritage of 4D. As a result, 4D Server is a
complete Plug and Play system (PNP).

4D Server Main Window

• Simple on-line graphical centralized information: The 4D Server Main Window
automatically displays important information—total memory allocated to 4D Server, data
cache, number and name of connected users, number of processes and process’ status,
server activity, cache ratio and monitoring of backups.

• Auto-configurability and scalability: 4D Server is designed to support the addition of
new protocols, new clients, and plug-ins without any reconfiguration or reengineering.

• Automatic and dynamic updating and version controling of client workstations: All 4D
clients are automatically and dynamically updated if the database is modified, or if a plug-
in is added, removed, or modified.

8 4D Server Reference

• Automatic asynchronous connections using the standard TCP/IP protocol: 4D Server and
4D Client communicate transparently using the TCP/IP protocol no matter what the
platforms of the client and the server are. Since the TCP/IP protocol is now integrated in
all operating systems, using this protocol with 4D Server does not require any additional
installation.

• Automatic session and state maintenance for 4D Clients and Web connections:
4D Server automatically creates and maintains a current working environment for each
table/process/user combination. This session-based architecture allows each process for
each user to manipulate data independently and concurrently. In contextual mode, the
Web server of 4D Server provides Web clients with all the client/server functions.

•Automatic record locking: 4D Server provides automatic record locking and release,
avoiding common problems associated with modification of “in-use” records. Record
locking also eliminates problems associated with page or file locking.

• Integrated user-interface messaging system: Having originated in the desktop arena,
4D Server provides all user interface aspects associated with modern integrated
development environments. For example, 4D Server can inform clients of administrative
actions, such as scheduled disconnection and backups.

• Automated start-up and disconnection methods: 4D Server automatically invokes five
server database methods in response to specific events: On Server Startup, On Server
Shutdown, On Server Open Connection, On Server Close Connection, and On Web
Connection. The On Server Startup method can automatically initialize and load any
objects that may be needed throughout the rest of the session.

An Unmatched Feature Set

In addition to 4th Dimension capabilities, 4D Server provides the following features:
• Multi-user data management: Multiple users can simultaneously perform database
operations. Operations such as adding, modifying, deleting, searching, sorting, and
printing records can be performed by several users on records from the same file or from
different files. Data integrity is preserved through a built-in record locking system.

• Multi-user development: Multiple users can simultaneously develop and design a
database. For example, several users can edit file definitions and create and modify
layouts, scripts, and procedures at the same time. The integrity of your database design is
preserved through a built-in object locking system.

• Platform independent client /server architecture: The architecture seamlessly manages
database performance for both Macintosh and Windows 4D Clients. This includes
concurrent multi-development across platforms, as well as a transparent interface to all
the data entered and modified by 4D Client stations running in a heterogeneous
hardware environment.

4D Server Reference 9

• Windows and Mac OS-based 4D Plug-ins architecture: The Windows and Mac OS
versions of 4D Server let you install both Windows-based and Mac OS 4D plug-ins on the
server machine. This architecture simplifies the distribution of platform-independent 4D
plug-ins. Plug-ins are transparently handled by 4D Server and 4D Client, no matter what
the platform of the client.

• Built-in Web Server: Like 4th Dimension, 4D Server and each 4D Client has a Web
Server engine that enables you to publish 4D databases on the Web. Your database can be
directly published on the Web. You do not need to develop a database system, a Web site,
nor a CGI interface between them. Your database is your Web site. You can also
transform any 4D Client machine into a Web server. For more information about the
built-in Web Server of 4D Server and 4D Client, see the section Web Server, Overview in
the 4th Dimension Language Reference manual.

• Connection Security via SSL (Secured Socket Layer) : You can encrypt 4D Server
connections. In fact, the “classic” client/server architecture can make use of SSL’s
encryption services. For more information, refer to section Encrypting Client/Server
Connections.

• Triggers: A Trigger is a method attached to a table. It is a property of a table. You do not
call triggers; they are automatically invoked by the 4D database engine each you
manipulate table records (add, delete, modify, and load). You can write very simple
triggers, and then make them more sophisticated. Triggers can prevent “illegal”
operations within database records. They are a very powerful tool to restrict table
operations, as well as to prevent accidental data loss or tampering. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying
the customer to whom the invoice is billed. With 4D Server, triggers are executed on the
server machine. Any client, whether it is a 4D Client or a 4D Open-based application, is
subjected to the database rules enforced by the triggers. For more information about 4D
triggers, see the section Triggers in the 4th Dimension Language Reference manual.

• Stored Procedures: You can create 4D methods to be executed locally on the server
machine in their own separate process or on one or multiple specified clients. Using
client/server industry terminology, this functionality is called “stored procedures.”
Nevertheless, 4D Server provides an architecture that goes far beyond the regular concept
of stored procedures. With 4D Server, a stored procedure is actually a custom server
process (or a client process, see below) that runs your code asynchronously and
independently from all the other processes running on the server or client machines.
With regular client/server architecture, a stored procedure executes and returns a result
(synchronously or asynchronously). With 4D Server, you can start a stored procedure that
runs during a whole client/server session and replies, upon request, to the messages sent
by the clients. Concurrently, you can run a stored procedure that does not interact with
any client, but instead synchronizes data with an SQL-based server or another 4D Server,
using 4D Connectivity plug-ins or 4D Open. There is no limit (except hardware and
memory) to the number of stored procedures that you can run concurrently. A 4D Server
stored procedure runs in its own process and therefore, like any other user process, can
maintain its own private database context (i.e., current selections).

10 4D Server Reference

In addition, the 4D language provides commands that enable client processes to read and
write the process variables of any stored procedures (including BLOB variables), allowing
sophisticated and flexible communication between clients and the stored procedures. In
fact, using stored procedures, you can add new and custom services to 4D Server. For
detailed information, see the section Stored Procedures.

• Stored Procedures executed on client:
With 4D Server, you can execute, from the client or the server, stored procedures on one
or several other clients. Consequently, the workload can be shared between the clients
and the server or applications can be built using all the communication facilities between
the clients. For further information, see the Stored Procedures section.

• Server path: The path to a server database can be saved with a user’s password in the
Password Access editor. This feature allows a user to connect to a database on the server by
clicking the 4D Client Path document icon. 4D Client uses the path to automatically
access the correct database.

• 4D Open: Using 4D Open, the API (Application Programming Interface) for 4D Server,
users can connect to a 4D Server database from programs other than 4D Client. These
programs can be either Windows or Macintosh applications. 4D Open can be included in
4th Dimension and 4D Client. Users can simultaneously connect to multiple servers,
enabling departmental and interdepartmental distributed systems. Last but not least,
using 4D Open from within triggers and stored procedures (thus, executing methods on
the server machine), you can write systems where 4D Server connects to other 4D Servers
in order to achieve automatic data replication or distribution. In short, with 4D Open, 4D
Server becomes a client of its own architecture.

• Built-in backup system: 4D Server includes a complete database back-up and restore
module. This module lets you back up a database during operation, without having to exit
the application. Back-ups can be launched manually or automatically, at regular intervals
and without user intervention. In the event of an incident, restoring and/or restarting
the database can also be initiated automatically.

• Backup by logical mirror: For critical applications, it is possible to set up a backup system
by logical mirror, which permits an immediate restart if an incident occurs on the
operational database.

• Connectivity Plug-ins: Using the 4D Connectivity plug-ins like 4D ODBC Pro, both 4D
Server and 4D Client can directly access mainframe and minicomputer databases such as
ORACLE or any other ODBC database server. Information can be shared interactively
between these databases. In addition, 4D is offering a 4D Server ODBC driver that will
allow any ODBC client to connect and work with 4D Server.

• Remote Connections: On Mac OS, 4D Server supports remote connections via ARA
(Apple Remote Access). For further information, refer to the ARA documentation (Mac
OS).
On Windows, 4D Server supports remote connections via Remote Access Windows. For
more information, refer to the Windows manual.

4D Server Reference 11

4D Server Architecture Introduction

version 6.0.2
__

Using client/server architecture, 4D Server not only stores and manages the database, it
also provides services to the clients. These services are managed over a network through a
system of requests and responses.

To search for a set of records, for instance, a client machine sends a query request to the
server. Upon receiving the request, the server executes the query operation locally on the
server machine and, when the query is completed, returns the result (the records found).

4D Server’s architecture is based on the client/server model. In recent years, client/server
architecture has surpassed its older counterpart, file sharing architecture, to become the
most efficient model in multi-user databases.

4D Server’s implementation of client/server architecture is similar to that used in the
world of minicomputers. However, 4D Server offers two significant innovations:
• A user-friendly, graphical interface at all levels of the database
• An integrated architecture that provides increased efficiency and speed

File Sharing Architecture
__

Before the introduction of client/server architecture, multi-user systems used the file
sharing model of network architecture. In this model, all users share the same data, but
data management is not controlled by a central database engine. Each client machine
must store a copy of the database structure and engine, while the server maintains only
the software needed to share files on the network.

Under the file sharing model, each workstation performs all data modification locally.
This creates excessive network traffic as each request consists of numerous network passes.
The following figure is an example of the traffic created over the network when a user
searches the database for every person with the last name “Smith.”

12 4D Server Reference

Another disadvantage of the file sharing model is the inability to use a memory cache to
keep records in memory. If records were kept in memory, different users could have
different versions of the same record stored in cache, leading to data inconsistency. As a
result, each time a user accesses a record, it must be downloaded from the file server. This
causes network traffic and increases the time necessary to access a record.

Heterogeneous Client/Server Architecture
__

In the minicomputer world, client/server architecture is widely used for large database
systems because of its efficiency and speed. In this architecture, work is divided between
the server machine and the clients to improve performance.

The server contains the central database engine, which stores and manages the data. The
database engine is the only software accessing the data stored on disk. When a client
sends a request to the server, the server sends the result. The result can be anything from
a specific record that the client will modify to a sorted list of records.

In general, most client/server architectures are called heterogeneous architectures, because
the front-end applications running on the client machines and the database engine
running on the server machine are two different products. In this situation, a database
driver is required to act as a translator between the clients and server.

To search for a record, for example, a client sends a query request to the server. Since the
database is stored on the server, the server executes the command locally on the server
machine and sends the result to the client. The following figure shows the traffic created
over the network when a user requests the server to search for every person with the last
name “Smith” and then display the first record found.

4D Server Reference 13

This example illustrates two important differences between file sharing architecture and
client/server architecture:

• Client/server architecture allows the use of cache: Since the engine is the only software
that physically accesses data, the server can maintain a cache that keeps modified records
in memory until they are written to disk. Data is sent from one central location, so the
clients are assured of always receiving the latest version of a record. In addition to the
data integrity this assures, the use of a central cache mechanism accelerates database
operations by replacing disk access with memory access. Under the file sharing model, all
access is disk access.

• Low-level database operations are performed on the server: Client/server architecture
offers dramatically increased speed because low-level database manipulations, such as
browsing the index and address tables, are locally executed on the server machine at the
speed of the machine. In file sharing architecture, the same operations are slowed by
network transfers and the limitations of the client machine.

4D Server’s Integrated Client/Server Architecture
__

In most client/server architectures, the client and server software consist of two separate
products that require a communication layer to “speak” to one another. With 4D Server,
the client/server architecture is fully integrated. 4D Server and 4D Client are two
applications that share the same structure and communicate directly.

Since 4D Server and 4D Client speak the same language, the query language does not
need to be translated. The division of labor between the client and the server is
transparent and is managed automatically by 4D Server.

14 4D Server Reference

The division of labor is organized so that one request yields one response. As you can see
in the diagram, the client is responsible for:
• Requests: 4D Client sends requests to 4D Server. These requests can be performed using
the built-in editors, such as the Query and Order By editors, or using the procedural
language. 4D Client provides editors in which methods can be created and modified. It
also manages method components such as variables and arrays.
• Receiving responses: 4D Client receives responses from 4D Server and updates the user
through the user interface (different records are displayed in a form, etc.). For example, if
the client requests all records with the last name “Smith,” 4D Client receives the records
from 4D Server and displays them in a form.

The server is responsible for the following:
• Scheduling: 4D Server uses multi-tasking architecture to schedule all simultaneous
connections and processes created by clients.
• Structure and data objects: 4D Server stores and manages all data and structure objects,
including fields, records, forms, methods, menus, and lists.
• Cache: 4D Server maintains a cache which contains records, as well as data objects
specific to particular clients, such as selections and sets.
• Low-level database operations: 4D Server performs low-level database operations, such
as queries and sorts, that involve using the index and address tables.

This division of labor is extremely efficient because of the unique integration of 4D Server
and 4D Client. The integration of 4D Server’s architecture is present at every level:
• At the request level: When 4D Client sends a request to 4D Server, such as a query or a
sort, 4D Client sends a description of the query or the sort operation using the same
internal structures found in 4D Server.
• At the structure or data level: When 4D Client and 4D Server exchange a data or
structure object, both applications use the same internal format. For instance, when 4D
Client needs a record, 4D Server sends the data exactly as it finds it in the disk or memory
cache. In the same way, when 4D Client wants to update a record, 4D Client sends the
data to 4D Server, which stores it in cache exactly as it was received.

4D Server Reference 15

• At the user interface level: When 4D Client displays a list of records, the form used to
display the records plays a role in the client/server architecture. For example, the
following figure shows the result of a query in the [Customers] table.

Since the window can display only twelve records and five fields at a time, 4D Server
sends exactly twelve records. Instead of sending the entire set of records, 4D Server sends
only the number of records and fields that can be displayed in the window. If the user
were to scroll through the form, 4D Server would send the additional records or fields as
needed. This optimization reduces network traffic by ensuring that records and fields are
sent over the network only when necessary.

16 4D Server Reference

2

4D Server in 10 minutes

4D Server Reference 17

18 4D Server Reference

Checking Your Installation 4D Server in 10 minutes

version 2004 (Modified)
__

The Chapter 4D Server in 10 Minutes is a quick tutorial that shows you how to:
• Create a server database
• Connect Clients to the created server database
• Create a database structure, including tables, fields, forms, menus and methods
• Connect with a second user and work concurrently
• Connect with a Web browser

You will need:
• One machine with 4D Server installed
• Two machines with 4D Client installed
• One machine with a Web browser installed

Before working with 4D Server and 4D Client for the first time, it is a good idea to check
your installation. To do so, read this section.

Installed elements
__

If you have installed 4D Server and 4D Client in the default folders proposed by their
installation programs, you should have the following folders and files on disk.

4D Server
A 4D Server folder located in the installation folder has been created.
• Under Windows, this folder contains the 4D Server application, its related files, and a 4D
Extensions folder. To start 4D Server, double-click on the 4DSERVER.EXE file.
• Under Mac OS, this folder contains the 4D Server software package. To launch 4D
Server, just double-click on this package.

4D Client
A 4D Client folder located in the installation folder has been created.
• Under Windows, this folder contains the 4D Client application, its related files, and a
4D Extensions folder. To start 4D Client, double-click on the 4DCLIENT.EXE file.
• Under Mac OS, this folder contains the 4D Client software package. To launch 4D
Client, just double-click on this package

Where To Go From Here?
__

Note that the TCP/IP protocol should be configured for your machines to communicate
over the network.

If 4D Server and 4D Client are correctly installed, proceed with the section Creating a
Server Database. Otherwise, if some of the files listed above are missing, refer to the 4D
Product Line Installation Guide and proceed with the installation of these files.

4D Server Reference 19

Creating a Server Database 4D Server in 10 minutes

version 2004.3 (Modified)
__

This section explains how to create a server database that can be accessed on the network
using 4D Client and then using a Web Browser. Before working with 4D Server and 4D
Client for the first time, it is a good idea to check your installation. To do so, read the
section Checking your installation.

Note: In this example, we assume that you have already registered your 4D Server with
4D, as described in the 4th Dimension Installation Guide.

To create or open a server database, launch 4D Server.

1. Launch 4D Server by double-clicking on the 4D Server icon.

The Welcome dialog box appears, giving you the choice of opening an existing database,
creating a new one (either blank or based on a template), or restoring an archived
database. In this exercise, you will create a new database.

20 4D Server Reference

2. Click on the New Database icon on the left-hand side of the window.

4D Server Reference 21

The following window appears:

3. Keep the default options and click on the Create database button.
A standard save file dialog box appears, which lets you specify the name and location of
the new database to be created.

4. Specify a location, then enter the name of the structure file of the database.

Type Employees, then click Save.

22 4D Server Reference

4D Server automatically creates the files and folders required for the operation of the
database, then the Process window appears:

The 4D Server Process window is composed of several parts.

The upper part displays general information about the server and the files used; the
central part indicates the state of database backups and information related to the
memory; and the lower part displays information about the current server activity.

Note that at this point, the number of users connected is zero. This means that you have
not yet connected any clients to the database. The number of processes currently running
is four. These four processes are the processes created by the database engine (kernel) and
the built-in Web Server.

The lower portion of the 4D Server window lists the connected users and the processes
that are currently executing. When no client workstation is connected, the only
information displayed consists of the server engine activity.

4D Server Reference 23

Where To Go From Here?
__

At this point, the database is available for Windows and/or Macintosh 4D Client
connections over the network. However, the database is not yet ready for Web
Connections, because these connections are not authorized by default.

Go to the section Connecting to the Server Database with 4D Client. In this tutorial, you
will first connect using 4D Client, define the structure of the database and add some
records to the database.

24 4D Server Reference

Connecting to the Server Database 4D Server in 10 minutes
with 4D Client

version 2004 (Modified)
__

Before working with 4D Server and 4D Client for the first time, it is a good idea to check
your installation. To do so, read the section Checking Your Installation.

This section discusses:
• How to connect clients to the server database you created.
• Creating a database structure. This section includes a tutorial in which you create tables
and fields in the database, enter new records, and modify existing records.
• Connecting a second user.
• Working concurrently.

Connecting to the Database
__

Although you created the database with 4D Server (see section Creating a server database),
all modifications to the database design and the actual data are performed from the client
machines. In this section, you will learn how to connect to the server and open the server
database.

1. Double-click the 4D Client application icon.

The Connection dialog box is displayed:

4D Server Reference 25

2. Click on the TCP/IP tab in order to display the list of 4D databases published on the
network.
The Employees database appears in the list:

3. Select Employees.4DB and click OK.

The database will be opened on the client workstation. It opens in the Design
environment, ready for you to create the structure of your database.

Tips: If you do not see the name of the database you have just created with 4D Server,
check the following points:
• Is 4D Server still runnning on the other machine?
• Are your machines connected to the network?
• Is the TCP/IP protocol correctly configured on both machines?
• If you are not sure about using the Connections dialog boxes, see the section
Connecting to a 4D Server Database.

Server Activity
__

When you look at the 4D Server Process window, note that your network user name has
been added to the list of users and the number of connected users is one.

26 4D Server Reference

There are now a total of six processes running:

The first four processes are for 4D Server itself and were created when 4D Server was
launched. The two new processes are for the first user connecting to the server:

• The Design process manages the Design environment. If you close the Design process
on the client machine by choosing Close Structure from the File menu, the Design
process on the server ends.

• The User/Custom Menus process manages the User and Custom Menus environments.
Each additional user will add at least two processes to the list of processes. You can hide
the processes of a user by clicking the cross (Windows) or the arrow (Macintosh) to the
left of the user’s name. To show the processes of the user, click the cross (Windows) or
the arrow (Macintosh) again.

Where To Go From Here?
__

Now that you are connected, you can work with the database with the same feature set as
that of 4th Dimension in single-user environment. First, you need to define the structure.
Go to the section Defining the database structure.

4D Server Reference 27

Defining the Database Structure 4D Server in 10 minutes

version 2004 (Modified)
__

After you have connected to the server database (see the section Connecting to the Server
Database with 4D Client), bring the Structure window to the front.

The new database has a default first table name [Table1].

Setting the Definition of the [Employees] Table — an Example
__

1. Double-click the title bar of [Table1].
OR
Click using the right mouse button or press Ctrl+click (on Mac OS) on [Table1], then
select Table Properties... within the contextual menu.

The Inspector floating window appears.

2. Type Employees in the Name area.

28 4D Server Reference

3. Click the Apply button.

4. Click using the right mouse button or press Ctrl+click (on Mac OS) on [Table1], then
select New Field within the contextual menu.

The field properties are displayed in the Inspector window.

5. Add the following fields to the [Employees] table:

Field Name Field Type
Last Name Alphanumeric (20 characters)
First Name Alphanumeric (20 characters)
Salary Real
Department Alphanumeric (20 characters)

For each field, enter the name of the field in the Name area, select the field type and click
Add.

4D Server Reference 29

After you have added the fields to the table, close the Inspector window.

Note: If other 4D Clients were working simultaneously with the server database, the fields
you have just created will appear on the other client machine in a few moments. The
changes are implemented on the server in real time, but do not appear on other screens
immediately, to avoid updating the screen too frequently.

Creating Foms for the [Employees] Table
__

After you have defined the [Employees] table, you need forms to add and work with its
records. To do so, you could use the New Form Wizard and create forms at your
convenience. However, 4D Server comes with a convenient shortcut for quickly creating
default input and output forms.

1. Choose User from the Mode menu.

You switch to the User environment. 4D Server detects that the table still has no forms
and asks if you want to let the program create them for you.

2. Click Yes.

You have now an input form for adding or displaying records one by one, and an output
form for displaying or entering multiple records in list mode.

Where To Go From Here?
__

Your server database is ready for data manipulation. Go to the section Data Manipulation
with 4D Server.

30 4D Server Reference

Data Manipulation with 4D Server 4D Server in 10 minutes

version 2004 (Modified)
__

In the section Defining the Database Structure, you have created the [Employees] table and
let 4D Server create the default forms for that table. You are now ready to enter records.

Entering Records
__

You enter, query, print and modify records in the 4D Client User environment. If you are
not yet in the User environment, choose User from the Mode menu. 4D Server displays
the default output form that is created automatically, blank for the moment.

1. Choose New Record from the Records menu.
The blank input form appears.

2. Enter your first record as shown.

Use the Tab key or the mouse to navigate between the fields.

3. Click on the form validation button (the one at the bottom) to validate your data
entry.

A blank input form appears so you can continue adding new records.

4D Server Reference 31

4. Enter five more records with the values listed here.

Last Name First Name Salary Department
Howard Mike 39500 Engineering
Smith John 32500 Production
Doe Jane 43000 Engineering
Harrison Bill 34250 Production
Jones Louise 35000 Production

5. After you have entered the last record, click the cancel icon (the one with a cross,
above the validation icon) so that you cancel the new blank input form. You go back to
the output form.

6. If all the six records are not shown, choose Show All from the Records menu.

You should have:

The records are now stored in the database on the server machine. If a second 4D Client
were connected to the server machine, it could display the records you have just added.
Conversely, if other clients were also entering records, you could choose Show All from
the Records menu to display all the records, including the ones they had entered. Records
stored on the server are accessible to all users.

Querying Records
__

Once you have entered records in the [Employees] table, you can search, sort, print, and
otherwise manipulate the records. For example, let’s look for the employees of the
Engineering department.

1. Click on the Find button in the toolbar.

32 4D Server Reference

The Query Editor appears:

2. Click on Department in the Fields list, on “is equal to” in the Comparisons list, then
enter Engineering in the Value area.

3. Click Query.

The query is sent to 4D Server, then 4D Server replies to 4D Client. In the output form,
you now have only the employees who work in the Engineering department.

4. To show all the records again, choose Show All from the Records menu.

4D Server Reference 33

Making a Chart
__

1. Choose Charts... from the Tools menu.

The Chart Wizard appears:

You are going to create a 2D Column chart (which is the chart type selected by default).

2. Click on the Next > button.

You must select the data that you want to use to create a new chart.

34 4D Server Reference

3. Drag and drop the field Last Name to the area Categories (X Axis) and the field Salary
to the list Values (Z Axis):

5. Click OK.
A Chart window appears, displaying the chart created according to your settings.

4D Server Reference 35

Where To Go From Here?
__

In just a few minutes, you have created a server database, defined a table, added records,
then made a query and a chart using the data entered in the database.

It is now time to add a custom menu bar to your database. Go to the section Adding a
Custom Menu Bar.

36 4D Server Reference

Adding a Custom Menu Bar 4D Server in 10 minutes

version 2004 (Modified)
__

In this section, you will design two methods and a custom menu bar. In short, you are
going to create a custom 4D application.

Adding the Two Methods
__

1. Return to the Design environment by choosing Design from the Mode menu.

2. Select New > Method.. from the File menu.

The New Method dialog box appears.

3. Enter “M_ADD_RECORDS” in the New Method dialog box, then click OK.

A method editor window appears titled “Method:M_ADD_RECORDS”.

4. Enter the code of the M_ADD_RECORDS method as shown:

5. Create a second method named “M_LIST_RECORDS” with the following code:

Now that the two methods have been created, you will create a custom menu bar and
attach the methods to custom menu commands.

4D Server Reference 37

Adding a Custom Menu Bar
__

1. Select Tool Box > Menus from the Design menu.

The Menu Bar Editor appears containing a default menu bar.

2. Go to the end of the list of existing menus (click on the “Mode” menu) and choose the
Add Menu command in the lower part of the window.

3. Enter “Tutorial” as the menu title and press Enter.

4. Choose Add Item to add a menu item to the “Tutorial” menu.

5. Enter “Add Records...” and press Enter.

6. Choose Add Item again to add a second menu command to the“Tutorial” menu.

7. Enter “Queries...” and press Enter.

The menu bar #1 should look like this:

8. Click the “Add Records...” menu command and enter “M_ADD_RECORDS” in the
Method Name area.

9. Click the “Queries...” menu command and enter “M_LIST_RECORDS” in the Method
Name Area.

38 4D Server Reference

The menu bar #1 should now look like this:

10. Close the Tool box window.

You're done!

11. Select Custom Menus from the Mode menu.

You are now using your application with the menus you just designed:

For example, if you select Queries... from the Tutorial menu, the Query editor (the built-
in Query editor from the User environment) appears. You can define your query, then
display and modify the records found by the query.

The interesting point is that, without knowing it, you just developed two applications!

To see why, go to the section Working Concurrently with 4D Server.

4D Server Reference 39

Working Concurrently with 4D Server 4D Server in 10 minutes

version 2004 (Modified)
__

If you run this tutorial on Windows, you could use this server database “as is” on
Macintosh. If you run this tutorial on Macintosh, you could use this server database “as
is” on Windows.

Connecting to the Server Database with a Second User
__

For this tutorial, we will connect to the server database with a Windows 4D Client and a
4D Client Mac OS. As soon as you are connected, you can see the second user entry in the
4D Server Process window:

40 4D Server Reference

On each client machine, everything done on the other platform is instaneously and
transparently reusable. Here is the Design environment on a Mac OS client:

Your six records and your two methods are here!

Working Concurrently with Records
__

1. On the first client machine, change to Custom Menus mode, choose Queries... from
the Tutorial menu, and look for the records where “Department is equal to Engineering”.

2. Do the same thing on the second client machine.

On both machines, you obtain a list composed of three records.

3. On the first machine, double-click on the record “Parker, Arthur”.

4D Server Reference 41

Your screen should look like this:

4. Do the same thing on the second machine.

4D Server has a built-in record locking mechanism and warns you that the record is
already in use:

42 4D Server Reference

Nevertheless, you have access to the record in read-only (you can display it, but cannot
modify it).

5. On the first machine, change the first name to “Michael” and validate your changes.

The list has been updated with the new first name.

4D Server Reference 43

6. On the second machine, cancel the display of the record in the input form.

The list has been updated with the new first name too!

Working Concurrently with Design Objects
__

4D Server is both a data and an application server. Let’s see what this means.

1. On the second machine, press the Esc. key, then choose the Design command in the
Mode menu.

2. Do the same thing on the first machine.

3. On the first machine, choose Explorer > Forms from the Design menu.

The Explorer window appears.

44 4D Server Reference

4. Expand the Employees table:

5. Double-click the Input form.

A Form Editor window is opened for the Input form:

4D Server Reference 45

6. Do the same thing on the second machine.

Since the form is already in Edit mode on the other machine, the 4D Server built-in
object locking mechanism informs you:

Nevertheless, you can open the form on the second machine in display mode. You can
select objects and copy them to other forms, but you cannot modify the form itself.

Note the padlock icon in the upper left corner of the form. This icon reminds you that
you cannot change the form.

7. On the first machine, select the legend “Last name” on the left of the [Employees]Last
Name field.

8. Using the Object>Color hierarchical menu, set the color of this object to red.

9. Select Save Form: [Employees]Input from the File menu.

10. On the second machine, close and reopen the form in order to reload it.

46 4D Server Reference

The change made on the other machine is now available on this one.

4D Server allows you to develop concurrently a database with other users!

Shutting Down the Server
__

In addition to informing 4D Client users during simultaneous access to the same records
or objects, 4D Server includes a built-in shutdown warning message over the network.

1. Keeping the two clients connected the server database, on the server machine, choose
Quit from the File menu (Windows) or the 4D Server menu (Mac OS).

The Shutting Down dialog box appears:

2. Click OK.

Almost instantaneously, the two client machines are informed that the server is shutting
down. For example, if a client were adding a record, the user would have enough time to
finish and validate the data entry.

This warning dialog box is repeated regularly on each client machine.

Note: Alternatively, you can shut down the server using the option “Wait for all users to
disconnect.”

3. While the server is shutting down, quit 4D Client on the two machines.

4D Server Reference 47

Where To Go From Here?
__

First, after these nine intense minutes and while the server is shutting down, you might
want to have drink.

Now, the interesting point is that you did not just develop two applications—in fact, you
developed three applications!

To see why, go to the section 4D Server is a Web Server. This will take about one minute.

48 4D Server Reference

4D Server is a Web Server 4D Server in 10 minutes

version 2004 (Modified)
__

Restart the server database by launching 4D Server again and open the Employees
database you created.

Connect to the database using 4D Client.

You are going to quickly create a form adapted to Web publication.
In Design mode, choose the New >Form... command in the File menu.
The New Form Wizard appears.

Make the following settings:
• Form Name: “Web Input”
• Form Type: Detail Form
• Template used: Web Aware
• Available Fields: Click the “Add all fields” button.

4D Server Reference 49

The wizard should now appear as follows:

Click on the Use button.

On the server machine, you have one connected user:

50 4D Server Reference

To check that the Web server is operating, start a browser from another machine and
enter the IP address of the server machine in the "Address" area of the browser (usually of
the 123.45.67.89 type). You should obtain the default home page of the Web server as
follows:

You are now going to configure the Web server so that it starts in contextual mode. In
this mode, Web pages come from dynamic conversion of the 4D forms and menu bars.
Contextual mode is particularly suited for fast publication of an existing database (for
more information about contextual mode, refer to the section Using the Contextual Mode
in the 4th Dimension Language Reference manual).
On the server machine, choose Preferences... in the Edit menu, display the “Web
(Server)/Configuration” page and make the following modifications:
• Check that the database is published at startup,
• Remove the default home page (in order to use the menu bar as the home page),
• Check the “Contextual Mode” option.

4D Server Reference 51

The page should appear as follows:

Return to the machine where the Web browser is running and refresh the server
connection. You will now obtain the Web version of your custom menu bar (it may be
necessary to empty the cache of the browser):

52 4D Server Reference

Note that you did not need to write any HTML code or implement any CGI module to
get this result—4D Server is a Web server too!

On the server machine, the contextual Web connection is listed in the Process window:

On the Web Browser side, click Queries. 4D Server translated its standard Query editor
window into an HTML page—on the fly.

4D Server Reference 53

Define the query “Department is equal to Engineering”.

You get the results of the query:

54 4D Server Reference

4D Server dynamically translates the 4D data into Web data and displays the list of
records.

Using the icon in the left column, open the record “Parker, Arthur”.

The input form you were using with 4D client appears as a Web page (transparently
translated by 4D Server):

Change the first name to Ryan and validate the data entry. Go back to the list of records
and note that the change shows up in the list of records:

4D Server Reference 55

Last but not least, go to the User environment on the 4D Client machine.

You see that the change is also available on the client:

Conclusion
__

With this tutorial (which may take more than 10 minutes, depending on various factors,
such as time you took for a drink), you have discovered how easy it is to use 4D Server:

• You created a database from scratch.
• You defined a table and let 4D Server create the forms for you.
• You added and manipulated some records.
• You customized your application with your own menu bar.
• You used the server database concurrently on both Windows and Macintosh.
• You shut down the server and restarted it.
• You used the server database concurrently with 4D Client and via the Web!

To conclude, you created three custom applications (Windows, Macintosh and Web)
while actually developing only one. In addition, if you need to use the database in single-
user mode, you could open it directly, as is, with 4th Dimension or 4D Runtime.

To learn more about 4D Server, read the introductory sections of this manual, as well as
the other sections that describe 4D Server in detail.

For a complete examination of the 4D environment, refer to:
• The 4th Dimension Design Reference manual to learn about designing 4D databases.
• The 4th Dimension User Reference manual to learn about the built-in editors used in this
tutorial, such as the Query Editor and the Chart Wizard.
• The 4th Dimension Language Reference manual to learn about the commands of the 4D
language. For instance, to learn about the Web capability of 4D Server, read the section
Web Server, Overview in this manual.

56 4D Server Reference

3

Using 4D Server

4D Server Reference 57

58 4D Server Reference

Creating a New 4D Server Database Using 4D Server

version 2004.1 (Modified)
__

To create a server database or open an existing database, launch 4D Server by double-
clicking the 4D Server application icon.

The Welcome dialog box appears, giving you the choice of opening an existing database,
creating a new one (either blank or based on a template), or restoring an archived
database.

4D Server Reference 59

The operation of this dialog box is identical to that of the Welcome dialog box of 4th
Dimension stand-alone version. For more information, refer to the Design Reference
manual of the 4th Dimension documentation.

However, 4D Server provides an additional option in the Interpreted Database area: Force
the update of the local resources. This option causes the systematic transmission of local
resources to each client machine when it connects. Local resources are structural
information related to the database that are stored on each client machine.
As a general rule, the updating of local resources on client machines is automatic
whenever the database structure has been modified since the last connection. In most
cases, this option is not needed. However, in certain specific cases, it may be necessary to
force the update.
This option can also be set on each client machine, in which case it will only apply to the
machine concerned. For more information, please refer to the Connecting to a 4D Server
Database section.

60 4D Server Reference

Exiting 4D Server Using 4D Server

version 2004 (Modified)
__

To shut down the server:

1. Choose the Quit command from the File menu of 4D Server (Windows) or the 4D
Server menu (Mac OS).

The following dialog box is displayed on the server machine:

2. Enter the number of minutes in which you want the server to shut down, or choose
the “Wait for all Users to disconnect” option.

As soon as you do this, no new client can connect to the server.

• If you choose the “Disconnect from Server in XX min.” option, the following window
appears:

Simultaneously, the server alerts the client machines of the time remaining before
disconnection:

Shutting Down window on the 4D Client machines

4D Server Reference 61

This dialog box is repeated or updated on each client machine every 20 seconds or so, in
order to prompt them to quit. When the time limit is reached, the server quits even if
there are client machines still connected.

• If you choose the “Wait for all Users to disconnect” option, the following window
appears:

No dialog box appears on the client machines. The server will quit as soon as all the
clients are disconnected.

Notes:
• In both cases, if no client is connected to the server when the shutting down window is
validated, 4D Server quits immediately.
• To force 4D Server to quit with no delay, pass 0 min as the time limit.
• If you click Cancel in the “Shutting Down Server” window, the process of shutting
down the server is cancelled.

62 4D Server Reference

4D Server Process Window Using 4D Server

version 2004 (Modified)
__

The 4D Server window contains information that allows you to manage various aspects of
your database system for administrative purposes:

The server window is divided into two panes:
• The upper pane displays information about the files used by the server, back-ups and
memory,
• The lower pane displays information about the clients connected to the server and the
processes currently running.

4D Server Reference 63

Server Information Pane
__

The Server Information Pane describes general information about the server:

It contains the following data:
• 4D Server version number: The version number of the 4D Server application currently
in use.
• Structure File: The name of the structure file opened by 4D Server.
• Data File: The name of the data file associated with the structure file.
• Log File: The name of the log file created to keep track of database operations. A log file
is created by default when the database is created.
• Last Backup: Access path and name of the last backup file of the database.
• Connected Users: The total number of users currently connected.
• Processes Running: The number of processes currently running. This number includes all
processes (kernel, user connections, Web connections and stored procedures).
• Last Backup Date: Date and time when the last backup of the database was carried out.
• Next scheduled backup: Date and time of the next scheduled automatic backup. This
information comes from the automatic backup configuration set in the Preferences dialog
box of the database.
• Total Memory: The memory allocated to 4D Server’s kernel. This value is set
dynamically by the operating system depending on the use of the database and the
available resources.
• Cache Memory: The amount of memory allocated to the cache. The size of the cache
controls the amount of data that can be kept in memory to reduce the number of times
the disk is accessed. Cache memory can be configured on the Database/Data Management
page of the application Preferences. For more information about this, refer to the Design
Reference manual of the 4D documentation.
• Activity thermometer: A thermometer indicating the current level of server activity.
The Activity thermometer indicates the overall activity on the network. The more
requests sent to the server, the higher the thermometer reading.
• Cache Hit Ratio thermometer: A thermometer indicating the level of cache use. The
higher the thermometer reading, the more cache is being used. If the thermometer is
always at a low level, you may want to consider decreasing the size of the cache.

64 4D Server Reference

The Cache Hit Ratio Window
The Cache Hit Ratio thermometer can also be used as a button. Clicking it displays the
Cache Hit Ratio window:

This window provides additional thermometers indicating how the cache is being used.
For each type of data that can be kept in the cache, there is a thermometer indicating
how much of the data is present in the cache. A higher reading is considered
advantageous, because accessing that type of data will require fewer occurrences of disk
access (hits).

Records, Record Addresses and Index Page Addresses are progressively loaded in the cache
when you work with records. Index Pages and Bit Tables are progressively loaded in the
cache when you modify data by adding, modifying or deleting records.

Process Information Pane
__

The Process Information Pane lists the connected users and the processes that are
currently running:

All client processes, the connection processes (excluding processes local to the
workstation), are included in the list. You can hide and show processes for the kernel or
for a particular user by clicking the cross (Windows) or arrow (Macintosh) to the left of
the user name. When no clients are connected, only information about the server engine
activity is displayed, as well as optional stored procedures.

4D Server Reference 65

The 4D Server engine is managed by four kernel processes:
• User Interface: Controls the user interface of the server window itself.
• Client Manager: Manages all connections to the server and ensures that each client is
given processing time.
• Cache Manager: Manages the flushing of data to disk.
• Web Server: Manages Web connection attempts. Starting the Web Server process does
not mean that you open an actual Web connection, it just means that you allow Web
users to initiate Web connections.

For each process, the server window provides the following information:
• Name of the process
• Amount of time (in seconds) spent in each process since it started
• Status of the process
• Percentage of time spent by 4D Server in the process (ratio).

In order to differenciate processes, the Process window displays the processes as follows:
• Kernel processes in black
• User connection processes in black
• Web connection processes in cyan
• Stored procedures processes in blue
• 4D Open-based connection processes in green

Note: Processes being aborted may appear in red, for a short time.

See Also
Process Menu, Processes.

66 4D Server Reference

Configuration preferences Using 4D Server

version 2004.1 (Modified)
__

You can set various parameters concerning the network and the client-server
communication on the “Configuration” page of the Client-Server theme in the
application Preferences (accessible on both 4D Client and 4D Server):

These parameters are detailed in this section.

Publication name
This option lets you change the publication name for a database published by 4D Server,
i.e., the name displayed on the dynamic TCP/IP publication page of the connection
dialog box (see the Connecting to a 4D Server Database section).
By default, 4D Server uses the name of the database structure file. You can enter any
custom name you want.

Note: This parameter is not taken into account in custom client-server applications. In
theory, the client application connects directly to the server application, without passing
by the connection dialog box. However, in the event of an error, this dialog box will
appear; in this case, the publication name of the server application is the name of the
compiled database.

4D Server Reference 67

Port Number
This option lets you change the TCP port number on which 4D Server publishes the
database. This information is stored in the structure of the database and on each client
machine. By default, the TCP port number used by 4D Server and 4D Client is 19813.
Customizing this value is necessary when you want to use several 4D applications on the
same machine with the TCP protocol; in this case, you must specify a different port
number for each application.
When you modify this value from 4D Server or 4D Client, it is automatically passed on to
all the 4D Client machines connected to the database. To update any other client
machines that are not connected, you just need to enter the new port number (preceded
by a colon) after the IP address of the server machine on the Custom page of the
connection dialog box at the time of the next connection. For example, if the new port
number is 19888:

Note: Only databases published on the same port as the one set in 4D Client are visible on
the TCP/IP dynamic publication page.

Client-Server Connections Timeout
This thermometer is used to set the timeout (period of inactivity beyond which the
connection is closed) between 4D Server and the client machines connecting to it.
The Unlimited option removes the timeout. When this option is selected, client activity
control is eliminated.
When a timeout is selected, the server will close the connection of a client if it does not
receive any requests from the latter during the specified time limit.

68 4D Server Reference

Register Clients at Startup For Execute On Client
When this option is checked, all the 4D Client machines connecting to the database can
execute methods remotely. This mechanism is detailed in the section Registering 4D
Client.

Use automatic client reconnection
This low-level function allows, in some specific configurations, the automatic
reconnection of client machines in the case of unexpected disconnection.
When the option (global for all client machines) is checked, the automatic client
reconnection feature is used as soon as a client connection is lost. There is only one
attempt: if the reconnection fails, an error -10002 is returned. If it is successful, an alert
dialog box is displayed and a notification icon appears in the Windows task bar.
For the automatic client reconnection feature to be available, the server-side timeout must
be set to a value higher than 1 minute.

4D Open
4D Open is the API (Application Programming Interface) that allows non-4D Client
applications to connect to 4D Server.
• Allow 4D Open Connections: When it is checked, this option gives the group specified
by the menu the possibility of connecting to 4D Server from a 4D Open application.
• 4D Open Access menu: This menu lets you specify the group of users allowed to connect
to the 4D Server database via 4D Open, when the “Allow 4D Open Connections” option is
checked.

Note: For security reasons, this option is unavailable on the server machine.

See also
Publishing preferences, Registering 4D Client.

4D Server Reference 69

Publishing preferences Using 4D Server

version 2004 (Modified)
__

You can set parameters concerning the security and publishing of databases by 4D Server
on the “Publishing” page of the Client-Server theme in the application Preferences
(accessible on both 4D Client and 4D Server):

These parameters are detailed in this section.

Publish
This option lets you indicate whether or not the 4D Server database will appear in the list
of published databases.
• When this option is checked (default option), the database is made public and appears
in the list of published databases (TCP/IP page).
• When the option is not checked, the database is not made public and it does not appear
in the list of published databases. To connect, users must manually enter the address of
the database on the Custom page of the connection dialog box.

70 4D Server Reference

Allow-Deny Configuration Table
This table allows you to set access control rules for the database depending on 4D Client
machine IP addresses. This option allows reinforcing security, for example, for strategic
applications.

Note: This configuration table does not control Web connections.

The behavior of the configuration table is as follows:
• The “Allow-Deny” column allows selecting the type of rule to apply (Allow or Deny)
using a pop-up menu. To add a rule, click on the Add button. A new row appears in the
table. The Delete button lets you remove the current row.
• The “IP Address” column allows setting the IP address(es) concerned by the rule. To
specify an address, click in the column and enter the address in the following form:
123.45.67.89.
You can use an * (asterisk) character to specify “starts with” type addresses. For example,
192.168.* indicates all addresses starting with 192.168.
• The application of rules is based on the display order of the table. If two rules are
contradictory, priority is given to the rule located highest in the table.
You can re-order rows by modifying the current sort (click the header of the column to
alternate the direction of the sort). You can also move rows using drag and drop.
• For security reasons, only addresses that actually match a rule will be allowed to connect.
In other words, if the table only contains one or more Deny rules, all addresses will be
refused because none will match at least one rule. If you want to deny only certain
addresses (and allow others), add an Allow * rule at the end of the table. For example:
- Deny 192.168.* (deny all addresses beginning with 192.168)
- Allow * (but allow all other addresses)
By default, no connection restrictions are applied by 4D Server: the first row of the table
contains the Allow label and the * (all addresses) character.

Encrypt Client-Server Connections
This option lets you activate the SSL mode (secured mode) for communications between
the server machine and the 4D Client machines. This option is detailed in the Encrypting
Client/Server Connections.

See also
Configuration Preferences, Encrypting Client/Server Connections.

4D Server Reference 71

Encrypting Client/Server Connections Using 4D Server

version 2004 (Modified)
__

You can configure the client/server connections so that 4D Server and 4D Client
workstations communicate in secured mode.
The secured client/server communication is based on SSL (Secured Socket Layer) protocol.

SSL Protocol and Client/Server Connections
The SSL protocol has been designed to secure data exchanges between two applications
—primarily between a Web server and a browser. The SSL protocol is designed to
authenticate the sender and receiver and to guarantee the confidentiality and integrity of
the exchanged information. For a detailed description of the SSL protocol, refer to section
Web Services, Using SSL Protocol in the 4D Language Reference.

Regarding 4D Server and 4D Client, the SSL protocol allows communications security
reinforcement. Key generation, authentication and integrity mechanisms are handled
transparently by 4D Server and do not require any additional user setting.

Note: Encrypting client/server connections slows connections.

Settings
At the network level, the SSL protocol is inserted between the TCP/IP layer (low level) and
the high level protocol.

To use SSL in a “classic” client/server architecture, make sure that on the 4D Server
machine as well as on every 4D Client machine, the file 4DSLI.DLL is properly installed.
This is the Secured Layer Interface dedicated to the SSL management. It should be placed in
the [4D Extensions] folder of the 4D Server application/software package and 4D Client
applications/software packages that publish the database.

This file is installed by default.

72 4D Server Reference

On the other hand, the encryption of 4D Server connections is not activated by default.
You should activate this mode: open the “Client-Server/Publishing” page of the
application Preferences dialog box and select the option Encrypt Client/Server
Connections in the “Encryption” area:

By default, the box is not checked.
You should then quit and relaunch 4D Server so that this setting is taken into account.

All 4D Client stations will then connect in secured mode.

4D Server Reference 73

Secured Mode 4D Client Connection
The “circumflex accent” (^) is placed before the name of the databases published in SSL
mode in the TCP/IP page of the connection dialog box. Secured databases will then
appear at the end of the list:

Note: When a database is not published dynamically in the Connection dialog box, the
user can enter its name in the Custom page (see the Connecting to a 4D Server Database
and Publishing preferences sections). In this case, a ^ (circumflex accent) must be placed
before the database name if the database is published in secured mode; otherwise the
connection will be rejected.

See Also
Using SSL Protocol.

74 4D Server Reference

Transferring data to client machines Using 4D Server

version 2004.1 (Modified)
__

It is possible to use a specific folder for transferring any customized elements (resource
files, text documents, XML reference files, etc.) from the server to the client machines.

This folder, named Extras, must simply be placed next to the structure file.
4D Server automatically manages the modifications made to this folder and only transfers
what is necessary. In addition, the contents of the folder are compressed in order to
optimize network copying time.

Note: Avoid transferring very large volumes of data since, in this case, the duration of the
connection initialization phase for client machines could be significantly increased.

On the client machine side, the Extras folder is downloaded to the same location as the
other structure elements, i.e.:

System Location of folders downloaded to the client machine
__

Mac OS {Disk}:Library:Application Support:4D:DatabaseName_Address:Extras
__

Windows 2000 {Disk}:\Documents and Settings\User Name\Application Data
Windows XP \4D\DatabaseName_Address\Extras
__

The original hierarchy is reconstituted on each client machine.

4D Server Reference 75

Setting up a logical mirror Using 4D Server

version 2004.3
__

4D Server offers an integrated solution that allows the setting up of a backup system via a
logical mirror. This solution is based on two new commands: New log file and INTEGRATE
LOG FILE.

What is a logical mirror?
A logical mirror is a sophisticated backup mode, primarily intended for critical or high-
load databases.
Using a logical mirror consists in operating a database on one machine and keeping a
copy of it that is periodically updated on a second machine. Both machines communicate
via the network with the machine in operation regularly transmitting any changes made
in the database to the mirror machine via the intermediary of the log file.
In this way, when there is an incident affecting the operational database, the mirror
database can be used to get things back in working order quickly without any data loss.
Moreover, the operational database is never “blocked” by backup operations.

Why choose to back up using a logical mirror?
The use of a logical mirror corresponds to specific needs. The standard strategy based on
periodic backups and the use of a log file in most cases offers a simple, reliable and
inexpensive solution. The database is backed up regularly (every 24 hours in general).
During backup, the database remains accessible in read-only mode. This period of partial
unavailability is very short, and even in the case of large databases (greater than 2 GB), it
lasts no longer than 5 minutes. This operation can even be programmed to take place
outside of normal periods of database usage.
Nevertheless, for certain kinds of organizations, such as hospitals for instance, critical
databases must be entirely operational 24 hours a day. The database cannot be in read-
only mode, even for a very short period of time. In this case, setting up a logical mirror is
an appropriate solution.

Note: The mirror database only reflects changes made to the data. This backup mode is
not suitable for databases in the process of development, where frequent structural
modifications will make the mirror rapidly obsolete or will require repeated updating of
the mirror database structure.

How it works
Setting up a backup system using a logical mirror is based on two new commands: New
log file and INTEGRATE LOG FILE. These commands are described in the 4th Dimension
Language Referemce manual.

76 4D Server Reference

The following principles are implemented:
• The database is installed on the main 4D Server machine (operational machine) and an
identical copy of the database is installed on the 4D Server mirror machine.
• A test on startup of the application (for instance, for the presence of a specific file in the
4D Extensions folder) is used to distinguish between the two versions (operational and
mirror) and thus execute the appropriate operations.
• On the 4D Server machine in operation, the log file is “segmented” at regular intervals
using the New log file command. Since no backup is carried out on the main server, the
database remains permanently available in read-write mode.
• Each “segment” of the log file is sent to the mirror machine, where it is integrated into
the mirror database using the INTEGRATE LOG FILE command.

Setting up this system requires programming specific code, in particular:
• A timer on the main server for managing the execution cycles of the New log file
command,
• A transfer system for the “segments” of the log file between the operational machine
and the mirror machine (using 4D Internet Commands for a transfer via FTP or
messaging systems, Web Services, 4D Open for 4D, etc.),
• A process on the mirror machine intended to supervise the arrival of new “segments” of
the log file and to integrate them using the INTEGRATE LOG FILE command,
• A communication and error-handling system between the main server and the mirror
server.

WARNING: A backup system using a logical mirror is not compatible with “standard”
backups since the simultaneous use of these two backup modes would lead to the
desynchronization of the operational and mirror databases. Consequently, you must be
sure that no backups, whether automatic or manual, are carried out on either the
operational or mirror database.

Operating scenario for a logical mirror
The following scenario illustrates, from the viewpoint of each 4D Server machine, the
setting up of a backup system using a mirror:

Operational machine Mirror machine
__

Start up of the application, back up
of the data file and activation
(when necessary) of the log file.
4D creates the MyDatabase.4DL file.
__

The application is exited.
__

Copy of all the database files (log file
included) onto the mirror machine.
__

Start up of the application and Start up of the mirror application.
beginning of operation. 4D Server requests the log file: Select the

MyDatabase.4DL file that was transferred
from the operational database.

__

4D Server Reference 77

Decision made to update the mirror (for
example, after a certain period of
operation).
__

Execution of the method containing
the New log file command. The file
saved is named MyDatabase[0001-0000].4DL.
__

Sending of the MyDatabase[0001-0000].4DL
file via programming to the mirror machine
(using 4DIC, 4D Open for 4D, etc.).
__

The database is operating. Detection of a file that is waiting to be
integrated. Execution of the method
containing the INTEGRATE LOG FILE
command in order to integrate the
MyDatabase[0001-0000].4DL file. This file
then becomes the new current log file.

__

Incident occurs on the machine; the
database is unusable. Decision made to
switch to the mirror machine.
__

Copy of the current log file MyDatabase.4DL
onto the mirror machine, via the usual
destination folder.
__

Repair of the machine... Detection of a file that is waiting to be
integrated. Execution of the method
containing the INTEGRATE LOG FILE
command in order to integrate the
MyDatabase.4DL file. This file then
becomes the new current log file.

__

The database is operating.
__

The machine is repaired. The database is exited.
__

Replacement of the database files by
those of the mirror database.
__

Start up of the application. 4D Server Start up of the mirror application.
requests the log file: Select the
MyDatabase.4DL file that was transferred
from the mirror database.
__

The database is operating.

See also
INTEGRATE LOG FILE, New log file.

78 4D Server Reference

4

Using 4D Client

4D Server Reference 79

80 4D Server Reference

Connecting to a 4D Server Database Using 4D Client

version 2004 (Modified)
__

When you launch 4D Client, you are presented with a Connection dialog box containing
three tabs.

“Recent” tab

The Recent page memorizes the list of all 4D servers recently used. The list is sorted by
alphabetical order. To connect to a server from this list, double-click on its name or select
it and click the OK button.

To remove a server from the list, select it and hold down the Del or Backspace key.

4D Server Reference 81

“TCP/IP” tab

4D Server includes a built-in TCP/IP broadcasting system that publishes by default the
name of the 4D Server databases published over the network. These names are listed on
the TCP/IP Page of the connection dialog box.

The list is sorted by alphabetical order. To connect to a server from this list, double-click
on its name or select it and click the OK button.

Notes:
• A circumflex accent (^) is placed before the name of databases published with the
encryption option. For more information, refer to section Encrypting Client/Server
Connections.
• It is possible to prohibit dynamic publication of the database name on the network (see
the Publishing preferences section). In this case, the connection must be carried out
manually on the “Custom” page.

82 4D Server Reference

“Custom” tab

The Custom page allows assigning a published server on the network using its IP address
and attributing it a customized name.

You can customize the 4D Server TCP/IP broadcasting system so that the names of server
databases are not automatically published over the network (see the Publishing preferences
section). In this case, the names do not appear in the TCP/IP page on the client side.
However, if you know the IP address of a server database whose name is not broadcast,
you can manually enter its IP address.

• Database name: allows defining the name of the 4D Server database. This name will be
used in the Recent page when referring to the database.
• Network address: allows entering the IP address of the machine where the 4D Server
was launched. If two servers are executed simultaneously on the same machine, the IP
address must be followed a comma and port number, for example: 192.168.92.104:19814.
By default, the publishing port of a 4D Server is 19813. This number can be modified in
the application Preferences (see the Configuration preferences section).

Note: If a database was selected in the Recent or TCP/IP pages at the moment that you
clicked on the Custom tab, the two fields display the corresponding information.

4D Server Reference 83

Once this page assigns a server, click the OK button will allow you to connect to the
server. The server will then be listed in the Recent page.

Note: If the database is published using the encryption option, you must add a circumflex
accent (^) before the name; otherwise the connection will be refused. For more
information, refer to section Encrypting Client/Server Connections.

Force the update of the local resources
This option causes systematic updating of the local resources on the client machine when
it connects. The local resources are the structural information related to the database that
are stored on each client machine.
As a rule, updating of the local resources is automatic when the structure of the database
has been modified between two connections. Most of the time, this option is
unnecessary. Nevertheless, in certain specific cases, it may be necessary to force the
update.
This option can also be set on the server machine; in this case, it will apply to all the
client machines. For more information, refer to the Creating a New 4D Server Database
section.

84 4D Server Reference

Creating a Path Document Using 4D Client

version 2004 (Modified)
__

You can create a path document that enables you to access a 4D Server database directly
from the client machine.

When you drag and drop a path document onto the 4D Client application (or double-
click the file), you access the 4D Server database directly, without having to specify it in
the connection dialog box.
In addition, the connection file can contain the user password (encrypted). In this case,
access to the 4D Server database is immediate.

To create a path file to a database:

1. In the User Identification dialog box of 4D Client, select or enter (depending on the
current configuration) the name of the user whose access you want to save, then the
password.
These parameters must be valid in order to be able to access the dialog box for saving the
connection file.

Note: This dialog box appears just after the 4D Server database is selected, when the
password protection system is activated.

4D Server Reference 85

2. Click on the Save button.
The following dialog box appears:

You can save the path with or without the password.
• With password: In this case, the database access path and password (encrypted) of the
user are stored in the document. On startup of 4D Client, no dialog box appears and the
connection is immediate.
• Without password: In this case, the database access path is stored but the user must
enter their password in order to open it.

3. Click on either the With password or Without password button.
A standard save file dialog box appears, which lets you specify the name and location of
the file on your disk. The extension for path documents is “.pth”.

86 4D Server Reference

4. Choose the name and location of the file and validate the save dialog box.
The 4D Client connection file is stored on disk.

4D Server Reference 87

88 4D Server Reference

5

4D Server Menus

4D Server Reference 89

90 4D Server Reference

File Menu 4D Server Menus

version 2004 (Modified)
__

Backup
This command lets you launch a back-up of the database at any time. When you select
this command, the following dialog box appears:

• The Backup button immediately launches a back-up that takes the parameters set in the
Preferences dialog box of the application into account (files to be backed up, location of
archives, number of sets kept, etc.).
• The Preferences button opens the “Backup” theme of the Preferences, which lets you
view and, if necessary, modify the current back-up settings.
• The Cancel button interrupts the back-up process.
For more information about back-up configuration, refer to the Design Reference manual of
the 4th Dimension documentation.

Check Log File
The log file stores all the operations carried out on the data of the database (addition,
modification, deletion) — whether they were carried out by a user (from 4D Client), a
stored procedure, a plug-in, a Web browser or yet again by 4D Open. In the event of an
incident on the database, restoring the last back-up and integrating the log file ensure
that you will recover the database in the exact state it was in prior to the incident.

4D Server Reference 91

The Check Log File command displays a window that lets you view the contents of the
current log file:

This window is useful for analyzing the use of a database or detecting the operation(s) at
the origin of errors or malfunctioning. More particularly, it lets you check the operations
carried out by each client machine.
This window also lets you go back through the operations carried out in the database (Roll
back button).
For more information about these functions, refer to the User Reference manual of the 4th
Dimension documentation.

Register Current Database as Service
Unregister Current Database
Unregister all Server Services
__

4D Server can be launched as a Service under Windows and under Mac OS X.

A 4D Server application registered as a service is automatically launched on start-up of the
machine with the current database, even before a user session is opened. It is not closed
when the user exits their session.
This operation lets you guarantee the availability of a 4D Server database even in the
event of an incident that requires restarting the machine. Maintenance can be carried out
remotely.

Note : For more information about the mechanisms for managing Services, refer to the
documentation of your operating system.

To register a 4D Server database as a Service, select Register Current Database as Service.
The next time the machine is started, 4D Server will be launched automatically and the
current database opened.

92 4D Server Reference

You can register any number of databases. Each database can be registered only once.

Warning: Be sure to use a valid account when you open the session. In addition, this user
account must have access to a printer, otherwise an error message will be displayed. Access
to the services settings is generally via the Administrative Tools/Services of the Control
Panel.

To unregister your database, select Unregister Current Database from the 4D Server File
menu. This command is dimmed if the database is not registered as a service.

To unregister all 4D Server databases at once, select Unregister all Server Services from
the 4D Server File menu. This command is dimmed if no 4D Server service is enabled.

You cannot change the service registration status of 4D Server from within 4D Server, if
the application has been launched as a service on start-up. In this case, the three menu
items are disabled. To stop the service, use the Services control panel.

Quit
__

This command lets you close the 4D Server application. For more information, refer to
the Exiting 4D Server section.

Note: Under Mac OS X, the Quit command is located in the 4D Server menu (application
menu).

See Also
Data Menu, Edit Menu, Help Menu, Process Menu, Web Server Menu.

4D Server Reference 93

Edit Menu 4D Server Menus

version 2004
__

The Edit menu of 4D Server includes standard copy/paste commands, the Show Clipboard
command, etc.

This menu also includes (under Windows) the Preferences... command, which displays
the Preferences dialog box of the application. This dialog box is used to define numerous
functions of the database. For more information about this dialog box, refer to the Design
Reference manual of the 4D documentation.

Note: Under Mac OS, the Preferences... command is found in the 4D Server menu
(application menu).

See also
Data Menu, File Menu, Help Menu, Process Menu, Web Server Menu.

94 4D Server Reference

Process Menu 4D Server Menus

version 2004 (Modified)
__

Abort
__

Warning: The Abort menu command is provided only for administration and debugging
purposes. You should use it only when a client cannot terminate a process by itself.

The effect of the Abort command depends on the type of the process currently selected in
the Process window:
• If a connection process is selected, this command aborts the process.
• If a User list is selected, this command aborts all processes belonging to this user and
then removes the user from the list. This automatically disconnects the user from the
server.
• If a stored procedure is selected, this command aborts the stored procedure.
• If the Stored Procedures list is selected, this command aborts all the stored procedures.
• If a Web connection process is selected, this command aborts the Web connection
process.
• If the Web Clients list is selected, this command aborts all the Web connection
processes.

You can abort all processes except the kernel processes. If a kernel process is selected, the
Abort command is disabled.

If you attempt to use an aborted process on a 4D client machine, a warning message
informs you that the process is no longer available. For example, the following alert is
displayed when the Abort command has been applied to a user:

Error -10001, The actual connection to the database has been disrupted.

4D Server Reference 95

Note: Connection errors are listed in the section Network Errors of the 4D Language
Reference manual.

If a workstation accidentally ends its connection to the server, it takes the server a few
seconds to determine that the client has unexpectedly exited. The server then performs
the following:
• Unlocks any locked records
• Cancels any transactions not yet canceled or validated
• Aborts any client processes
• Removes the user from the list of users in the 4D Server Process window

Consequently, you do not need to apply the Abort command to the user; 4D Server
automatically cleans up the user list for you.

Expand All/Collapse All
__

These commands allow you to either expand or collapse processes for all users listed in the
Process window.

Hide Process Window/Show Process Window
__

This command allows you to hide or show the Process window.

Show Runtime Explorer/Hide Runtime Explorer
__

This command allows you to hide or show the 4D Server Runtime Explorer window.

96 4D Server Reference

The Runtime Explorer enables you to view the status of the database various structural
elements and to check that the available resources are correctly managed. The Runtime
Explorer is particularly useful while developing or analyzing a database.

The Runtime Explorer window contains four pages that can be accessed by clicking on
the following tabs: Watch, Process, Break and Catch. The Runtime Explorer works the
same way in 4D Server and 4th Dimension. For more information, please refer to the 4th
Dimension Design Mode manual.

Trace
__

The Trace command can be applied to the following processes:
• Connection process for tracing Triggers executing within the context of that process
• Web connection process for tracing the code executed on the server machine in
response to the requests sent by the Web browser
• Stored Procedure for tracing the project method executed as stored procedure.

Choosing the Trace command displays a Debugger window for the selected process as
soon as this process starts executing code. You can also display the Debugger window for a
process by calling the TRACE command from within a method executing in that process
(see screen shot below).

The interesting point here is that 4D Server “memorizes” the Trace request:
• If the process is currently executing code, the Debugger immediately appears for that
process.
• If the process is not currently executing code (i.e., the process is waiting for an event in
data entry mode), the Debugger will appear right after the process resumes executing the
code.

For additional information about the Trace command, refer to the 4th Dimension
Language Reference manual.

See Also
Data Menu, Edit Menu, File Menu, Help Menu, Web Server Menu.

4D Server Reference 97

Data Menu 4D Server Menus

version 6.0.2
__

The Segments... command displays the Segments dialog box:

You can either segment a data file at the time you create the database or after you begin
to use it. You should segment a new data file if you expect the data file to become very
large. Segmenting a data file allows a virtually unlimited amount of data to be stored.

Note: You do not need to create any data segments unless you have more than two
gigabytes of data or your hard disk cannot accommodate the size of your data file.

When segmenting a data file, you divide the data file into segments and then specify the
volume on which each segment is to be stored. For example, four gigabytes of data could
be divided into two segments of two gigabytes each. Each segment can be limited in size,
so you can reserve space on your hard disk for other files and thus avoid a completely full
volume.

To increase the size of an existing data file beyond two gigabytes, you can add data
segments, each of which can contain up to two gigabytes of data. You use the Segments
dialog box to create segments for existing data on the server machine.

For a detailed description about segmenting a data file, refer to the 4th Dimension Design
Reference manual.

See Also
ADD DATA SEGMENT, Edit Menu, File Menu, Help Menu, Process Menu, Web Server Menu.

98 4D Server Reference

Web Server Menu 4D Server Menus

version 2004 (Modified)
__

This menu lets you start and stop the 4D Web server at any time.

Note: Under Mac OS, this menu may not work if the Web server is started using a
temporary root session (see the Web server configuration and connection management
section in the 4th Dimension Language Reference manual).

The 4D Web Server can be started in three different ways:

• Using the Web Server menu from the menu bar of 4D Server or the Run menu of 4D
Client. These menus allow you to start and stop the Web server at your convenience.

• Automatically, by publishing the database each time it is opened. The Publish Database
at Startup option on the "Web>Configuration" page of the application Preferences should
be checked. Once this is done, the database will be published on the Web automatically
each time you open it with 4th Dimension or 4D Server.

• Programmatically, by calling the command START WEB SERVER.

See Also
Data Menu, Edit Menu, File Menu, Help Menu, Process Menu, Web server configuration and
connection management, Web Server, Overview.

4D Server Reference 99

Help Menu 4D Server Menus

version 2004 (Modified)
__

The first commands of the Help menu allow you to view on-line help for 4D Server.

Update License...
This command displays the window used to activate additional licenses in your 4D
environment.
For more information about this dialog box, refer to the 4th Dimension Installation Guide
manual.

The About 4D Server... command displays the About dialog box. This dialog box provides
information regarding the 4D Server application (name and location of application files),
the running database and system files. You can display different information using the
dialog box tabs:

100 4D Server Reference

In addition, the 4D page allows accessing to the 4D Server on-line registration feature.

Note: Under Mac OS, the About 4D Server command is found in the 4D Server menu
(application menu).

See Also
Data Menu, Edit Menu, File Menu, Process Menu, Web Server Menu.

4D Server Reference 101

102 4D Server Reference

6

4D Server and the 4D
Language

4D Server Reference 103

104 4D Server Reference

4D Server and the 4D Language 4D Server and the 4D Language

version 2004 (Modified)
__

With 4D Server, you now have three situations in which you can execute 4D code on the
server machine:
• Triggers
• Stored procedures
• Database methods

Triggers
__

A Trigger is a method attached to a table. Triggers can prevent “illegal” operations on
your database records. They are a very powerful tool to restrict operations on a table, as
well as to preventaccidental data loss or tampering. For example, in an invoicing system,
you can prevent anyone from adding an invoice without specifying the customer to
whom the invoice is billed.

Triggers are executed on the machine where the database engine is actually located. On
4D Server, triggers are executed within the context of the acting process on the server
machine, not on the client machine. With 4D Server, a trigger executes within the
context of the user processes that invokes the database operation. The trigger, however,
has no access to the process variables of the user process.

For more information about triggers, see the section Triggers of the 4th Dimension
Language Reference manual.

Stored Procedures
__

A stored procedure is project method executing a process method in a process running on
the server machine (or, starting from 4D Server version 6.5, on any client machine),
instead of on the client machine which has launched the method. See the section Stored
Procedures.

Database Methods
__

Four database methods are executed only on the server machine:
• On Server Startup Database Method
• On Server Shutdown Database Method
• On Server Open Connection Database Method
• On Server Close Connection Database Method

4D Server Reference 105

Four other database methods can be executed either on the server machine or a client
machine depending on the context:

• On Web Authentication Database Method
• On Web Connection Database Method
• On Backup Startup Database Method
• On Backup Shutdown Database Method

See the corresponding sections in this manual and in the 4th Dimension Language Reference
manual for more information on the database methods.

4D Server and Variables
__

• 4D Server maintains one table of interprocess variables. The scope of these variables is
the server machine. When running a compiled database, the interprocess variable table
definition is common between the server and all the clients machines, each machine
having its own instance.

• Each stored procedure has its own table of process variables. When running a compiled
database, the process variable table definition is common between between all stored
procedures and user process running on all clients machines, each process having its own
instance.

• In interpreted mode, the database methods and triggers can create and use process
variables dynamically during each phase of execution. This is not true in compiled mode.
When running a compiled database, database methods and triggers share only one
common table of process variables (whose definition is identical to that of the other
processes).

4D Server and Sets
__

With 4D Server, interprocess and process sets are maintained on the server machine,
while local sets are maintained on the client machines. For more information, see the
section 4D Server and Sets.

106 4D Server Reference

4D Server and Sets 4D Server and the 4D Language

version 6.0.2
__

As explained in the section Sets of the 4th Dimension Language Reference manual, you can
work with interprocess, process, and local sets:

• Process sets: A process set can only be accessed by the process in which it has been
created. UserSet and LockedSet are process sets. Process sets are cleared as soon as the
process method ends. Process sets do not need any special prefix in the name.
• Interprocess sets: A set is an interprocess set if the name of the set is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign. Note: This syntax
can be used on both Windows and Macintosh. Also, on Macintosh only, you can use the
diamond symbol (Option-Shift-V on a US keyboard).
• Local Sets/Client Sets: The name of a local/client set is preceded by the dollar sign ($).
Note: Although its name does not begin with a $, the UserSet system set is a local/client
set.

With 4D Server, interprocess and process sets are maintained on the server machine,
while local sets are maintained on the client machines.

Tip: Usually, you will use interprocess and process sets because they optimize set handling
in Client/Server architecture.

4D Server and the Sets Commands
__

This section describes the behavior of the Sets commands in Client/Server architecture
when they are executed on the Client machine:

• CREATE EMPTY SET
The empty set is created on the server machine. A local set is then copied over the
network from the server machine to the client machine. An interprocess or a process set
stays and is maintained on the server machine.

• CREATE SET
• CREATE SET FROM ARRAY
The set is created on the server machine. A local set is then copied over the network from
the server machine to the client machine. An interprocess or a process set stays and is
maintained on the server machine.

• USE SET
A local set is first copied over the network from the client machine to the server machine,
then it is used on the server machine to change the selection of the table. An interprocess
or process set is used locally on the server machine to change the selection of the table.

4D Server Reference 107

• SAVE SET
A local set is saved locally on the client machine.
An interprocess or process set is first copied over the network from the server machine to
the client machine, then is saved locally on the client machine

• LOAD SET
A local set is loaded from the disk locally on the client machine.
An interprocess or process set is first loaded from the disk locally on the client machine,
then is copied over the network from the client machine to the server machine.

• CLEAR SET
• ADD TO SET
• REMOVE FROM SET
• Is in set
• Records in set
These five commands access a local set locally on the client machine. With an
interprocess or process set, a request is sent over the network to the server machine to get
the information or perform the action.

• DIFFERENCE
• INTERSECTION
• UNION
These three commands require the three set parameters to be on the same machine.
Consequently, they must be all local sets or none of them must be local.

• COPY SET
Using COPY SET, you can copy any set into another one. For example, you can copy a
local set into an interprocess or process set. In this case, the set is copied over the network
from the client machine to the server machine.

4D Server and the UserSet
__

4D Client creates the UserSet as a local set (although its name does not begin with a $) for
optimizing the creation of a set according to the user actions performed in a MODIFY
SELECTION or DISPLAY SELECTION form.

If you plan to pass UserSet as a parameter to DIFFERENCE, INTERSECTION or UNION when
the other parameters are interprocess or process sets, you must first copy UserSet (a local
set) into an interprocess or process set and use that set with the command.

108 4D Server Reference

Example:

ALL RECORDS ([aTable])
` Let the user select some records

MODIFY SELECTION ([aTable];*)
` Check if the user has selected some records

If (Records in set("UserSet")>0)
` Query the records to be excluded

QUERY([aTable];[aTable]aFlag#0)
` Create a set from the resulting selection

CREATE SET([aTable];"To be excluded")
If (Application type = 4D Client)

` UserSet is local set, copy it to a non-local set
COPY SET ("UserSet";"UserSelection") ` ← Copied over the network

` Call DIFFERENCE passing 3 non-local set parameters
DIFFERENCE ("UserSelection";"To be excluded";"UserSelection")

Else
` Call DIFFERENCE

DIFFERENCE ("UserSet";"To be excluded";"UserSelection")
End if
CLEAR SET ("To be excluded")
USE SET("UserSelection")
CLEAR SET ("UserSelection")

End if

The same thing can be achieved with the following code:

ALL RECORDS ([aTable])
` Let the user select some records

MODIFY SELECTION ([aTable];*)
` Check if the user has selected some records

If (Records in set("UserSet")>0)
` Query the records to be excluded

QUERY([aTable];[aTable]aFlag#0)
If (Application type = 4D Client)

` Create a local set from the resulting selection
CREATE SET([aTable];"$To be excluded") ` ← Copied from Server to Client

` Call DIFFERENCE passing 3 local set parameters
DIFFERENCE ("UserSet";"$To be excluded";"UserSet")

Else
` Create a non-local set from the resulting selection

CREATE SET([aTable];"To be excluded")
` Call DIFFERENCE

DIFFERENCE ("UserSet";"To be excluded";"UserSelection")
End if
CLEAR SET("$To be excluded")
USE SET("UserSet") ` ← Copied from Client to Server

End if

4D Server Reference 109

In the first example, three sets are created and one is copied over the network. In the
second example, two sets are created and two are copied over the network. Depending on
your needs, choose a solution similar to one of these examples.

4D Server and the LockedSet
__

The LockedSet is a process set created and maintained on the server machine.

See Also
4D Server and the 4D Language, COPY SET, Sets.

110 4D Server Reference

On Server Startup Database Method 4D Server and the 4D Language

version 6.8 (Modified)
__

The On Server Startup Database Method is called once on the server machine when you
open a database with 4D Server. The On Server Startup Database Method is NOT invoked
by any 4D environment other than 4D Server.

The On Server Startup Database Method is the perfect place to:
• Initialize interprocess variables that you will use during the whole 4D Server session.
• Start Stored Procedures automatically when a database is opened.
• Load Preferences or Settings saved during the previous 4D Server session.
• Prevent the opening of the database if a condition is not met (i.e., missing system
resources) by explicitly calling QUIT 4D.
• Perform any other actions that you want performed automatically each time a database
is opened.

To automatically execute code on a client machine when a 4D Client connects to the
server, use the On Startup database method.

See Also
Database Methods, On Server Shutdown Database Method, SP-Based Import (example).

4D Server Reference 111

On Server Shutdown Database Method 4D Server and the 4D Language

version 6.8 (Modified)
__

The On Server Shutdown Database Method is called once on the server machine when you
shut down 4D Server and thereby quit the database. The On Server Shutdown Database
Method is NOT invoked by any 4D environment other than 4D Server.

A server database is exited if the user selects the menu command Quit on the server or if a
call to the QUIT 4D command is issued by a stored procedure.

When the exit from the database is initiated, 4D performs the following actions:
• If there is no On Server Shutdown Database Method, 4D Server aborts each running
process one by one, without distinction.

• If there is an On Server Shutdown Database Method, 4D Server starts executing this
method within a newly created local process. You can therefore use this database method
to inform other processes, via interprocess communication, that they must stop
executing. Note that 4D Server will eventually quit—the On Server Shutdown Database
Method can perform all the cleanup or closing operations you want, but it cannot refuse
the quit, and will at some point end.

The On Server Shutdown Database Method is the perfect place to:
• Stop store procedures automatically started when the database was opened.
• Save (locally, on disk) Preferences or Settings to be reused at the beginning of the next
session in the On Server Startup Database Method.
• Perform any other actions that you want to be done automatically each time a database
is exited.

Warning: If you use the On Server Shutdown Database Method to close stored procedures,
keep in mind that the server quits once the On Server Shutdown Database Method (and
not the stored procedures) is executed. If some stored procedures are still running at this
point, they will be killed.
Consequently, if you want to make sure that the stored procedures are fully executed
before being killed by the server, the On Server Shutdown Database Method should
indicate to the stored procedures that they must end their execution (for example, using
an interprocess variable) and should allow them to close (through a x seconds loop or
another interprocess variable).

If you want code to be executed automatically on a client machine when a 4D Client
stops connecting to the server, use the On Exit Database Method.

See Also
Database Methods, Methods, On Server Startup Database Method.

112 4D Server Reference

On Server Open Connection 4D Server and the 4D Language
Database Method

version 6.8 (Modified)
__

When is the On Server Open Connection Database Method Called?
__

The On Server Open Connection Database Method is called once on the Server machine
each time a connection process is started by a client workstation. The On Server Open
Connection Database Method is NOT invoked by any 4D environment other than
4D Server.

4D Client
With 4D Client, the On Server Open Connection Database Method is called each time:
• 4D Client connects (because the User environment process starts)
• 4D Client opens the Design environment (because the Design process starts)
• 4D Client starts a non-local process, using the New Process command
• A non-local process is started by a menu or using the Execute Method dialog box

In each case with 4D Client, two processes are started—One on the Client machine, one
on the Server machine. On the Client machine, the process executes code and send
requests to 4D Server. On the Server machine, the process maintains the database
environment for the client process (i.e., current selections for user processes) and replies
to requests sent by the process running on the Client machine. This is why the process
running on the server is said to be a connection process—on the Server machine, over the
network, via a connection, it does what the process running on the Client machine
would also do if you were running as single-user rather than Client/Server.

4D Insider
When you connect to 4D Server from 4D Insider, a connection process is started on the
Server machine in order to maintain a working environment for 4D Insider. This process
replies to the requests sent by 4D Insider.

4D Open-based Applications
Each time a 4D Open-based application initiates a connection to 4D Server, a connection
process is started on the Server machine. This process replies to the requests sent via 4D
Open and maintains the database context of the connection (i.e., current selections).

Important: Web connections do not invoke the On Server Open Connection Database
Method. When a Web browser connects to 4D Server, the On Web Authentication Database
Method (if any) and/or the On Web Connection Database Method are invoked. For more
information, see the description of this database method in the 4th Dimension Language
Reference manual.

Important: When a Stored Procedure is started, the On Server Open Connection Database
Method is NOT invoked. Stored Procedures are server processes, not connection processes.
They execute code on the Server machine, but do not reply to requests exchanged by
4D Client (or other Clients) and 4D Server.

4D Server Reference 113

How is the On Server Open Connection Database Method Called?
__

The On Server Open Connection Database Method is executed on the 4D Server machine
within the connection process that provoked the call to the method.

For example, if a 4D Client connects to a 4D Server interpreted database, the User
Environment, the Design process and the client registration process (by default) for that
client are started. The On Server Open Connection Database Method is therefore executed
three times in a row—the first time within the User Environment connection process, the
second time within the client registration process, and the third time within the Design
connection process. If the three process are respectively the sixth, seventh and eighth
process to be started on the Server machine, and if you call Current process from within
the On Server Open Connection Database Method, the first time Current process returns 6,
the second time 7 and the third time 8.

Note that On Server Open Connection Database Method executes on the Server machine. It
executes within the connection process running on the Server machine, independent of
the process running on the Client side. In addition, at the moment when the method is
invoked, the connection process has not yet been named (PROCESS PROPERTIES will not
at this point return the name of the connection process).

The On Server Open Connection Database Method has no access to the process variable
table of the process running on the Client side. This table resides on the Client machine,
not on the Server machine.

With an interpreted database, when the On Server Open Connection Database Method
accesses a process variable, it works with a private and dynamically created process variable
table for the connection process. Because the On Server Close Connection Database Method
will eventually be invoked within the same connection process, you may think that you
can maintain information between the two methods using process variables. This will not
work in compiled mode.

With a compiled database, the On Server Open Connection Database Method shares, with
other database methods as well as triggers, a common process variable table maintained
on the Server machine. This architecture has two purposes: to allow compiled code to run
and to reduce memory consumption. First, you can access any process variable from
within a database method or a trigger. The process variables need to be there. Second,
creating one process table for each database method or trigger phase would consume
memory and initialization time. Conclusion: Do NOT rely on process variables when
executing On Server Open Connection Database Method and On Server Close Connection
Database Method. Use data stored in interprocess variables or in table.

4D Server passes three Long Integer parameters to the On Server Open Connection
Database Method and expects a Long Integer result. The method must therefore be
explicitly declared with three Long Integer parameters as well as a Long Integer function
result:

C_LONGINT($0;$1;$2;$3)

114 4D Server Reference

If you do not return a value in $0, thereby leaving the variable undefined or initialized to
zero, 4D Server assumes that the database method accepts the connection. If you do not
accept the connection, you return a non-null value in $0.

This table details the information provided by the three parameters passed to the database
method:

Parameter Description
$1 User ID number used internally by 4D Server to identify users
$2 Connection ID number used internally by 4D Server to identify a

connection
$3 Network protocol ID number used internally by 4D Server

Note: Since 4D Server version 6.8, the $3 parameter always returns 2 or 29.

These three ID numbers are not directly usable as sources of information to be passed as,
for example, parameters to a 4D command. However, they provide a way to uniquely
identify a connection process between the On Server Open Connection Database Method
and the On Server Close Connection Database Method. At any moment of a 4D Server
session, the combination of these three values is unique. By storing this information in
an interprocess array or a table, the two database methods can exchange information. In
the example at the end of this section, the two database methods use this information to
store the date and time of the beginning and end of a connection in the same record of a
table.

Examples

1. The following example shows how to maintain a log of the connections to the
database using the On Server Open Connection Database Method and the On Server Close
Connection Database Method. The [Server Log] table (shown below) is used to keep track of
the connection processes:

4D Server Reference 115

The information stored in this table is managed by the On Server Open Connection
Database Method and the On Server Close Connection Database Method listed here:

` On Server Open Connection Database Method
C_LONGINT($0;$1;$2;$3)

` Create a [Server Log] record
CREATE RECORD([Server Log])
[Server Log]Log ID:=Sequence number([Server Log])

` Save the Log Date and Time
[Server Log]Log Date:=Current date
[Server Log]Log Time:=Current time

` Save the connection information
[Server Log]User ID:=$1
[Server Log]Connection ID:=$2
[Server Log]NC ID:=$3
SAVE RECORD([Server Log])

 ` Returns no error so that the connection can continue
$0:=0

` On Server Close Connection Database Method
C_LONGINT($1;$2;$3)

` Retrieve the [Server Log] record
QUERY([Server Log];[Server Log]User ID=$1;*)
QUERY([Server Log]; & ;[Server Log]Connection ID=$2;*)
QUERY([Server Log]; & ;[Server Log]NC ID=$3;*)
QUERY([Server Log]; & ;[Server Log]Process ID=0)

` Save the Exit date and time
[Server Log]Exit Date:=Current date
[Server Log]Exit Time:=Current time

` Save the process information
[Server Log]Process ID:=Current process
PROCESS PROPERTIES([Server Log]Process ID;$vsProcName;$vlProcState;$vlProcTime)
[Server Log]Process Name:=$vsProcName
SAVE RECORD([Server Log])

Here are some entries in the [Server Log] showing several 4D Client connections as well as
a 4D Insider connection:

116 4D Server Reference

2. The following example prevents any new connection from 2 to 4 A.M.

` On Server Open Connection Database Method
C_LONGINT($0;$1;$2;$3)

If((?02:00:00?<=Current time)&(Current time<?04:00:00?))
$0:=22000

Else
$0:=0

End if

See Also
Database Methods, On Server Close Connection Database Method.

4D Server Reference 117

On Server Close Connection 4D Server and the 4D Language
Database Method

version 6.8 (Modified)
__

The On Server Close Connection Database Method is called once on the Server machine
each time a connection process ends.

As for the On Server Open Connection Database Method, 4D Server passes three Long
Integer parameters to the On Server Close Connection Database Method. On the other
hand, no result is expected by 4D Server.

The method must therefore be explicitly declared with three Long Integer parameters:

C_LONGINT($1;$2;$3)

This table details the information provided by the three parameters passed to the database
method:

Parameter Description
$1 User ID number used internally by 4D Server to identify users
$2 Connection ID number used internally by 4D Server to identify a

connection
$3 Network protocol ID number used internally by 4D Server

Note: Since 4D Server version 6.8, the $3 parameter always returns 2 or 29.

The On Server Close Connection Database Method is the exact counterpoint to the On
Server Open Connection Database Method. For more information and a description of the
connection processes, see the description of this database method.

Example
See the first example for On Server Open Connection Database Method.

See Also
Database Methods, On Server Open Connection Database Method.

118 4D Server Reference

7

Stored Procedures

4D Server Reference 119

120 4D Server Reference

Stored Procedures Stored Procedures

version 6.8 (Modified)
__

What is an SQL-based Stored Procedure?
__

The expression Stored Procedure comes from the SQL-based Server world. When a client
workstation sends a request to an SQL-based server, it actually sends a plain text request in
SQL language to the SQL-based server. This request is then parsed and interpreted on the
SQL-based server before being executed. Obviously, if the source code of the request is
huge and if the request is sent multiple times during a session, there is a great deal of time
spent in sending the source code over the network, parsing and interpreting the request
as many times as the request is sent.

So, the idea was to find a way to send that request over the network, parse and interpret it
once, and then execute it only each time it was received from a client workstation. The
solution was to keep the request source code (in other words, a procedure) on the server
side and have the client workstation send a request consisting only of the name of the
procedure to be executed. The procedure is consequently said to be “stored” on the server,
thus the term “stored procedure.”

Note that an SQL-based stored procedure is a procedure that can receive parameters from a
client workstation, execute the tasks it implements (synchronously or asynchronously)
and eventually return a result to the client workstation. When a client workstation
invokes the execution of a stored procedure, to a certain extent, it delegates code
execution on the server machine.

What is a 4D Server Stored Procedure?
__

Although we use the industry name, the capabilities of 4D Server stored procedures
significantly exceed the regular concept of stored procedures.

Using a 4D command, such as New process, you can start a user process in which you can
run a method. This method is called a process method (see the Project Methods section in
the 4th Dimension Language Reference manual).

You can do the same with 4D Server, on a 4D Client machine. In addition, using the
command Execute on server on the server machine, you can start a user process in which
you are can run a method. Moreover, when using the EXECUTE ON CLIENT, you can run a
method in another process on a different client.

4D Server Reference 121

In both cases, the method is called a stored procedure, and (with an abuse of language)
the process started on the server machine or another client is also called a stored
procedure.

Important: The essential difference between an SQL-based stored procedure and a 4D
Server stored procedure is that in the first case you execute an SQL procedure, in the
second case, you run a 4D process.

Architecture of 4D Stored Procedures
__

Like a regular process, a stored procedure has its own environment:

• Current selection per table: Each stored procedure has a separate current selection. One
table can have a different current selection in different stored procedures.
• Current record per table: Each table can have a different current record in each stored
procedure.
• Variables: Every stored procedure has its own process variables. Process variables are
recognized only within the domain of their native stored procedure.
• Default table: Each stored procedure has its own default table.
• Process sets: Each stored procedure has its own process sets.
• On Error Call: Each stored procedure has its own error-handling method.
• Debugger window: Each stored procedure can have its own Debugger window.

In terms of user interface, a stored procedure can open windows and display data (i.e.,
DISPLAY RECORD).
A stored procedure executed on one or several client machines invoke data entry.
On the other hand a stored procedure executed on the server cannot invoke data entry
(i.e., ADD RECORD); there is no data entry kernel on the server machine.

You can start as many as stored procedures as the system authorizes (hardware and
memory). In fact, the 4D Server machine should be viewed as a machine that not only
replies to 4D Client and Web browsers, but also one that executes processes that interact
with other processes running on the server machine and on 4D Client machines.

In the same way that 4th Dimension and 4D Client provide a multi-tasking environment
to user processes running on a workstation, 4D Server provides a multi-tasking
environment to stored procedures. For example, 4D Server maintains a table of
interprocess variables that can be used by the stored procedures for interprocess
communications.

122 4D Server Reference

What a Stored Procedure Does?
__

Aside from data entry for stored procedures executed on the server, almost everything
said in the 4th Dimension Language Reference manual about the capabilities of processes and
commands applies to stored procedures.

A stored procedure can add, query, order by, update or delete records. A stored procedure
can use sets and named selections, access documents on disk, work with BLOBs and so on.
Just think that instead of doing something on a 4D Client machine, you are doing it on
the server machine or on one or several 4D Client machines.

One obvious advantage of stored procedures executed on the server is that indeed a stored
procedure executes locally on the server machine, the machine where the database engine
is located. For example, an APPLY TO SELECTION is not efficient over the network, but it is
from within a stored procedure. The example proposed in the section SP-Based Import
(Example) shows the magnitude of performance optimization you can achieve with
“smart” stored procedure implementation.

Stored procedures executed on one or several client machines allows to optimize the task
repartition and the communication between several client machines. Refer to the
command REGISTER CLIENT in the Language Reference manual for an example of a stored
procedures executed on several clients.

However, the most important advantage of the stored procedure architecture is the new
dimension it gives to 4D Server. Using stored procedures, you can implement your own
custom 4D Server services. The only limit is your imagination. The example in the section
SP-Based Services (Example) shows a stored procedure that provides clients with
information about 4D Server or the server machine. You can, for example, list the
volumes of the server machine. This example could be expanded easily for returning
directory or document information to a client.

What a stored procedure does not do (executed on the server)?
__

Generally speaking, stored procedures executed on the server should not deal with
interface items (such as menus, windows, forms...). Indeed the interface is not managed
on the server's side.
Commands displaying dialog boxes on the server machine as well as dialog boxes dealing
with data entry should be avoided.

Here is the list of the commands that should NOT be used within stored procedures
executed on the server. These commands are organized within three groups:

4D Server Reference 123

• Forbidden commands on the server
If one of the following commands is used within a stored procedure, an alert will be
displayed indicating that this command cannot be executed on 4D Server. The error #67
is returned, it can be catched through a method installed in the ON ERR CALL command.

ACCUMULATE
ADD RECORD
ADD SUBRECORD
APPEND MENU ITEM
BREAK LEVEL
CALL PROCESS
CHANGE LICENSES
Count menu items
Count menus
CREATE DATA FILE
DELETE MENU ITEM
DISABLE MENU ITEM
DISPLAY SELECTION
EDIT ACCESS
ENABLE MENU ITEM
FILTER EVENT
Get menu item
Get menu item key
Get menu item mark
Get menu item style
Get menu title
GRAPH TABLE
HIDE MENU BAR
INSERT MENU ITEM
Level
Menu selected
MODIFY RECORD
MODIFY SELECTION
MODIFY SUBRECORD
ON EVENT CALL
OPEN DATA FILE
Open external window
PAGE BREAK
PAGE SETUP
PRINT FORM
PRINT LABEL
PRINT RECORD
PRINT SELECTION
PRINT SETTINGS
Printing page
QR REPORT
QUERY BY EXAMPLE
REMOVE PICTURE FROM LIBRARY

124 4D Server Reference

SET ABOUT
SET MENU ITEM
SET MENU ITEM KEY
SET MENU ITEM MARK
SET MENU ITEM STYLE
SET PICTURE TO LIBRARY
SET PRINT PREVIEW
SHOW MENU BAR
Subtotal

• Unappropriate commands on server
We strongly advise you not to use the following commands in stored procedures because
they are not suitable for the server executing method. They can block the server and
create errors, and in any case they do not execute properly. No specific error code is
returned.

ACCEPT
Activated
ADD DATA SEGMENT
After
APPEND TO CLIPBOARD
APPEND TO LIST
Before
BLOB to list
BRING TO FRONT
BUTTON TEXT
CANCEL
CHANGE CURRENT USER
CHANGE PASSWORD
CLEAR CLIPBOARD
CLEAR LIST
Copy list
Count list items
Count screens
Create document (1)
Create resource file (1)
Current form page
Current form table
Current user
C_GRAPH
Deactivated
DELETE LIST ITEM
DELETE USER
DIALOG
DISABLE BUTTON
DRAG AND DROP PROPERTIES
DRAG WINDOW

4D Server Reference 125

Drop position
During
ENABLE BUTTON
ERASE WINDOW
EXPORT DATA (1)
FILTER KEYSTROKE
Find window
FIRST PAGE
Focus object
FONT
FONT LIST
Font name
Font number
FONT SIZE
FONT STYLE
Form event
Frontmost process
Frontmost window
GET CLIPBOARD
Get edited text
GET FORM PROPERTIES
GET GROUP LIST
GET GROUP PROPERTIES
GET HIGHLIGHT
GET LIST ITEM
GET LIST ITEM PROPERTIES
GET LIST PROPERTIES
GET MOUSE
GET OBJECT RECT
GET PICTURE FROM CLIPBOARD
Get text from clipboard
GET USER LIST
GET USER PROPERTIES
GET WINDOW RECT
Get window title
GOTO AREA
GOTO PAGE
GRAPH SETTINGS
HIDE PROCESS
HIDE TOOL BAR
HIDE WINDOW
HIGHLIGHT RECORDS
HIGHLIGHT TEXT
IMPORT DATA (1)
In break
In footer
In header
INPUT FORM

126 4D Server Reference

INSERT LIST ITEM
INVERT BACKGROUND
Is a list
Is user deleted
Keystroke
LAST PAGE
List item parent
List item position
LIST TO BLOB
Load list
MAXIMIZE WINDOW
Menu bar height
Menu bar screen
MINIMIZE WINDOW
Modified
MOVE OBJECT
New list
NEXT PAGE
Next window
Old
Open document (1)
Open resource file (1)
ORDER BY (2)
OUTPUT FORM
Outside call
Pop up menu
POST CLICK
POST EVENT
POST KEY
PREVIOUS PAGE
QUERY BY FORMULA (2)
QUERY (2)
REDRAW
REDRAW LIST
REDRAW WINDOW
REGISTER CLIENT
REJECT
SAVE LIST
SCREEN COORDINATES
SCREEN DEPTH
Screen height
Screen width
Select folder
Selected list items
SELECT LIST ITEMS BY POSITION
SELECT LIST ITEMS BY REFERENCE
SELECT LOG FILE
Self

4D Server Reference 127

SET CHOICE LIST
SET COLOR
SET CURSOR
SET ENTERABLE
SET FIELD TITLES
SET FILTER
SET FORMAT
Set group properties
SET LIST ITEM
SET LIST ITEM PROPERTIES
SET LIST PROPERTIES
SET PICTURE TO CLIPBOARD
SET RGB COLORS
SET SCREEN DEPTH
SET TABLE TITLES
SET TEXT TO CLIPBOARD
SET TIMER
Set user properties
SET VISIBLE
SET WINDOW RECT
Shift down
SHOW PROCESS
SHOW WINDOW
SORT LIST
Test clipboard
User in group
Validate password
Window kind
WINDOW LIST
Window process

(1) Only when the first parameter is an empty string.
(2) Only when the syntax results in displaying a dialog box (i.e.: SORT ([Table])).

• Commands with no effect on the server
The following commands have no effect when they are executed within a stored
procedure on the server. No specific error code is returned.

GRAPH
MENU BAR
MESSAGES OFF
MESSAGES ON
SHOW TOOL BAR

128 4D Server Reference

How to Start a Stored Procedure
__

• With 4D Client, you can manually start a stored procedure in the Execute Method
dialog box:

You can execute it on 4D Server or on one or several 4D Client machines. Please note that
to display the 4D Clients in this list, they should have been first registered (see the
Registering 4D Client section and the REGISTER CLIENT command).

• Also on 4D Client, you can programmatically start a stored procedure using the
commands Execute on server or EXECUTE ON CLIENT.

• A method executed on 4D Server (server database method or stored procedure) can start
a stored procedure using Execute on server or New process or EXECUTE ON CLIENT.

More About Interprocess Communication Between Stored Procedures and User Processes
__

Stored procedures can communicate between themselves using:
• interprocess variables
• local or global semaphores
• records
• interprocess sets and interprocess named selections
• the commands GET PROCESS VARIABLE, SET PROCESS VARIABLE and VARIABLE TO
VARIABLE.

4D Server Reference 129

Refer to the corresponding parts of the 4th Dimension Language Reference manual. Once
again, keep in mind that the 4D commands act within the scope of the server machine
which is executing the stored procedure (server or clients) in the same way as they act in
the scope of a client machine.

Note: The CALL PROCESS and Outside call mechanism has no meaning on the server
machine, because stored procedures do not have a user interface with data entry.

There is yet another important feature: client user processes (processes running on a client
machine) can read and write the process variables (*) of a stored procedure, using the
commands GET PROCESS VARIABLE, SET PROCESS VARIABLE and VARIABLE TO VARIABLE.

(*) as well as the server machine interprocess variable.

Important: “Intermachine” process communication, provided by the commands GET
PROCESS VARIABLE, SET PROCESS VARIABLE and VARIABLE TO VARIABLE, is possible from
client to server only. It is always a client process that reads or write the variables of a
stored procedure.

See Also
SP-Based Import (Example), SP-Based Services (Example).

130 4D Server Reference

Registering 4D Client Stored Procedures

version 2004 (Modified)
__

Stored procedures can be executed on one or several 4D Client. Stored procedures on
client machines are executed the same as way as stored procedures on the server, except
that on the client they can invoke data entry. Refer to the Stored Procedures section for
further information.

Furthermore, any client machine executing stored procedures triggered by a server or
another client machine, should explicitly be registered for this session. There are two
methods to register 4D Client: 4D Client can automatically be registered when
connecting or through programming.

Registering automatically each 4D Client connecting to 4D Server
The "Register Clients at Startup" check box is available in the application Preferences, on
the “Configuration” page of the “Client-Server” theme:

4D Server Reference 131

When this option is checked, each 4D Client connecting to the database is automatically
referenced with 4D Server as being able to execute stored procedures. A process named
according to the client machine is created on the server, in the user process group. A
process is also created on each client machine.

Registering 4D Client through programming
It is possible to register one or several 4D Client using programming. It allows you to
select the client machines that needs to be registered and to define their registration
name.
The "Process" theme contains the REGISTER CLIENT command which allows you to
register a client machine under any name.

Unregistering 4D Client
No matter how the client machines have been registered, you can unregister them for the
current session using the UNREGISTER CLIENT command ("Process" theme) for a given
client. The registration process (named according to the client) disappears from the user
process group on the server machine as well as on the client.

Note: You can get the list and the task distribution (number of methods still to be
executed) for the clients registered for a given session using the GET REGISTERED CLIENTS
command.

For further information on these commands, refer to the 4th Dimension Language Reference
manual.

132 4D Server Reference

SP-Based Import (Example) Stored Procedures

version 6.0.2
__

The following example shows how importing data can be dramatically accelerated in
Client/Server architecture. The Regular Import method allows you to test how long it takes
to import records using the IMPORT TEXT command on the Client side:

` Regular Import Project Method
$vhDocRef:=Open document("")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
INPUT FORM([Table1];"Import")
$vhStartTime:=Current time
IMPORT TEXT([Table1];Document)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

End if

With the regular import data, 4D Client parses the text file, then for each record, creates a
new record, fills out the fields with the imported data and sends the record to the Server
machine to be added to the database. There are consequently many requests going over
the network. A way to optimize the operation is to use a stored procedure to do the job
locally on the Server machine. The Client machine loads the document into a BLOB, then
starts a stored procedure that passes the BLOB as parameter. The stored procedure stores
the BLOB in a document on the server machine disk, then imports the document locally.
The import data is therefore performed locally (at single-user speed) because most the
network requests have been eliminated.

Here is the CLIENT IMPORT project method. Executed on the Client machine, it calls the
SERVER IMPORT stored procedure listed just below:

` CLIENT IMPORT Project Method
` CLIENT IMPORT (Pointer ; String)
` CLIENT IMPORT (-> [Table] ; Input form)

C_POINTER($1)
C_STRING(31;$2)
C_TIME($vhDocRef)
C_BLOB($vxData)
C_LONGINT(spErrCode)

` Select the document do be imported
$vhDocRef:=Open document("")
If (OK=1)

` If a document was selected, do not keep it open
CLOSE DOCUMENT($vhDocRef)

4D Server Reference 133

$vhStartTime:=Current time
` Try to load it in memory

DOCUMENT TO BLOB(Document;$vxData)
If (OK=1)

` If the document could be loaded in the BLOB,
` Start the stored procedure that will import the data on the server machine

$spProcessID:=Execute on server("SERVER IMPORT";32*1024;
"Server Import Services";Table($1);$2;$vxData)

` At this point, we no longer need the BLOB in this process
CLEAR VARIABLE($vxData)

` Wait for the completion of the operation performed by the stored procedure
Repeat

DELAY PROCESS(Current process;300)
GET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
If (Undefined(spErrCode))

` Note: if the stored procedure has not initialized its own instance
` of the variable spErrCode, we may be returned an undefined variable

spErrCode:=1
End if

Until (spErrCode<=0)
` Tell the stored procedure that we acknowledge

spErrCode:=1
SET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

Else
ALERT("There is not enough memory to load the document.")

End if
End if

Here is the SERVER IMPORT project method executed as a stored procedure:

` SERVER IMPORT Project Method
` SERVER IMPORT (Long ; String ; BLOB)
` SERVER IMPORT (Table Number ; Input form ; Import Data)

C_LONGINT($1)
C_STRING(31;$2)
C_BLOB($3)
C_LONGINT(spErrCode)

` Operation is not finished yet, set spErrCode to 1
spErrCode:=1
$vpTable:=Table($1)
INPUT FORM($vpTable->;$2)
$vsDocName:="Import File "+String(1+Random)

134 4D Server Reference

If(On Windows)
$vsDocName:=$vsDocName+".txt" ` On Windows, file extension is required

End if
DELETE DOCUMENT($vsDocName)
BLOB TO DOCUMENT($vsDocName;$3)
IMPORT TEXT($vpTable->;$vsDocName)
DELETE DOCUMENT($vsDocName)

` Operation is finished, set spErrCode to 0
spErrCode:=0

` Wait until the requester Client got the result back
Repeat

DELAY PROCESS(Current process;1)
Until (spErrCode>0)

Note: The On Windows project method is listed in the System Documents section in the
4D Language Reference manual.

After these two project methods have been implemented in a database, you call perform a
“Stored Procedure-based” import data by writing, for example:

CLIENT IMPORT (->[Table1];"Import")

With some benchmarks, you will discover that by using this method you can import
records up to 60 times faster than with a regular import.

See Also
Execute on server, GET PROCESS VARIABLE, SET PROCESS VARIABLE, SP-Based Services
(Example), Stored Procedures.

4D Server Reference 135

SP-Based Services (Example) Stored Procedures

version 6.0.2
__

In the example discussed in the section SP-Based Import (example), a stored procedure is
started and ended each time an import data operation is requested. In this example, a
stored procedure is started automatically when the server database starts up, and can be
ended and restarted at will by any 4D Client connected to the database. As soon as it runs,
the stored procedure can reply asynchronously to multiple requests sent by the clients
connected to the database.

While the SP-Based Import (example) section shows how to implement a drastically
optimized existing service provided by 4D Server, this example shows how to implement
new and custom services available to all 4D Clients. In addition, this example can be used
as a template for implementing your own services.

Automatic Start-up of the Stored Procedure
__

The stored procedure is automatically started by the On Server Startup Database Method:

 ` On Server Startup Database Method
START SP SERVICES

Because the On Server Startup Database Method starts the SP SERVICES project method as a
stored procedure, SP SERVICES starts running as soon as the database is opened with 4D
Server, whether or not clients are actually connected to the server database. In the
following figure, the 4D Server Process window shows the stored procedure running when
no client is yet connected.

136 4D Server Reference

Starting and Ending the Stored Procedure At Will
__

The START SP SERVICES project method is listed here:

` START SP SERVICES Project Method
<>vlSPServices:=Execute on server("SP SERVICES";32*1024;"SP SERVICES";*)

Since the Execute on server command acts like New process when called on the server
machine, the same method (START SP SERVICES) can be used on the server machine or on
any client machine to start, at will, the method SP SERVICES as a stored procedure on the
server machine.

The STOP SP SERVICES project method “tells” the SP SERVICES project method to stop.

` STOP SP SERVICES Project Method
SET PROCESS VARIABLE(<>vlSPServices;vbStopSPServices;True)

When the SP SERVICES project method starts, it sets the vbStopSPServices process variable
to False and then loops until this Boolean variable becomes True. The command SET
PROCESS VARIABLE, enables any user process running on the server or any client machines
to change the value of the vbStopSPServices variable, and consequently stop the stored
procedure at will.

Communicating with the Stored Procedure
__

The stored procedure should be able to receive and reply asynchronously to client requests
at any time and in any order. A straightforward way to insure this communication is to
use a table.

4D Server Reference 137

The [SP Requests] table contains the following fields:

• [SP Requests]reqID is set using the Sequence number command. This field uniquely
identifies each request.
• [SP Requests]reqType describes the type of the request.
• [SP Requests]reqStatus may take one of the following values:

Value Description
1 the request has been posted but not processed yet.
0 the request has been successfully processed.
< 0 the request has been processed but an error occurred.

Note: These values are arbitrarily choosen for this example, they are not imposed by 4D.

• [SP Requests]reqData is a BLOB containing the data of the request. It can contain data
sent by the requester or data returned by the stored procedure to the requester.
• [SP Requests]reqParams optionally contains parameter values sent by the requester to the
stored procedure.

Why Use a Table?
Communication between a client process and a stored procedure can be implemented
using the command GET PROCESS VARIABLE, SET PROCESS VARIABLE and VARIABLE TO
VARIABLE. For example, this is the solution used in the section SP-Based Import (example),
as well as in the STOP SP SERVICES project method listed previously.

Here, the system must allow the stored procedure to receive and send back variable
amounts of data. Arrays, including Text and Picture arrays, could be used, but there are
two reasons for using a table:
• The algorithm for handling requests via records is simpler to implement. Posting a
request from a client machine just consists of adding a request to the table. Replying to
the request from within the stored procedure just consists of modifying this request.
• Since the requests are stored in a table, they are stored on disk. As a result, the size of a
large request is is not an issue, because it can be purged from memory (unlike data stored
in arrays).

Posting a Request From the Client Machine
__

The Client post request project method is a generic method for posting a request:

` Client post request Project Method
` Client post request (String { ; Text }) -> Long
` Client post request (Request Type { ; Parameters }) -> Request ID

CREATE RECORD([SP Requests])
[SP Requests]reqID:=Sequence number([SP Requests])
[SP Requests]reqType:=$1
[SP Requests]reqStatus:=1

138 4D Server Reference

If (Count parameters>=2)
[SP Requests]reqParams:=$2

End if
SAVE RECORD([SP Requests])
$0:=[SP Requests]reqID

The method returns the request ID number whose unicity is guaranteed by the use of the
Sequence number command. After the record has been added to the [SP Requests]
database, the client can poll the field [SP Requets]redStatus in order to wait until the stored
procedure has completely handled the requests.

Polling the Request Status and Getting the Result on the Client Machine
__

The Client get result project method is a generic method for polling the status of the
request. As explained previously, as soon as the field [SP Requets]redStatus becomes
different from 1, the client knows that the stored procedure has managed (successfully or
not) the request.

` Client get result Project Method
` Client get result (Long ; ->BLOB {; Long }) -> Long
` Client get result (Request ID ; ->Data {; Delay }) -> Error Code

C_LONGINT($0;$1;$vlDelay)
$0:=1
$vlDelay:=0
If (Count parameters>=3)

$vlDelay:=$3
End if
READ ONLY([SP Requests])
Repeat

QUERY([SP Requests];[SP Requests]reqID=$1)
If (Records in selection([SP Requests])>0)

If ([SP Requests]reqStatus # 1)
$2->:=[SP Requests]reqData
READ WRITE([SP Requests])
While (Locked([SP Requests]))

WAITING LOOP ($vlDelay)
LOAD RECORD([SP Requests])

End while
DELETE RECORD([SP Requests])
$0:=[SP Requests]reqStatus

End if
Else

` Request record has been lost!
` It should not happen. But anyway set error to -2 (arbitrary value)

$0:=-2
End if

4D Server Reference 139

` The request has not been processed yet
If ($0=1)

WAITING LOOP ($vlDelay)
End if

Until ($0 # 1)
READ ONLY([SP Requests])

If the request has been successfully managed by the stored procedure, the method copies
the result (if any) from the record to the BLOB whose pointer is passed as parameter. The
caller method then parses and uses the BLOB data according to the type of the request.
Note that the client is in charge of deleting the [SP Requests] record once the request is
completed.

The small WAITING LOOP project method loops until a number of ticks has elapsed:
` WAITING LOOP Project Method
` WAITING LOOP (Long)
` WAITING LOOP (Delay in ticks)

C_LONGINT($1)
$vlStartTicks:=Tickcount
Repeat

IDLE
Until ((Tickcount-$vlStartTicks)>=$1)

Reminder: The DELAY PROCESS has no effect on the User environment process. Using the
WAITING LOOP project method, the process will wait the required amount of time, even
though the request originated from the User environment process of a client machine.

The Stored Procedure and Its Subroutines
__

The SP SERVICES project method is the method running as stored procedure on the server
machine. The overall architecture of this method, here shown in pseudocode, is
straightforward:

Initialize a “stop” variable
Repeat

Look for the requests with the [SP Requests]reqStatus field equal to 1
For each request

Depending on the type of the request, call a subroutine
that stores the result in the [SP Requests]reqData field

Change the status of the request so that the client knows what happened
End for
“Sleep” a little bit before to start again

Until the “stop” variable becomes true

140 4D Server Reference

Here is the actual source code:

` SP SERVICES Project Method
` The stored procedure is starting

vbStopSPServices:=False
` The stored procedure does not need read-write access to the tables...

READ ONLY(*)
` ...except the [SP Requests] table

READ WRITE([SP Requests])
Repeat

` Look for the requests that have not been processed yet
QUERY([SP Requests];[SP Requests]reqStatus=1)

` Process these requests one after one
For ($vlRecord;1;Records in selection([SP Requests]))

` If the request record is locked, wait until it becomes unlocked
While (Locked([SP Requests]))

` Wait one second before trying again
DELAY PROCESS(Current process;60)

` Try to get read-write access
LOAD RECORD([SP Requests])

End while
` Assume the request will be processed successfully

[SP Requests]reqStatus:=0
Case of

: ([SP Requests]reqType="Server Information")
SP DO SERVER INFORMATION

: ([SP Requests]reqType="Volume List")
SP DO VOLUME LIST

: ([SP Requests]reqType="Browse Directory")
SP DO BROWSE DIRECTORY ([SP Requests]reqParams)
` ...
` OTHER REQUEST TYPES COULD BE ADDED HERE!
` ...

Else
` The request type is unknown, returns error -1 (arbitrary value)

[SP Requests]reqStatus:=-1
End case

` Force request status to be different from 1
` (in case a subroutine sets it to 1)

If ([SP Requests]reqStatus=1)
[SP Requests]reqStatus:=-3

End if
` Update the request record

SAVE RECORD([SP Requests])
` Go to the next unprocessed request

NEXT RECORD([SP Requests])
End for

4D Server Reference 141

` Free the last processed request record
UNLOAD RECORD([SP Requests])

` Wait one second before starting answering request again
DELAY PROCESS(Current process;60)

` Loop until the SP is told to stop execution
Until (vbStopSPServices)

The SP SERVICES project method can be used as a template for implementing new services
to a database. In this section, we detail the SP DO SERVER INFORMATION and SP DO
VOLUME LIST subroutines. The SP DO BROWSE DIRECTORY (which takes as a parameter
the parameter sent by the client in the [SP Requests]reqParams field) is not detailed in this
document.

Depending on the type of the request, the SP SERVICES project method calls a subroutine
whose task is to store the result data in the [SP Requests]reqData field. Saving the record
and changing the status of the request is performed by the SP SERVICES project method.

Here is the SP DO SERVER INFORMATION subroutine. It stores server-related information
in the BLOB. Another project method will extract the BLOB data accordingly on the client
machine.

` SP DO SERVER INFORMATION Project Method
TEXT TO BLOB(Application version(*);[SP Requests]reqData;Pascal string)
TEXT TO BLOB(Structure file;[SP Requests]reqData;Pascal string;*)
TEXT TO BLOB(Data file;[SP Requests]reqData;Pascal string;*)
PLATFORM PROPERTIES($vlPlatform;$vlSystem;$vlMachine)
VARIABLE TO BLOB($vlPlatform;[SP Requests]reqData;*)
VARIABLE TO BLOB($vlSystem;[SP Requests]reqData;*)
VARIABLE TO BLOB($vlMachine;[SP Requests]reqData;*)

Here is the SP DO VOLUME LIST subroutine. It stores volume-related information in the
BLOB. Another project method will extract the BLOB data accordingly on the client
machine.

` SP DO VOLUME LIST Project Method
VOLUME LIST($asVName)
$vlSize:=Size of array($asVName)
ARRAY REAL($arVSize;$vlSize)
ARRAY REAL($arVUsedSpace;$vlSize)
ARRAY REAL($arVFreeSpace;$vlSize)
For ($vlElem;1;$vlSize)

VOLUME ATTRIBUTES($asVName{$vlElem};$arVSize{$vlElem};
$arVUsedSpace{$vlElem};$arVFreeSpace{$vlELem})

End for
VARIABLE TO BLOB($asVName;[SP Requests]reqData)
VARIABLE TO BLOB($arVSize;[SP Requests]reqData;*)
VARIABLE TO BLOB($arVUsedSpace;[SP Requests]reqData;*)
VARIABLE TO BLOB($arVFreeSpace;[SP Requests]reqData;*)

142 4D Server Reference

Showing the Server Information on a Client Machine
__

Using the generic Client post request and Client get result project methods, the
M_SERVER_INFORMATION project method displays the server information returned by the
stored procedure on the client machine. This method could be attached to a menu
command or invoked, for instance, from a button’s object method:

` M_SERVER_INFORMATION
C_BLOB(vxData)
C_LONGINT($vlReqID;$vlErrCode;$vlOffset)

` Post the request
$vlReqID:=Client post request ("Server Information")

` Poll the request status and get the result
$vlErrCode:=Client get result ($vlReqID;->vxData;60)

` If the request is successfully completed, display the result
If ($vlErrCode=0)

` Extract the result information from the BLOB
$vlOffset:=0
vsServerVersion:=BLOB to text(vxData;Pascal string;$vlOffset)
vsStructureFile:=BLOB to text(vxData;Pascal string;$vlOffset)
vsDataFile:=BLOB to text(vxData;Pascal string;$vlOffset)
BLOB TO VARIABLE(vxData;$vlPlatform;$vlOffset)
BLOB TO VARIABLE(vxData;$vlSystem;$vlOffset)
BLOB TO VARIABLE(vxData;$vlMachine;$vlOffset)

` Analyse the platform properties
vs4DPlatform:="Unknown 4D Server Version"
vsSystem:="Unknown System Version"
vsMachine:="Unknown Machine"

`...
` Here is the code (not listed) that parses the $vlSystem and $vlMachine
` (see the example for the PLATFORM PROPERTIES command)
` ...
` Display the result information

DIALOG([SP Requests];"SERVER INFORMATION")
Else

ALERT("Request error "+String($vlErrCode))
End if

` No longer need the BLOB
CLEAR VARIABLE(vxData)

4D Server Reference 143

Here is the [SP Requests];"SERVER INFORMATION" form in the User or Custom Menus
environments:

In this window, information coming from a Windows NT-based 4D Server machine is
displayed on a Macintosh client machine.

Showing the Server Machine Volume List on a Client Machine
__

Using the generic Client post request and Client get result project methods, the
M_SERVER_VOLUMES project method displays, on the client machine, the server machine
volume list returned by the stored procedure. This method could be attached to a menu
command or invoked, for instance, from a button’s object method:

` M_SERVER_VOLUMES
C_BLOB(vxData)

` Post the request
$vlReqID:=Client post request ("Volume List")

` Poll the request status and get the result
$vlErrCode:=Client get result ($vlReqID;->vxData;120)

` If the request is successfully completed, display the result
If ($vlErrCode=0)

` Extract the result information from the BLOB
$vlOffset:=0
BLOB TO VARIABLE(vxData;asVName;$vlOffset)
BLOB TO VARIABLE(vxData;arVSize;$vlOffset)
BLOB TO VARIABLE(vxData;arVUsedSpace;$vlOffset)
BLOB TO VARIABLE(vxData;arVFreeSpace;$vlOffset)

144 4D Server Reference

For ($vlElem;1;Size of array(arVSize))
` Convert from bytes to MB

arVSize{$vlElem}:=arVSize{$vlElem}/1048576
arVUsedSpace{$vlElem}:=arVUsedSpace{$vlElem}/1048576
arVFreeSpace{$vlElem}:=arVFreeSpace{$vlElem}/1048576

End for
` Display the result information

DIALOG([SP Requests];"VOLUME LIST")
Else

ALERT("Request error "+String($vlErrCode))
End if

` No longer need the BLOB
CLEAR VARIABLE(vxData)

Here is the [SP Requests];"VOLUME LIST" form in the User or Custom Menus
environments:

In this window, disk information coming from a Windows server machine is displayed on
a Macintosh client machine.

See Also
BLOB Commands, Execute on server, SP-Based Import (example), Stored Procedures.

4D Server Reference 145

146 4D Server Reference

	Cover Page
	Contents
	Introduction
	Overview
	4D Server Architecture

	4D Server in 10 minutes
	Checking Your Installation
	Creating a Server Database
	Connecting to the Server Database with 4D Client
	Defining the Database Structure
	Data Manipulation with 4D Server
	Adding a Custom Menu Bar
	Working Concurrently with 4D Server
	4D Server is a Web Server

	Using 4D Server
	Creating a New 4D Server Database
	Exiting 4D Server
	4D Server Process Window
	Configuration preferences
	Publishing preferences
	Encrypting Client/Server Connections
	Transferring data to client machines
	Setting up a logical mirror

	Using 4D Client
	Connecting to a 4D Server Database
	Creating a Path Document

	4D Server Menus
	File Menu
	Edit Menu
	Process Menu
	Data Menu
	Web Server Menu
	Help Menu

	4D Server and the 4D Language
	4D Server and the 4D Language
	4D Server and Sets
	On Server Startup Database Method
	On Server Shutdown Database Method
	On Server Open Connection Database Method
	On Server Close Connection Database Method

	Stored Procedures
	Stored Procedures
	Registering 4D Client
	SP-Based Import (Example)
	SP-Based Services (Example)

