
4D Internet Commands
 __ _______________

Reference Guide
Windows® and Mac™OS Versions

4th Dimension®

© 2004 4D SA/4D, Inc. All rights reserved.

__

4D Internet Commands
Version 2004 for Windows® and Mac™ OS

Copyright © 2004 4D SA/4D, Inc.
All rights reserved
__

The Software described in this manual is governed by the grant of license in the 4D
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the 4D
Product Line License Agreement.

4th Dimension, 4D, 4D Draw, 4D Write, 4D View, 4D Insider, the 4D logo and 4D Server
are registered trademarks of 4D.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac OS, Power Macintosh, Laser Writer, ResEdit, and QuickTime are
trademarks or registered trademarks of Apple Computer, Inc.

Mac2Win Software Copyright © 1990-2004 is a product of Altura Software, Inc.

ACROBAT © Copyright 1987-2004, Secret Commercial Adobe Systems Inc. All rights
reserved. ACROBAT is a registered trademark of Adobe Systems Inc.

4th Dimension includes cryptographic software written by Eric Young
(eay@cryptsoft.com)
4th Dimension includes software written by Tim Hudson (tjh@cryptsoft.com).

All other referenced trade names are trademarks or registered trademarks of their
respective holders.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the 4D Product Line License Agreement, which is
provided in electronic form with the Software. Please read the 4D Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. 4D Internet Commands 9
Preface 11
Installation and Software Requirements 13
Glossary and Terminology 15
Parameter Formats 18

2. IC Send Mail 21
Sending Mail, Overview 23
SMTP_SetPrefs 25
SMTP_GetPrefs 27
SMTP_QuickSend 28
SMTP_New 30
SMTP_Host 31
SMTP_Send 32
SMTP_Clear 33
SMTP_Date 34
SMTP_From 36
SMTP_Sender 38
SMTP_ReplyTo 40
SMTP_To 42
SMTP_Cc 43
SMTP_Bcc 44
SMTP_InReplyTo 46
SMTP_References 47
SMTP_Comments 48
SMTP_Keywords 49
SMTP_Encrypted 50
SMTP_AddHeader 51
SMTP_Subject 53
SMTP_Body 54
SMTP_Attachment 56
SMTP_Charset 58
SMTP_Auth 60

4D Internet Commands Reference 3

3. IC POP3 Review Mail 63
Receiving Mail, Overview 65
POP3_SetPrefs 67
POP3_GetPrefs 68
POP3_Login 69
POP3_VerifyID 71
POP3_Reset 72
POP3_Delete 73
POP3_Logout 74
POP3_BoxInfo 75
POP3_MsgInfo 76
POP3_GetMessage 77
POP3_MsgLstInfo 78
POP3_MsgLst 80
POP3_DownLoad 82
POP3_UIDToNum 83
POP3_Charset 84

4. IC IMAP Review Mail 87
IMAP4 Commands, Overview 89
IMAP_SetPrefs 94
IMAP_GetPrefs 95
IMAP_Login 96
IMAP_VerifyID 98
IMAP_Capability 99
IMAP_ListMBs 100
IMAP_SubscribeMB 104
IMAP_GetMBStatus 105
IMAP_SetCurrentMB 107
IMAP_GetCurrentMB 109
IMAP_CloseCurrentMB 110
IMAP_Delete 111
IMAP_MsgInfo 112
IMAP_GetMessage 113
IMAP_MsgLstInfo 115
IMAP_MsgLst 117

4 4D Internet Commands Reference

IMAP_SetFlags 119
IMAP_GetFlags 122
IMAP_MsgFetch 123
IMAP_Download 130
IMAP_UIDToMsgNum 132
IMAP_MsgNumToUID 133
IMAP_Search 134
IMAP_CopyToMB 139
IMAP_CreateMB 141
IMAP_DeleteMB 142
IMAP_RenameMB 143
IMAP_Logout 144

5. IC Downloaded Mail 145
Downloading Mail, Overview 147
MSG_SetPrefs 148
MSG_GetPrefs 149
MSG_FindHeader 150
MSG_MessageSize 151
MSG_GetHeaders 152
MSG_GetBody 153
MSG_GetMessage 154
MSG_HasAttach 155
MSG_Extract 156
MSG_Delete 157
MSG_Charset 158

6. IC File Transfer 161
File Transfer, Overview 163
FTP_Progress 164
FTP_Login 166
FTP_GetDirList 168
FTP_ChangeDir 170
FTP_PrintDir 171
FTP_GetFileInfo 172
FTP_VerifyID 173

4D Internet Commands Reference 5

FTP_MakeDir 174
FTP_RemoveDir 175
FTP_Rename 176
FTP_Delete 177
FTP_MacBinary 178
FTP_Send 180
FTP_Append 182
FTP_GetType 183
FTP_SetType 184
FTP_System 185
FTP_Receive 186
FTP_Logout 188
FTP_SetPassive 189
FTP_GetPassive 190

7. IC TCP/IP 191
Low Level Routines, Overview 193
TCP_Open 195
TCP_Listen 197
TCP_Send 199
TCP_Receive 200
TCP_SendBLOB 201
TCP_ReceiveBLOB 202
TCP_State 203
TCP_Close 204

8. IC Internet 205
Special Internet Commands, Overview 207
NET_Finger 208
NET_Ping 209
NET_Time 210
NET_NameToAddr 212
NET_AddrToName 213
NET_Resolve 214

6 4D Internet Commands Reference

9. IC Utilities 215
Utility Commands, Overview 217
IT_MacTCPInit 218
IT_Platform 219
IT_Version 220
IT_TCPversion 221
IT_MacTCPVer 222
IT_MyTCPAddr 223
IT_SetTimeOut 224
IT_GetTimeOut 226
IT_ErrorText 227
IT_Encode 228
IT_Decode 230
IT_GetProxy 232
IT_SetProxy 233
IT_GetPort 235
IT_SetPort 236
IT_PPPConnect 237
IT_PPPDisconnect 238
IT_PPPStatus 239

10. Appendixes 241
Appendix A, Programming Tips 243
Appendix B, TCP Port Numbers 245
Appendix C, 4D Internet Commands Error Codes 247
Appendix D, Additional Information... 257

Command Index 259

4D Internet Commands Reference 7

8 4D Internet Commands Reference

1

 4D Internet Commands

4D Internet Commands Reference 9

10 4D Internet Commands Reference

Preface 4D Internet Commands

version 2004 (Modified)
__

The 4D Internet Commands empower users of 4th Dimension with a robust set of
communication utilities capable of working in either a Local or Wide area network. The
ultimate expression of this explosion of connectivity is known colloquially as "The
Internet". The last few years has produced phenomenal growth in the number of people
and companies gaining access to the Internet. As the volume of people with Internet
access increases, the need to be "on the net" is felt more and more each day by those in
the business community.

The suite of commands provided by 4D Internet Commands gives database developers
access to many key elements of the Internet. The SMTP commands contain tools to
automate e-mail delivery from a database to any list of people. Similarly, the POP3 and
IMAP commands can retrieve mail from any number of mailboxes for storage within the
database, re-routing, auto-reply or remote-search execution. The FTP commands enable
the user to transfer files to/from remote systems or to obtain directory listings of files on
FTP volumes. And the TCP commands provide developers with the low-level tools
enabling them to accomplish any internet-related task.

SMTP (Simple Mail Transfer Protocol) is the primary mail transfer protocol used over the
Internet. 4D Internet Commands allow users to quickly build and send mail via a SMTP
server. Mail creation and delivery can be as simple as a single command. If your mail
delivery needs are more complex, every aspect of the message header, body and
attachments can be controlled to affect its delivery. Since Internet mail addressing
provides for delivery to such services as CompuServe, America Online, eWorld, etc. you
are able to reach virtually anyone with an e-mail account. Other examples of how the
suite of SMTP commands could be used are:

• Automation of database report delivery
• Creation of an automatic mail forwarding database
• Group mail-list management
• Store-and-forward remote database updates & synchronizations

Along with its SMTP commands, 4D Internet Commands also contains commands that
will connect either to POP3 (Post Office Protocol, Version 3) or IMAP (Internet Message
Access Protocol) mail servers for retrieval of mail messages and encoded attachments.
Since the suite of SMTP, POP3 and IMAP commands conforms to the MIME standard for
multiple message enclosures, binary attachments can easily be downloaded and saved.

The commands also provide users with the ability to encode attachments in several
different ways such as: Binhex, Base64, AppleSingle, AppleDouble...

4D Internet Commands Reference 11

The FTP (File Transfer Protocol) commands provide a very easy-to-use mechanism for
communicating with an FTP server to send/receive text or binary files. Commands within
the FTP suite can obtain directory listings of files, enabling the database developer to
create navigable interfaces to remote volumes of files. The FTP commands can easily be
used in document-tracking applications without requiring client applications to mount
remote volumes directly.

Transmission Control Protocol/Internet Protocol, (TCP/IP) is the primary protocol used
for sending and receiving data over the Internet. 4D Internet Commands contains
several commands for sending and receiving raw TCP packets. The TCP set of commands
provides developers with the essential tools to build and control their own Internet
communications. In addition, the TCP_Open command allows connection using a SSL
(Secured Socket Layer) protocol.

Some examples are:

• Build your own telnet interface
• Execute shell commands on remote machines
• Retrieve documents from the World Wide Web
• Search through numerous on-line databases
• Handle database synchronizations with remote servers
• Federal Express and UPS package tracking
• Connect to a Web server in Https.

Note: For greater flexibility, 4D Internet commands let you pass a POP3, IMAP or FTP
connection reference directly to low-level TCP commands and vice versa. For more
information, refer to the Low Level Routines, Overview section.

12 4D Internet Commands Reference

Installation and Software Requirements 4D Internet Commands

version 2004 (Modified)
__

Installation
__

The “4D Internet Commands” plug-in is integrated in 4th Dimension in the same way as
other plug-ins.

4D Internet Commands becomes automatically available when you install a 4D product
since the plug-in is automatically installed in the PlugIns folder of your application.

For more information on plug-in installation and configuration, please refer to the 4D
Product Line Installation Guide.

Software Requirements
__

The list below details the software requirements to use 4D Internet Commands in a
4th Dimension database. It is not necessary to meet all of these requirements, only those
pertaining to the set of commands that will be used. Virtually all of the external calls
communicate via the TCP/IP protocol and a TCP/IP protocol stack should be considered a
requirement across all functionality sets.

System
The system requirements are the same as those for 4th Dimension. For more information,
please refer to the 4D Product Line Installation Guide.

4th Dimension (Mac & Windows)
- 4D for Mac version 2004 or higher
- 4D for Windows version 2004 or higher

BSD, Winsock
All the commands throughout 4D Internet Commands use the TCP/IP protocol for
communications. Any computer which is to execute commands within this plug-in must
have a TCP/IP driver installed and properly configured with a unique IP address. Most
operating systems have TCP/IP drivers pre-installed, examples of which are BSD Sockets
on the Macintosh and Winsock on Windows.
For more information on configuring TCP/IP, please refer to your network administrator.

Network access
In order to use the suite of commands in 4D Internet Commands, you must have access
to a network that supports TCP/IP.

Domain Name Server
For many of the 4D Internet Commands, it is necessary to have access to a domain name
server. For more information, please refer to your network administrator.

4D Internet Commands Reference 13

SMTP Mail Server
In order to send mail using the set of SMTP commands, it is necessary for the sender to
have access to a SMTP mail server, which will forward the message to a POP3 mail server.

POP3 Mail Server
In order to use the POP3 commands, you must have an account on a POP3 mail server.

IMAP Mail Server
In order to use the IMAP commands, you must have an account on an IMAP mail server.

14 4D Internet Commands Reference

Glossary and Terminology 4D Internet Commands

version 6.7.2
__

This section defines many of the references made throughout the manual. The
definitions are simplistic and are meant mainly for those unfamiliar with the references.
The Terminology section pertaining to "Parameter Formats" provides details on the
formatting expectations of 4D Internet Commands common parameters.

NIC: "Network Information Center". For the most part, the Internet is an unregulated
entity. There is no centralized authority or control over its use or growth. However, there
are some basic administrative needs such as domain name and IP address assignments
that could only be effectively carried out if controlled by a single agency. The NIC is the
group responsible for such administrative tasks.

RFC: "Request for Comments." Most of the 4D Internet Commands are based upon
standards defined to handle Internet communication. The standard methodologies,
descriptions and protocols used throughout the Internet are defined within documents
known as RFCs. Appendix D, Additional Information... contains references to some WWW
sites with pointers to many of the RFC documents. The 4D Internet Commands package
does its best to protect you from a need to reference these documents, though anyone
programming their own communications via the low-level TCP routines should become
familiar with them.

TCP/IP Addresses, Host Names and Domain Names: An IP address is a reference to a
specific machine somewhere out in the world. The IP address is formatted as a string
containing four numeric values separated by periods (i.e. "207.94.15.3"). Each numeric
part of the address can contain a value between zero and 255. By applying some
mathematical functions to an IP address, its value can be squeezed down into an
equivalent Long Integer number, which this document will refer to as the ip_LongInt.

In order for a site (i.e. a Company, College, etc.) to put their computers on the Internet,
some assurances must be taken that their IP addresses won't conflict with other machines
on the network. Institutions (and often individuals) will register their site with the NIC in
order to obtain a Domain Name. Domain Names provide a system of easy-to-remember
Internet addresses, which can be translated by the Domain Name System (DNS) into the
numeric addresses (Internet Protocol [IP] numbers) used by the network. This system
allows a more readable format such as "www.4D.com" or "ftp.4D.com".

Domain Name = "4D.com"

Host Name (Name of a computer) = IP address = ip_LongInt
"www.4D.com" = "207.94.15.3" = -815919357

The relationship between a Host name and its corresponding IP address is stored in a
database known as a DNS (Domain Name System). These servers communicate with one
another to exchange any new or changed data in the domain name lists throughout the

4D Internet Commands Reference 15

world. The TCP/IP control panel provides a means to 'point' your computer to a DNS,
which will then resolve all domain name references you use.

It is important to understand that all domain name servers have a corresponding IP
address. However, not all IP addresses have a corresponding domain name server. Also, a
"Mail Address" such as "jsmith@4D.com" does not reference that person's specific
computer or IP address. The mail address would direct its delivery to the machine with the
IP address represented by resolving the domain "4D.com". The mail would be delivered to
the POP3 server running on that machine, which would then hold the mail for its user
named "jsmith".

Domain Name: The Domain Name is an addressing construct used for identifying and
locating computers on the Internet. Domain names provide a system of easy-to-
remember Internet addresses, which can be translated by the Domain Name System
(DNS) into the numeric addresses (Internet Protocol [IP] numbers) used by the network. A
domain name is hierarchical and often conveys information about the type of entity
using the domain name. A domain name is simply a label that represents a domain,
which is a subset of the total domain name space. Domain names at the same level of the
hierarchy must be unique, for example there can be only one com at the top level of the
hierarchy, and only one 4D.com at the next level of the hierarchy. If your organization's
name is "CompanyName" you could register the domain name "CompanyName.com"
and your e-mail address could be "UserName@CompanyName.com". Your customers
would also be able to access your organization's web site by visiting
"www.companyName.com" with their Web browser.

Domain Name System (DNS): A distributed database of information that is used to
translate domain names, which are easy for humans to remember and use, into Internet
Protocol (IP) numbers, which are what computers need to find each other on the
Internet. People working on computers around the globe maintain their specific portion
of this database, and the data held in each portion of the database is made available to all
computers and users on the Internet. The DNS comprises computers, data files, software,
and people working together.

Encoding: Encoding converts a file from one format to another so that a file can be
moved across different computer systems which may not all support the same character
sets. The most common form of encoding is binary-hexadecimal (Binhex) encoding.
Binhex encoding is the default encoding option for any attachments that you add to
messages. While encoding creates a new file that is larger than the original, it converts
the data fork, resource fork, and Finder information into a character file which can easily
be sent as an attachment. 4D Internet Commands support the most common encoding
methods, including Binhex, Base64, AppleSingle, AppleDouble, UUEncode and
MacBinary.

Encryption: Encryption is used to intentionally scramble the contents of messages.
Messages are encrypted using an external encryption program such as PGP, for the sole
purpose of increasing the privacy of messages. The encrypted text must then be decrypted
before it can be read. 4D Internet Commands do NOT provide any means for encrypting
text.

16 4D Internet Commands Reference

Compression: Is used as a means of reducing the space taken up by a file. In order to
compress a file, the file must be run through an application such as Stuffit Deluxe™
Compact Pro™ or WinZip™. These files must then be decompressed using the application
in order to return the file to its original format. When files are compressed using
compression applications, it is common for those applications to append a suffix to the
original name of the file. Below are some common suffixes and their respective
applications.

Filename.SIT - Stuffit application
Filename.CPT - Compact Pro application
Filename.DD - Disk Doubler application
Filename.ZIP - Winzip application
Filename.SEA - Self Extracting Archive. These files are Macintosh stand-alone applications
and will decompress themselves when the user double-clicks on them because application
code for decompression is included. Due to the addition of this code, self-extracting
archives are generally larger than if the file was created as Filename.SIT or Filename.CPT.
However since the user doesn't need to have the compression application, this option
may be advantageous to the end user.

It is important to remember that once compressed, a file still needs to be encoded prior to
transmission to ensure that the file is properly transferred from machine to machine on
its way to its ultimate destination.

4D Internet Commands Reference 17

Parameter Formats 4D Internet Commands

version 6.8.1 (Modified)
__

The descriptions that follow provide details on the meaning and formatting of many key
parameters used throughout this manual.

Parameter Type Description
hostName String → Host name (Ex: "www.companyname.com")

IP address (Ex: "204.118.90.2")
ip_LongInt LongInt → Long Integer reference to a IP address
mailAddress Text → Ex: "jsmith@4d.com"
addressList Text → Ex: "jsmith@4d.com, jdupont@4d.fr" or

"jsmith@4d.com"+Char(13)+"jdupont@4d.fr"
localPath Text → - Document

Mac: "My Hard Drive:4DDB:SalesDB:Report"
Win: "C:\MyDrive\4DDB\SalesDB\Report.txt"
- Directory
Mac: "My Hard Drive:CoolStuff:"
(Note trailing ":")
Win: "C:\MyDrive\CoolStuff\"

hostPath Text → - Document
"/usr/jsmith/reports/salesreport.txt"
- Directory
"/usr/jsmith/reports/"(Note trailing "/")

tcp_ID LongInt → Reference to an open TCP session
smtp_ID LongInt → Reference to a new mail message
pop3_ID LongInt → Reference to an open POP3 session
imap_ID Longint → Reference to an open IMAP connection
ftp_ID LongInt → Reference to an open FTP session

Function result Integer ← Error Code

hostName
The hostName is the host name or IP address, such as "dns.4d.com" or "204.118.90.2".
Host names are resolved through a domain name system. The default and secondary
domain name systems are typically set within the Control Panel of the installed TCP/IP
driver. Any 4D Internet command requiring a hostName as a parameter will accept its
value in either the name ("www.4d.com") or IP address ("204.118.90.2") format. The
"name" format is always preferred since it buffers your application from ill effects due to
hardware changes at remote sites.

18 4D Internet Commands Reference

ip_LongInt
All host names can be resolved via the methods described above to an IP address.
Mathematical formulas can then be applied to the IP address to convert the value to a
unique long integer number. Commands within the 'Special Functions' section such as
NET_NameToAddr and NET_AddrToName automate this conversion process. This LongInt
value is referred to as the ip_LongInt throughout this documentation. The LongInt value
will only be of use in special circumstances by developers doing direct TCP
communication. Some developers may also prefer to store the LongInt value of a domain
name in order to conserve disk space compared to its string equivalent. However, for
compatibility reasons with IPV6, 4D advises developers against using this feature.

mailAddress
The MailAddress is a fully qualified mail specification in the format
"user_name@domain_name". Within this document, mailAddress refers to a single e-mail
address. Any 4D Internet Commands parameter which can take more than one address
will specifically state addressList. If a parameter has mailAddress as its only type, it can take
one and only one mail address. The format of the mailAddress should be a full reference
containing both the user name and domain name:

"Felix Unger" <felix@pristine.com>
oscar@slobs.com (Oscar Madison)

addressList
An addressList contains one or more e-mail addresses in the format of mailAddress, each
delimited by a comma or carriage return. Carriage return delimiting is useful when
providing users with a text field to enter or paste a number of addresses. The following
three examples would each generate an acceptable $AddressList value:

$AddressList:="jsmith@4d.com"

$AddressList:="jsmith@4d.com,scott@4d.com,marcel@4d.fr"

For ($i;1;Size of Array(aAddresses))
$AddressList:=$AddressList+aAddresses{$i}+Char(13)

End For

localPath
The localPath is the location of a file or directory on the users machine (Mac or Windows).
On a Macintosh, colons delimit items within folders. For example, the file "My Report" in
the "Reports" folder on the hard drive titled "My Hard Drive" would have a pathname of
"My Hard Drive:Reports:My Report". A directory specification on a Macintosh should end
with a colon character. For example, if you wanted to place a new report in the same
folder as the above example, you would refer to the directory as "My Hard Drive:Reports:".
The decision to reference a File or Directory name is based on the context called for by
the command. A similar format is used under the Windows environment, except a
backward slash "\" is used in place of the colon character.

4D Internet Commands Reference 19

hostPath
The hostPath is the location of a file or directory on a computer running under the Unix
operating system. In the Unix environment, directories are separated with slashes ("/").
For example, the file "report.txt" in the "reports" directory in the "4D" directory would be
specified as "/4D/reports/report.txt". A directory pathname should end with a "/"
character. Note that a full pathname begins with a "/" which represents the root of the
volume.

smtp_ID, pop3_ID, imap_ID, ftp_ID, tcp_ID
Throughout each section of 4D Internet Commands, references are made to an "ID"
number in most of the commands. Each set of communication functions will establish
their own "session" represented by a Long Integer "ID" number. Subsequent commands
related to the open session will use this value to direct their effects down the proper
channel.

The "ID" numbers obtained in each section (SMTP, POP3, IMAP, FTP, TCP) may not be
passed as values to different sections. For instance, an FTP session identified by a ftp_ID
variable cannot be passed to the TCP routines for any special processing.

Session Reference Opened by Closed by
tcp_ID TCP_Open or TCP_Listen TCP_Close
smtp_ID SMTP_New SMTP_Clear
pop3_ID POP3_Login POP3_Logout or POP3_VerifyID
imap_ID IMAP_Login IMAP_Logout or IMAP_VerifyID
ftp_ID FTP_Login FTP_Logout or FTP_VerifyID

Function result
All 4D Internet Commands (with the exception of IT_ErrorText & IT_Version) return an
integer value as the result of the function. This integer contains any error number that
the command needs to convey back to the 4D database.
If a command is successful, a zero will be returned. Else, an error code is returned. For
more information about 4D Internet Commands error codes, please refer to Appendix C,
4D Internet Commands Error codes.

20 4D Internet Commands Reference

2

IC Send Mail

4D Internet Commands Reference 21

22 4D Internet Commands Reference

Sending Mail, Overview IC Send Mail

version 6.7.2
__

Simple Mail Transport Protocol (SMTP) is the mail standard used throughout the Internet.
With 4D Internet Commands, developers can build simple mail messages with just one
command, or complex messages with a series of commands. The SMTP commands enable
developers to control all portions of a mail message, including Reply-To headers, Sender
headers, Attachments, Comments, and References.

4th Dimension and 4D Internet Commands allow developers to create very powerful
databases with the ability to send messages and attachments over the Internet. Some
examples of how the suite of SMTP commands could enhance your databases are:

• Automation of sending reports or documents created within 4th Dimension.
• Databases could inform developers of special occurrences (i.e. ON ERR
CALL("Mail_Error"))
• Databases could execute automated mailings to people across the country

There are an unlimited number of uses for the suite of SMTP commands. These
commands, combined with those for POP3 (retrieving both files and attachments), FTP,
and TCP provide the 4th Dimension developer with the tools to dramatically increase the
communications capabilities of their 4D databases.

Two methods of Creating a Mail Message
Within the SMTP section of commands, there are two separate methods of sending
electronic mail, which have previously been referred to as "simple" and "complex". The
"simple" method involves a single command, SMTP_QuickSend, which accepts all the
parameters necessary to address and send a message.

The majority of e-mail sent throughout the world is pretty simple in its construction;
somebody "here" wants to send a "message" of some kind to somebody "there" regarding
some "subject". If this were a paper letter, you would write everything up, seal and address
the envelope and then take it to the post office for delivery. With SMTP_QuickSend, you
can specify the "From", "To", "Subject" and "Message Body" within one command for easy
e-mail delivery.

However, not all mail delivery can fit into such narrow parameters. For instance, suppose
the letter above needed copies sent to other interested parties or perhaps an attachment
such as your Annual Report needed to be enclosed. In these cases, photocopies of your
letter would be made and reports printed as your staff collated the material and addressed
the envelopes to each recipient. The SMTP commands in 4D Internet Commands
simplify the electronic distribution by giving you control over all aspects of e-mail
delivery. Multiple attachments, Carbon Copy & Blind Carbon Copy addressing, any mail
header specification can be handled through the Built Message capabilities of the SMTP
commands.

4D Internet Commands Reference 23

Understanding Mail Delivery
One of the critical concepts in understanding the SMTP commands relates to the method
in which mail is delivered to its recipients. The SMTP commands do not directly deliver
the mail to each recipient. The commands handle the proper composition and formatting
of your mail and will deliver the results to the SMTP server specified by the SMTP_Host
command. The SMTP server is often a machine within your own organization or at your
Internet service provider. The SMTP server then resolves the optimum delivery path for
your mail and schedules its distribution based on settings configured by the mail
administrator.

Minimum Requirements to Send a complex SMTP Message
In order to successfully deliver a mail message built using the SMTP commands, the
essential commands must all be correctly defined. The following commands represent the
minimum in order for e-mail delivery to be successful:

• SMTP_New
Creates the space in memory for the new message and returns a reference to be used in
subsequent commands.

• SMTP_Host
Specifies the SMTP server where the message will be delivered

• SMTP_From
At least one address in this header

• SMTP_To
At least one address in this header

• SMTP_Send
Sends the message

• SMTP_Clear
Clears any memory used during the creation of the message

If only the commands listed above were executed, a message would have been sent which
contained no "Subject" definition and no message body. This isn't particularly useful and
illustrates the need to specify additional detail in order to effectively communicate your
message.

24 4D Internet Commands Reference

SMTP_SetPrefs IC Send Mail

version 6.7 (Modified)
__

SMTP_SetPrefs (lineFeed; bodyType; lineLength) → Integer

Parameter Type Description
lineFeed Integer → 1 = [default] Add, 0 = Don't Add,

-1 = No Change
bodyType Integer → Body-Content-Type (1 = [default] Auto-detect,

-1 = No Change)
lineLength Longint → Maximum line length

(0 = [default] Auto-detect, -1 = No Change)

Function result Integer ← Error Code

Description
The command SMTP_SetPrefs sets the preferences of messages to be sent using the SMTP
commands. The command has a global scope and will affect all subsequent messages
created with the SMTP commands. The configurable options affect the format of a mail
message as it is sent to a SMTP server using the SMTP_QuickSend or SMTP_Send
commands. The preference settings have an interprocess scope and effect mail creation in
any 4D process.

SMTP servers recognize the end of a line to be a combined carriage return/line feed
(CR/LF) character pair. This differs from most Macintosh applications, which view a
single carriage return as the end of line/paragraph marker.

lineFeeds is an integer value which specifies how to handle carriage returns within the
body of a mail message. Passing a value of zero in this parameter will leave the message
body text untouched, permitting the developer to control their own line feed additions. A
value of 1 (default setting) will replace all carriage return/line feed pairings with carriage
returns for you. A value of -1 will leave the current value of the preference unchanged. If
you are unsure which option to choose, you should choose 1, the default value.

bodyType specifies the character set used in the message body to be sent (Body-Content-
Type) as well as the encoding to apply to the message body (Content-Transfer-Encoding),
according to the values in the table below. For example, “US-ASCII & 7 bit” (value 2)
means that the message body charset currently in use is supposed to be US ASCII —
includes only standard ASCII codes (0 through 127) which are common to Windows and
Macintosh— and that 4D IC will encode the message body using the 7 bit encoding. Note
that the SMTP_SetPrefs command does NOT convert the message body using the specified
character set, this has to be managed by the user if necessary. If you want to force the
character set conversion, refer to the SMTP_Charset command description.

4D Internet Commands Reference 25

If not changed, the default content type is 1, which will allow the SMTP commands to
auto-detect an appropriate setting based on the contents of the message body.

-1 No change
0 Application & binary; no encoding
1 Default; will choose either "US-ASCII & 7bit" or

"ISO-8859-1 & quotable-printable" based on message content.
2 US-ASCII & 7bit
3 US-ASCII & quotable-printable
4 US-ASCII & base64
5 ISO-8859-1 & quotable-printable
6 ISO-8859-1 & base64
7 ISO-8859-1 & 8bit
8 ISO-8859-1 & binary
9 Reserved
10 ISO-2022-JP (Japanese) & 7 bit
11 ISO-2022-KR (Korean) & 7 bit
12 ISO-2022-CN (Traditional & Simplified Chinese) & 7 bit
13 HZ-GB-2312 (Simplified Chinese) & 7 bit
14 Shift-JIS (Japanese) & base64

lineLength specifies a maximum SMTP line length for text within the message body. The
SMTP commands will "line wrap" the body text by inserting a carriage return/line feed
pair at the nearest word break before the maximum line length. Any number may be
specified but it is recommended that line lengths be kept below 80 characters. A value of -
1 will leave the current value unchanged.

The lineLength parameter defaults to zero. A value of zero will cause the SMTP commands
to use the recommended values specified within the RFC definitions for the bodyType. If
the lineLength parameter is set to zero, wrapping will occur based on the following table:

Body Type Wrap at
Base64 76
Quoted-Printable 76
Other… no wrapping

Line wrapping is strongly suggested since many systems and mail programs have
problems handling messages containing unlimited line lengths. Also, keep in mind that
mail often travels through a number of systems before reaching its final destination and
any computer along the delivery path may reject a message if it is unable to handle the
message's format.

See Also
SMTP_Charset, SMTP_GetPrefs.

26 4D Internet Commands Reference

SMTP_GetPrefs IC Send Mail

version 6.5
__

SMTP_GetPrefs (lineFeeds; bodyType; lineLength) → Integer

Parameter Type Description
lineFeeds Integer ← 0 = Don't Add, 1 = Add LineFeeds
bodyType Integer ← Body-Content-Type
lineLength Longint ← Maximum line length

Function result Integer ← Error Code

Description
The command SMTP_GetPrefs returns the current settings assigned to the SMTP
preferences. The values will be at their default state unless a prior call to SMTP_SetPrefs
altered the settings. For a more complete description of the parameters, see SMTP_SetPrefs.

lineFeeds returns the current setting determining how the SMTP commands will handle
carriage returns within the body of a message.

bodyType returns the current setting for the Body-Content-Type. See the bodyType table
under SMTP_SetPrefs for a description of the values.

lineLength returns the current setting for the maximum line length of text in the message
body.

See Also
SMTP_SetPrefs.

4D Internet Commands Reference 27

SMTP_QuickSend IC Send Mail

version 6.7.2
__

SMTP_QuickSend (hostName; msgFrom; msgTo; subject; message) → Integer

Parameter Type Description
hostName String → Host name or IP address
msgFrom Text → MailAddress or AddressList
msgTo Text → MailAddress or AddressList
subject Text → Subject
message Text → Message

Function result Integer ← Error Code

Description
The command SMTP_QuickSend gives the users the ability to build and send a mail
message with one command. In the event that you require greater control over your
message, or the message is of a more sophisticated nature, the group of SMTP commands
based on the SMTP_New command should be utilized.

hostName is the host name or IP address of the SMTP server where the message will be
sent for distribution.

msgFrom is a text value containing an AddressList of one or more complete mail addresses
indicating who originally sent the message. All addresses listed in the From header are
visible to the recipients of the message.

msgTo contains an AddressList value of one or more complete mail addresses. The
addresses identified in the msgTo header will each be sent an original copy of the
message. Each recipient of the message will see any other mail addresses the message was
delivered to.

subject is a text value concisely describing the topic covered in detail by the message
body.

Warning: Usually, the subject of the message should not contain characters with
diacritical marks (such as é, ö, etc.). However, if you want to use such “extended”
characters, refer to the SMTP_SetPrefs and SMTP_Charset command descriptions.

message is a text value containing the body of the mail message. The size of the message
is restricted to the 32k limit of a 4th Dimension variable or field.

28 4D Internet Commands Reference

Example
Here is an example of use of this command:

$Host:="www.4d.com"
$ToAddress:="adupont@4d.fr"
$FromAddress:="jsmith@4d.com"
$Subject:="Sales Report"
$Message:="Can you send me the sales report for January 2000? Thanks."

⇒ $Error:=SMTP_QuickSend ($Host;$FromAddress;$ToAddress;$Subject;$Message)
If ($Error#0)

ALERT("Error: SMTP_QuickSend"+ Char(13)+IT_ErrorText ($Error))
End If

See Also
SMTP_Charset, SMTP_New, SMTP_SetPrefs.

4D Internet Commands Reference 29

SMTP_New IC Send Mail

version 6.5
__

SMTP_New (smtp_ID) → Integer

Parameter Type Description
smtp_ID Longint ← Reference to this new message

Function result Integer ← Error Code

Description
The command SMTP_New should be the first command called in any sequence that is
going to build a SMTP mail message except where SMTP_QuickSend is being used.
SMTP_New creates a new message in memory and returns a reference to the message in
the smtp_ID long integer variable. Subsequent SMTP commands will use the smtp_ID
reference to populate the message with header and body information prior to calling
SMTP_Send.

Every call to SMTP_New should have a corresponding call to SMTP_Clear. After sending a
message, the call to SMTP_Clear will free any memory held by the contents of the
message.

smtp_ID is the long integer reference to the message just created. This ID will be used for
all subsequent references to this message. It is possible to open multiple new messages and
the smtp_ID returned for each provides a means of identifying which open message any
subsequent command should be applied to.

Example
See the example for the command SMTP_Body and SMTP_Send.

See Also
SMTP_Clear, SMTP_QuickSend, SMTP_Send.

30 4D Internet Commands Reference

SMTP_Host IC Send Mail

version 6.5
__

SMTP_Host (smtp_ID; hostName{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
hostName String → Host name or IP address
deleteOption Integer → 0 = Add or Replace, 1 = Delete

Function result Integer ← Error Code

Description
All mail created and sent from the SMTP commands must be directed to a specific SMTP
server. 4D Internet Commands do not deliver mail directly to each recipient; it is
delivered to the SMTP server specified by this command. The SMTP server is responsible
for resolving address errors and scheduling the delivery of the message.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

hostName is the host name or IP address of the SMTP server which will handle the
distribution of the message.

deleteOption is an optional parameter which specifies whether to delete the current host
setting. A value of zero will set the host to the value specified by hostName. A value of 1
will delete the Host specification for the message identified by smtp_ID. This is an
optional parameter and will default to zero if not otherwise specified.

Example
See the example for the command SMTP_Body and SMTP_Send.

See Also
SMTP_New.

4D Internet Commands Reference 31

SMTP_Send IC Send Mail

version 6.5
__

SMTP_Send (smtp_ID) → Integer

Parameter Type Description
smtp_ID Longint → Message reference

Function result Integer ← Error Code

Description
The SMTP_Send command sends the message referenced by smtp_ID but does not clear
the data from memory.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

Example
In this example a message is created and the static elements are defined outside the scope
of the 'for' loop. Then, for each record in the [People] table, the message is customized
and sent.

$error:=SMTP_New ($smtp_id)
$error:=SMTP_Host ($smtp_id;"wkrp.com")
$error:=SMTP_From ($smtp_id;"herb_tarlick@wkrp.com")
$error:=SMTP_ReplyTo ($smtp_id;"bigguy@wkrp.com")
$error:=SMTP_Subject ($smtp_id;"Discounts on Ad Space!")
FIRST RECORD([People])
For($i;1;Records in Selection([People]))

If ([People]Sales2Date>100000)
$Body:=◊BigDiscText

Else
$Body:=◊SmlDiscText

End if
$Body:=Replace String ($BoilerPlate;"<Salutation>";[People]Firstname)
$error:=SMTP_To ($smtp_id;[People]Email;1) `Replace the "To" header with new

 value
$error:=SMTP_Body ($smtp_id;$Body)

⇒ $error:=SMTP_Send ($smtp_id)
NEXT RECORD([People])

End for
$error:=SMTP_Clear ($smtp_id)

See Also
SMTP_New.

32 4D Internet Commands Reference

SMTP_Clear IC Send Mail

version 6.7.2
__

SMTP_Clear (smtp_ID) → Integer

Parameter Type Description
smtp_ID Longint → Message reference

← 0 if successful

Function result Integer ← Error Code

Description
The command SMTP_Clear disposes of a message, freeing any memory using during its
creation. Every call to SMTP_New should have a corresponding call to SMTP_Clear.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command. Upon the successful close of a SMTP message, the SMTP_Clear command will
return a zero value back into the smtp_ID variable.

Example
See the example for the command SMTP_Body.

See Also
SMTP_New.

4D Internet Commands Reference 33

SMTP_Date IC Send Mail

version 6.7.2
__

SMTP_Date (smtp_ID; msgDate; msgTime; timeZone; offset{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
msgDate Date → Date this message was created
msgTime Time → Time this message was created
timeZone Integer → Location code
offset Integer → Dependent on value in timeZone parameter
deleteOption Integer → 0 = Add/Replace, 1 = Delete

Function result Integer ← Error Code

Description
Given a date, a time, and a geographical location of the mail creator, the command
SMTP_Date will build the date header for the message specified by the smtp_ID value. The
date that is passed to the command should be the date and time for the current location
of the machine sending the message. Since the parameters below must follow a specific
format, the mail server on the receiving end of the message can interpret the date and
time based on the date, time, time zone, and offset passed to it. It can then convert the
sender's date and time to a local-time equivalent.

Note: If a mail message is composed without a Date header, the SMTP server will add one
with its current date & time settings. All SMTP mail messages contain a date header, either
added by the client application or the SMTP server.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

msgDate is a 4D date which contains the date that this message was created.

msgTime is a time which contains the time this message was created.

timeZone identifies the time zone of the sender. This field accepts a value between zero
and 6 based on the tables below.
• A value of 0 (zero) allows the user to directly specify in the offset parameter the number
of hours to add or subtract from Universal Time.
• A value of 1 will have the sending machine automatically add the offset based on the
Macintosh's PRAM. If the timeZone is 1 the offset parameter is not needed. The time zone
of a Macintosh computer is determined by the settings in the Map (MacOS 8) or
Date&Time (MacOS 8.5 and higher) control panel. Developers should give consideration
to the accuracy of this option if the time values are a critical factor to their databases.

34 4D Internet Commands Reference

• Values 2 through 5 correspond to the 4 time zones in the United States. The offset for
each of these values specify whether that time zone is in daylight saving time (offset = 1)
or not (offset = 0).
• A value of 6 specifies that the time supplied will be military time. For this instance, the
Military Time table below determines offset. Use the corresponding offset value (-12
through 12) based on the military time code of the location of the sender.

offset - The value of this parameter is dependent upon the code set in the timeZone
parameter. See the descriptions above or the table below to find the correct value to set
for this parameter.

Code Time Zone Offset Parameter
0 +/- offset from UT Offset is in +/- Hours
1 +/- offset from UT Offset not used, offset is supplied by Mac's PRAM
2 EST - EDT (0 = EST, 1 = EDT)
3 CST - CDT (0 = CST, 1 = CDT)
4 MST - MDT (0 = MST, 1 = MDT)
5 PST - PDT (0 = PST, 1 = PDT)
6 Military Time See Table Below

Offset Values Military Time Codes
0 Z
-1 thru -9 A thru I
-10 thru -12 K thru M
1 thru 12 N thru Y

Definitions of Abbreviations
UT Universal Time
EST Eastern Standard Time
EDT Eastern Daylight Time
CST Central Standard Time
CDT Central Daylight Time
MST Mountain Standard Time
MDT Mountain Daylight Time
PST Pacific Standard Time
PDT Pacific Daylight Time

deleteOption - A value of zero will add the date header with the given parameters, or
replace a previously added set of values. A value of 1 causes any previous definition of this
field to be removed. Any values in the other parameters are ignored. deleteOption is an
optional parameter which will default to zero if not otherwise specified.

See Also
SMTP_New.

4D Internet Commands Reference 35

SMTP_From IC Send Mail

version 6.7.2
__

SMTP_From (smtp_ID; msgFrom{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
msgFrom Text → MailAddress or AddressList
deleteOption Integer → 0 = Add, 1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_From contains the mail address(es) of the person(s) to be listed in
the "From" field of the message. The addresses in this field are those of the persons
responsible for creating or authorizing the message. Normally, the "From" header
contains one address representing the person who composed and sent the message. There
may be circumstances however in which a message is composed by a group of people who
should each be individually recognized within the "From" header.

The "From" header is mandatory. If an address is specified in the "From" header the
existence of the "Sender" header is optional.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

msgFrom is a text value containing an AddressList of one or more mail addresses. All
addresses listed in the From header are visible to the recipients of the message.

Auto-Reply note: If a "ReplyTo" header is not defined for the message identified by
smtp_ID then all replies to the message will be directed back to each person specified in
the "From" header.

deleteOption is an integer value which specifies whether to add or delete the "From"
header:
• A value of zero will add the new value to the "From" field.
• A value of 1 will set the "From" field to the new value, overriding any prior settings (if
you pass an empty string in msgFrom, the header will be removed from the mail
envelope).
• A value of 2 will delete any address previously defined for the "From" field and remove
the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

36 4D Internet Commands Reference

Example
In this example, three people compose a message on the subject of a company policy
change that is distributed to everyone in the company. Any responses to this message
would be directed back to each of the three people listed in the "From" header.

$From:="prez@acme.com, vp@acme.com, cfo@acme.com"
⇒ $Error:=SMTP_From ($smtp_id;$From;0)

$Error:=SMTP_Subject ($smtp_id;"Company Policy Change";0)
$Error:=SMTP_To ($smtp_id;◊AllEmployee;0)

See Also
SMTP_New.

4D Internet Commands Reference 37

SMTP_Sender IC Send Mail

version 6.7.2
__

SMTP_Sender (smtp_ID; msgSender{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
msgSender Text → MailAddress (1 only)
deleteOption Integer → 0 = Add, 1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_Sender adds the e-mail address of the person that sends the message.
It is intended to be used when the sender is not the actual author of the message, or to
indicate who among a group of authors actually sent the message. This field is not
necessary if the contents of the "Sender" field would be redundant with the "From" field.

In cases where a computer program is the creator and sender of a mail message, the
Sender header should reference the mail account of the real person responsible for
administering the actions of the program and not the account managed by the computer
program.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

msgSender contains a single MailAddress to be listed in the Sender field of the message.
Only one mail address may be specified for this header.

deleteOption is an integer value which specifies whether to add or delete the Sender
header:
• A value of zero will add the new value to the Sender field.
• A value of 1 will set the Sender field to the new value, overriding any prior settings (if
you pass an empty string in msgSender, the header will be removed from the mail
envelope).
• A value of 2 will delete any address previously defined for the Sender field and remove
the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

38 4D Internet Commands Reference

Example
In this example, three executives compose a message on the subject of a company policy
change which is then distributed by the secretary to everyone in the company. Any
responses to this message would be directed back to each of the three people listed in the
"From" header.

$From:="prez@acme.com, vp@acme.com, cfo@acme.com"
$Error:=SMTP_From ($smtp_id;$From;0)

⇒ $Error:=SMTP_Sender ($smtp_id;"secretary@acme.com";0)
$Error:=SMTP_Subject ($smtp_id;"Company Policy Change";0)
$Error:=SMTP_To ($smtp_id;◊AllEmployee;0)

See Also
SMTP_New.

4D Internet Commands Reference 39

SMTP_ReplyTo IC Send Mail

version 6.7.2
__

SMTP_ReplyTo (smtp_ID; replyTo{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
replyTo Text → MailAddress or AddressList
deleteOption Integer → 0 = Add to existing list,

1 = Replace old values with the new values,
2 = Remove the specified addresses

Function result Integer ← Error Code

Description
The command SMTP_ReplyTo provides the user with the ability to control the direction of
replies made to the message. Normally, all replies to a message come back to the people it
was "From". By setting the "ReplyTo" header on outgoing mail you can affect the default
routing of responses to the message.

For the database developer, SMTP_ReplyTo can be very powerful tool permitting them to
control the behavior of replies to automated mail. Users may want replies sent to
addresses other than those listed in the From or Sender addresses, such as a separate
account created to track responses.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command

replyTo is a text value containing an AddressList of one or more mail addresses. The
addresses listed in this field will be used by the recipient's mail software as the default
mail-account to direct their replies.

deleteOption is an integer value which specifies how to handle the address(es) listed in
replyTo. A value of zero will add the new values to any previously assigned to this header.
A value of 1 will replace any prior definitions with the new values. If replyTo is a null
string, all prior values will be removed and the header deleted from the message. A value
of 2 will delete the specified addresses from any previously assigned values. deleteOption is
an optional parameter which will default to zero if not otherwise specified.

40 4D Internet Commands Reference

Example
In this example, 3 executives compose a message on the subject of a company policy
change that is then distributed by the secretary to everyone in the company. Any
responses to this message would be redirected to the secretary and "personnel_dept" and
would not be seen by the executives.

$From:="prez@acme.com, vp@acme.com, cfo@acme.com"
$Error:=SMTP_From ($smtp_id;$From;0)
$Error:=SMTP_Sender ($smtp_id;"secretary@acme.com";0)

⇒ $Error:=SMTP_ReplyTo ($smtp_id;"secretary@acme.com,
personnel_dept@acme.com";0)

$Error:=SMTP_Subject ($smtp_id;"Company Policy Change";0)
$Error:=SMTP_To ($smtp_id;◊AllEmployee;0)

See Also
SMTP_New.

4D Internet Commands Reference 41

SMTP_To IC Send Mail

version 6.7.2
__

SMTP_To (smtp_ID; msgTo{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
msgTo Text → MailAddress or AddressList
deleteOption Integer → 0 = Add, 1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_To adds the identity of the primary recipients of the message. All
addresses listed in the "To" and "cc" headers in a mail message are visible to each recipient
of the message.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

msgTo is a text value containing an AddressList of one or more mail addresses.

deleteOption is an integer value which specifies whether to add or delete the "To" header:
• A value of zero will add the new value to the "To" field.
• A value of 1 will set the "To" field to the new value, overriding any prior settings (if you
pass an empty string in msgTo, the header will be removed from the mail envelope).
• A value of 2 will delete any address previously defined for the "To" field and remove the
header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

Example
See the example for the command SMTP_Body.

See Also
SMTP_New.

42 4D Internet Commands Reference

SMTP_Cc IC Send Mail

version 6.7.2
__

SMTP_Cc (smtp_ID; carbonCopy{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
carbonCopy Text → MailAddress or AddressList
deleteOption Integer → 0 = Add, 1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_Cc adds carbon copy recipients to the message specified by smtp_ID.
It is not mandatory to have any addresses in the Cc: field. All addresses listed in the "To"
and "cc" headers in a mail message are visible to each recipient of the message.

smtp_ID is the long integer reference to a message created with the SMTP_New command.

carbonCopy is a text value containing an AddressList of one or more mail addresses.

deleteOption is an integer value which specifies whether to add or delete the "Cc" header:
• A value of zero will add the new value to the "Cc" field.
• A value of 1 will set the "Cc" field to the new value, overriding any prior settings (if you
pass an empty string in carbonCopy, the header will be removed from the mail envelope).
• A value of 2 will delete any address previously defined for the "Cc" field and remove the
header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

Example
See the example for the command SMTP_Body.

See Also
SMTP_Bcc, SMTP_New.

4D Internet Commands Reference 43

SMTP_Bcc IC Send Mail

version 6.7.2
__

SMTP_Bcc (smtp_ID; blindCarbon{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
blindCarbon Text → AddressList
deleteOption Integer → 0 = Add, 1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_Bcc adds blind carbon copy recipients to the message specified by
smtp_ID. It is not mandatory to have any addresses in the Bcc: field.

The only way to keep AddressList information confidential when sending mail to groups
of people is to list the addresses within the "Bcc" header. The addresses listing in a "Bcc"
header are not sent as part of the message header or body. The addresses will not be
viewable by any recipient specified in the "To", "Cc" or "Bcc" headers.

The "Bcc" recipients will be able to see all "To" and "Cc" recipients, but they will not be
able to see other "Bcc" recipients. Often group mailings to a large number of recipients
will be addressed with all recipients placed in the "Bcc" header. This prevents the users
from having large address lists cluttering the message and keeps them from accessing the
addresses of others.

Another reason for the use of "Bcc" is that many mail applications have a "Reply All"
feature which will add all recipients in the "To" and "Cc" sections to the replying message.
Placing all recipient addresses within the "Bcc" header will prevent users from replying to
every person who received the original message.

smtp_ID is the long integer reference to a message created with the SMTP_New command.

blindCarbon is a text value containing an AddressList of one or more mail addresses.

deleteOption is an integer value which specifies whether to add or delete the "Bcc" header:
• A value of zero will add the new value to the "Bcc" field.
• A value of 1 will set the "Bcc" field to the new value, overriding any prior settings (if you
pass an empty string in blindCarbon, the header will be removed from the mail envelope).
• A value of 2 will delete any address previously defined for the "Bcc" field and remove the
header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

44 4D Internet Commands Reference

Example
In this example a message is created and the static elements are defined outside the scope
of the 'for' loop. Then, for each record in the [People] table, an address is added to the
blind carbon copy list.

$error:=SMTP_From ($smtp_id;"sales@massmarket.com")
$error:=SMTP_Subject ($smtp_id;"Terrific Sale! This week only!")
$error:=SMTP_Body ($smtp_id;$GenericBody)
For($i;1;Records in Selection([People]))

⇒ $error:=SMTP_Bcc ($smtp_id;[People]Email;0) `Add this email address to the BCC list
NEXT RECORD([People])

End for
$error:=SMTP_Send ($smtp_id) `Send the message to everyone
$error:=SMTP_Clear ($smtp_id)

See Also
SMTP_Cc, SMTP_New.

4D Internet Commands Reference 45

SMTP_InReplyTo IC Send Mail

version 6.7.2
__

SMTP_InReplyTo (smtp_ID; inReplyTo{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
inReplyTo Text → In-Reply-To Text
deleteOption Integer → 0 = Replace (if inReplyTo not empty),

1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_InReplyTo identifies the previous correspondence for which this
message is a response.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

inReplyTo is a text value which references previous correspondences to which this message
pertains. For specific formatting requirements, please consult RFC#822.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the "ReplyTo"
header:
• A value of zero will set the "ReplyTo" field to the new value, overriding any prior
settings (if you pass an empty string in inReplyTo, the prior header will be kept).
• A value of 1 will set the "ReplyTo" field to the new value, overriding any prior settings
(if you pass an empty string in inReplyTo, the header will be deleted).
• A value of 2 will delete any address previously defined for the "ReplyTo" field and
remove the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

See Also
SMTP_New.

46 4D Internet Commands Reference

SMTP_References IC Send Mail

version 6.7.2
__

SMTP_References (smtp_ID; references{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
references Text → Reference Text
deleteOption Integer → 0 = Replace (if references not empty),

1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_References identifies additional correspondences that the message
references.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

references is a text value containing the reference text. For specific formatting
requirements, please consult RFC#822.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the
"References" header:
• A value of zero will set the "References" field to the new value, overriding any prior
settings (if you pass an empty string in references, the prior header will be kept).
• A value of 1 will set the "References" field to the new value, overriding any prior settings
(if you pass an empty string in references, the header will be deleted).
• A value of 2 will delete any reference previously defined for the "References" field and
remove the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

See Also
SMTP_New.

4D Internet Commands Reference 47

SMTP_Comments IC Send Mail

version 6.7.2
__

SMTP_Comments (smtp_ID; comments{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
comments Text → Comment text
deleteOption Integer → 0 = Replace (if comments not empty),

1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_Comments lets the user add text comments to the message while
keeping the message's body untouched. The comments only appear within the header
section of the message. Many mail readers do not display the full text of the message
header to their users.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

comments is a text value containing information you would like placed in the mail
header.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the
"Comments" header:
• A value of zero will set the "Comments" field to the new value, overriding any prior
settings (if you pass an empty string in comments, the prior header will be kept).
• A value of 1 will set the "Comments" field to the new value, overriding any prior
settings (if you pass an empty string in comments, the header will be deleted).
• A value of 2 will delete any comments previously defined for the "Comments" field and
remove the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

Example
See the example for the command SMTP_Body.

See Also
SMTP_New.

48 4D Internet Commands Reference

SMTP_Keywords IC Send Mail

version 6.7.2
__

SMTP_Keywords (smtp_ID; keywords{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
keywords Text → Keywords List
deleteOption Integer → 0 = Replace (if keywords not empty),

1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
This field contains keywords or phrases, separated by commas.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

keywords is a text value which contains a keyword or keyword list. For specific formatting
requirements, please consult RFC#822.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the
"Keywords" header:
• A value of zero will set the "Keywords" field to the new value, overriding any prior
settings (if you pass an empty string in keywords, the prior header will be kept).
• A value of 1 will set the "Keywords" field to the new value, overriding any prior settings
(if you pass an empty string in keywords, the header will be deleted).
• A value of 2 will delete any keywords previously defined for the "Keywords" field and
remove the header from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

See Also
SMTP_New.

4D Internet Commands Reference 49

SMTP_Encrypted IC Send Mail

version 6.7.2
__

SMTP_Encrypted (smtp_ID; encrypted{; deleteOption})

Parameter Type Description
smtp_ID Longint → Message reference
encrypted Text → Encryption method
deleteOption Integer → 0 = Replace (if encrypted not empty),

1 = Replace, 2 = Delete

Description
The command SMTP_Encrypted informs the user of the type of encryption used on the
body of the message. 4D Internet Commands do not provide the ability to encrypt or
decrypt mail messages. The encryption of a message body is left to the developer. If steps
are taken to encrypt the message body (prior to its assignment via SMTP_Body), this
command should be used to identify the encryption method employed.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

encrypted is a text value which specifies the type of encryption method used to encrypt
the body of the message. The recipients mail software, which determines the method
needed to decrypt the message body uses the encrypted header. For specific formatting
requirements, please consult RFC#822.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the
"Encrypted" header:
• A value of zero will set the "Encrypted" field to the new value, overriding any prior
settings (if you pass an empty string in encrypted, the prior header will be used).
• A value of 1 will set the "Encrypted" field to the new value, overriding any prior settings
(if you pass an empty string in encrypted, the header will be deleted).
• A value of 2 will remove the "Encrypted" field from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

See Also
SMTP_Body, SMTP_New.

50 4D Internet Commands Reference

SMTP_AddHeader IC Send Mail

version 6.7.2
__

SMTP_AddHeader (smtp_ID; headerName; headerText{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
headerName String → Name of header
headerText Text → Header text
deleteOption Integer → 0 = Add

1 = Replace all headers with 'headerName',
2 = Remove all headers named 'headerName'

Function result Integer ← Error Code

Description
The command SMTP_AddHeader allows users to add their own headers to the message
referenced by smtp_ID. Beyond the various headers 4D Internet Commands have
provided commands for, there are two additional categories of headers, these being 'user-
defined' and 'extended' headers. The SMTP_AddHeader command permits the user to add
both the new header tag and the data to associate with it.

Extended-Headers: These headers have been officially recognized by the NIC and were
defined after the original SMTP specification. These headers often have a specific function
to effect behavior in various software applications. Extended headers never begin with the
letter "X".

User-Defined Headers: The SMTP protocol allows anyone to create their own header
definitions. All user-defined headers should begin with the characters "X-" so there will be
no possibility of conflict with a future Extended-Header. User-defined headers are
tremendously useful when you have design control over both ends of the
communications.

User defined headers allow the developer to store data which can easily be pulled out
using the POP3 external command MSG_FindHeader. For example, you may create a
header named "X-001001", which contains the value in field 01 of file 01. An unlimited
number of headers may be added to a message. User-defined headers give the user the
ability to add information that can easily be extracted without the need to parse through
the body of the message to find the appropriate information.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

headerName is a string which contains the name of the header to be added.

4D Internet Commands Reference 51

headerText is a text value containing the information to be assigned to the field identified
by headerName.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an optional integer parameter which specifies whether to delete the
current header. A value of zero will add headerName to the message. A value of 1 will
replace all headers with headerName. In this case, if headerName is a null string, all
headers will be removed. A value of 2 will remove all headers named headerName.

Example
To send a HTML encoded message, you should insert HTML tags in the message body (i.e.
<HTML>, <HEAD>, etc.) and replace all "Content-Type" headers with the string
"text/html;charset=us-ascii":

If(Substring($body;1;6)="<HTML>")
⇒ $err:=SMTP_AddHeader($SMTP_ID;"Content-Type:";"text/html;charset=us-ascii";1)

End if

See Also
MSG_FindHeader, SMTP_New.

52 4D Internet Commands Reference

SMTP_Subject IC Send Mail

version 6.7.2
__

SMTP_Subject (smtp_ID; subject{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
subject Text → Subject of message
deleteOption Integer → 0 = Replace (if subject not empty),

1 = Replace, 2 = Delete

Function result Integer ← Error Code

Description
The command SMTP_Subject adds the subject of the message to the message referenced
by smtp_ID. If a subject has already been added by a previous SMTP_Subject command,
the new subject will override the previous subject.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

subject is a text value concisely describing the topic covered in detail by the message
body.

Warning: Usually, the subject of the message should not contain characters with
diacritical marks (such as é, ö, etc.). However, if you want to use such “extended”
characters, refer to the SMTP_SetPrefs and SMTP_Charset command descriptions.

Warning: The text should not contain a line feed (ascii=10). Doing so would signify the
end of the header section and the beginning of the body. Subsequent header items could
be pushed into the body and not recognized properly by the server or client software. For
more information regarding the headers, please refer to RFC#822.

deleteOption is an integer value which specifies whether to replace or delete the "Subject"
header:
• A value of zero will set the "Subject" field to the new value, overriding any prior settings
(if you pass an empty string in subject, the prior header will be used).
• A value of 1 will set the "Subject" field to the new value, overriding any prior settings (if
you pass an empty string in subject, the header will be deleted).
• A value of 2 will remove the "Subject" field from the mail envelope.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

Example
See the example for the command SMTP_Body.

See Also
SMTP_Charset, SMTP_New, SMTP_SetPrefs.

4D Internet Commands Reference 53

SMTP_Body IC Send Mail

version 6.7.2
__

SMTP_Body (smtp_ID; msgBody{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
msgBody Text → Body of message
deleteOption Integer → 0 = Replace (if msgBody not empty),

1 = Delete, 2 = Append

Function result Integer ← Error Code

Description
The command SMTP_Body assigns the text in msgBody to the main body section of the
mail message identified by smtp_ID. The msgBody is the main block of text.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

msgBody is a text value which contains the body of the message. The size of msgBody is
restricted to the 32K limit of a 4D text object. This does not mean that the mail message
itself has a 32K limit. In order to send a letter whose body is greater than 32K, you must
use the Append flag of the deleteOption parameter (see below). The actual size limitation
of a mail message body is limited only by available memory.

Warning: Usually, the body of the message should not contain characters with diacritical
marks (such as é, ö, etc.). However, if you want to use such “extended” characters, refer to
the SMTP_SetPrefs and SMTP_Charset command descriptions..

deleteOption is an integer value which specifies whether to delete the body of the message
referenced by smtp_ID:
• A value of zero will set will set the body to the provided text string, overriding any prior
settings (if you pass an empty string in msgBody, the prior text will be used).
• A value of 1 will set the body to the provided text string, overriding any prior settings
(if you pass an empty string in msgBody, the body of the message will be deleted).
• A value of 2 will append the text in msgBody to any text that had already been sent by a
previous call to SMTP_Body.
deleteOption is an optional parameter which will default to zero if not otherwise specified.

54 4D Internet Commands Reference

Example
Here is a complete SMTP example:

C_LONGINT($SMTP_ID)
C_BOOLEAN($SentOK;$OK)
$SentOK:=False `A flag to indicate if we made it through all of the commands
Case of

: (Not(ERRCHECK ("SMTP_New";SMTP_New ($SMTP_ID))))
: (Not(ERRCHECK ("SMTP_Host";SMTP_Host ($SMTP_ID;◊pref_Server))))
: (Not(ERRCHECK ("SMTP_From";SMTP_From ($SMTP_ID;vFrom))))
: (Not(ERRCHECK ("SMTP_To";SMTP_To ($SMTP_ID;vTo))))
: (Not(ERRCHECK ("SMTP_Cc";SMTP_Cc ($SMTP_ID;vCC))))
: (Not(ERRCHECK ("SMTP_Bcc";SMTP_Bcc ($SMTP_ID;vBcc))))
: (Not(ERRCHECK ("SMTP_Subject";SMTP_Subject ($SMTP_ID;vSubject))))
: (Not(ERRCHECK ("SMTP_Comments";SMTP_Comments ($SMTP_ID;"Sent via

4D"))))
: (Not(ERRCHECK ("SMTP_AddHeader";SMTP_AddHeader ($SMTP_ID;

"X-4Ddemo:";◊VERSION))))
⇒ : (Not(ERRCHECK ("SMTP_Body";SMTP_Body ($SMTP_ID;vMessage))))

: (Not(ERRCHECK ("SMTP_Send";SMTP_Send ($SMTP_ID))))
Else

$SentOK:=True `message was composed and mailed successfully
End case
If ($SMTP_ID#0) `If a Message Envelope was created we should clear it now

$OK:=ERRCHECK ("SMTP_Clear";SMTP_Clear ($SMTP_ID))
End if

Below is the code for the method ERRCHECK. This method takes two parameters, the
name of the command ($Command), and the error value (passed by executing the
command in the parameter of the method. ERRCHECK returns a boolean value
corresponding to whether the error was zero. If the error is not zero, the return value ($0)
gets false, otherwise it is true.

C_TEXT(vErrorMsg)
$Command:=$1
$Error:=$2
$Result:=True
If ($Error#0)

$Result:=False
If (◊SHOWERRORS) `boolean to determine whether to display error messages

vErrorMsg:=IT_ErrorText ($Error)
ALERT("ERROR ---"+Char(13)+"Command: "+$Command+Char(13)+"Error

Code:"+String($Error)+Char(13)+"Description: "+vErrorMsg)
End if

End if
$0:=$Result

See Also
SMTP_Charset , SMTP_New, SMTP_SetPrefs.

4D Internet Commands Reference 55

SMTP_Attachment IC Send Mail

version 6.7.2
__

SMTP_Attachment (smtp_ID; fileName; encodeType{; deleteOption}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
fileName Text → Name of file to attach
encodeType Integer → 0 = No encoding (sends DataFork only)

±1 = BinHex
±2 = Base64; (sends DataFork only)
±3 = AppleSingle
±4 = AppleDouble
±5 = AppleSingle AND Base64
±6 = AppleDouble AND Base64
±7 = UUEncode

deleteOption Integer → 0 = Add to existing list,
1 = Replace all attachments with Filename,
2 = Remove only this attachment

Function result Integer ← Error Code

Description
The command SMTP_Attachment provides a means to attach text or binary files to your
message in MIME format. This command may be called multiple times in order to attach
multiple documents to one mail message. If a value greater than zero is passed to the
EncodeType parameter, this command will perform encoding at the time the message is
sent.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

fileName contains the name of the file you want to attach to the message. This value may
be specified three different ways:

"" = Display the Standard Open File dialog.
"FileName" = Looks for FileName in the same directory as the structure of the

 database.
"Path:FileName" = Complete path of the file including FileName.

encodeType is an Integer value indicating what type of encoding will be done on the file
before it is incorporated into the message. If attaching a binary file, an encoding method
must be applied capable of the proper conversion (BinHex, AppleSingle). The most
common encoding method is BinHex.

56 4D Internet Commands Reference

If you pass positive values of encodeType the command will automatically encode the file
using the specified method when the message is sent. The encoding of a file occurs at the
time the SMTP_Send command is issued. If the file is large it may take some time for the
SMTP_Send command to complete. Significant time may be saved in cases where the
same file will be sent a number of times. In these cases it is best to encode the file one
time with the IT_Encode command and then attach the resulting file to your message
using the negative value of encodeType. A negative value in encodeType will not perform
any additional encoding but will set the message headers to the correct encoding method
of the attached file. This will inform your recipients' mail reader of the correct way to
interpret your attachment.

Note: You cannot pass an array element in the encodeType parameter.

deleteOption is an optional integer parameter which specifies how to treat the
attachment. A value of zero will add the attachment to the current list of attachments. A
value of 1 will replace all attachments with the file in fileName. If fileName is a null string,
all attachments will be removed. A value of 2 will remove only the attachment listed in
fileName from the list of attachments.

See Also
IT_Encode, SMTP_New, SMTP_Send.

4D Internet Commands Reference 57

SMTP_Charset IC Send Mail

version 6.8.1 (Modified)
__

SMTP_Charset (encodeHeaders; bodyCharset) → Integer

Parameter Type Description
encodeHeaders Integer → -1 = Use current settings, 0 = Do not manage,

1 = Convert using the specified charset
if ISO-8859-1 or ISO-2022-JP,
encode extended characters

bodyCharset Integer → -1 = Use current settings, 0 = Do not manage,
1= Convert using the specified charset
if ISO-8859-1 or ISO-2022-JP

Function result Integer ← Error Code

Description
The command SMTP_Charset allows automatic support of messages containing extended
characters while sending them with the SMTP_QuickSend or SMTP_Send commands. If
this command is not called or has parameters set to 0, version 6.7 or higher of 4D
Internet Commands will work the same way as version 6.5.x.

The SMTP_Charset command allows first, to define if the SMTP_SetPrefs bodyType
parameter value must be applied to convert the message headers and body, and second, to
define if a header containing extended characters must be encoded using the “=?ISO-
8859-1?Q?Test=E9?= …” syntax as specified in the RFC#1342. This command has an
interprocess scope and will have effect on all subsequent messages sent using the
SMTP_QuickSend and SMTP_Send in any 4D process.

This command is particularly useful for supporting extended characters included in the
message headers such as Subject or mail addresses (for example, address encoding such as
“=?ISO-8859-1?Q?Test=E9?= <test@n.net >”).

Depending on the message headers, encoding (always set to Base64 (except for Subject
header) and depending on the SMTP_SetPrefs bodyType parameter value) will be managed
as follows:

• Subject, Comment (called “unstructured headers”): the full string is encoded if it
includes extended characters.

• From, To, CC, Bcc, Sender, ReplyTo, InReplyTo (called “structured headers”):
- Any text between angle brackets (“<”, “>”) is systematically considered as
an e-mail address and is not encoded.
- Special and delimiter characters such as SPC < > () @ , ; : " / ? . = are not encoded.
- Strings delimited by special and delimiter characters are encoded if they include
extended characters.

58 4D Internet Commands Reference

Address examples:
- someone@somewhere is not encoded;
- Michèle <michele@somewhere>, only Michèle is encoded.

The encodeHeaders parameter specifies how to handle header conversion and encoding
while sending a message. Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: - On one hand, if the SMTP_SetPrefs bodyType parameter sets the character set to

ISO-8859-1 or ISO-2022-JP, headers are converted using the specified character set.
- On the other hand, headers are encoded using the following syntax
“=? Charset specified by the SMTP_SetPrefs command? Base64 Encoding?Test=E9?= …”
(see RFC#1342) if they include extended characters, whatever the specified
character set.
- Exception: the Subject header will be encoded using the encoding method given
 by the bodyType of the SMTP_SetPrefs command if needed.

Note: Extended headers such as “X_…” must use exclusively US ASCII codes.

The bodyCharset parameter specifies how to handle the message body character set
conversion while sending a message. Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: if the SMTP_SetPrefs bodyType parameter sets the character set to ISO-8859-1 or ISO-
2022-JP, the message body is converted using the specified character set.

Example
In this example, the subject and the body are converted using the ISO-8859-1 character
set, and the subject is encoded following the RFC 1342 syntax:

SMTP_SetPrefs(1;1;0)
⇒ $err:=SMTP_Charset(1;1)

$err:=SMTP_QuickSend("mymail.com";"myaddress";"destination";"the euro € ";
"the euro symbol is € ")

See Also
POP3_Charset, SMTP_SetPrefs.

4D Internet Commands Reference 59

SMTP_Auth IC Send Mail

version 2003 (Modified)
__

SMTP_Auth (smtp_ID; userName; password{; authMode}) → Integer

Parameter Type Description
smtp_ID Longint → Message reference
userName String → User name to be used for SMTP authentication
password String → Password to be used for SMTP authentication
authMode Integer → Authentication mode to be used:

0 or omitted = Mode defined by server
1= PLAIN, 2 = LOGIN, 3 = CRAM-MD5

Function result Integer ← Error code

Description
The SMTP_Auth command allows sending a mesage referenced by smtp_ID when an
authentication mechanism is required by the SMTP server. This type of authentication is
required by some SMTP servers in order to reduce the risk that messages have been
falsified or that the sender's identity has been usurped, in particular for the purpose of
spamming.

This command can be used whether authentication is needed or not since it is only
executed if userName and password are not null strings.

smtp_ID is the long integer reference to the mail message created with the SMTP_New
command.

userName is the authentication user name on the SMTP server. userName should not
contain the domain. For example, for the address “jack@4d.com”, userName would be just
“jack”.

password is the authentication password for userName on the SMTP server.

Note : If userName and/or password are null strings, the SMTP_Auth command is not
executed.

The optional authMode parameter allows the “forcing” of the authentication mode used.
You can pass 0, 1, 2 or 3 in this parameter:
• If you pass 0 (zero), the authentication mode used by the SMTP_Auth command will be
the most secure mode supported by the server (CRAM-MD5, LOGIN then PLAIN),
• If you pass 1, the authentication method used will be PLAIN,
• If you pass 2, the authentication method used will be LOGIN,
• If you pass 3, the authentication method used will be CRAM-MD5.
If authMode is omitted, the value 0 is used by default. If the authentication method
requested by this parameter is not supported by the SMTP server, an error is returned.

60 4D Internet Commands Reference

Example
This example enables sending a message with or without authentication depending on
the content of specific fields stored in the 4D database:

C_INTEGER($vError)
C_LONGINT($vSmtp_id)
C_STRING(30;$vAuthUserName;30;$vAuthPassword)

$vError:=SMTP_New($vSmtp_id)
$vError:=SMTP_Host($vSmtp_id;"wkrp.com")
$vError:=SMTP_From($vSmtp_id;"herb_tarlick@wkrp.com")
$vError:=SMTP_Subject($vSmtp_id;"Are you there?")
$vError:=SMTP_To($vSmtp_id;"Dupont@wkrp.com")
$vError:=SMTP_Body($vSmtp_id;"Can we have a meeting?")

` The fields are entered if the server uses an authentication
` mechanism. Otherwise, null strings are returned.

$vAuthUserName:=[Account]AuthUser
$vAuthPassword:=[Account]AuthPass

⇒ $vError:=SMTP_Auth($vSmtp_id;$vAuthUserName;$vAuthPassword)
$vError:=SMTP_Send($vSmtp_id)
$vError:=SMTP_Clear($vSmtp_id)

4D Internet Commands Reference 61

62 4D Internet Commands Reference

3

IC POP3 Review Mail

4D Internet Commands Reference 63

64 4D Internet Commands Reference

Receiving Mail, Overview IC POP3 Review Mail

version 2003 (Modified)
__

The suite of POP3 commands enable your database to retrieve messages from a POP3 mail
server. 4D Internet Commands are MIME compliant and can recognize and extract
messages containing multiple enclosures.

The POP3-related commands are broken down into two sections, "IC POP3 Review Mail"
and "IC Downloaded Mail". The separation of commands is representative of the differing
methods for reading mail. When reading mail from a POP3 server, messages (or
information about the messages) may be brought down into 4D structures (variables,
fields, arrays) or they may be downloaded to disk. This section "IC POP3 Review Mail"
covers the ability of 4D Internet Commands to read messages from the POP3 server into
4D.

The need to for dual methods of message retrieval is spawned by memory constraints on
actions which have the potential to download many megabytes of information. For
instance, a single mail message which had a 5 Mb attachment could easily overflow the
storage capability within the database. The only 4D structure capable of storing this size is
a picture or a BLOB field, but converting a message or attachment to this format is often
ineffectual since it places huge memory requirements on any client attempting to access
the picture or the BLOB. To resolve this issue, this section has a command
POP3_Download which will bring a message from the POP3 server to the user's local disk.
Once on disk, the "IC Downloaded Mail" section of the manual provides a number of
commands to manipulate the file.

When using the suite of POP3 commands, it is important to understand the parameters
that are used most frequently, especially msgNumber and uniqueID. msgNumber is the
number of a message in the mailbox at the time the POP3_Login command was executed.
Upon login, messages in a mailbox are assigned numbers from 1 to the number of items
in the mailbox. Numbers are assigned based on the order that they were received in the
mailbox, with one being the oldest message. The numbers assigned to the messages are
only valid during the time from your POP3_Login to POP3_Logout.

At the time POP3_Logout is executed any message marked for deletion will be removed.
When the user logs back into the server, the current messages in the mailbox will once
again be numbered from 1 to x. For example, if there are 10 messages in the mailbox, and
messages numbered 1 through 5 are deleted, messages 6 through 10 will be renumbered 1
through 5 the next time the user logs in to the mailbox.

4D Internet Commands Reference 65

To illustrate, suppose you login to a POP3 server and obtain the following list of messages:

UniqueID Date From Subject
1 bd573a4dbd573a4d 1 Jul 1998 … jimw@acme.com Sales lead…
2 bd574dc7bd574dc7 1 Jul 1998 … frank@acme.com Site-License order
3 bd575f06bd575f06 3 Jul 1998 … joe@acme.com Lunch anyone?
4 bd5761d4bd5761d4 4 Jul 1998 … kelly@acme.com Your wife called…
5 bd577dc7db577dc5 4 Jul 1995 … track@fedex.com FedEx tracking

During the session you delete message numbers 3 and 4. When you Logout of this
session your requested deletions are committed. Now when you log back into the server
your message list would be renumbered as:

UniqueID Date From Subject
1 bd573a4dbd573a4d 1 Jul 1998 … jimw@acme.com Sales lead…
2 bd574dc7bd574dc7 1 Jul 1998 … frank@acme.com Site-License order
3 bd577dc7db577dc5 4 Jul 1995 … track@fedex.com FedEx tracking

msgNumber is not a static value in relation to any specific message and will change from
session to session dependent on its relation to other messages in the mailbox at the time
the session was opened. The uniqueID however is a unique number assigned to the
message when it was received by the server. This number is calculated using the time and
date that the message is received and is a value assigned by your POP3 server.
Unfortunately, POP3 servers do not use the uniqueID as the primary reference to its
messages. Throughout the POP3 commands you will need to specify the msgNumber as
the reference to messages on the server. Developers may need to take some care if
developing solutions which bring references to messages into a database but leave the
body of the message on the server.

Note: For greater flexibility, 4D Internet commands let you pass a POP3, IMAP or FTP
connection reference directly to low-level TCP commands and vice versa. For more
information, refer to the Low Level Routines, Overview section.

66 4D Internet Commands Reference

POP3_SetPrefs IC POP3 Review Mail

version 6.8.1 (Modified)
__

POP3_SetPrefs (stripLineFeed; msgFolder{; attachFolder}) → Integer

Parameter Type Description
stripLineFeed Integer → 0 = Don't Strip LineFeeds, 1 = Strip LineFeeds,

-1 = No Change
msgFolder Text → Messages folder path ("" = no change)
attachFolder Text → Attachments folder path ("" = no change)

Function result Integer ← Error Code

Description
The command POP3_SetPrefs sets the preferences for all POP3 commands.

stripLineFeed is an integer value specifying how LineFeed characters will be treated in
saved messages. Most POP3 servers combine Carriage Return and Line Feed characters to
indicate the end of a line. Macintosh applications prefer a carriage return only as the end-
of-line character. This option lets users strip the linefeed character from their message
text. A value of zero will leave retrieved messages in the format as stored on the POP3
server. A value of 1 will strip linefeed characters from retrieved messages. A value of -1 will
leave this preference as it has been previously set. The default option defaults to 1 and will
automatically strip linefeeds found in messsages.

msgFolder is a text value indicating the local pathname to a folder in which messages
retrieved with the POP3_Download command are stored by default.

Compatibility note (version 6.8.1): the stripLineFeed and msgFolder parameters were
previously applied to MSG_Commands. This is no longer the case when the MSG_SetPrefs
command is used.

attachFolder is a text value containing the local pathname to a folder in which
attachments are stored when the MSG_Extract command separates the attachments from
the main body of a message.

Compatibility note (version 6.8.1): the attachFolder parameter is also found in
POP3_SetPrefs and MSG_SetPrefs therefore you can modify it using either of these two
commands. Using the MSG_SetPrefs command is strongly recommended; the
POP3_SetPrefs parameter, used for compatibility reasons, will not be used in the future.
The attachFolder of the POP3_SetPrefs command is optional therefore we recommend that
you do not pass this parameter. This recommendation also applies to POP3_GetPrefs.

See Also
MSG_Extract, MSG_GetPrefs, MSG_SetPrefs, POP3_Download, POP3_GetPrefs.

4D Internet Commands Reference 67

POP3_GetPrefs IC POP3 Review Mail

version 6.8.1 (Modified)
__

POP3_GetPrefs (stripLineFeed; msgFolder{; attachFolder}) → Integer

Parameter Type Description
stripLineFeed Integer ← 0 = Don't Strip CR/LF, 1 = Strip CR/LF
msgFolder Text ← Messages folder path ("" = no change)
attachFolder Text ← Attachments folder path ("" = no change)

Function result Integer ← Error Code

Description
The command POP3_GetPrefs returns the current preferences for the POP3 commands.
The preferences are returned into the variables listed in the parameters.

stripLineFeed returns the current setting of the users preference for linefeed stripping.

msgFolder is a text variable which returns the local pathname to the default folder in
which retrieved messages are stored.

attachFolder is a text variable which returns the local pathname to the default folder in
which extracted attachments are stored.

Compatibility note (version 6.8.1): The attachFolder parameter of the POP3_GetPrefs
command is optional; therefore, we recommend that you do not pass this parameter since
it will no longer be used. Note that this parameter does not affect POP3 commands since
it is only used by MSG commands.

See Also
MSG_SetPrefs, POP3_SetPrefs.

68 4D Internet Commands Reference

POP3_Login IC POP3 Review Mail

version 6.5
__

POP3_Login (hostName; userName; password; aPOP; pop3_ID) → Integer

Parameter Type Description
hostName String → Host Name or IP address of the POP3 mail

server
userName String → User name
password String → Password
aPOP Integer → 0 = Cleartext Login, 1 = APOP Login
pop3_ID Longint ← Reference to this POP3 login

Function result Integer ← Error Code

Description
The command POP3_Login logs the user into the POP3 mail server with the given
userName and password. If aPOP is 1 then the APOP mechanism (RFC#1321) is used to
login. If aPOP is zero or not given then a normal cleartext password login is performed.
The particular login is given a reference (pop3_ID) which subsequent commands can refer
to.

Warning: POP3 servers were not designed to be accessed in an interactive fashion. Once
you have logged in to a server you should perform whatever actions are needed and then
log out of the server as soon as possible. Between your calls of POP3_Login and
POP3_Logout, your procedure should not sit in any user-interactive screen. A POP3 server
will automatically disconnect any sessions which do not show activity for a certain period
of time. According to the RFC for POP3, the inactivity timer is supposed to be a
minimum of 30 minutes. However, our experience has shown that most servers force
inactive clients out after a much shorter period of time.

Each command that interacts with the POP3 server will force a reset of your inactivity
timer. In the event that the server aborts your connection before you have issued a
POP3_Logout call, any deletions you had performed would be rolled back.

hostName is the host name or IP address of the POP3 mail server. It is recommended that
the host name be used, but if needed an IP address can be used.

userName is the user's name on the POP3 mail server. The userName should not contain
the domain. For example, for the address "jack@4d.com", userName would be just "jack".

password is the password for userName on the POP3 mail server.

4D Internet Commands Reference 69

aPOP is an integer value indicating whether the APOP mechanism is used to login. A
value of 1 will use the APOP mechanism. A zero value will perform a cleartext password
login. The default value is zero.

pop3_ID is a long integer variable into which is returned a reference to the session just
established. The variable will be used in all subsequent commands which perform actions
related to this session.

See Also
POP3_Logout.

70 4D Internet Commands Reference

POP3_VerifyID IC POP3 Review Mail

version 6.5
__

POP3_VerifyID (pop3_ID) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login

← 0 = Connection has already closed

Function result Integer ← Error Code

Description
A POP3 server will automatically terminate sessions which do not show activity in a
period of time determined by its administrator. Each command that interacts with the
POP3 server forces a reset of the inactivity timer. The POP3_VerifyID command resets the
inactivity time for the specified POP3 session without performing any other action. This
allows the user to keep a session active if the possibility exists that the session may
timeout.

When executed, the POP3_VerifyID command will verify the connection has not already
been closed. If the session is still open the command will tell the POP3 server to reset the
timeout counter for the session back to zero. If the connection has already closed,
POP3_VerifyID will return the appropriate error and free memory used by the POP3
session, and return a zero value back to pop3_ID.

pop3_ID is a long integer reference to an open session created with POP3_Login.

See Also
POP3_Login.

4D Internet Commands Reference 71

POP3_Reset IC POP3 Review Mail

version 6.5
__

POP3_Reset (pop3_ID) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login

Function result Integer ← Error Code

Description
The command POP3_Reset resets the high message count and undeletes any messages
marked as deleted during the current session.

Note: The POP3_Delete command only sets a flag for messages to be deleted. Messages on
a POP3 server are only deleted at the time of a successful logout (POP3_Logout).

pop3_ID is a long integer reference to an open session created with POP3_Login.

See Also
POP3_Delete, POP3_Login.

72 4D Internet Commands Reference

POP3_Delete IC POP3 Review Mail

version 6.5
__

POP3_Delete (pop3_ID; startMsg; endMsg) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
startMsg Longint → Starting message number
endMsg Longint → Ending message number

Function result Integer ← Error Code

Description
Given a range of messages from startMsg to endMsg, the command POP3_Delete will
mark each message to be deleted. The act of deleting the message does not occur until
you successfully issue the POP3_Logout command. If your current session terminates for
any reason (timeout, network failure, etc.) prior to calling the POP3_Logout command,
any messages marked for deletion will remain on the POP3 server.

pop3_ID is a long integer reference to an open session created with POP3_Login.

startMsg is a long integer number which is the starting message number of the messages
to delete.

endMsg is a long integer number which is the ending message number of the messages to
delete.

Note: The POP3_Delete, POP3_MsgLstInfo and POP3_MsgLst commands do not return an
error if the startMsg is greater than the endMsg. In the event that this occurs, this
command – in effect – does nothing.

See Also
POP3_Logout.

4D Internet Commands Reference 73

POP3_Logout IC POP3 Review Mail

version 6.5
__

POP3_Logout (pop3_ID) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login

← 0 = Command successfully logs off

Function result Integer ← Error Code

Description
The command POP3_Logout will log out of the open POP3 session referred to by the
pop3_ID variable. If the command successfully logs off the POP3 server a zero value is
returned back as the current pop3_ID.

Logging out from a POP3 server will signal the server that you wish to commit any
deletions you made during that session. To rollback any deletions you may have made
prior to logout, use the POP3_Reset command prior to POP3_Logout.

pop3_ID is a long integer reference to an open session created with POP3_Login.

See Also
POP3_Reset.

74 4D Internet Commands Reference

POP3_BoxInfo IC POP3 Review Mail

version 6.5
__

POP3_BoxInfo (pop3_ID; msgCount; msgSize) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
msgCount Longint ← Number of messages
msgSize Longint ← Size of all messages

Function result Integer ← Error Code

Description
The command POP3_BoxInfo returns information about number and size of messages
currently in the mailbox of the open session referenced by pop3_ID.

pop3_ID is a long integer reference to an open session created with POP3_Login.

msgCount is a long integer value returned containing the number of messages in the
mailbox.

msgSize is a long integer value returned containing the total size of all messages in the
mailbox.

See Also
POP3_Login.

4D Internet Commands Reference 75

POP3_MsgInfo IC POP3 Review Mail

version 6.5
__

POP3_MsgInfo (pop3_ID; msgNumber; msgSize; uniqueID) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
msgNumber Longint → Message number
msgSize Longint ← Message size
uniqueID String ← Unique ID of message on server

Function result Integer ← Error Code

Description
The command POP3_MsgInfo returns information about the message identified by
msgNumber within the open mailbox referenced by pop3_ID. Information about the size
of the message and its Unique ID will be returned.

pop3_ID is a long integer reference to an open session created with POP3_Login.

msgNumber is a long integer value indicating which message in the mailbox you wish to
retrieve information about. The msgNumber represents the position of a message within
the current list of messages. You cannot rely on the msgNumber remaining the same for a
specific e-mail item from session to session.

msgSize is the long integer value returned containing the size of the message referenced
by msgNumber.

uniqueID is a string variable denoting the Unique ID of the message on the server. The
uniqueID is a value assigned to the message by the POP3 server software. This value will
not change from session to session in the same way as msgNumber. The uniqueID value is
a good reference to verify if your database has already downloaded a message from the
server.

See Also
POP3_Login.

76 4D Internet Commands Reference

POP3_GetMessage IC POP3 Review Mail

version 6.5
__

POP3_GetMessage (pop3_ID; msgNumber; offset; length; msgText) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
msgNumber Longint → Message number
offset Longint → Offset of character at which to begin retrieval
length Longint → How many characters to return
msgText Text ← Message Text

Function result Integer ← Error Code

Description
The command POP3_GetMessage returns the complete text of the message identified by
msgNumber within the mailbox referenced by pop3_ID. Unless otherwise specified by the
POP3_SetPrefs command, any linefeed characters within the message will be removed.
The POP3_GetMessage command returns the entire block of the message, including
header information.

pop3_ID is a long integer reference to an open session created with POP3_Login.

msgNumber is a long integer value indicating which message in the mailbox to retrieve.
The msgNumber represents the position of a message within the current list of messages.
You cannot rely on the msgNumber remaining the same for a specific e-mail item from
session to session.

offset is a long integer value indicating the number of characters from the beginning of
the message to begin reading. In most circumstances a zero should be passed to this
parameter.

length is a long integer value representing the number of characters beyond the offset
position to retrieve. Since the maximum length of a 4D text variable is limited to
32,000 characters, the length parameter should be set to any number below 32,000.
Messages whose size is greater than 32K must be retrieved to disk via the POP3_Download
command.

msgText is a text variable which will receive the retrieved text.

See Also
POP3_Download, POP3_SetPrefs.

4D Internet Commands Reference 77

POP3_MsgLstInfo IC POP3 Review Mail

version 6.5
__

POP3_MsgLstInfo (pop3_ID; startMsg; endMsg; sizeArray; msgNumArray; idArray) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
startMsg Longint → Start message number
endMsg Longint → End message number
sizeArray Longint Array ← Array of sizes
msgNumArray Longint Array ← Array of message numbers
idArray Str | Txt Array ← Array of Unique ID's

Function result Integer ← Error Code

Description
The command POP3_MsgLstInfo returns information about a set of messages in a
mailbox. The information is returned into three arrays with each element of the arrays
corresponding to one message. Information is returned about the size of each message,
the message number, and the Unique-ID of the message. The arrays passed as parameters
must be of pre-declared types, though they may be of any size. The POP3_MsgLstInfo
command will reset the size of each array to number of messages retrieved.

The POP3_MsgLstInfo command will not return an error number if it fails to retrieve
information on any message within the current message list. If an error is encountered,
no element is created in the arrays for the problem message. If the command reads each
message successfully, the msgNumArray should contain numeric values in a sequential
order. If problems were encountered, there may be gaps in the sequence of numbers held
in msgNumArray.

pop3_ID is a long integer reference to an open session created with POP3_Login.

startMsg is a long integer number which specifies the starting message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the mailbox identified by pop3_ID.

endMsg is a long integer number which specifies the ending message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the mailbox identified by pop3_ID.

sizeArray is a long integer array returned containing the sizes of each message between
startMsg and endMsg.

msgNumArray is a long integer array returned containing the message numbers between
startMsg and endMsg.

78 4D Internet Commands Reference

idArray is a string or text array returned containing the Unique-ID's of the messages
between startMsg and endMsg.

Note: The POP3_Delete, POP3_MsgLstInfo and POP3_MsgLst commands do not return an
error if the startMsg is greater than the endMsg. In the event that this occurs, this
command – in effect – does nothing.

See Also
POP3_MsgInfo, POP3_MsgLst.

4D Internet Commands Reference 79

POP3_MsgLst IC POP3 Review Mail

version 6.5
__

POP3_MsgLst (pop3_ID; start; end; hdrArray; msgNumArray; idArray; valueArray) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
start Longint → Start message number
end Longint → End message number
hdrArray Str | Txt Array → Array of Headers to retrieve
msgNumArray Longint Array ← Array of message numbers
idArray String Array ← String array of Unique ID's
valueArray 2D Str|Txt Array ← 2D Array of header values

Function result Integer ← Error Code

Description
The command POP3_MsgLst is used to get specific information of mailbox contents.
hdrArray is a string or text array which lists the specific mail headers you wish to retrieve.
valueArray is a 2-dimensional array which receives the data for each header specified in
hdrArray. Each requested header will have a corresponding array in the first dimension of
valueArray.

This command allows the user to request specific columns of the message list. This
command can only return values of header items, it cannot be used to retrieve the body
of a message.

Note: Since mail headers can include extended characters, you can automate their
management using the POP3_Charset command.

Example

aHeaders{1}:="Date:"
aHeaders{2}:="From:"
aHeaders{3}:="Subject:"

⇒ POP3_MsgLst (◊POP3_ID; vStart; vEnd; aHeaders; aMsgNum; aUIDs; aValues)
aValues{1}{1} may equal "Thu, 19 November 1998 00:24:02 -0800"
aValues{2}{1} may equal "Jack@4d.com"
aValues{3}{1} may equal "Call your wife"

Errors are handled in the following manner:

1) Only communication-related error codes will be returned. If the command can't
complete its task because of an error (network, syntax, server, etc.) then the appropriate
error code will be returned.

80 4D Internet Commands Reference

2) If a message within the specified range of messages does not exist or gets an error:
-- No array element is created for that message.
-- No error code will be returned

3) The inability to locate any or all of the specified headers within any message does not
constitute an error:
-- An array element for the message will be created
-- The Message Number and UniqueID array element will contain the appropriate values
-- For each header which does not exist in the message, a null string will be returned into
that array element
-- No error code will be returned

Note: The POP3_Delete, POP3_MsgLstInfo and POP3_MsgLst commands do not return an
error if the startMsg is greater than the endMsg. In the event that this occurs, this
command – in effect – does nothing.

See Also
POP3_Charset, POP3_MsgInfo, POP3_MsgLstInfo.

4D Internet Commands Reference 81

POP3_DownLoad IC POP3 Review Mail

version 6.5
__

POP3_DownLoad (pop3_ID; msgNumber; headerOnly; fileName) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
msgNumber Longint → Message number
headerOnly Integer → 0 = Entire message, 1 = Only header
fileName Text → Local Filename

← Resulting Local Filename

Function result Integer ← Error Code

Description
The command POP3_DownLoad is designed to retrieve a message from a POP3 server by
downloading it to a disk-based file. Any POP3 message which contains attachments or
whose size is greater than 32K should be downloaded with this command. Attachments
to a message can only be extracted from messages retrieved in this way.

pop3_ID is a long integer reference to an open session created with POP3_Login.

msgNumber is a long integer value indicating which message in the mailbox to retrieve.
The msgNumber represents the position of a message within the current list of messages.
You cannot rely on the msgNumber remaining the same for a specific e-mail item from
session to session.

headerOnly is an integer value which denotes whether to retrieve the entire contents of
the message or just the header information.

fileName contains the name of the file and the optional path where you would like the
message saved. This value may be specified three different ways:
"" = Saves the file in the folder set by POP3_SetPrefs, with the name

"temp1" (if a file with the same name already exists, the filenames
"temp2", "temp3", etc. will be tried until an unused file name is found)

"FileName" = Saves the file in the folder set by POP3_SetPrefs, titled fileName
"Path:FileName" = Saves the file in the path specified with the name fileName

In the first two cases, if no folder has been specified by POP3_SetPrefs, the message will be
saved in the same folder as the structure of the database (with 4D single-user) or in the
4D Client folder (with 4D Server). After the file has been saved to disk, the final name of
the file will be returned to the variable passed as the fileName parameter. If you attempt to
call POP3_Download with a fileName that already exists within the download folder, the
name will be numerically incremented and its new value as saved to disk will be returned
to the fileName variable.

See Also
POP3_SetPrefs.

82 4D Internet Commands Reference

POP3_UIDToNum IC POP3 Review Mail

version 6.5
__

POP3_UIDToNum (pop3_ID; uniqueID; msgNumber) → Integer

Parameter Type Description
pop3_ID Longint → Reference to a POP3 login
uniqueID String → Unique ID of message on server
msgNumber Longint ← Message number

Function result Integer ← Error Code

Description
The command POP3_UIDToNum converts a message's Unique ID value to its current
msgNumber within the list of messages in the mailbox referenced by pop3_ID. Since a
specific mail message's msgNumber is a floating value relative to other items in the mail
list, this command returns the current position of a message whose information may
have been retrieved during a prior POP3 session.

pop3_ID is a long integer reference to an open session created with POP3_Login.

uniqueID is a string value containing the Unique-ID of a message to locate on the POP3
server. This command will look for this value in the message headers of the account
referenced by pop3_ID. Once found, the message's current position in the listing will be
returned in msgNumber.

msgNumber is a long integer returned containing the current message number (its
position within the current message list) of the item identified by uniqueID. If the
uniqueID cannot be found on the server, a zero is returned in msgNumber and no error is
returned.

4D Internet Commands Reference 83

POP3_Charset IC POP3 Review Mail

version 6.8.1 (Modified)
__

POP3_Charset (decodeHeaders; bodyCharset) → Integer

Parameter Type Description
decodeHeaders Integer → -1 = Use current settings, 0 = Do not manage,

1 = Convert using the MacOS charset if ISO-8859-1
or ISO-2022-JP, decode extended characters

bodyCharset Integer → -1 = Use current settings, 0 = Do not manage,
1 = Convert using the MacOS charset if ISO-8859-1
or ISO-2022-JP

Function result Integer ← Error Code

Description
The command POP3_Charset allows automatic support of messages containing extended
characters while processing them with the POP3 and MSG commands. If this command is
not called or has parameters set to 0, version 6.7 or higher of 4D Internet Commands will
work the same way as version 6.5.x.

POP3_Charset allows first, to set whether the extended characters header decoding has to
be managed, and second, whether the message body and headers character set
conversions have to be managed.
This command is particularly usefull to support extended characters included in message
headers such as “Subject” or mail addresses (for example, to decode an address such as
“=?ISO-8859-1?Q?Test=E9?= <test@n.net >”).

The decodeHeaders parameter specifies how to handle header decoding and conversion
while executing commands POP3_MsgLst or MSG_FindHeader(see Compatibility note).
Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: Headers are decoded if necessary. If decoded and if the specified character set is ISO-
8859-1 or ISO-2022-JP, headers are converted using respectively the MacOS ASCII code or
the Shift-JIS.

Compatibility note (version 6.8.1): POP3_Charset applies to MSG_FindHeader (in the same
way as POP3_MsgLst) if the MSG_Charset command has not been executed previously.

84 4D Internet Commands Reference

The bodyCharset parameter specifies how to handle message body character set
conversion while executing the MSG_GetBody command (see Compatibility note).
Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: If the “Body-Content-Type” character set is set to ISO-8859-1 or ISO-2022-JP, the
message body is converted using respectively the MacOS ASCII code or the Shift-JIS.

Compatibility note (version 6.8.1): POP3_Charset applies to MSG_GetBody if the
MSG_Charset command has not been executed previously.

Examples
(1) Using version 6.5.x of 4D Internet Commands:

$Err:=MSG_FindHeader($msgfile;"From";$from)
$from:=ISO to Mac($from)
$Err:=MSG_FindHeader($msgfile;"To";$to)
$to:=ISO to Mac($to)
$Err:=MSG_FindHeader($msgfile;"Cc";$cc)
$cc:=ISO to Mac($cc)
$Err:=MSG_FindHeader($msgfile;"Subject";$subject)
$subject:=ISO to Mac($subject)

$Err:=MSG_MessageSize($msgfile;$HdrSize;$BdySize;$MsgSize)
$Err:=MSG_GetBody($msgfile;0;$BdySize;$BodyContent)
$BodyContent:=ISO to Mac($BodyContent)

(2) Using version 6.7 of 4D Internet Commands:

⇒ $Err:=POP3_Charset(1;1)
$Err:=MSG_FindHeader($msgfile;"From";$from)
$Err:=MSG_FindHeader($msgfile;"To";$to)
$Err:=MSG_FindHeader($msgfile;"Cc";$cc)
$Err:=MSG_FindHeader($msgfile;"Subject";$subject)

$Err:=MSG_MessageSize($msgfile;$HdrSize;$BdySize;$MsgSize)
$Err:=MSG_GetBody($msgfile;0;$BdySize;$BodyContent)

(3) Using version 6.8 of 4D Internet Commands:

$Err:=MSG_Charset(1;1)
$Err:=MSG_FindHeader($msgfile;"From";$from)
$Err:=MSG_FindHeader($msgfile;"To";$to)
$Err:=MSG_FindHeader($msgfile;"Cc";$cc)
$Err:=MSG_FindHeader($msgfile;"Subject";$subject)

$Err:=MSG_MessageSize($msgfile;$HdrSize;$BdySize;$MsgSize)
$Err:=MSG_GetBody($msgfile;0;$BdySize;$BodyContent)

See Also
MSG_Charset, SMTP_Charset.

4D Internet Commands Reference 85

86 4D Internet Commands Reference

4

IC IMAP Review Mail

4D Internet Commands Reference 87

88 4D Internet Commands Reference

IMAP4 Commands, Overview IC IMAP Review Mail

version 2003 (Modified)
__

The set of IMAP commands enables your database to access and manipulate electronic
mail messages over an IMAP electronic mail server and to retrieve electronic messages
from your IMAP server. IMAP commands are compliant with the Internet Message Access
Protocol, Version 4 revision 1 (IMAP4rev1), defined by rfc 2060. IMAP4rev1 allows the
managing of remote message folders, called “mailboxes”, in a way that is functionally
similar to local mailboxes.

IMAP commands include operations to create, delete and rename mailboxes; check for
new messages; permanently remove messages; set and clear message flags; search
messages; and retrieve selective message parts.

Terminology
“Connection” refers to the entire sequence of IMAP client/server interaction from the
initial network connection (IMAP_Login) until the end of the selection (IMAP_Logout).

“Session” refers to the sequence of client/server interaction from the moment a mailbox
is selected (IMAP_SetCurrentMB) until the end of the selection (IMAP_SetCurrentMB,
IMAP_CloseCurrentMB) or until the connection is closed (IMAP_Logout).

IMAP Connection Overview
• Initializing TCP communication: IT_MacTCPInit (the IT_PPPConnect command must be
called before IT_MacTCPInit in the event of a PPP connection).

• Opening a connection: IMAP_Login

• Managing mailboxes: List, create, delete, rename, subscribe/unsubscribe, and/or get
status parameters.

• Opening a session by defining the current working mailbox: IMAP_SetCurrentMB.
Once the current mailbox is set, you can manage messages for it.

• Managing messages: List, download or delete messages; list message flags; modify
message flags; copy to another mailbox; search and retrieve e-mail parts without any
downloading, etc.

• Once you are finished working with the current mailbox messages, you can close the
session or open a new one by setting another current mailbox. In any case, the IMAP
server will permanently update its messages. For instance, it will delete all messages with
the \Deleted flag set.

• Once you are finished, you should logout. Closing a connection: IMAP_Logout.

• Other operations: Preference settings, capability, check connection, and reset any
inactivity auto-logout timer on the IMAP server.

4D Internet Commands Reference 89

IMAP Command Themes
The IMAP-related commands are divided into two sections: IC IMAP Review Mail and IC
Downloaded Mail. These commands have been separated to show the different methods
of reading electronic mail. When reading electronic mail from an IMAP server, messages
(or message information) may be imported into 4D structures (variables, fields, arrays) or
downloaded to the disk. This section details the 4D Internet Commands' capacity to read
messages from an IMAP server.

The need for dual message-retrieval methods is due mainly to memory constraints for
actions that may download large amounts of information. For instance, a single message
containing a 5-MB attachment could easily overflow the database's storage capacity. A
picture or BLOB field is the only 4D structure capable of storing something of this size;
however, converting a message or attachment to this format is not very efficient since
accessing the picture or BLOB involves cumbersome memory requirements for the client.
To resolve this problem, this section has an IMAP_Download command which transfers
messages from the IMAP server to the user's hard disk.

Once imported to the disk, the “IC Downloaded Mail” section details the commands used
to manipulate local files.

Mailbox mechanisms
An IMAP mailbox can be handled like a folder and may contain files and/or subfolders.
Similarly, a mailbox may contain messages and/or submailboxes.

A mailbox is accessed using its complete hierarchical name. Depending on the IMAP
server, each hierarchical level is separated by a hierarchy separator (a separator is returned
using the IMAP_ListMBs command).

You can use the separator to create child mailboxes and to search higher or lower levels of
the naming hierarchy. All children of a top-level hierarchy node use the same separator
character.

Note: Messages can only be managed once the current working mailbox has been selected
(IMAP_SetCurrentMB).

Each account can have one or several mailboxes.

Mailbox names are still case-sensitive; therefore, you cannot create two mailboxes with
names that differ only in case.

The INBOX mailbox is a particular case: it exists in every account and is used for storing
incoming messages. The INBOX is created automatically whenever an account is set up.

A user cannot remove the INBOX mailbox but may rename it. If he chooses to rename it,
a new empty INBOX is immediately created. The INBOX name is never case-sensitive.

Some mailbox attributes, such as the total number of messages or new messages, may be
checked even if the mailbox is not the current one.

90 4D Internet Commands Reference

msgNum and uniqueID
When using IMAP commands, it is important to fully understand the most frequently
used parameters; more particularly, mailbox mechanisms msgNum and uniqueID.

msgNum is the number of a message in the mailbox at the time the IMAP_SetCurrentMB
command is executed.

Once a current mailbox is selected, messages in the mailbox are assigned numbers starting
from 1 up to the total number of items in the mailbox. Numbers are assigned based on
the order that the messages were received in the mailbox with 1 being the oldest. The
numbers assigned to messages are only valid from the moment you select the current
working mailbox (IMAP_SetCurrentMB) until it is closed (IMAP_CloseCurrentMB,
IMAP_SetCurrentMB or IMAP_Logout).

When the mailbox is closed, all messages marked for deletion will be removed.

When the user logs back onto the IMAP server, the current messages in the mailbox will
once again be numbered from 1 to X. For instance, if there are 10 messages in the
mailbox, and messages 1 to 5 are deleted, when the user reopens the mailbox, the former
messages 6 to 10 will have been re-numbered 1 to 5.

For instance, consider the example below: You log on to an IMAP server and obtain the
following list of messages:

msgNum uniqueID Date From Subject
1 10005 1 Jul 2001 ... danw@acme.com Sales lead...
2 10008 1 Jul 2001 ... frank@acme.com Site-License order
3 10012 3 Jul 2001 ... joe@acme.com Lunch anyone?
4 20000 4 Jul 2002 ... kelly@acme.com Your wife called...
5 20001 4 Jul 2002 ... track@fedex.com FedEx tracking

During this session, you delete messages number 3 and 4. When you close the current
working mailbox, the requested deletions are made. When you log back onto the server,
your message list will be re-numbered as follows:

msgNum uniqueID Date From Subject
1 10005 1 Jul 2001 ... danw@acme.com Sales lead...
2 10008 1 Jul 2001 ... frank@acme.com Site-License order
3 20001 4 Jul 2002 ... track@fedex.com FedEx tracking

msgNum is not a static value and will vary from one session to another. It will change in
relation to other messages in the mailbox at the time the current working mailbox is
selected.

However , the uniqueID is a unique number, assigned to the message by the IMAP server
in a strictly ascending order. As each message is added to the mailbox, it is assigned a
higher ID than the previously added message(s).

4D Internet Commands Reference 91

Unfortunately, IMAP servers do not use the uniqueID as the primary reference for their
messages. When using IMAP commands you will need to specify the msgNum as the
reference for messages on the server. Developers may need to be careful when developing
solutions which import message references into a database, while leaving the message
body itself on the server.

Recommendations
Since the whole point of IMAP is interoperability, and since the latter cannot be tested in
a vacuum, the final recommendation is “Test for EVERYTHING.” Therefore, test your
client against every server you can get an account on.

For more information, please check out the following sites:

• IMAP Products and Services: http://www.imap.org/products.html

• MailConnect: http://www.imc.org/imc-mailconnect.

POP3 and IMAP4 commands comparison
Login Exactly equiv No POP parameter for IMAP
VerifyID Exactly equiv
Delete Exactly equiv IMAP commands delete in real time. POP3

waits for POP3_Logout to remove messages
permanently. IMAP_SetFlags with \Deleted flag
allows you to obtain the same result as the
POP3_Delete command

Logout Exactly equiv
SetPrefs Exactly equiv No attachFolder for IMAP,

POP3 attachFolder has become optional
GetPrefs Exactly equiv See attachFolder note in SetPrefs
MsgLstInfo Exactly equiv
MsgInfo Exactly equiv
MsgLst Exactly equiv
UIDToMsgNum Exactly equiv IMAP msgUID is a Longint, POP3 msgUID is a

string
Download Exactly equiv
POP3_Reset No direct equiv Need combination of IMAP_Search on

 \Deleted flags and IMAP_SetFlags to
remove the \Deleted flag

POP3_BoxInfo No direct equiv Need combination of IMAP_SetCurrentMB
&IMAP_MsgLstInfo commands

IMAP_ MsgNumToUID No direct equiv
GetMessage Almost Equiv IMAP is more powerful since it allows you

to choose one additional msgPart which is
"only body"

POP3_Charset No Equiv IMAP automatically manages charset
IMAP_Capability No Equiv Specific to IMAP protocol
IMAP_ListMBs No Equiv Specific to IMAP protocol
IMAP_GetMBStatus No Equiv Specific to IMAP protocol

92 4D Internet Commands Reference

IMAP_SetCurrentMB No Equiv Specific to IMAP protocol
IMAP_GetCurrentMB No Equiv Specific to IMAP protocol
IMAP_CloseCurrentMB No Equiv Specific to IMAP protocol
IMAP_CopyToMB No Equiv Specific to IMAP protocol
IMAP_SubscribeMB No Equiv Specific to IMAP protocol
IMAP_CreateMB No Equiv Specific to IMAP protocol
IMAP_DeleteMB No Equiv Specific to IMAP protocol
IMAP_RenameMB No Equiv Specific to IMAP protocol
IMAP_SetFlags No Equiv Specific to IMAP protocol
IMAP_GetFlags No Equiv Specific to IMAP protocol
IMAP_Search No Equiv Specific to IMAP protocol
IMAP_MsgFetch No Equiv Specific to IMAP protocol

Notes:
• IMAP and POP3 servers: in the case of the IMAP server, do not type msgID the same
way since msgID is a Long Integer.
• Deletion does not work in exactly the same way between POP3 and IMAP protocols.
IMAP_Delete removes messages in real time. To get the same result as POP3_Delete, use the
IMAP_SetFlags to set the \Deleted flag; to get the same result as POP3_Reset, use the
IMAP_SetFlags to retrieve the \Deleted flags.
• For greater flexibility, 4D Internet commands let you pass a POP3, IMAP or FTP
connection reference directly to low-level TCP commands and vice versa. For more
information, refer to the Low Level Routines, Overview section

4D Internet Commands Reference 93

IMAP_SetPrefs IC IMAP Review Mail

version 6.8.1
__

IMAP_SetPrefs (stripLineFeed; msgFolder) → Integer

Parameter Type Description
stripLineFeed Integer → 0 = Do not strip LineFeeds, 1 = Strip LineFeeds,

-1 = No Change
msgFolder Text → Messages folder path ("" = no change)

Function result Integer ← Error code

Description
The command IMAP_SetPrefs sets the preferences for all IMAP commands.

stripLineFeed is an integer value specifying how LineFeed characters will be treated in
saved messages. Most IMAP servers combine Carriage Return and Line Feed characters to
indicate the end of a line. Macintosh applications prefer a carriage return only as the end-
of-line character. This option lets users strip the linefeed character from their message
text. A value of zero will leave retrieved messages in the format as stored on the IMAP
server. A value of 1 will strip linefeed characters from retrieved messages. A value of -1 will
leave this preference as it has been previously set. The default option is set to 1 and will
automatically strip linefeeds found in messages.

msgFolder is a text value indicating the local pathname to a folder in which messages
retrieved with the IMAP_Download command are stored by default.

See Also
IMAP_Download, IMAP_GetPrefs.

94 4D Internet Commands Reference

IMAP_GetPrefs IC IMAP Review Mail

version 6.8.1
__

IMAP_GetPrefs (stripLineFeed; msgFolder) → Integer

Parameter Type Description
stripLineFeed Integer ← 0 = Do not strip LineFeeds, 1 = Strip LineFeeds,

-1 = No Change
msgFolder Text ← Messages folder path

Function result Integer ← Error code

Description
The command IMAP_GetPrefs returns the current preferences for the IMAP commands.

The preferences are returned into the variables listed in the parameters.

stripLineFeed returns the current setting of the user’s preference for linefeed stripping.

msgFolder is a text variable which returns the local pathname to the default folder in
which retrieved messages are stored.

See Also
IMAP_SetPrefs.

4D Internet Commands Reference 95

IMAP_Login IC IMAP Review Mail

version 6.8.1
__

IMAP_Login (hostName; userName; password; imap_ID) → Integer

Parameter Type Description
hostName String → Host Name or IP address of the IMAP server
userName String → User name
password String → Password
imap_ID Longint ← Reference to this IMAP login

Function result Integer ← Error code

Description
The command IMAP_Login logs the user onto the IMAP electronic mail server with the
given user name and password.

This particular login is given a connection reference (imap_ID) to which subsequent IMAP
commands can refer.

The connection is closed using the IMAP_Logout command or when the IMAP server
inactivity timer has timed out.

hostName is the host name or IP address of the IMAP electronic mail server. It is
recommended that the host name be used but, if needed, an IP address may be used.

userName is the user's name on the IMAP electronic mail server. The userName should not
contain the domain. For example, for the address “jack@4d.com”, the userName would be
just “jack”.

password is the password for the userName on the IMAP electronic mail server.

imap_ID is a long integer variable into which a reference to the connection just
established is returned. This parameter must be passed a 4D variable in order to accept the
returned results. The variable will be used in all subsequent commands which perform
actions related to this session.

If IMAP_Login fails, imap_ID is set to zero.

96 4D Internet Commands Reference

Example
Here is a typical connection sequence:

⇒ $ErrorNum:=IMAP_Login (vHost;vUserName;vUserPassword;vImap_ID)
If($ErrorNum =0)

C_TEXT(vCapability)
$ErrorNum:=IMAP_Capability (vImap_ID;vCapability))
… ` IMAP commands using vImap_ID parameter

End if
$ErrorNum:=IMAP_Logout (vImap_ID)

See Also
IMAP_Logout, IMAP_VerifyID.

4D Internet Commands Reference 97

IMAP_VerifyID IC IMAP Review Mail

version 6.8.1
__

IMAP_VerifyID (imap_ID) → Integer

Parameter Type Description
imap_ID Longint → Reference to this IMAP login

← 0 = Connection has already closed

Function result Integer ← Error code

Description
An IMAP server will automatically terminate a connection which does not show activity
in a period of time determined by its administrator. Each command that interacts with
the IMAP server forces a reset of the inactivity timer. The IMAP_VerifyID command resets
the inactivity timer for the specified IMAP connection without performing any other
action. This allows the user to keep a connection active if the possibility exists that the
connection may timeout.

When executed, the IMAP_VerifyID command will verify the connection has not already
been closed. If the connection is still opened, the command will tell the IMAP server to
reset the timeout counter for the connection back to zero. If the connection has already
closed, IMAP_VerifyID will return the appropriate error and free memory used by the IMAP
connection, and return a zero value back to imap_ID.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

See Also
IMAP_Login.

98 4D Internet Commands Reference

IMAP_Capability IC IMAP Review Mail

version 6.8.1
__

IMAP_Capability (imap_ID; capability) → Integer

Parameter Type Description
imap_ID Longint → Reference to this IMAP login
capability Text ← IMAP capabilities

Function result Integer ← Error code

Description
The command IMAP_Capability returns a text area containing a space-separated listing of
capability names supported by the IMAP server. This list determines what version of
IMAP, and what optional features (such as extension, revision or amendment to the
IMAP4rev1 protocol), a server supports.

IMAP4rev1 must appear in the capability text to ensure compliance with 4D Internet
Commands.

See Also
IMAP_Login.

4D Internet Commands Reference 99

IMAP_ListMBs IC IMAP Review Mail

version 6.8.1
__

IMAP_ListMBs (imap_ID; mbRefName; mbName; mbNamesArray; mbAttribsArray;
mbHierarArray{; subscribedMB}) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbRefName Text → Null string or Mailbox name or

 level of mailbox hierarchy
mbName Text → Null string or MailBoxName or wildcards
mbNamesArray Str | Txt Array ← Array of mailbox names (pathnames)
mbAttribsArray Str | Txt Array ← Array of mailbox attributes
mbHierarArray Str | Txt Array ← Array of hierarchy delimiters
subscribedMB Integer → 0 = List all available user mailboxes

1 = List only subscribed mailboxes

Function result Integer ← Error code

Description
The command IMAP_ListMBs returns the list of available mailboxes for the connected user
and attached information. If this command fails, specified arrays are initialized.

mbRefName and mbName must be considered together since the resulting Mailbox list will
depend on the combination of these two parameter values.

The returned list may be restricted to subscribed mailboxes (see IMAP_SubscribeMB) when
the last parameter, subscribedMB, is set to 1.

When the execution of IMAP_ListMBs is very long, either because a large number of
mailboxes are being scanned, or because of numerous and complex hierarchical mailbox
structures, and so on, you can:
• use wildcards (see below) with IMAP_ListMBs,
• or use the IMAP_ListMBs command, with the subscribedMB parameter set to 1, to list
only a set of mailboxes defined using the IMAP_SubscribeMB command.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbRefName is a text value that should be combined with the mbName parameter to
determine which mailboxes should be looked for. The reference name (mbRefName)
should be used as a Current Working Directory on Unix systems. In other words, the
mailbox name (mbName) is interpreted as a file located in the directory specified by the
reference name (mbRefName). Be sure that the IMAP specification leaves the
interpretation of the reference name (mbRefName) “implementation-dependent”.

100 4D Internet Commands Reference

We strongly recommend that the user be given an operational mode that does not use
any mbRefName reference argument. As such, it can interoperate with older servers that
did not implement the use of reference arguments.

If mbRefName is a null string, only the mbName parameter is used to list mailboxes.

If mbRefName contains the name of a mailbox or a level of mailbox hierarchy, it should
be used to define the context in which the mbName parameter must be interpreted.

Note: We strongly recommend that you place a trailing hierarchy delimiter on the
reference argument when used. This will ensure full compliance whichever IMAP server is
used.

mbName is a text value, intended to be combined with the mbRefName parameter, which
usually defines the context in which the mbName parameter must be interpreted.

If mbName is a null string, the hierarchy delimiter is returned.

Note: If you implement a breakout facility using the mbRefName parameter, you should
allow the user to choose whether or not to use a leading hierarchy delimiter on the
mailbox argument. This is because the handling of a leading mailbox hierarchy delimiter
varies from one server to another, and even between different electronic mail stores on
the same server. In some cases, a leading hierarchy delimiter means “discard the reference
argument”; whereas in other cases, the two are concatenated and the extra hierarchy
delimiter is discarded.

The mbNamesArray array receives the list of available mailboxes’ names.

The mbAttribsArray array receives the list of available mailboxes’ attributes.

Mailbox attributes
There are four mailbox attributes defined as follows:
• \Noinferiors: no child levels currently exist and none can be created.
• \Noselect: this name cannot be used as a selectable mailbox.
• \Marked: the server has marked the mailbox as “interesting”; the mailbox probably
contains messages added since the last selection.
• \Unmarked: the mailbox does not contain any additional messages since the last
selection.

The mbHierarArray array receives the list of available mailboxes’ hierarchy delimiters.

The hierarchy delimiter is a character used to delimit hierarchy levels in a mailbox name.
You can use it to create child mailboxes and to search higher or lower levels of the
naming hierarchy. All children of a top-level hierarchy node use the same separator
character.

4D Internet Commands Reference 101

subscribedMB is an integer value which can be specified when you simply want to list
“subscribed” mailboxes. A zero value lists all available user mailboxes. A value of 1 only
lists subscribed user mailboxes. subscribedMB is an optional parameter that will default to
zero if not otherwise specified.

Examples
(1) The following example:

⇒ IMAP_ListMBs (imap_ID;"4DIC/Work/";"Test";mbNamesArray;mbAttribsArray;
mbHierarArray)

... returns all available mailboxes from the “4DIC/Work/Test” mailbox.
Remember that if the IMAP server does not interpret as was intended, do not use the
mbRefName and concatenate the mbRefName and mbName values into mbName:

⇒ IMAP_ListMBs (imap_ID;"";"4DIC/Work/Test";mbNamesArray;mbAttribsArray;
mbHierarArray)

(2) The following example:

⇒ IMAP_ListMBs(imap_ID;"";"";mbNamesArray;mbAttribsArray;mbHierarArray)

... returns the hierarchy delimiter.

Using the Wildcard character
You can use wildcards in the mbRefName and mbName parameters to make mailbox
selection easier. You will find an example of current wildcards below, but please note that
the interpretation of wildcards will depend on the IMAP server; consequently, these
examples may not work. In this case, check your IMAP server wildcards.

• “ * ” matches zero or more characters in its position:

⇒ IMAP_ListMBs (imap_ID;"";"*";mbNamesArray;mbAttribsArray;mbHierarArray)

... returns all mailboxes available to the connected user.

⇒ IMAP_ListMBs (imap_ID;"";"Work*";mbNamesArray;mbAttribsArray;mbHierarArray)

... returns all available mailboxes matching the root “Work”.

102 4D Internet Commands Reference

• “ % ” is similar to “ * ”, but it does not match a hierarchy delimiter. If the “%” wildcard
is the last character of the mbName parameter, matching hierarchy levels are also
returned. If these hierarchy levels are not selectable mailboxes, they are returned with the
\Noselect mailbox attribute (see paragraph “Mailbox attributes”).

⇒ IMAP_ListMBs (imap_ID"";"Work/%";mbNamesArray;mbAttribsArray;mbHierarArray)

... returns all mailboxes matching the root “Work”, plus one hierarchy level available for
the connected user.

“%” can be helpful in order to parse the mailbox hierarchy level by level.
Given the following mailbox hierarchy:

INBOX
MailboxA

MailboxAA
MailboxAB

MailboxB
MailboxBA
MailboxBB

MailboxC
MailboxCA
MailboxCB

⇒ IMAP_ListMBs(imap_ID;"";"%";mbNamesArray;mbAttribsArray;mbHierarArray)

... returns INBOX, MailboxA, MailboxB and MailboxC.

⇒ IMAP_ListMBs (imap_ID;"";"MailboxA%"; mbNamesArray; mbAttribsArray;
mbHierarArray)

... returns MailboxAA and MailboxAB.

Using this technique, you can give the user complete flexibility without being bogged
down by the voluminous reply to IMAP_ListMBs(imap_ID;"";"*";mbNamesArray;
mbAttribsArray; mbHierarArray).

Note that IMAP servers themselves may limit the number of levels to be scanned.

See Also
IMAP_GetMBStatus, IMAP_SubscribeMB.

4D Internet Commands Reference 103

IMAP_SubscribeMB IC IMAP Review Mail

version 6.8.1
__

IMAP_SubscribeMB (imap_ID; mbName; mbSubscribe) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Name of the mailbox to subscribe

or unsubscribe
mbSubscribe Integer → 0 = Do not subscribe; 1= Subscribe

Function result Integer ← Error code

Description
The command IMAP_SubscribeMB allows adding or removing of the specified mailbox
name to/from the IMAP server’s set of “subscribed” user mailboxes.

As such, the user can choose to narrow down a large list of available mailboxes by
subscribing to those that he usually wants to see. To do this, he simply has to use the
IMAP_ListMBs command with the subscribedMB optional parameter set to 1 (see
IMAP_ListMBs).

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of the mailbox to be subscribed or unsubscribed.

Pass 0 in mbSubscribe to not subscribe to the mailbox; pass 1 to subscribe.

See Also
IMAP_ListMBs.

104 4D Internet Commands Reference

IMAP_GetMBStatus IC IMAP Review Mail

version 6.8.1
__

IMAP_GetMBStatus (imap_ID; mbName; msgNber; newMsgNber; unseenMsgNber; mbUID)
→ Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Name of the mailbox
msgNber Longint ← Number of messages in the specified mailbox
newMsgNber Longint ← Number of messages with the \Recent flag set
unseenMsgNber Longint ← Number of messages with no \Seen flag
mbUID Longint ← Specified mailbox unique identifier

Function result Integer ← Error code

Description
The command IMAP_GetMBStatus returns the status parameter values of the mailbox
specified by mbName. It does not change the current mailbox (see IMAP_SetCurrentMB),
nor does it affect the state of any messages in the specified mailbox (in particular, it
usually does not cause messages to lose the \Recent flag, but this can vary depending on
the IMAP4 server implementation). This is an alternative used to check mailbox status
parameters without deselecting the current mailbox.

This command is particularly useful to:
• Check or retrieve the mailbox unique identifier, and/or,
• Check recent and unseen messages without opening a session for the mailbox.

Important: We strongly recommend that you do not call the IMAP_GetMBStatus
command using the current mailbox. By doing so, you may encounter problems and the
information returned will not necessarily be synchronized with the current mailbox
status (in particular for new e-mails).

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of the existing mailbox for which you want to get the status
parameter values.

Note: Unlike the IMAP_ListMBs command, the mbName parameter does not accept
wildcards.

msgNber returns the number of messages in the current mailbox (set to zero when the
command is called and returns -1 if error).

4D Internet Commands Reference 105

newMsgNber returns the number of recent messages in the current mailbox (set to zero
when the command is called and returns -1 if error).

unseenMsgNber returns the number of unseen messages in the current mailbox (set to
zero when the command is called and returns -1 if error)

mbUID returns the mailbox unique identifier validity value (set to zero when the
command is called and returns –1 if error).

With the IMAP4 protocol, the mailbox name is not sufficient to identify a mailbox. As
such, a unique identifier validity value is associated with each mailbox. This identifier is
particularly valuable for synchronizing tasks.
Thus, you can verify if mailbox “A” has been renamed as “B” or deleted, simply by
checking the unique identifier validity value.
On the other hand, this identifier allows you to check whether a mailbox named “A” has
been deleted and if another “A” mailbox has been created.

See Also
IMAP_GetFlags, IMAP_ListMBs, IMAP_SetCurrentMB, IMAP_SetFlags.

106 4D Internet Commands Reference

IMAP_SetCurrentMB IC IMAP Review Mail

version 6.8.1
__

IMAP_SetCurrentMB (imap_ID; mbName; msgNber; newMsgNber; customFlags;
permanentFlags; mbUID) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Name of the mailbox to select
msgNber Longint ← Number of messages in the current mailbox
newMsgNber Longint ← Number of messages with the \Recent flag set
customFlags Text ← List of flags currently used for the mailbox
permanentFlags Text ← List of flags permanently modifiable
mbUID Longint ← Mailbox unique identifier value

Function result Integer ← Error code

Description
The command IMAP_SetCurrentMB allows you to open a session (i.e. selects the current
working Mailbox) in order to manage the messages of the specified mailbox.

Only one session can be opened at a time during a connection; simultaneous access to
multiple mailboxes requires multiple connections (multiple IMAP_Login). The
IMAP_SetCurrentMB command automatically closes the current session before attempting
the new selection. Consequently, if a mailbox is defined as current and an
IMAP_SetCurrentMB command fails, there will no longer be any mailbox defined as
current.

You can close a session, (i.e. close the current mailbox) without selecting a new one, by
executing the IMAP_SetCurrentMB command using a non-existing mbName and while
managing the returned error, either by executing the IMAP_CloseCurrentMB, or by
executing the IMAP_Logout command.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of an existing mailbox to be defined as current.

msgNber returns the number of messages in the current mailbox (set to zero when
IMAP_SetCurrentMB is called and returns -1 if error).

newMsgNber returns the number of recent messages in the current mailbox (set to zero
when IMAP_SetCurrentMB is called and returns -1 if error).

customFlags returns the complete list of flags used in the current mailbox. Note that only
flags listed in the permanentFlags string can be modified.

4D Internet Commands Reference 107

permanentFlags returns the list of mailbox message flags that can be changed
permanently (except for the \Recent flag, which is managed by the IMAP server). (Set to
null string when IMAP_SetCurrentMB is called). Note that the permanentFlags string can
also include the special flag *, which means that keywords can be created by trying to
store those flags in the mailbox (see IMAP_SetFlags).

If permanentFlags returns a null string, this means that all the flags listed in the
customFlags parameter can be permanently changed.

mbUID returns a unique identifier validity value for the current mailbox.
This identifier can be particularly useful if a mailbox is deleted and a new mailbox with
the same name is created at a later date. Since the name is the same, a client may not
know that this is a new mailbox unless the unique identifier validity is different.

See Also
IMAP_CloseCurrentMB, IMAP_GetFlags, IMAP_GetMBStatus, IMAP_ListMBs, IMAP_Logout,
IMAP_SetFlags.

108 4D Internet Commands Reference

IMAP_GetCurrentMB IC IMAP Review Mail

version 6.8.1
__

IMAP_GetCurrentMB (imap_ID; mbName) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text ← Name of the current mailbox

Function result Integer ← Error code

Description
The command IMAP_GetCurrentMB returns the current working mailbox name.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName returns full name of the current mailbox. If the mbName value is a null string,
no mailbox is currently selected.

See Also
IMAP_CloseCurrentMB, IMAP_SetCurrentMB.

4D Internet Commands Reference 109

IMAP_CloseCurrentMB IC IMAP Review Mail

version 6.8.1
__

IMAP_CloseCurrentMB (imap_ID) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login

Function result Integer ← Error code

Description
The command IMAP_CloseCurrentMB closes the current working mailbox without
selecting another mailbox or executing an IMAP_Logout. IMAP_CloseCurrentMB
permanently removes all messages that have the \Deleted flag set.

Note: IMAP allows users to work concurrently with the same mailbox in a client/server
mode. Suppose that someone carries out synchronization and keeps the connection open,
the last mailbox used will remain in selected mode. Anyone else who tries to use this
mailbox will not have valid information, or will not be able to work properly, depending
on the server implementation, even if the user works in “disconnected mode” (i.e.
connected but working using data).

imap_ID is a long integer reference to an open connection created with IMAP_Login.

See Also
IMAP_Delete, IMAP_GetCurrentMB, IMAP_SetCurrentMB, IMAP_SetFlags.

110 4D Internet Commands Reference

IMAP_Delete IC IMAP Review Mail

version 6.8.1
__

IMAP_Delete (imap_ID; startMsg; endMsg) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Longint → Start message number
endMsg Longint → End message number

Function result Integer ← Error code

Description
The command IMAP_Delete sets the \Deleted flag for the startMsg to endMsg range of
messages and then deletes all messages where the \Deleted flag is set (including messages
where the \Deleted flag has previously been set for the current session). Deletion is
executed by the IMAP server and takes place when closing the connection (IMAP_Logout)
or selecting another current mailbox (IMAP_SetCurrentMB) or closing the current mailbox
(IMAP_CloseCurrentMB).

If you do not want to delete right away, you can use the IMAP_SetFlags command and set
the \Deleted flag to delete messages later.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number which is the starting message number of the messages
to delete.

endMsg is a long integer number which is the ending message number of the messages to
delete.

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command – in effect – does nothing.

See Also
IMAP_CloseCurrentMB, IMAP_Logout, IMAP_SetCurrentMB, IMAP_SetFlags.

4D Internet Commands Reference 111

IMAP_MsgInfo IC IMAP Review Mail

version 6.8.1
__

IMAP_MsgInfo (imap_ID; msgNum; msgSize; uniqueID) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
msgNum Longint → Message number
msgSize Longint ← Message size
uniqueID Longint ← Unique ID of message on server

Function result Integer ← Error code

Description
The command IMAP_MsgInfo returns information about the message identified by
msgNum within the currently selected mailbox. Information about the size of the
message and its Unique ID will be returned.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

msgNum is a long integer value indicating which message in the mailbox you wish to
retrieve information about. The msgNum represents the position of a message within the
current list of messages. You cannot rely on the msgNum to remain the same for a
specific e-mail item from session to session.

msgSize is the long integer value returned containing the message size referenced by
msgNum.

uniqueID is a long integer variable denoting the Unique ID of the message on the server.
The uniqueID is a value assigned to the message by the IMAP4 server software. This value
will not change from session to session in the same way as msgNum. The uniqueID value
is a good reference to verify if your database has already downloaded a message from the
server

See Also
IMAP_Login, IMAP_SetCurrentMB.

112 4D Internet Commands Reference

IMAP_GetMessage IC IMAP Review Mail

version 6.8.1
__

IMAP_GetMessage (imap_ID; msgNum; offset; length; msgPart; msgText{; updateSeen}) →
Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
msgNum Longint → Message number
offset Longint → Offset of character at which to begin retrieval
length Longint → How many characters to return
msgPart Integer → 0 = Entire message, 1 = Only header,

2= Only Body
msgText Text ← Message Text
updateSeen Integer → 0 = Update \Seen Flag; 1 = Do not update

Function result Integer ← Error code

Description
The command IMAP_GetMessage returns the complete text of the message identified by
msgNum within the current mailbox referenced by IMAP_SetCurrentMB. Unless otherwise
specified by the IMAP_SetPrefs command, any linefeed characters within the message will
be removed.

The IMAP_GetMessage command returns either the entire block of the message, including
header information, or with header only or body only, depending on the msgPart
parameter.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

msgNum is a long integer value indicating which message in the mailbox to retrieve. This
number represents the position of a message within the current list of messages. You
cannot rely on msgNum remaining the same for a specific e-mail item from session to
session.

offset is a long integer value indicating the number of characters from the beginning of
the specified msgPart to begin reading. In most circumstances a zero should be passed to
this parameter.

length is a long integer value representing the number of characters beyond the offset
position to retrieve. Since the maximum length of a 4D text variable is limited to 32,000
characters, the length parameter should be set to any number below 32,000. Messages
whose msgPart size is greater than 32K must be saved to the disk via the IMAP_Download
command.

4D Internet Commands Reference 113

msgPart indicates the message part to retrieve. Values 0, 1 or 2 can be passed:
• 0 = Entire message,
• 1 = Only header,
• 2 = Only body (means first Text/ plain encountered).

Retrieving entire message or only header retrieves raw text without decoding. On the
other hand, when retrieving only body, the text will be decoded and converted
automatically if needed (see POP3_Charset for more information concerning decoding
and conversion rules).

updateSeen is an integer value that indicates if the flag \Seen has to be added to the
message flags whether implicitly or not. This parameter is optional and the default value
is used if this parameter is not passed.
• 0 = Add \Seen Flag (default value);
• 1= Do not add \Seen Flag;

msgText is a text variable that will receive the retrieved text.

See Also
IMAP_Download, IMAP_Login, IMAP_SetCurrentMB, IMAP_SetPrefs.

114 4D Internet Commands Reference

IMAP_MsgLstInfo IC IMAP Review Mail

version 6.8.1
__

IMAP_MsgLstInfo (imap_ID; startMsg; endMsg; msgSizeArray; msgNumArray; msgIdArray) →
Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Longint → Start message number
endMsg Longint → End message number
msgSizeArray Longint Array ← Array of sizes
msgNumArray Longint Array ← Array of message numbers
msgIdArray Longint Array ← Array of Unique Msg IDs

Function result Integer ← Error code

Description
The command IMAP_MsgLstInfo returns information about a set of messages in the
current working mailbox (defined by the IMAP_SetCurrentMB command). The
information is returned into three arrays with each element of the arrays corresponding
to one message. Information is returned about the message size and number. The arrays
passed as parameters must be of pre-declared types, though they may be of any size. The
IMAP_MsgLstInfo command will reset the size of each array to the number of messages
retrieved.

The IMAP_MsgLstInfo command will not return an error number if it fails to retrieve
information on a message within the current message list. If an error occurs, no element
is created in the arrays for the problem message. If the command reads each message
successfully, the msgNumArray should contain numeric values in a sequential order. If
problems were encountered, there may be gaps in the sequence of numbers held in
msgNumArray.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number that specifies the starting message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

endMsg is a long integer number which specifies the ending message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command – in effect – does nothing.

4D Internet Commands Reference 115

sizeArray is a long integer array returned containing the sizes of each message between
startMsg and endMsg.

msgNumArray is a long integer array returned containing the message numbers between
startMsg and endMsg.

msgIdArray is a long integer array returning the Unique IDs of the messages between
startMsg and endMsg.

See Also
IMAP_SetCurrentMB.

116 4D Internet Commands Reference

IMAP_MsgLst IC IMAP Review Mail

version 6.8.1
__

IMAP_MsgLst (imap_ID; startMsg; endMsg; msgHeaderArray; msgNumArray; msgIdArray;
msgValueArray) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Longint → Start message number
endMsg Longint → End message number
msgHeaderArray Str | Txt Array → Array of headers to retrieve
msgNumArray Longint Array ← Array of message numbers
msgIdArray Longint Array ← Array of Unique Msg IDs
msgValueArray 2D Str|Txt Array ← 2D Array of header values

Function result Integer ← Error code

Description
The command IMAP_MsgLst is used to get specific information of mailbox contents. It
allows the user to request specific columns of the message list. This command can only
return header item values; it cannot be used to retrieve the body of a message. Header
content is automatically decoded and converted if needed (see POP3_Charset for more
information concerning the decoding and conversions rules).

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number that specifies the starting message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

endMsg is a long integer number that specifies the ending message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command – in effect – does nothing.

msgHeaderArray is a string or text array that lists the specific e-mail headers you wish to
retrieve.

msgNumArray is a long integer array returned containing the message numbers between
startMsg and endMsg.

4D Internet Commands Reference 117

msgIdArray is a long integer array returning the Unique IDs of the messages between
startMsg and endMsg.

msgValueArray is a 2-dimensional array that receives the data for each header specified in
msgHeaderArray. Each requested header will have a matching array in the first dimension
of valueArray.

Example
aHeaders{1}:="Date:"
aHeaders{2}:="From:"
aHeaders{3}:="Subject:"

⇒ IMAP_MsgLst (IMAP_ID; vStart; vEnd; aHeaders; aMsgNum; aMsgId; aValues)

aValues{1}{1} may equal “Thu, 19 November 1998 00:24:02 -0800”
aValues{2}{1} may equal “Jack@4d.com”
aValues{3}{1} may equal “Call your wife”

Errors are handled the following manner:

1) Only communication-related error codes will be returned. If the command cannot
complete its task because of an error (network, syntax, server, etc.) then the appropriate
error code will be returned.

2) If a message within the specified range of messages does not exist or gets an error:
• No array element is created for that message.
• No Error code will be returned.

3) The inability to locate any or all of the specified headers within a message does not
constitute an error:
• An array element for the message will be created.
• The msgNumArray and msgIDArray array elements will contain the appropriate values.
• For each header which does not exist in the message, a null string will be returned into
that array element.
• No Error code will be returned.

See Also
IMAP_MsgLstInfo.

118 4D Internet Commands Reference

IMAP_SetFlags IC IMAP Review Mail

version 6.8.1
__

IMAP_SetFlags (imap_ID; startMsg; endMsg; msgFlagsList; deleteOption) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Longint → Start message number
endMsg Longint → End message number
msgFlagsList Str | Txt → Flag values to add or remove
deleteOption Integer → 1 = add flag value, 0 = remove flag value

Function result Integer ← Error code

Description
The command IMAP_SetFlags allows adding or clearing of several flags at a time, attached
to the specified range of messages.

IMAP protocol allows associating of a list of flags with a message. There are two types of
flags: permanent or session-only.
Permanent flags are added or removed permanently from the message flags (see
IMAP_SetCurrentMB); in other words, subsequent sessions will reflect any changes in
permanent flags.
Changes made for session flags are only valid for that session.

The currently defined system flags are:
• Seen: Message has been read.
• Answered: Message has been answered.
• Flagged: Message is “flagged” for urgent/special attention.
• Deleted: Message is “deleted” for later removal with IMAP_Delete,
IMAP_CloseCurrentMB, IMAP_SetCurrentMB or IMAP_Logout.
• Draft: Message is in draft format; in other words, not complete.
• Recent: Message “recently” arrived in this mailbox. This session is the first session
notified about this message; subsequent sessions will not see the \Recent flag set for this
message. This permanent flag is managed by the IMAP server and cannot be modified by
an IMAP client using IMAP_SetFlags, for instance.

An IMAP server may allow a client to define new “flags” or, on another IMAP server, may
allow managing of flags other than those previously indicated. This depends on the IMAP
server implementation. In this case, these special flags are called “keywords” and do not
begin with “\” (see IMAP_SetCurrentMB).

Note: If you set the \Deleted flag and close the current session by executing
IMAP_SetCurrentMB, IMAP_CloseCurrentMB, IMAP_Delete or IMAP_Logout, the message
will be “deleted” permanently.

4D Internet Commands Reference 119

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number that specifies the starting message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

endMsg is a long integer number that specifies the ending message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command – in effect – does nothing.

msgFlagsList may contain one or several flags. In the case of several flags, the string must
be a list of flags, separated by spaces. See examples below.

Only flags listed as permanentFlags, (see IMAP_SetCurrentMB), will be applied.

deleteOption is an integer value which specifies whether to remove or add the flag(s)
specified by the msgFlagsList parameter:
• A value of zero will remove the flag(s) specified in msgFlagsList.
• A value of 1 will add the flag(s) specified in msgFlagsList.

Examples
(1) Set the \Answered and \Draft flags for the messages specified by startMsg and
endMsg whether these flags were set previously or not:

msgFlagsName:="\Answered \Draft"
` \Answered and \Draft are separated by a space (ASCII code)

⇒ IMAP_SetFlags (imap_ID;startMsg;endMsg;msgFlagsName;1)

(2) Remove the \Deleted flag for the messages specified by startMsg and endMsg
whether this flag was set previously or not:

msgFlagsName:="\Deleted"
⇒ IMAP_SetFlags (imap_ID;startMsg;endMsg;msgFlagsName;0)

(3) Set the \Deleted flag for the messages specified by startMsg and endMsg whether this
flag was set previously or not:

msgFlagsName:="\Deleted"
⇒ IMAP_SetFlags (imap_ID;startMsg;endMsg;msgFlagsName;1)

IMAP_CloseCurrentMB (imap_ID)
`Closes the current mailbox and permanently deletes the specified messages.

120 4D Internet Commands Reference

(4) Set the \Answered flag depending on the CheckBoxAnswered value:

$Error:= IMAP_SetFlags (vImap_ID;$msgNum;$msgNum;"\Answered";
Num (CheckBoxAnswered =0))

See Also
IMAP_GetFlags, IMAP_SetCurrentMB.

4D Internet Commands Reference 121

IMAP_GetFlags IC IMAP Review Mail

version 6.8.1
__

IMAP_GetFlags (imap_ID; startMsg; endMsg; msgFlagsArray; msgNumArray) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Text → Start message number
endMsg Text → End message number
msgFlagsArray Str | Txt Array ← Flag values for each message
msgNumArray Str | Txt Array ← Array of message numbers

Function result Integer ← Error code

Description
The command IMAP_GetFlags returns the list of flags for the specified messages.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number that specifies the starting message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

endMsg is a long integer number that specifies the ending message number of the
message range to be examined. The message number is a value representing the position
of a message within the list of all messages in the current working mailbox.

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command — in effect — does nothing.

msgFlagsArray is a string or text array returned containing the list of flags, separated by
spaces, of each message number between startMsg and endMsg.

msgNumArray is a long integer array returned containing the message numbers between
startMsg and endMsg.

See Also
IMAP_SetCurrentMB, IMAP_SetFlags.

122 4D Internet Commands Reference

IMAP_MsgFetch IC IMAP Review Mail

version 6.8.1
__

IMAP_MsgFetch (imap_ID; msgNum; msgDataItem; msgDataItemValue) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
msgNum Longint → Message number
msgDataItem Text → Data item(s) to retrieve
msgDataItemValue Text ← Data item(s) value

Function result Integer ← Error code

Description
The command IMAP_MsgFetch allows the user to request one or several basic data items
for the specified message without downloading the message.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

msgNum is a long integer value indicating the message to be checked. This value
represents the position of a message within the current list of messages. You cannot rely
on the msgNum remaining the same for a specific e-mail item from session to session.

msgDataItem is a text variable that indicates one or several data items you want to
retrieve. In the case of several data items, a space character must separate each of them.
There are two kinds of data items:
• Basic data items, which only retrieve one piece of information, and
• Macro data items, which retrieve several pieces of information, issued from basic data
items at one time. Three macros specify commonly-used sets of data items and can be
used in place of them. A macro must be used by itself, and not in conjunction with other
macros or data items.

For more information on data items, see the “Basic data items” and “Macro data items”
paragraphs below.

msgDataItemValue is a text variable that can return either a single DataItem/DataItemValue
pair or a list of DataItem/DataItemValue pairs depending on the msgDataItem parameter
value.
• In the case of a single DataItem/DataItemValue, the returned text structure is as follows:
DataItem name+Space+DataItemValue
• In the case of a list of DataItem/DataItemValue pairs, the returned text structure is as
follows: DataItem name1+Space+DataItemValue1+Space+DataItem
name2+Space+DataItemValue2.

4D Internet Commands Reference 123

msgDataItemValue may contain a parenthesized list, a quoted string or a single string
depending on the msgDataItem parameter.
• The parenthesized list is structured as follows (see FLAGS case for example):
(FirstDataItemValue+space+2ndDataItemValue)
If the parenthesized list returns only parentheses, this means that there is no item value.
This rule does not apply to address parenthesized lists (see ENVELOPE).
• Quoted strings are structured as follows (see INTERNALDATE case for example): DataItem
name+Space+Quote+DataItemValue+Quote
If the DataItem value returns "", this means that it is a null string.
• Strings that are not quoted indicate integer, long integer or numeric values and are
structured as follows: DataItem name+Space+DataItemValue.
In this case, you will most likely have to convert to the appropriate type (see UID case for
example).

Note: Quotes are generally used when the string value includes special characters, such as
a space or parentheses. As such, when you parse the resulting string of the IMAP_Fetch
command, quote characters are taken into consideration when processing the string
content.

Basic data items
• INTERNALDATE
Retrieves the internal date and time of the message on the IMAP server. This is not the
date and time returned by the “Date” header, but rather a date and time that indicate
when the message was received. For messages delivered via an SMTP server, this date
usually reflects the date and time of the final delivery of the message. For messages sent
after an IMAP_Copy command, this data usually reflects the internal date and time of the
source message.
INTERNALDATE data item value returns a quoted string.

Example:
msgDataItem:="INTERNALDATE"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItem returns INTERNALDATE "17-Jul-2001 15:45:37 +0200"

• FLAGS
Retrieves the parenthesized list of flags that are set for the specified message. Flags values
are separated by spaces.

Example:
msgDataItem:="FLAGS"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItem returns FLAGS () if there is no flag set for the specified message.
msgDataItem returns FLAGS (\Seen \Answered) if \Seen and \Answered flags are set for
the specified message.

124 4D Internet Commands Reference

• RFC822.SIZE
Retrieves the number of bytes in the message, as expressed in RFC-822 format. The Data
item is separated from the returned value by a space. An unquoted string is returned,
which means you will probably need to convert this string into a longint value (see UID
example).

Example:
msgDataItem:="RFC822.SIZE"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItem returns RFC822.SIZE 99599

• ENVELOPE
Retrieves the parenthesized list describing the header part for the specified message. The
server computes this by parsing the message header and defaulting various fields where
necessary.

The header fields are returned in the following order: date, subject, from, sender, reply-to,
to, cc, bcc, in-reply-to, and message-id. The date, subject, in-reply-to and message-id fields
are quoted strings:
ENVELOPE ("date" "subject" (from) (sender) (reply-to) (to) (cc) (bcc) "in-reply-to" "message-
id")

Example:
msgDataItem:="ENVELOPE"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItem returns ENVELOPE ("Tue, 17 Jul 2001 17:26:34 +0200" "Test" (("RSmith" NIL
"RSmith" "test")) (("RSmith" NIL "RSmith" "test")) (("RSmith" NIL "RSmith" "test")) (("RSmith"
NIL "RSmith" "test")) () () "" "<ee6b33a.-1@Mail.x6foadRIbnm>")

Date: "Tue, 17 Jul 2001 17:26:34 +0200" date header
Subject: "Test" subject header
From: (("RSmith" NIL "RSmith" "test")) address structures
Sender: (("RSmith" NIL "RSmith" "test")) address structures
reply-to: (("RSmith" NIL "RSmith" "test")) address structures
to: (("RSmith" NIL "RSmith" "test")) address structures
cc: () Cc header not used
bcc: () Bcc header not used
in-reply-to: "" In-reply-to header
message-id: "<ee6b33a.-1@Mail.x6foadRIbnm>" message-id header

The from, sender, reply-to, to, cc and bcc fields are parenthesized lists of address structures.
An address structure is a parenthesized list that describes an electronic mail address. The
fields of an address structure are in the following order: personal name, [SMTP] at-domain-
list (source route), mailbox name and host name. For instance, (("RSmith" NIL "RSmith"
"test")).

4D Internet Commands Reference 125

(From [RFC-822]) Group syntax is indicated by a special form of address structure where
the host name field is NIL. If the mailbox name field is also NIL, this is an end-of-group
marker (semi-colon in RFC 822 syntax). If the mailbox name field is non-NIL, this is the
start-of-group marker and the mailbox name field holds the group name phrase.
A field of an envelope or address structure that is not applicable is presented as NIL. Note
that the server MUST default the reply-to and sender fields from the “from” field; the
client is not expected to know how to do this.

• BODY
Returns the same information as BODYSTRUCTURE except for the Extension data (see
BODYSTRUCTURE) which is not returned.

Example:
msgDataItem:="BODY"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItem returns BODY ("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "8BIT" 8 1)

• BODYSTRUCTURE
Retrieves the MIME body structure of the message. The server computes this by parsing
the MIME header fields in the message header and MIME headers in the body part. This
data item is especially useful for scanning a message content without downloading it. For
instance, you can quickly check the size of each part or just check the attachment file
names. BODYSTRUCTURE returns a parenthesized list including the parenthesized list,
quoted strings and unquoted strings.

Depending on the message content, BODYSTRUCTURE will return either a “non-
multipart” parenthesized list or a nested one (“multipart” parenthesized list):
• “non-multipart” parenthesized list: this is, for instance, similar to non-multipart e-mail;
a simple text message of 48 lines and 2279 bytes can have a body structure of: ("TEXT"
"PLAIN" ("CHARSET" "us-ascii") NIL NIL "8BIT" 8 1 NIL NIL NIL).

126 4D Internet Commands Reference

The basic fields of a “non-multipart” parenthesized list are in the following order:

body type A string giving the content media type name
(Content-type: media type e.g. TEXT)

body subtype A string giving the content subtype name
(Content-type: subtype e.g. PLAIN)

body parameter A parenthesized list of attribute/value pairs
parenthesized list [e.g. ("CHARSET" "US-ASCII" "NAME" "cc.diff")

where "US-ASCII" is the value of "CHARSET" and
"cc.diff" is the value of "NAME".

body id A string giving the content id (allows one body to make a
reference to another one). Accordingly, bodies may be labeled
using the "Content-ID" header field. The Content-ID value has
special semantics in the case of a multipart/alternative media type.
This is explained in the section of RFC 2046 dealing with
multipart/alternative cases.

body description A string giving the content description
body encoding A string giving the content transfer encoding

(Content-Transfer-Encoding)
body size A number giving the size of the body in bytes.

Note that this is the size during transfer encoding
and not the resulting size after decoding.

- A body of the MESSAGE type and RFC822 subtype contains, immediately following the
basic fields, the envelope structure, body structure, and size in text lines of the
encapsulated message.
- A body of the TEXT type contains, immediately following the basic fields, the size of the
body in text lines. Note that this is the size during content transfer encoding and not the
resulting size after decoding.
Extension data follows the basic fields and type-specific fields listed above. Extension data
is never returned with the BODY fetch, but can be returned with a BODYSTRUCTURE
fetch.
Extension data , if present, of a “non multipart” parenthesized list MUST be in the
defined order:

body MD5 A string giving the body MD5 value as defined in [MD5]
body disposition A parenthesized list consisting of a disposition type string

followed by a parenthesized list of disposition attribute/value pairs
as defined in [DISPOSITION]

body language A string or parenthesized list giving the body language value
as defined in [LANGUAGE-TAGS]

Any extension data which follows are not yet defined in this version of the protocol and
will be as described above under multipart extension data.

Example:
("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 2279 48 NIL NIL NIL)

4D Internet Commands Reference 127

Description:
("bodytype" "bodysubtype" (BodyParameterParenthesizedList) bodyId bodyDescription
"bodyEncoding" BodySize BodySizeInTextLines ExtensionDataBODYmd5
ExtensionDataBodyDisposition ExtensionDataBodyLanguage)

• “multipart” parenthesized list: this is the case of multipart e-mail; it includes a “non-
multipart” parenthesized list.
Parenthesis nesting indicates multiple parts. The first element of the parenthesized list is a
nested body instead of a body type. The second element of the parenthesized list is the
multipart subtype (mixed, digest, parallel, alternative, etc.).
The multipart subtype is followed by the Extension data. Extension data, if present, MUST
be in the defined order:

body parameter A parenthesized list of attribute/value pairs
parenthesized list
body disposition A parenthesized list consisting of a disposition type string

followed by a parenthesized list of disposition attribute/value pairs
as defined in [DISPOSITION]

body language A string or parenthesized list giving the body language value
as defined in [LANGUAGE-TAGS]

Any extension data which follows are not yet defined in this version of the protocol. This
extension data can consist of zero or more NILs, strings, numbers or potentially nested
parenthesized lists of such data. Client implementations that do a BODYSTRUCTURE fetch
MUST be prepared to accept such extension data. Server implementations MUST NOT
send such extension data until it has been defined by a revision of this protocol.

Example:
BODYSTRUCTURE (("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 22 1 NIL NIL
NIL)("APPLICATION" "BYTE-STREAM" ("NAME" "casta37.jpg" "X-MAC-TYPE" "4A504547" "X-
MAC-CREATOR" "6F676C65") NIL NIL "BASE64" 98642 NIL ("ATTACHMENT" ("FILENAME"
"casta37.jpg")) NIL) "MIXED" ("BOUNDARY" "4D_====================1385356==") NIL
NIL)

Description:
(("bodytype" "bodysubtype" (BodyParameterParenthesizedList) bodyId bodyDescription
"bodyEncoding" BodySize BodySizeInTextLines ExtensionDataBODYmd5
ExtensionDataBodyDisposition ExtensionDataBodyLanguage) ("bodytype" "bodysubtype"
(BodyParameterParenthesizedList) bodyId bodyDescription "bodyEncoding" BodySize
BodySizeInTextLines ExtensionDataBODYmd5 ExtensionDataBodyDisposition
ExtensionDataBodyLanguage) "multipartSubtype" (ExtensionDataBodyParameterList)
ExtensionDataBodyDisposition ExtensionDataBodyLanguage))

• UID
Retrieves a number expressing the message unique identifier of the message. This is
equivalent to executing the IMAP_UIDToMsgNum.

128 4D Internet Commands Reference

Since this number is returned into a text area, you will have to convert it into a Long
integer.

Example:
msgDataItem:="UID"

⇒ $Err:=IMAP_MsgFetch(imap_ID;1;msgDataItem;msgDataItemValue)

msgDataItemValue returns UID 250000186

To retrieve a longint value:

C_LONGINT(vLongint)
VLongint:=Num("250000186")

Macro data items
• FAST
Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE)

Example:

⇒ $Err:=IMAP_MsgFetch (imap_ID; msgNum;"FAST";msgDataItemValue)

msgDataItemValue returns "FLAGS (\Seen \Answered) INTERNALDATE "17-Jul-2001 15:45:37
+0200" RFC822.SIZE 99599"

• ALL
Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

• FULL
Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE BODY)

See Also
IMAP_SetFlags, IMAP_UIDToMsgNum.

4D Internet Commands Reference 129

IMAP_Download IC IMAP Review Mail

version 6.8.1
__

IMAP_Download (imap_ID; msgNum; headerOnly; fileName{; updateSeen}) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
msgNum Longint → Message number
headerOnly Integer → 0 = Entire message, 1 = Only header
fileName Text → Local Filename

← Resulting Local Filename
updateSeen Integer → 0 = Add \Seen Flag; 1= Do not add \Seen Flag

Function result Integer ← Error code

Description
The command IMAP_Download is designed to retrieve a message from an IMAP server by
downloading it to a disk-based file. Any IMAP message which contains attachments or
whose size is greater than 32K should be downloaded with this command. File
attachments can only be extracted from the messages retrieved in this way.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

msgNum is a long integer value indicating which message in the mailbox to retrieve.
msgNum represents the position of a message within the current list of messages. You
cannot rely on the msgNum remaining the same for a specific e-mail item from session to
session.

headerOnly is an integer value which denotes whether to retrieve the entire contents of
the message or just the header information.

fileName contains the name of the file and the optional path where you would like the
message saved. This value may be specified in three different ways:

• "" = Saves the file in the folder set by IMAP_SetPrefs, with the name “temp1” (if a file
with the same name already exists, the filenames “temp2”, “temp3”, etc. will be tried
until an unused file name is found).

• "FileName" = Saves the file in the folder set by IMAP_SetPrefs entitled FileName.

• "Path:FileName" = Saves the file in the path specified with the name FileName.

In the first two cases, if no folder has been specified by IMAP_SetPrefs, the message will be
saved in the same folder as the structure of the database (with 4D single-user) or in the 4D
Client folder (with 4D Server).

130 4D Internet Commands Reference

After the file has been saved to the disk, the final name of the file will be returned to the
variable passed as the fileName parameter. If you attempt to call IMAP_Download with a
fileName that already exists within the download folder, the name will be numerically
incremented and its new value as saved to the disk will be returned to the fileName
variable.

updateSeen is an integer value that indicates if the \Seen flag must be added to the
message flags list, whether implicitly or not. This parameter is optional and a default value
is used if this parameter is not passed:
• 0 = Add \Seen Flag
• 1 = Do not add \Seen Flag

Default value is set to 0 which implicitly means add \Seen flag.

See Also
IMAP_GetMessage, IMAP_SetPrefs.

4D Internet Commands Reference 131

IMAP_UIDToMsgNum IC IMAP Review Mail

version 6.8.1
__

IMAP_UIDToMsgNum (imap_ID; unique_ID; msgNum) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
unique_ID Longint → Message unique identifier value
msgNum Longint ← Message number

Function result Integer ← Error code

Description
The command IMAP_UIDToMsgNum converts a message unique_ID value to its current
msgNum within the list of messages in the current mailbox referenced by imap_ID. Since a
specific e-mail message msgNum is a floating value relative to other items in the electronic
mail list, this command returns the current position of a message whose information may
have been retrieved during a prior IMAP session.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

unique_ID is a long integer value indicating the Unique ID of a message to be located on
the IMAP server.

msgNum is a long integer returned containing the current message number (its position
within the current message list) of the item identified by unique_ID. If the unique_ID
cannot be found on the server, a zero is returned in msgNum and no error is returned.

See Also
IMAP_MsgNumToUID, IMAP_SetCurrentMB.

132 4D Internet Commands Reference

IMAP_MsgNumToUID IC IMAP Review Mail

version 6.8.1
__

IMAP_MsgNumToUID (imap_ID; msgNum; unique_ID) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
msgNum Longint → Message number
unique_ID Longint ← Message unique identifier value

Function result Integer ← Error code

Description
The command IMAP_MsgNumToUID converts a message number within the list of
messages in the current mailbox referenced by imap_ID to its current unique_ID value.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

msgNum is a long integer returned containing the current message number (its position
within the current message list) of the item identified by unique_ID. If the unique_ID
cannot be found on the server, a zero is returned in msgNum and no error is returned.

unique_ID is a long integer value returning the Unique ID of a message to be located on
the IMAP server.

See Also
IMAP_SetCurrentMB, IMAP_UIDToMsgNum.

4D Internet Commands Reference 133

IMAP_Search IC IMAP Review Mail

version 6.8.1
__

IMAP_Search (imap_ID; searchCriteria; msgNumArray) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
searchCriteria Text → Search criteria
msgNumArray Longint Array ← Array of message numbers

Function result Integer ← Error code

Description
The command IMAP_Search searches for messages that match the given search criteria in
the current mailbox. searchCriteria consist of one or more search keys. msgNumArray
returns a listing of message sequence numbers corresponding to those messages that
match the search criteria.
msgNumArray returns a listing of message sequence numbers corresponding to those
messages that match the searching criteria.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

searchCriteria is a text parameter listing one or more search keys (see “Authorized search
keys” at the end of this paragraph) associated or not with values to look for. A search key
may be a single item or can also be a parenthesized list of one or more search keys. For
example:

SearchKey1 = FLAGGED
SearchKey2 = NOT FLAGGED
SearchKey3 = FLAGGED DRAFT

Note: Matching is usually not case-sensitive.

• If the searchCriteria is a null string, the search will be equivalent to a “select all”:

⇒ IMAP_Search (imap_ID;""; msgNumArray)

... returns all messages in the current working mailbox.

• If the searchCriteria includes multiple search keys, the result is the intersection (AND
function) of all the messages that match those keys.

searchCriteria = FLAGGED FROM "SMITH"

... returns all messages with \Flagged flag set AND sent by Smith.

134 4D Internet Commands Reference

• You can use the OR or NOT operators as follows:

searchCriteria = OR SEEN FLAGGED

... returns all messages with \Seen flag set OR \Flagged flag set

searchCriteria = NOT SEEN

... returns all messages with \Seen flag not set .

searchCriteria = HEADER CONTENT-TYPE "MIXED" NOT HEADER CONTENT-TYPE "TEXT"...

... returns message whose content-type header contains “Mixed” and does not contain
“Text”.

searchCriteria = HEADER CONTENT-TYPE "E" NOT SUBJECT "o" NOT HEADER CONTENT-TYPE
"MIXED"

... returns message whose content-type header contains “ e ” and whose Subject header
does not contain “ o ” and whose content-type header is not “ Mixed ”.

searchCriteria = OR (ANSWERED SMALLER 400) (HEADER CONTENT-TYPE "E" NOT SUBJECT
"o" NOT HEADER CONTENT-TYPE "MIXED")

... returns messages matching the first parenthesized list OR the second one.

searchCriteria = OR ANSWERED SMALLER 400 (HEADER CONTENT-TYPE "E" NOT SUBJECT "o"
NOT HEADER CONTENT-TYPE "MIXED")

... returns messages matching with \Answered flag set OR messages whose size is smaller
than 400 bytes AND the parenthesized list as specified.

As concerns the last two examples, notice that the result of the search is different when
you remove the parentheses of the first search key list.

• The searchCriteria may include the optional [CHARSET] specification. This consists of the
"CHARSET" word followed by a registered [CHARSET] (US ASCII, ISO-8859). It indicates the
charset of the searchCriteria string. Therefore, you must convert the searchCriteria string
into the specified charset if you use the [CHARSET] specification (see the 4th Dimension
Mac to ISO command).

By default, 4D Internet Commands encode in Quotable Printable the searchCriteria string
if it contains extended characters.

searchCriteria = CHARSET "ISO-8859" BODY "Help"

... means the search criteria uses the charset iso-8859 and the server will have to convert
the search criteria before searching, if necessary.

4D Internet Commands Reference 135

Search value types
Search-keys may request the value to search for:

• Search-keys with a date value
<date> is a string that must be formatted as follows: date-day+"-"+date-month+"-"+date-
year where date-day indicates the number of the day of the month (max. 2 characters),
date-month indicates the name of the month
(Jan/Feb/Mar/Apr/May/Jun/Jul/Aug/Sep/Oct/Dec) and date-year indicates the year (4
characters).

Example: searchCriteria = SENTBEFORE 1-Feb-2000 (a date does not usually need to be
quoted since it does not contain any special characters)

• Search-keys with a string value
<string> may contain any character and must be quoted. If the string does not contain
any special characters, like the space character for instance, it does not need to be quoted.
Quoting such strings will ensure that your string value will be correctly interpreted.

Example: searchCriteria = FROM "SMITH"

Note: For all search keys that use strings, a message matches the key if the string is a
substring of the field. Matching is not case-sensitive.

• Search-keys with a field-name value
<field-name> is the name of a header field.

Example: searchCriteria = HEADER CONTENT-TYPE "MIXED"

• Search-keys with a flag value
<flag> may accept one or several keywords (including standard flags), separated by spaces.

Example: searchCriteria = KEYWORD \Flagged \Draft

• Search-keys with a message set value
Identifies a set of messages. For message sequence numbers, these are consecutive
numbers from 1 to the total number of messages in the mailbox.
A comma delimits individual numbers; a colon delimits between two numbers inclusive.

Examples:
2,4:7,9,12:* is 2,4,5,6,7,9,12,13,14,15 for a mailbox with 15 messages.

searchCriteria = 1:5 ANSWERED search in message selection from message sequence
number 1 to 5 for messages which have the \Answered flag set.

searchCriteria= 2,4 ANSWERED search in the message selection (message numbers 2 and 4)
for messages which have the \Answered flag set.

136 4D Internet Commands Reference

Authorized search-keys
ALL: All messages in the mailbox.

ANSWERED: Messages with the \Answered flag set.

UNANSWERED: Messages that do not have the \Answered flag set.

DELETED: Messages with the \Deleted flag set.

UNDELETED: Messages that do not have the \Deleted flag set.

DRAFT: Messages with the \Draft flag set.

UNDRAFT: Messages that do not have the \Draft flag set.

FLAGGED: Messages with the \Flagged flag set.

UNFLAGGED: Messages that do not have the \Flagged flag set.

RECENT: Messages that have the \Recent flag set.

OLD: Messages that do not have the \Recent flag set.

SEEN: Messages that have the \Seen flag set.

UNSEEN: Messages that do not have the \Seen flag set.

NEW: Messages that have the \Recent flag set but not the \Seen flag. This is functionally
equivalent to “(RECENT UNSEEN)”.

KEYWORD <flag>: Messages with the specified keyword set.

UNKEYWORD <flag>: Messages that do not have the specified keyword set.

BEFORE <date>: Messages whose internal date is earlier than the specified date.

ON <date>: Messages whose internal date is within the specified date.

SINCE <date>: Messages whose internal date is within or later than the specified date.

SENTBEFORE <date>: Messages whose Date header is earlier than the specified date.

SENTON <date>: Messages whose Date header is within the specified date.

SENTSINCE <date>: Messages whose Date header is within or later than the specified date.

TO <string>: Messages that contain the specified string in the TO header.

FROM <string>: Messages that contain the specified string in the FROM header.

CC <string>: Messages that contain the specified string in the CC header.

BCC <string>: Messages that contain the specified string in the BCC header.

SUBJECT <string>: Messages that contain the specified string in the Subject header.

4D Internet Commands Reference 137

BODY <string>: Messages that contain the specified string in the message body.

TEXT <string>: Messages that contain the specified string in the header or in the message
body.

HEADER <field-name> <string>: Messages that have a header with the specified field-
name and that contain the specified string in the field-body.

UID <message UID>: Messages with unique identifiers corresponding to the specified
unique identifier set.

LARGER <n>: Messages with a size larger than the specified number of bytes.

SMALLER <n>: Messages with a size smaller than the specified number of bytes.

NOT <search-key>: Messages that do not match the specified search key.

OR <search-key1> <search-key2>: Messages that match either search key.

See Also
IMAP_GetFlags, IMAP_SetFlags.

138 4D Internet Commands Reference

IMAP_CopyToMB IC IMAP Review Mail

version 6.8.1
__

IMAP_CopyToMB (imap_ID; startMsg; endMsg; mbNameTarget{; msgDelete}) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
startMsg Longint → Start message number
endMsg Longint → End message number
mbNameTarget Text → Name of the destination mailbox
msgDelete Integer → 0= Do not remove from source mailbox,

1= Remove from source mailbox

Function result Integer ← Error code

Description
Given a range of messages from startMsg to endMsg, the IMAP_CopyToMB command will
copy the specified message(s) to the end of the specified mbNameTarget destination
mailbox. The flags and the internal date of the message(s) are usually preserved in the
destination mailbox, depending on the IMAP server implementation.

After being copied, original messages are not removed from the source mailbox. If you
want to remove them, you can use one of the 3 following processes:
• use the IMAP_Delete command,
• set the msgDelete optional parameter to 1,
• set IMAP_SetFlags (\Deleted): the messages will be removed when the session is closed.

Note: The msgDelete parameter will force the execution of an IMAP_Delete; therefore, the
deletion will include messages between startMsg and endMsg and ALL messages for which
the \Deleted flag is set.

If the destination mailbox does not exist, an error is returned.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

startMsg is a long integer number that specifies the starting message number of the
message range to be copied. The message number is a value representing the position of a
message within the list of all messages in the mailbox identified by imap_ID.

endMsg is a long integer number that specifies the ending message number of the
message range to be copied. The message number is a value representing the position of a
message within the list of all messages in the mailbox identified by imap_ID.

4D Internet Commands Reference 139

Note: The IMAP_Delete, IMAP_MsgLstInfo, IMAP_MsgLst, IMAP_SetFlags, IMAP_GetFlags
and IMAP_CopyToMB commands do not return an error if the startMsg is greater than the
endMsg. In the event that this occurs, the command – in effect – does nothing.

mbNameTarget is the full name of the mailbox where the specified messages will be
copied.

The msgDelete optional parameter allows setting if you want to remove the message from
the source mailbox.
• 0= Do not remove from source mailbox (default value);
• 1= Remove from source mailbox.

If msgDelete is omitted, the default value is used.

If copying fails, the message is not removed from the source mailbox.

If the user does not have access to remove messages, an error message is generated.

See Also
IMAP_CreateMB, IMAP_ListMBs, IMAP_RenameMB.

140 4D Internet Commands Reference

IMAP_CreateMB IC IMAP Review Mail

version 6.8.1
__

IMAP_CreateMB (imap_ID; mbName) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Name of the mailbox to be created

Function result Integer ← Error code

Description
The command IMAP_CreateMB creates a mailbox with the given name. If the IMAP
server’s hierarchy separator character appears elsewhere in the mailbox name, the IMAP
server will create any parent names needed to create the given mailbox.

In other words, an attempt to create “Projects/IMAP/Doc” on a server in which “/” is the
hierarchy separator character will create:
• Only the “Doc” mailbox if “Projects” & “IMAP” already exist.
• “IMAP” & “Doc” mailboxes if only “Projects” already exists.
• “Projects” & “IMAP” & “Doc” mailboxes, if they do not already exist.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of the mailbox to be created (see naming rules in the IMAP
introduction).

Note: Attempting to create an INBOX (which is a special name reserved to mean “the
primary mailbox for this user on this server”) or a mailbox with a name referring to an
existing mailbox will lead to an error.

See Also
IMAP_ListMBs, IMAP_RenameMB.

4D Internet Commands Reference 141

IMAP_DeleteMB IC IMAP Review Mail

version 6.8.1
__

IMAP_DeleteMB (imap_ID; mbName) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Mailbox name to be deleted

Function result Integer ← Error code

Description
The command IMAP_DeleteMB permanently removes the mailbox of a given name.
Attempting to delete an INBOX or a mailbox that does not exist will generate an error.

The IMAP_DeleteMB command cannot delete a mailbox which has child mailboxes and
which also has the \Noselect mailbox attribute.

It is possible to delete a mailbox that has child names and does not have the \Noselect
mailbox attribute. In this case, all messages in the mailbox are removed and it acquires
the \Noselect mailbox attribute.

Note: The IMAP protocol does not guarantee that you can delete a mailbox which is not
empty, though on some servers this is allowed. If you do choose to attempt it, you must
be prepared to use another method should the more convenient one fail. Further, you
should not try to delete the current working mailbox while it is open, but should first
close it; some servers do not permit deletion of the current mailbox.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of the mailbox to be deleted.

See Also
IMAP_CloseCurrentMB, IMAP_Delete, IMAP_SetCurrentMB.

142 4D Internet Commands Reference

IMAP_RenameMB IC IMAP Review Mail

version 6.8.1
__

IMAP_RenameMB (imap_ID; mbName; newMBName) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login
mbName Text → Name of the mailbox to be renamed
newMBName Text → New mailbox name

Function result Integer ← Error code

Description
The command IMAP_RenameMB changes the name of a mailbox. Attempting to rename a
mailbox from a mailbox name that does not exist or to a mailbox name that already
exists will generate an error.

Note: Renaming an INBOX is permitted and involves special behavior. It moves all
messages in the INBOX to a new mailbox with the given name, leaving the INBOX
empty. If the server implementation allows child names for the INBOX, these are
unaffected by its renaming.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

mbName is the full name of the mailbox to be renamed (see naming rules in the IMAP
introduction).

newMBName is the full name to apply to rename the mbName mailbox.

See Also
IMAP_CreateMB, IMAP_ListMBs, IMAP_Login.

4D Internet Commands Reference 143

IMAP_Logout IC IMAP Review Mail

version 6.8.1
__

IMAP_Logout (imap_ID) → Integer

Parameter Type Description
imap_ID Longint → Reference to an IMAP login

← 0 = Command successfully logs off

Function result Integer ← Error code

Description
The command IMAP_Logout will log off of the open IMAP connection referred to by the
imap_ID variable. If the command successfully logs off the IMAP server, a zero value is
returned back as the current imap_ID.

Note: Closing a connection automatically closes the current session.

imap_ID is a long integer reference to an open connection created with IMAP_Login.

See Also
IMAP_Login.

144 4D Internet Commands Reference

5

IC Downloaded Mail

4D Internet Commands Reference 145

146 4D Internet Commands Reference

Downloading Mail, Overview IC Downloaded Mail

version 6.8.1 (Modified)
__

The set of commands prefixed by "MSG_" allows the user to manipulate mail messages
which have been saved as local files using the POP3_Download or IMAP_Download
command described in the previous section. Because the set of commands are fully MIME
compliant, 4D Internet Commands provide the means for attachments to be extracted
and/or decoded. For more information on the MIME standards, refer to RFC#1521,
RFC#1522 and RFC#2045.

Once messages have been downloaded to local files, the commands in this section provide
a variety of functions to manipulate the documents. These commands can obtain
information about the message parts, separate the header detail from the message body,
detect and extract attachments within the message as well as delete existing documents.

4D Internet Commands Reference 147

MSG_SetPrefs IC Downloaded Mail

version 6.8.1
__

MSG_SetPrefs (stripLineFeed; msgFolder; attachFolder) → Integer

Parameter Type Description
stripLineFeed Integer → 0 = Do not strip LineFeeds, 1 = Strip LineFeeds,

-1 = No Change
msgFolder Text → Messages folder path (“” = no change)
attachFolder Text → Attachments folder path (“” = no change)

Function result Integer ← Error code

Description
The command MSG_SetPrefs sets the preferences for all MSG commands.

stripLineFeed is an integer value specifying how LineFeed characters will be handled in
downloaded messages. Most Internet messages combine Carriage Return and Line Feed
characters to indicate the end of a line. Macintosh applications prefer a carriage return
only as the end-of-line character. This option lets users strip the linefeed character from
their message text. A value of zero will leave the message “as is”. A value of 1 will strip
linefeed characters from messages. A value of -1 will leave this preference as it has been set
previously. The default option defaults to 1 and will automatically strip any linefeeds
found in messages.

msgFolder is a text value indicating the local pathname to a folder in which retrieved
messages are stored by default.

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
stripLineFeed and msgFolder parameters of the POP3_SetPrefs command will be taken into
account if this command has been used previously. If the MSG_SetPrefs command is used,
the POP3_SetPrefs parameters are ignored.

attachFolder is a text value containing the local pathname to a folder in which
attachments are stored when the MSG_Extract command separates the attachments from
the main body of a message.

Compatibility note (version 6.8.1): This parameter is also found in POP3_SetPrefs and
MSG_SetPrefs; therefore, you can modify it using either of these two commands.
We strongly recommend that you use the MSG_SetPrefs command. The POP3_SetPrefs
parameter is used for compatibility reasons and will no longer be used in the future. The
attachFolder parameter of the POP3_SetPrefs command is optional; therefore, we
recommend that you do not use this parameter. This recommendation also applies to
POP3_GetPrefs.

See Also
IMAP_Download, IMAP_SetPrefs, MSG_Extract, POP3_DownLoad, POP3_SetPrefs.

148 4D Internet Commands Reference

MSG_GetPrefs IC Downloaded Mail

version 6.8.1
__

MSG_GetPrefs (stripLineFeed; msgFolder; attachFolder) → Integer

Parameter Type Description
stripLineFeed Integer ← 0 = Do not strip CR/LF, 1 = Strip CR/LF
msgFolder Text ← Messages folder path ("" = no change)
attachFolder Text ← Attachments folder path ("" = no change)

Function result Integer ← Error code

Description
The command MSG_GetPrefs returns the current preferences for the MSG commands.

The preferences are returned into the variables listed in the parameters.

stripLineFeed returns the current setting of the user’s preference for linefeed stripping.

msgFolder is a text variable which returns the local pathname to the default folder in
which retrieved messages are stored.

attachFolder is a text variable which returns the local pathname to the default folder in
which extracted attachments are stored

See Also
MSG_SetPrefs, POP3_SetPrefs.

4D Internet Commands Reference 149

MSG_FindHeader IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_FindHeader (fileName; headerLabel; headerValue) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
headerLabel String → Header label ("From:", "To:", "Subject:", etc.)
headerValue Text ← Value

Function result Integer ← Error Code

Description
Given the fileName of a message document retrieved to disk by the POP3_Download or
IMAP_Download command, the command MSG_FindHeader will search the header section
for headerLabel and return the value assigned to the field into headerValue.

fileName is the name of the file or the full path of the file of which to extract the header
information. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility note). If no folder has been specified by
POP3_SetPrefs, the path will default to the folder containing the structure of the database
(with 4D single-user) or to the 4D Client folder (with 4D Server).

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder parameter will be used; if MSG_SetPrefs is used, the POP3_SetPrefs
msgFolder parameter is ignored.

headerLabel is a string containing the name of any header label. The headerLabel can
reference any defined, user-defined or extended header such as "From:", "To:", "X-
MyHeader", etc.

headerValue is a text variable where the command will return the value assigned to the
specified header field. Since the headerValue parameter can include extended characters,
you can automate their management using the POP3_Charset or MSG_Charset command.

Compatibility note (version 6.8.1): If the MSG_Charset command is not used, the
POP3_Charset bodyCharset parameter will be used; if MSG_Charset is used, the
POP3_Charset bodyCharset parameter is ignored.

See Also
IMAP_Download, MSG_Charset, MSG_SetPrefs, POP3_Charset, POP3_Download,
POP3_SetPrefs.

150 4D Internet Commands Reference

MSG_MessageSize IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_MessageSize (fileName; headerSize; bodySize; msgSize) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
headerSize Longint ← Header size (subtracts linefeeds if Prefs ON)
bodySize Longint ← Body size (subtracts linefeeds if Prefs ON)
msgSize Longint ← Entire message or file size (ignores Prefs)

Function result Integer ← Error Code

Description
Given the fileName of a message document retrieved to disk by the POP3_Download
command, the command MSG_MessageSize returns information about the sizes of the
various portions of the message.

fileName is the name of the file or the full path of the file of which to return message
information. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility note). If no folder has been specified by
POP3_SetPrefs, the path will default to the folder containing the structure of the database
(with 4D single-user) or to the 4D Client folder (with 4D Server).

headerSize is the long integer variable returned containing the size of the header.
bodySize is the long integer variable returned containing the size of the body.
These two parameters take the stripLineFeed parameter set by POP3_SetPrefs or
MSG_SetPrefs into account.

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder and stripLineFeed parameters will be taken into account if the
POP3_SetPrefs command has been used previously; if MSG_SetPrefs is used, the
POP3_SetPrefs msgFolder and stripLineFeed parameters are ignored.

msgSize is the long integer variable returned containing the size of the message.

See Also
IMAP_Download, MSG_SetPrefs, POP3_Download, POP3_SetPrefs.

4D Internet Commands Reference 151

MSG_GetHeaders IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_GetHeaders (fileName; offset; length; headerText) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
offset Longint → Starting offset into headers (0 = start of header)
length Longint → Number of characters
headerText Text ← Header text (removes linefeeds if Prefs ON)

Function result Integer ← Error Code

Description
The command MSG_GetHeaders returns the raw text of the entire header section of the
message. The header portion of a POP3 message is defined as the text from the beginning
of the message to the first occurrence of two consecutive carriage return/line feed
sequences.

fileName is the name of the file or the full path of the file of which to extract the header.
If only a fileName is given, the path will default to the folder set by POP3_SetPrefs or
MSG_SetPrefs (see Compatibility note). If no folder has been specified, the path will default
to the folder containing the structure of the database (with 4D single-user) or to the 4D
Client folder (with 4D Server).

offset is the character position within the source header information at which to begin
the retrieval.

length is the number of characters to return. The length of the header section can be
determined with MSG_MessageSize.

headerText receives the text of the header. This parameter takes the stripLineFeed
parameter set by POP3_SetPrefs or MSG_SetPrefs into account.

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder parameter will be used; if MSG_SetPrefs is used, the POP3_SetPrefs
msgFolder parameter is ignored.

See Also
MSG_MessageSize, MSG_SetPrefs, POP3_SetPrefs.

152 4D Internet Commands Reference

MSG_GetBody IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_GetBody (fileName; offset; length; bodyText) → Longint

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
offset Longint → Starting offset into message body (0 = start of body)
length Longint → Number of characters
bodyText Text ← Body text (removes linefeeds if Prefs ON)

Function result Longint ← Error Code

Description
The command MSG_GetBody returns just the text of the message. It will not include
enclosure text and will strip all MIME headers.

fileName is the name of the file or the full path of the file of which to extract the body of
the message. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility notes). If no folder has been specified by
POP3_SetPrefs, the path will default to the folder containing the structure of the database
(with 4D single-user) or to the 4D Client folder (with 4D Server).

offset is the character position within the source body information at which to begin the
retrieval.

length is the number of characters to return.

bodyText receives the text of the message body. Since the bodyText parameter can include
extended characters, you can automate their management using the POP3_Charset or
MSG_Charset command (see Compatibility notes). This parameter takes the stripLineFeed
parameter set by POP3_SetPrefs or MSG_SetPrefs into account (see Compatibility notes).

Compatibility notes (version 6.8.1):
• If the MSG_SetPrefs command is not used, the POP3_SetPrefs msgFolder and
stripLineFeed parameters will be taken into account. If MSG_SetPrefs is used, the
POP3_SetPrefs msgFolder and stripLineFeed parameters are ignored.
• If the MSG_Charset command is not used, the POP3_Charset bodyCharset parameter will
be used; if MSG_Charset is used, the POP3_Charset bodyCharset parameter is ignored.

See Also
MSG_Charset, MSG_SetPrefs, POP3_Charset, POP3_SetPrefs.

4D Internet Commands Reference 153

MSG_GetMessage IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_GetMessage (fileName; offset; length; rawText) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
offset Longint → Starting offset into message file (0 = start of file)
length Longint → Number of characters
rawText Text ← Raw text (ignores Prefs)

Function result Integer ← Error Code

Description
The command MSG_GetMessage returns the raw text of the message regardless of
enclosures. It does not strip MIME headers.

fileName is the name of the file or the full path of the file of which to extract the body of
the message. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility note). If no folder has been specified, the
path will default to the folder containing the structure of the database.

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder parameter will be used; if MSG_SetPrefs is used, the POP3_SetPrefs
msgFolder parameter is ignored.

offset is the character position within the source message information at which to begin
the retrieval.

length is the number of characters to return.

rawText receives the text of the entire message. The preference settings for linefeed
stripping are ignored and no effort is taken to strip any attachment that may be
embedded within the message body.

See Also
MSG_SetPrefs, POP3_SetPrefs.

154 4D Internet Commands Reference

MSG_HasAttach IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_HasAttach (fileName; attachCount) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
attachCount Integer ← Count of Attachments

Function result Integer ← Error Code

Description
If the file has attachments, the command MSG_HasAttach returns in the integer
attachCount the number of attachments. An attachment is any non-text MIME
enclosure. If the message has no attachments, 0 is returned.

fileName is the name of the file or the full path of the file of which to check for
attachments. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility note). If no folder has been specified, the
path will default to the folder containing the structure of the database (with 4D single-
user) or to the 4D Client folder (with 4D Server).

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder parameter is used; if MSG_SetPrefs is used, the POP3_SetPrefs
msgFolder parameter is ignored.

attachCount is an integer value returned which specifies the number of attachments for
fileName.

See Also
MSG_SetPrefs, POP3_SetPrefs.

4D Internet Commands Reference 155

MSG_Extract IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_Extract (fileName; decode; attachmentPath; enclosureList) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
decode Integer → 0 = No decoding, 1 = Decode if possible
attachmentPath Text → FolderPath (path defaults to attachment folder)
enclosureList Str | Txt Array ← Enclosure filenames w/o FolderPath

Function result Integer ← Error Code

Description
The MSG_Extract command extracts all attachments and puts them into the attachments
folder.

fileName is the name of the file or the full path of the file of which to extract the
attachments. If only a filename is given, the path will default to the folder set by
POP3_SetPrefs or MSG_SetPrefs (see Compatibility note). If no folder has been specified, the
path will default to the folder containing the structure of the database (with 4D single-
user) or to the 4D Client folder (with 4D Server).

decode is an integer specifying whether to attempt to decode the attachment. A value of
zero indicates no attempt should be made to decode the attachment(s). A value of 1 will
attempt to decode the file if it has been encoded in one of the following ways: Binhex,
AppleSingle, AppleDouble, or Base64.

attachmentPath is the FolderPath of where to save the attachment. If no FolderPath is
specified, the file will be saved in the attachments folder as specified in POP3_SetPrefs or
MSG_SetPrefs (see Compatibility note). If no FolderPath has been specified, the attachment
will be saved in the same folder as the database structure.

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder and attachmentPath parameters are used; if MSG_SetPrefs is used,
the POP3_SetPrefs msgFolder and attachmentPath parameters are ignored.

enclosureList is a text/string array which is returned containing the file names of each
attachment. Only the document name will be returned in each array element, not the
full pathname.

See Also
MSG_SetPrefs, POP3_SetPrefs.

156 4D Internet Commands Reference

MSG_Delete IC Downloaded Mail

version 6.8.1 (Modified)
__

MSG_Delete (fileName{; folder}) → Integer

Parameter Type Description
fileName Text → Filename (path defaults to message folder)
folder Integer → 0 = Message Folder, 1 = Attachment Folder

Function result Integer ← Error Code

Description
The command MSG_Delete deletes a local file.

fileName is the name of the file or the full path of the file to delete. If only a filename is
given, the folder parameter is taken into account based on the following:
• folder = 0: the file resides in the message folder specified by POP3_SetPrefs or
MSG_SetPrefs.
• folder = 1: the file resides in the attachment folder specified by POP3_SetPrefs or
MSG_SetPrefs
In both cases, if no folder is defined by POP3_SetPrefs or MSG_SetPrefs, the path will
default to the folder containing the structure of the database (with 4D single-user) or in
the 4D Client folder (with 4D Server).

Compatibility note (version 6.8.1): If the MSG_SetPrefs command is not used, the
POP3_SetPrefs msgFolder and attachFolder parameters are used; if MSG_SetPrefs is used, the
POP3_SetPrefs parameters are ignored.

Warning: This command will delete ANY file passed to it. Be very careful when using this
command.

See Also
MSG_SetPrefs, POP3_SetPrefs.

4D Internet Commands Reference 157

MSG_Charset IC Downloaded Mail

version 6.8.1
__

MSG_Charset (decodeHeaders; bodyCharset) → Integer

Parameter Type Description
decodeHeaders Integer → -1 = Use current settings, 0 = Do not manage,

1 = Convert using the MacOS char set
if ISO-8859-1 or ISO-2022-JP, decode
extended characters

bodyCharset Integer → -1 = Use current settings, 0 = Do not manage,
 1 = Convert using the MacOS char set
if ISO-8859-1 or ISO-2022-JP

Function result Integer ← Error code

Description
The command MSG_Charset allows automatic support of messages containing extended
characters during processing with the MSG commands. If this command is not called or
has parameters set to 0, 4D Internet Commands version 6.8.1 or higher will work the
same way as version 6.5.x.

MSG_Charset allows, first of all, the setting of whether the extended characters header
decoding must be managed and, second, the determining of whether the message body
and header character set conversion must be managed.

This command is particularly useful for supporting extended characters included in
message headers such as the “Subject” or electronic mail addresses (for instance, to decode
an address such as “=?ISO-8859-1?Q?Test=E9?= <test@n.net >”).

The decodeHeaders parameter specifies how to manage header decoding and conversion
while executing MSG_FindHeader. Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: Headers are decoded if necessary. If decoded, and if the specified character set is ISO-
8859-1 or ISO-2022-JP, headers are converted using MacOS ASCII code or Shift-JIS
respectively.

The bodyCharset parameter specifies how to manage message body character set
conversion while executing the MSG_GetBody command. Default value is set to 0.
• -1: Use current settings;
• 0: Do not manage;
• 1: If the “Body-Content-Type” character set is set to ISO-8859-1 or ISO-2022-JP, the
message body is converted using MacOS ASCII code or Shift-JIS respectively.

158 4D Internet Commands Reference

Compatibility note (version 6.8.1): If the MSG_Charset command is not used and the
POP3_Charset command has been used, the MSG_FindHeader and MSG_GetBody
commands will take the POP3_Charset parameters into account. If MSG_Charset is used,
the POP3_Charset parameters are ignored.

Examples
(1) Using version 6.5.x of 4D Internet Commands:

$Err:=MSG_FindHeader($msgfile;"From";$from)
$from:=ISO to Mac($from)
$Err:=MSG_FindHeader($msgfile;"To";$to)
$to:=ISO to Mac($to)
$Err:=MSG_FindHeader($msgfile;"Cc";$cc)
$cc:=ISO to Mac($cc)
$Err:=MSG_FindHeader($msgfile;"Subject";$subject)
$subject:=ISO to Mac($subject)
$Err:=MSG_MessageSize($msgfile;$HdrSize;$BdySize;$msgSize)
$Err:=MSG_GetBody($msgfile;0;$BdySize;$BodyContent)
$BodyContent:=ISO to Mac($BodyContent)

(2) Using version 6.8.1 or higher of 4D Internet Commands:

⇒ $Err:=MSG_Charset(1;1)
$Err:=MSG_FindHeader($msgfile;"From";$from)
$Err:=MSG_FindHeader($msgfile;"To";$to)
$Err:=MSG_FindHeader($msgfile;"Cc";$cc)
$Err:=MSG_FindHeader($msgfile;"Subject";$subject)
$Err:=MSG_MessageSize($msgfile;$HdrSize;$BdySize;$msgSize)
$Err:=MSG_GetBody($msgfile;0;$BdySize;$BodyContent).

See Also
POP3_Charset, SMTP_Charset.

4D Internet Commands Reference 159

160 4D Internet Commands Reference

6

IC File Transfer

4D Internet Commands Reference 161

162 4D Internet Commands Reference

File Transfer, Overview IC File Transfer

version 2003 (Modified)
__

The File Transfer Protocol (FTP) is the primary means of transferring documents and
applications from one computer to another. FTP "sites" are computers throughout the
world running FTP server software. The File Transfer Protocol provides a means for
disparate systems to exchange files. Client applications on a variety of platforms can all
log into a FTP server in order to upload or download text or binary files. The FTP routines
within the 4D Internet Commands give developers the tools to create FTP clients within
their 4D databases.

Notes:
• When specifying pathnames in the FTP commands, you should always treat file
locations on the FTP site as a Unix directory, even if you know the FTP host to be a
Macintosh running FTP server software. Whatever the platform, the FTP server software
will internally convert your unix pathname to the format it needs to serve its documents
to connected clients.
• For greater flexibility, 4D Internet commands let you pass a POP3, IMAP or FTP
connection reference directly to low-level TCP commands and vice versa. For more
information, refer to the Low Level Routines, Overview section

4D Internet Commands Reference 163

FTP_Progress IC File Transfer

version 6.5
__

FTP_Progress (left; top; windowTitle; thermoText; cancel) → Integer

Parameter Type Description
left Integer → Left window coordinate
top Integer → Top window coordinate
windowTitle String → Thermometer Window Title
thermoText String → Text above thermometer progress
cancel String → Cancel button text

Function result Integer ← Error Code

Description
The command FTP_Progress defines window coordinates and dialog box text for the FTP
progress indicator. The progress indicator can appear during calls to FTP_Send, FTP_Append
or FTP_Receive. The FTP_Progress command does not display the progress window itself, it
only defines the windows characteristics for when it is displayed by the send and receive
commands. Both FTP_Send, FTP_Append and FTP_Receive have parameters which can
show or hide the progress window.

The progress window will automatically close upon completion of a file transfer. If for
some reason the size of the file being sent or received cannot be determined, the
thermometer will be displayed as a barber pole and the file size will be displayed as
"unknown".

left is the coordinates of the left side of the thermometer progress window. If left is -1, the
window will be centered horizontally on the screen.

top is the coordinates of the top side of the thermometer progress window. If top is -1,
the window will be centered vertically on the screen.

windowTitle is the title of the thermometer progress window. In the following example,
the window title is "Getting '/pub/CGMiniViewer.hqx'" If windowTitle is a null string, the
window will have no title.

thermoText is the text to be displayed above the progress thermometer. If thermoText is
"*" then the text will be the default. In the following example, thermoText is "Receiving
File: /pub/CGMiniViewer.hqx". The default text for the thermometer is the status text of
the transfer process, sent by the host. This text changes as the connection goes through
the different stages of the transfer process.

164 4D Internet Commands Reference

cancel is the text of the Cancel button. If cancel is a null string, the Cancel button will be
hidden. If cancel is "*", the text will be the default text, which is "Cancel".

Example

⇒ $error:=FTP_Progress (-1;-1;"Getting '/pub/CGMiniViewer.hqx'";"*";"*")
Case of

: (FTP_Login ("ftp.4d.com";"anonymous";"dbody@aol.com";
vFTP_ID;vFTP_Msg)#0)

: (FTP_Receive (vFTP_ID;"/pub/CGMiniViewer.hqx";"HardDrive:Docsƒ:4D";1)#0)
: (FTP_Logout (vFTP_ID)#0)

Else
$OK:=True `all commands executed without error

End case

4D Internet Commands Reference 165

FTP_Login IC File Transfer

version 6.5
__

FTP_Login (hostName; userName; password; ftp_ID{; welcomeText}) → Integer

Parameter Type Description
hostName String → Host name or IP address
userName String → User name
password String → Password
ftp_ID Longint ← Reference to this new FTP session
welcomeText Text ← FTP Welcome text

Function result Integer ← Error Code

Description
The command FTP_Login establishes a connection with the FTP server at hostName and
logs onto the system using the supplied userName and Password.

hostName is the host name or IP address of the remote system.

userName is the name of a user account recognized by the FTP server. Many FTP servers
support guest access via an "anonymous" username. If you are logging in anonymously, it
is customary to supply your e-mail address as the password.

password is the password for userName on the system.

ftp_ID is the long integer value obtained for the newly opened session. This value will be
used in subsequent FTP commands. This parameter must be passed a 4D variable or field in
order to accept the returned results.

welcomeText is an optional parameter which contains the text returned when the user
logs into the system. Many FTP sites have a Welcome message displayed at the time of
login. If specified, this parameter must be passed a 4D variable or field in order to accept
the returned results.

166 4D Internet Commands Reference

Example

$OK:=False
Case of

⇒ : (FTP_Login ("ftp.4d.com";"anonymous";"dbody@aol.com";vFTP_ID;vFTP_Msg)#0)
: (FTP_Progress (-1;-1;"Progress window";"Getting requested file…";"*")#0)
: (FTP_Send (vFTP_ID;"My Hard Drive:Documents ƒ:July Sales Report";"/pub/reports"

;1)#0)
: (FTP_Logout (vFTP_ID)#0)

Else
$OK:=True `all commands executed without error

End case

See Also
FTP_Logout.

4D Internet Commands Reference 167

FTP_GetDirList IC File Transfer

version 6.8.1 (Modified)
__

FTP_GetDirList (ftp_ID; directory; names; sizes; kinds; modDates) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
directory Text → Unix directory pathname

← Current directory
names Str | Txt Array ← Listing Names
sizes Longint Array ← Listing Sizes
kinds Integer Array ← Listing Kinds

0 = plain file,
1 = directory,
2 = block-type special file,
3 = character-type special file,
4 = symbolic link,
5 = FIFO special file,
6 = AF_UNIX address family socket

modDates Date Array ← Listing Modification Dates

Function result Integer ← Error Code

Description
The command FTP_GetDirList will retrieve a listing of the objects in a directory of the FTP
session identified by ftp_ID. Information on the names, sizes, types and modification
dates of the directory items is returned into four arrays. A connection to the FTP site must
have already been opened via FTP_Login and still valid (FTP_VerifyID). The FTP_GetDirList
command changes your current working directory (CWD) to the path given and
returned to the directory parameter.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

directory is a text value in the format of a HostPath which references a FTP directory. A
4th Dimension variable or field must be passed to this parameter since the resulting
"current directory" will be returned. Normally, the value returned to this parameter will be
the same as the value passed to it. However, there may be cases (such as access
restrictions) where the directory change was not successful. In this case, the directory
parameter will hold the HostPath to the session's current directory.

A null string passed in this parameter will return the current directory file listing into the
arrays and the current directory's HostPath into the directory parameter.

names is a string or text array to hold the name of each object in the specified directory.

168 4D Internet Commands Reference

sizes is a long integer array to hold the sizes of the objects in directory.

kinds is an integer array to hold the type of each object in directory. The interpretation of
this value is based on the following table:

Kind File Type
0 plain file
1 directory
2 block-type special file
3 character-type special file
4 symbolic link (aliases on files or folders)
5 FIFO special file
6 AF_UNIX address family socket

Note: In the case of a symbolic link (kind=4), the FTP server returns a particular pathname
(Alias name + symbol + pathname to the source file or folder). If you try to use this
pathname to access source files or folders, an error will be returned. You MUST extract the
pathname to the source file or folder from the string returned by FTP_GetDirList which
starts just after the symbolic character. Otherwise, commands such as FTP_GetFileInfo will
return the error –10085 since the file or folder will not be found.

modDates is a 4D date array to hold the last modified date for each object in directory.

See Also
FTP_ChangeDir, FTP_Login, FTP_PrintDir, FTP_VerifyID.

4D Internet Commands Reference 169

FTP_ChangeDir IC File Transfer

version 6.7
__

FTP_ChangeDir (ftp_ID; directory) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
directory Text → Unix directory pathname

Function result Integer ← Error Code

Description
The command FTP_ChangeDir changes your current working directory (CWD) to the
path given to the directory parameter.

The commands FTP_GetDirList and FTP_GetFileInfo will also change the current working
directory. However, executing the FTP_ChangeDir command is faster and needs less
parameters.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

directory is a text value in the format of a HostPath which references an existing FTP
directory. An error will be returned if the directory does not exist or if you do not have
sufficient access priveleges to perform this action. In this case, the current working
directory will be left unchanged.

Example
This statement will set the CWD to the FTP root:

⇒ $err:=FTP_ChangeDir(ftp_ID;"/")

See Also
FTP_GetDirList, FTP_GetFileInfo, FTP_PrintDir.

170 4D Internet Commands Reference

FTP_PrintDir IC File Transfer

version 6.7
__

FTP_PrintDir (ftp_ID; directory) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
directory Text ← Unix directory pathname

Function result Integer ← Error Code

Description
The command FTP_PrintDir returns your current working directory (CWD) in the
directory parameter.

The command FTP_GetDirList will also return the current working directory. However,
executing the FTP_PrintDir command is faster and needs less parameters.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

The directory parameter returns the current working directory (CWD).

Example
This example will return the current working directory in the $Cwd variable.

⇒ $err:=FTP_PrintDir(ftp_ID;$Cwd)

See Also
FTP_GetDirList.

4D Internet Commands Reference 171

FTP_GetFileInfo IC File Transfer

version 6.5
__

FTP_GetFileInfo (ftp_ID; hostPath; size; modDate) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
hostPath Text → Pathname to document
size Longint ← Size of document
modDate Date ← Modification Date

Function result Integer ← Error Code

Description
Given a pathname to a file in the format of a HostPath, the command FTP_GetFileInfo
returns the size and last modification date of the file.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

hostPath is the text path to the document to return information about.

Note: The FTP_GetFileInfo command may modify the Current Working Directory (CWD)
if hostPath is a full pathname which indicates a directory different from the CWD. In this
case, the CWD becomes the directory defined by the hostPath parameter.

size is a long integer variable or field to hold the size of the file identified by hostPath.

modDate is a date variable or field to hold the last modification date of the file.

See Also
FTP_GetDirList.

172 4D Internet Commands Reference

FTP_VerifyID IC File Transfer

version 6.5
__

FTP_VerifyID (ftp_ID) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login

← 0 = Connection has already closed

Function result Integer ← Error Code

Description
A FTP server will disconnect accounts which do not show activity in a period of time
determined by its administrator. Each command that interacts with the FTP server will
force a reset of your inactivity timer. The FTP_VerifyID command resets the inactivity time
for the specified FTP session without altering the current state or directory. This allows the
user to keep a session active if the possibility exists that the session may timeout.

When executed, the FTP_VerifyID command will verify that the connection has not
already been closed. If the session is still open the command will tell the FTP server to
reset the timeout counter for the session back to zero. If the connection has already
closed, FTP_VerifyID will return the appropriate error, free memory used by the FTP
session, and return a zero value back to ftp_ID.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

See Also
FTP_Login.

4D Internet Commands Reference 173

FTP_MakeDir IC File Transfer

version 6.5
__

FTP_MakeDir (ftp_ID; directory) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
directory Text → Unix directory pathname

Function result Integer ← Error Code

Description
Given an acceptable directory name, the command FTP_MakeDir will create a new Folder
directory within the Current Working Directory (CWD). An error will be returned if you
do not have sufficient access privileges to perform this action.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

directory is a text value in the format of a HostPath which references a FTP directory. The
value of the directory parameter may be a full pathname specification or simple folder
name. If the shortened form is used then the directory is created within the CWD. It is
recommended that the directory name not contain any blank spaces.

Note: You can change the CWD using the FTP_ChangeDir command. You can also
determine the CWD at any time using the FTP_PrintDir command.

See Also
FTP_ChangeDir, FTP_GetDirList, FTP_PrintDir, FTP_RemoveDir.

174 4D Internet Commands Reference

FTP_RemoveDir IC File Transfer

version 6.5
__

FTP_RemoveDir (ftp_ID; directory) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
directory Text → Unix directory pathname

Function result Integer ← Error Code

Description
Given an acceptable directory name, the command FTP_RemoveDir will delete a Folder
directory. An error will be returned if you do not have sufficient access privileges to
perform this action. Additionally, attempting to remove a directory which contains items
will likely result in a security error.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

directory is a text value in the format of a HostPath which references an existing FTP
directory. The value of the directory parameter may be a full pathname specification or
simple folder name. If the shortened form is used then the specified directory must be
within the CWD.

Note: You can change the CWD using the FTP_ChangeDir command. You can also know
the CWD at any time using the FTP_PrintDir command.

See Also
FTP_ChangeDir, FTP_GetDirList, FTP_MakeDir, FTP_PrintDir.

4D Internet Commands Reference 175

FTP_Rename IC File Transfer

version 6.5
__

FTP_Rename (ftp_ID; hostPath; newPathName) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
hostPath Text → Pathname to document on FTP Server
newPathName Text → New document name

Function result Integer ← Error Code

Description
Given a pathname to a file in the format of a hostPath, the command FTP_Rename will
rename the specified file on the remote FTP Server. An error will be returned if you do not
have sufficient access priveleges to perform this action.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

hostPath is the text path to the document to be renamed. The value of the hostPath
parameter may be a full pathname specification or simple file name. If the shortened
form is used then the specified file must be within the CWD.

newPathName contains the value you wish to rename the remote document.

Note: You can change the CWD using the FTP_ChangeDir command. You can also know
the CWD at any time using the FTP_PrintDir command.

See Also
FTP_ChangeDir, FTP_PrintDir.

176 4D Internet Commands Reference

FTP_Delete IC File Transfer

version 6.5
__

FTP_Delete (ftp_ID; hostPath) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
hostPath Text → Pathname to document

Function result Integer ← Error Code

Description
Given a pathname to a file in the format of a HostPath, the command FTP_Delete will
delete the specified file from the remote FTP Server. An error will be returned if you do
not have sufficient access priveleges to perform this action.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

hostPath is the text path to the document to be deleted. The value of the hostPath
parameter may be a full pathname specification or simple file name. If the shortened
form is used then the specified file must be within the CWD.

Note: You can change the CWD using the FTP_ChangeDir command. You can also know
the CWD at any time using the FTP_PrintDir command.

See Also
FTP_ChangeDir, FTP_PrintDir, FTP_RemoveDir.

4D Internet Commands Reference 177

FTP_MacBinary IC File Transfer

version 6.5
__

FTP_MacBinary (ftp_ID; macBinaryMode) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
macBinaryMode Integer → -1 = Get Current setting, 1 = Enable,

0 = Disable
← Current setting (if -1 passed)

Function result Integer ← Error Code

Description
The command FTP_MacBinary enables/disables the MacBinary mode setting for FTP
transfers using FTP_Send and FTP_Receive. Given a current FTP session identified by ftp_ID,
this command will either turn MacBinary transfers on or off depending on the value
passed in the macBinaryMode parameter.

The MacBinary protocol is often used by Macintosh FTP clients and servers to facilitate
the transfer of binary data or files that contain both data and resource forks.

Note for Windows users: It is possible to use the MacBinary protocol for FTP transfers in a
Windows environment however it should be noted that it may often not make sense to
decode a MacBinary file on a PC computer. Intel-based machines cannot store files
containing both data and resource forks. Since such a file format is foreign to the PC
platform, Macintosh files which contain a resource fork are likely to be corrupted if saved
in an unencoded format.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

macBinaryMode is integer parameter indicating whether to turn MacBinary transfers on or
off. This value should be passed as a variable so the command can return the state of
MacBinary transfers after the attempted change. Passing a 1 will enable MacBinary and a
zero will disable. A -1 value in the parameter will cause the command to return in the
macBinaryMode parameter the current state of MacBinary transfers (1 or zero).

Warning: Not all FTP servers support the MacBinary protocol, in this case the error 10053
is returned at each FTP_MacBinary command call, whatever the value of the
macBinaryMode parameter. Previously described behaviours become false.

178 4D Internet Commands Reference

Example
This example enables the MacBinary protocol before receiving an FTP file. If the file was
successfully received with MacBinary turned on then it is decoded into its original format
and the MacBinary document is deleted.

vUseMacBin:=-1
⇒ $error:=FTP_MacBinary (vFTP_ID;vUseMacBin)

If($error=10053)
MacBinaryIsSupported:=False `Ftp server doesn't support the MacBinary protocol

Else
MacBinaryIsSupported:=True

End if

vLocalFile:=""
If(MacBinaryIsSupported)

vUseMacBin:=1
⇒ $error:=FTP_MacBinary (vFTP_ID;vUseMacBin)

`Try to turn MacBinary on for the download
End if
$error:=FTP_Receive (vFTP_ID;"MyApplication";vLocalFile;cbShowTherm)
If ($error=0) & (vUseMacBin=1) `If received OK and the file is in MacBinary format

vDecodePath:=""
If (IT_Decode (vLocalFile;vDecodePath;8)=0) `MacBinary decode

DELETE DOCUMENT(vLocalFile) `If sucessful decode of source, then delete it.
End if

End if

See Also
IT_Decode.

4D Internet Commands Reference 179

FTP_Send IC File Transfer

version 6.5
__

FTP_Send (ftp_ID; localPath; hostPath; progress) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
localPath Text → Pathname of document to send
hostPath Text → Pathname to destination of document
progress Integer → 1 = Show Progress, 0 = Hide Progress

Function result Integer ← Error Code

Description
Given a reference to an open FTP session, the pathname of a document to send and the
destination pathname, the command FTP_Send sends the document to the remote
machine. FTP_Send will return immediately if a FTP file status error occurs.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

localPath is the path of the document to be sent. If localPath is a null string, the user will
be presented with the Standard Open File dialog. If localPath is a file name with no path,
the command will look in the folder that contains the database structure (with 4D single-
user) or in the 4D Client folder (with 4D Server) for the file. As with all paths to local
documents, the directories should be seperated by a delimiter appropriate for the
platform. For more information, see the section entitled Glossary and Terminology at the
beginning of the manual.

hostPath is the path to the destination of the document, including the file name. The
hostPath represents the desired name of the file once it has been received by the FTP
server. If localPath is a null string allowing the user to pick a file from disk, then hostPath
may also be a null string, in which case the chosen file's name will be used.

hostPath may be either a full pathname specification or simply a filename. If a full
pathname is supplied, the specified file will be placed in the directory indicated by
hostPath. If only a filename is provided, or null strings are used in the file selection, then
the file will be sent to the Current Working Directory (CWD).

If the file or pathname cannot be resolved correctly, the command will return an error. If
the user does not have enough privileges to send a file to that directory, an error will be
returned. As with all paths to Unix documents, the path should be separated by slashes
("/"). For more information, see the section entitled Glossary and Terminology at the
beginning of the manual.

180 4D Internet Commands Reference

progress is an integer value indicating whether the Progress indicator should be displayed
or not. A value of 1 will display the progress indicator. A value of zero will hide the
progress indicator.

Examples
Example 1

$OK:=False
Case of

: (FTP_Login ("ftp.4d.com";"anonymous";vEmailID;vFTP_ID;vFTP_Msg)#0)
: (FTP_Progress (-1;-1;"Progress window";"Getting requested file…";"Cancel")#0)

⇒ : (FTP_Send (vFTP_ID;"My Hard Drive:Documents:July Sales Report";"/pub/reports/"
;1)#0)

: (FTP_Logout (vFTP_ID)#0)
Else

$OK:=True `all commands executed without error
End case

Example 2

⇒ $error:=FTP_Send (vFTP_ID;"";"";1)

See Also
FTP_Progress, FTP_Receive.

4D Internet Commands Reference 181

FTP_Append IC File Transfer

version 6.5
__

FTP_Append (ftp_ID; localPath; hostPath; progress) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
localPath Text → Pathname of document to send
hostPath Text → Pathname to destination of document
progress Integer → 1 = Show Progress, 0 = Hide Progress

Function result Integer ← Error Code

Description
The command FTP_Append performs the same action as FTP_Send with the one exception
that it will append the data being sent to the end of an existing file identified by the
hostPath parameter. This command's primary function is to append data onto the end of
pre-existing text files.

See Also
FTP_Send.

182 4D Internet Commands Reference

FTP_GetType IC File Transfer

version 6.5
__

FTP_GetType (ftp_ID; ftp_Mode) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
ftp_Mode String ← "A" = Ascii; "I" = Image; "L 8" = Logical 8-bit

Function result Integer ← Error Code

Description
The command FTP_GetType returns information about the current FTP Transfer mode.
The Transfer mode may be set using the FTP_SetType command.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

ftp_Mode returns a code describing the current FTP transfer mode.

See Also
FTP_SetType.

4D Internet Commands Reference 183

FTP_SetType IC File Transfer

version 6.5
__

FTP_SetType (ftp_ID; ftp_Mode) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
ftp_Mode String → "A" = Ascii; "I" = [Default] Image; "L 8" = Logical 8-bit

Function result Integer ← Error Code

Description
The command FTP_SetType is used to alter the FTP transfer mode used during
Send/Receive operations. Typically this will not need to be changed from the default
settings. However, because of differences between various platforms and ftp
implementations, it may be necessary to change the mode for certain types of FTP
transfers. In particular, some transfers of plain-text documents may require you to switch
the mode to Ascii in order to properly transfer the text file.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

ftp_Mode should contain a code as described above indicating the preferred transfer mode
to use for future Send/Receive operations. By default, the Image ("I") tranfer mode is used.

See Also
FTP_GetType.

184 4D Internet Commands Reference

FTP_System IC File Transfer

version 6.5
__

FTP_System (ftp_ID; systemInfo) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
systemInfo String ← System Information

Function result Integer ← Error Code

Description
The command FTP_System simply obtains information into systemInfo that describes the
FTP server software.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

systemInfo will contain information about the FTP server.

4D Internet Commands Reference 185

FTP_Receive IC File Transfer

version 6.5
__

FTP_Receive (ftp_ID; hostPath; localPath; progress) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
hostPath Text → Pathname of document to receive
localPath Text → Pathname to destination of document

← Resulting file pathname (if "" passed)
progress Integer → 0 = Hide Progress, 1 = Show Progress

Function result Integer ← Error Code

Description
The command FTP_Receive receives a file using the File Transfer Protocol from the path
referenced by hostPath. FTP_Receive will return an error# -48 if the destination file already
exists.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

hostPath is a text value that specifies the path of the document to be received. If hostPath
is not a full path to a document, the command will return an error. As with all paths to
Unix documents, the path should be separated by slashes ("/"). For more information, see
the section entitled Glossary and Terminology at the beginning of the manual.

localPath is a text value that specifies the path of the destination of the document. If
localPath is a null string, the user will be presented with a Standard Save-File Dialog and
the resulting file pathname will be returned back into the localPath variable. If localPath
contains only a filename, the file will be saved in the same folder as the structure of the
database (with 4D single-user) or in the 4D Client folder (with 4D Server). As with all
paths to local documents, the path should be separated by the delimiter appropriate for
the platform the externals are being used. For more information, see the section entitled
Glossary and Terminology at the beginning of the manual.

progress is an integer value indicating whether the Progress indicator should be displayed
or not. A value of 1 will display the progress indicator. A value of zero will hide the
progress indicator.

186 4D Internet Commands Reference

Example

vUseMacBin:=-1
$error:=FTP_MacBinary (vFTP_ID;vUseMacBin)
If($error=10053)

MacBinaryIsSupported:=False `Ftp server doesn't support the MacBinary protocol
Else

MacBinaryIsSupported:=True
End if

vLocalFile:=""
If(MacBinaryIsSupported)

vUseMacBin:=1
$error:=FTP_MacBinary (vFTP_ID;vUseMacBin)

`Try to turn MacBinary on for the download
⇒ $error:=FTP_Receive (vFTP_ID;"CGMiniViewer.hqx";vLocalFile;cbShowTherm)

If ($error=0) & (vUseMacBin=1)
vDecodePath:=""
If (IT_Decode (vLocalFile;vDecodePath;8)=0) `MacBinary decode

DELETE DOCUMENT(vLocalFile) `If successful decode of source, delete it.
End if

End if
End if

See Also
FTP_MacBinary, IT_Decode.

4D Internet Commands Reference 187

FTP_Logout IC File Transfer

version 6.5
__

FTP_Logout (ftp_ID) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login

← 0 = session successfully closed

Function result Integer ← Error Code

Description
Given a reference to an open FTP session, the command FTP_Logout will disconnect from
the server and free any memory used by the session. This command will return the value
of zero into the ftp_ID parameter upon successful close of the session.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

Example

If (FTP_Login ("ftp.4d.com";"anonymous";vEmailID;vFTP_ID;vFTP_Msg)=1)
$error:=FTP_Send (vFTP_ID;"My Hard Drive:Documents:Sales Report";

"/pub/reports";1)
$error:=FTP_Logout (vFTP_ID)

End if

See Also
FTP_Login.

188 4D Internet Commands Reference

FTP_SetPassive IC File Transfer

version 6.5.3 (Modified)
__

FTP_SetPassive (ftpID; passiveMode) → Integer

Parameter Type Description
ftpID Longint → Reference to a FTP login
passiveMode Integer → 0=Active mode, 1=Passive mode (default

mode)

Function result Integer ← Error Code

Description
The command FTP_SetPassive sets the data stream transfer mode between an FTP Server
and an FTP Client while executing commands such as FTP_GetDirList, FTP_Send,
FTP_Append or FTP_Receive. Data stream transfer mode setting will be applied to these
commands once the command FTP_SetPassive has been executed.

Exchanges between a FTP Server and a FTP Client are based upon two streams: the control
stream (port 21 by default) and the data stream (port 20 by default). Usually, FTP Servers
are defined as "active" since they open and manage the data connection.
For historical reasons, 4D Internet Commands default data stream transfer mode consists
of asking the FTP Server to work in Passive mode. It means that prior to each exchange
on the data stream, the FTP command "PASV" is sent.
However, some FTP Servers do not support the passive mode, and also firewalls may not
allow it. In these cases, you will need to set the active mode as the current data stream
transfer mode.

Note: You may need to check with the network administrator whether the active or the
passive mode is used for FTP exchanges.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

The passiveMode parameter value specifies the data stream transfer mode:
• a value of 0 will specify the FTP Server to work in Active mode
• a value of 1 will specify the FTP Server to work in Passive mode (default value).

See Also
FTP_GetPassive.

4D Internet Commands Reference 189

FTP_GetPassive IC File Transfer

version 6.5.3 (Modified)
__

FTP_GetPassive (ftp_ID; passiveMode) → Integer

Parameter Type Description
ftp_ID Longint → Reference to a FTP login
passiveMode Integer ← Current data stream transfer mode

0=Active mode, 1=Passive mode

Function result Integer ← Error Code

Description
The command FTP_GetPassive returns the current data stream transfer mode.
For more details about FTP transfer modes, refer to the FTP_SetPassive command
description.

ftp_ID is the long integer reference to the FTP session established with FTP_Login.

passiveMode returns the current data stream transfer mode:
• if 0 is returned, the FTP Server is currently asked to work in Active mode.
• if 1 is returned, the FTP Server is currently asked to work in Passive mode (default value).

See Also
FTP_SetPassive.

190 4D Internet Commands Reference

7

IC TCP/IP

4D Internet Commands Reference 191

192 4D Internet Commands Reference

Low Level Routines, Overview IC TCP/IP

version 2003 (Modified)
__

TCP/IP or Transmission Control Protocol/Internet Protocol, is the primary protocol used
for sending data over the internet. The TCP commands included with 4D Internet
Commands allow developers to establish TCP session and send and receive TCP packets
via these sessions.

There are two ways to establish a TCP connection. The first way is to execute the
TCP_Open command. This will open a connection with the domain specified on the
specified port. TCP_Open allows the use of SSL (Secured Socket Layer) protocol which
permits a secured connection. The other way to open a connection is to execute the
TCP_Listen command. This command will open a connection with the specified domain
on the specified port, and will listen for an incoming connection. The best way to
determine if a connection has been established is to check the state of the session with
the command TCP_State upon completion of the TCP_Listen command. A status code will
be returned which will correspond to the current state of the session. From here you can
send and/or receive TCP packets as you could with a connection established with
TCP_Open.

In any case, any TCP connection opened must be closed subsequently using the
TCP_Close command.

The low-level TCP/IP commands require advanced knowledge about the protocols of
communication. Developers using these routines should have a complete understanding
of any protocol they attempt to implement. Information about the various TCP/IP
assigned port numbers, communication protocols, addressing requirements, etc. can be
found in the RFCs.

Connection references in TCP commands
4D Internet commands allow the passing of POP3, IMAP or FTP connection references
directly to low-level TCP commands and vice versa.
In fact, on the one hand, protocols are constantly evolving which leads to the creation of
new commands; on the other, some software packages make their own interpretation of
RFCs — rendering standardized implementations unusable. Using low-level TCP
commands, developers can create the high-level functions they need themselves (instead
of using existing functions or to fill in for a function that does not exist).
This significantly increases compatibility and development possibilities since developers
can create their own high-level commands without having to rewrite all the commands
needed for using a protocol.

In this example, the IMAP_Capability command is replaced by an equivalent function
developed using TCP_IP commands.

4D Internet Commands Reference 193

• Here is the initial method using the IMAP_Capability command:
$ErrorNum:=IMAP_Login(vHost;vUserName;vUserPassword;vImap_ID)
If($ErrorNum=0)

C_TEXT(vCapability)
$ErrorNum:=IMAP_Capability(vImap_ID;vCapability)
... ` IMAP command using the vImap_ID parameter

End if
$ErrorNum:=IMAP_Logout(vImap_ID)

• This method can be replaced by:
$ErrorNum:=IMAP_Login(vHost;vUserName;vUserPassword;vImap_ID)
If($ErrorNum =0)

C_TEXT(vCapability)
` TCP method using the value of the vImap_ID parameter:

$ErrorNum:=My_IMAP_Capability(vImap_ID)
... ` IMAP commands using the vImap_ID parameter

End if
$ErrorNum:=IMAP_Logout(vImap_ID)

• Here is the code of the My_IMAP_Capability function:
C_LONGINT($1;$vErrorNum;$0)
C_TEXT($vSentText;$vReceivedText;vCapability)
C_TEXT($2)

$vImap_Id:=$1
$vCmd_Id:="A001" ` This command ID must be unique (cf. RFC 2060)
$MyvtRequestCmd:="CAPABILITY"
$vSentText;:=$vCmd_Id+""+$MyvtRequestCmd+Character(13)+Character(10)
$vReceivedText:=""
$vErrorNum:=TCP_Send($vImap_Id;$vSentText)
If ($vErrorNum=0)

$vErrorNum:=TCP_Receive($vImap_Id;$vReceivedText)
Case of

:($vErrorNum#0) `Reception error
vCapability:=""

:(Position($vCmd_Id+" OK ";$vReceivedText)#0)
` Command execution successful

vCapability:=$vReceivedText
` In this example, we do not process the string received

:(Position($vCmd_Id+" BAD ";$vReceivedText)#0)
` Failure of command execution (syntax error
` or unknown command)

vCapability:=""
$vErrorNum:=10096

End case
End if
$0:=$vErrorNum

194 4D Internet Commands Reference

TCP_Open IC TCP/IP

version 6.8.1 (Modified)
__

TCP_Open (hostName; remotePort; tcp_ID{; sessionSettings}) → Integer

Parameter Type Description
hostName String → Host name or IP address
remotePort Integer → The remote port to connect to (0 = any)
tcp_ID Longint ← Reference to this TCP session
sessionSettings Integer → TCP session settings

0 = Synchron (Default if omitted)
1 = Asynchron
2 = SSL In Use, Synchron
3 = SSL In Use, Asynchron

Function result Integer ← Error Code

Description
The TCP_Open command initiates an outgoing TCP connection to a domain.

TCP_Open initiates a connection to the remote TCP referenced by hostName, on the port
referenced by remotePort (if not 0). A long integer value will be returned to tcp_ID, which
will be used by all subsequent TCP calls referring to the session. TCP_Open is set to time
out in 30 seconds if no data is received by the session identified by the tcp_ID parameter.
The default timeout value can be changed for all commands via IT_SetTimeOut.

hostName is the host name or IP address of the machine that you are opening a
connection to.

remotePort indicates the TCP port on the machine indicated by hostName that with
which you wish to establish a connection.

Note: After a call to TCP_Open (or TCP_Listen), remotePort may contain a negative value
if the value passed to this parameter is above 32767. This will not disturb the connection.
As a workaround, you can use an intermediate variable:

$v_ RemotePort:=v_ RemotePort
⇒ $err:=TCP_Open (v_ RemoteHostIPAdr;0;v_ SessionID)

tcp_ID is the long integer reference to the session that was opened. This reference will be
used in all subsequent TCP external calls that reference this session.

sessionSettings is an optional parameter of the Integer type giving the user the ability to
choose the TCP session settings. Note that these settings are applied to each TCP
command called during the session. Default value sets to 0 (Synchron, not SSL).

4D Internet Commands Reference 195

SSL (Secured Socket Layer) is a protocol that allows secured TCP communications (see the
4th Dimension reference for more information and for installation requirements).

Any TCP connection opened using the TCP_Open command must be closed later using
the TCP_Close command.

Asynchron/Synchron
Asynchronous mode returns control to the 4D kernel immediately without waiting for the
connection process to be finished (without waiting for the connection with the remote
host to be established). Asynchronous mode is useful for people who do not want all the
TCP commands to use 4th Dimension time.

Synchronous mode returns control to the 4D kernel (to other 4D processes) only when
the connection process is finished (successfully or not).

• 0 = Synchron mode (Default mode, run as previous versions of 4D Internet Commands)

• 1 = Asynchron mode

• 2 = SSL In Use, Synchron. All TCP commands using the reference to this TCP session
(tcp_ID) will run in Synchronous mode and use SSL protocol.

• 3 = SSL In Use, Asynchron. All TCP commands using the reference to this TCP session
(tcp_ID) will run in Asynchronous mode and use SSL protocol.

Note: An error 10089 may be returned when passing 2 or 3 if an SSL connection cannot
be opened (SLI library not found in the 4D Extensions folder).

Example
You want to connect to a Web site using Https; check that SLI is correctly installed and
open a connection using the 443 port number:

⇒ $vError:=TCP_Open (hostName; 443; tcp_ID;2)
...
$vError:=TCP_Close (tcp_ID) `Don't forget to close the session

See Also
IT_SetTimeOut.

196 4D Internet Commands Reference

TCP_Listen IC TCP/IP

version 6.8.1 (Modified)
__

TCP_Listen (remoteHost; localPort; remotePort; timeout; tcp_ID) → Integer

Parameter Type Description
remoteHost String → Host name or IP address

← IP address is a variable containing a null string
localPort Integer → Local port number, 0 = find an unused port to use

← Used local port number (if 0 passed)
remotePort Integer → Port number to be listening
timeout Integer → # of seconds to wait, 0 = wait forever
tcp_ID Longint ← Reference to this TCP session

Function result Integer ← Error Code

Description
The TCP_Listen command waits for a connection to be made from the machine
referenced by remoteHost on the port referenced by remotePort. This command does not
return control back to the 4th Dimension calling method until either a connection is
made or the timeout period has elapsed. Though it may seem as though this would lock
up your database until a connection was made, the command is friendly to other 4th
Dimension processes that may be running. This command will slice time to other 4D
processes you may already have running.

Most developers will want to issue this call from a method which has been spawned into
its own 4D process (especially if you specify the timeout period to wait forever).

remoteHost is the host name or IP address of the machine that you are waiting for a
connection from.
- If a null string is passed in this parameter, this command will accept an incoming
connection from any machine.
- If a variable containing a null string is passed in this parameter, it will return the IP
address of the connected machine.

Note: Under Windows, remoteHost will not accept an IP address from a distant machine;
if this occurs, error –10049 “Specified address is not available from the local machine” will
be generated. As a consequence, if you need to filter an IP address, it is better to use a
variable containing a null string.

localPort contains the port on your local machine you wish to use for communication. If
you pass a zero as this parameter, the command will find any unused port and pass that
number back to this parameter.

4D Internet Commands Reference 197

remotePort identifies the port number to be listening for an incoming connection.

Note: After a call to TCP_Listen (or TCP_Open), remotePort may contain a negative value
if the value passed to this parameter is above 32767. This will not disturb the connection.
As a workaround, you can use an intermediate variable:

$v_ RemotePort:=v_ RemotePort
$err:=TCP_Listen (v_ RemoteHostIPAdr;0;$v_ RemotePort;30;v_ SessionID)

timeout specifies the number of seconds this command will wait for an incoming
connection. A zero in this parameter will cause the command to wait indefinitely for an
incoming connection. Caution should be taken when passing a zero since control will
never be returned to the calling 4D process if a connection is never made. Never pass zero
to this parameter in a single-process database.

tcp_ID is the long integer reference to the session that was opened. This reference will be
used in all subsequent TCP external calls that reference this session.

Any TCP connection opened using the TCP_Listen command must be closed later using
the TCP_Close command.

Example

C_LONGINT(vTCPID)
C_INTEGER(vStatus)

⇒ $err:=TCP_Listen ("";0;49152;30;vTCPID)
$err:=TCP_State (vTCPID;vStatus)
If (vStatus=8) `connection was established

DoSomething
$err:=TCP_Close (vTCPID)

End if

See Also
Appendix B, TCP Port Numbers, TCP_Open, TCP_State.

198 4D Internet Commands Reference

TCP_Send IC TCP/IP

version 6.5
__

TCP_Send (tcp_ID; sendText) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP session
sendText Text → Text to send

Function result Integer ← Error Code

Description
The command TCP_Send sends data to the TCP session designated by tcp_ID.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command.

sendText is a text value to be sent to the TCP session referenced by tcp_ID.

See Also
TCP_Listen, TCP_Open, TCP_SendBLOB.

4D Internet Commands Reference 199

TCP_Receive IC TCP/IP

version 6.5
__

TCP_Receive (tcp_ID; text) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP session
text Text ← Received Text

Function result Integer ← Error Code

Description
Given a long integer reference to an established TCP Session, the command TCP_Receive
receives packets of data into text.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command.

text is the text received. When receiving data via TCP packets, you cannot count on all of
your data being received by a single TCP_Receive call. The TCP_Receive command is usually
called within a Repeat loop which continually checks on the status of the connection or
is scanning for a known value.

Example

C_LONGINT($tcp_id)
C_TEXT($webpage;$buffer)
C_INTEGER(vState;$error)
$webpage:=""
vState:=0
Repeat

⇒ $error:=TCP_Receive ($tcp_id;$buffer)
$error:=TCP_State ($tcp_id;vState)
$webpage:=$webpage+$buffer

Until ((vState=0) | ($error#0)) until host closes connection or an error

See Also
TCP_Send, TCP_SendBLOB.

200 4D Internet Commands Reference

TCP_SendBLOB IC TCP/IP

version 6.7
__

TCP_SendBLOB (tcp_ID; blobToSend) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP session
blobToSend BLOB → Blob to send

Function result Integer ← Error Code

Description
The command TCP_SendBLOB sends data to the TCP session designated by tcp_ID. This
command performs the same action as TCP_Send, except that it will send a BLOB instead
of a text, which allows bypassing the 32K text limitation. Using this command, you can
send binary objects.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command.

blobToSend is the BLOB to be sent to the TCP session referenced by tcp_ID.

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues if necessary.

Example
This example will send a BLOB to the TCP session:

C_BLOB($Blob_Send)
C_TEXT(v_Txt_Send)
TEXT TO BLOB(v_Txt_Send;$Blob_Send; Text without length;*)

⇒ $err:=TCP_SendBLOB (v_tcp_ID;$Blob_Send)

See Also
TCP_Listen, TCP_Open, TCP_ReceiveBLOB, TCP_Send.

4D Internet Commands Reference 201

TCP_ReceiveBLOB IC TCP/IP

version 6.7
__

TCP_ReceiveBLOB (tcp_ID; blobToReceive) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP session
blobToReceive BLOB ← BLOB to receive data

Function result Integer ← Error Code

Description
Given a long integer reference to an established TCP session, the command
TCP_ReceiveBLOB receives packets of data into blobToReceive.

This command performs the same action as TCP_Receive, except that it will receive data in
a BLOB instead of a text, which allows bypassing the 32K text limitation. You can then
receive binary objects.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command.

blobToReceive is the BLOB which receives data. When receiving data via TCP packets, you
cannot count on all of your data being received by a single TCP_ReceiveBLOB call. The
TCP_ReceiveBLOB command is usually called within a Repeat...Until loop which continually
checks on the status of the connection or is scanning for a known value.

Example
This example shows the typical structure of a method using TCP_ReceiveBLOB:

C_BLOB($Blob_Received;$Blob_All)
C_LONGINT($srcpos;$dstpos)
Repeat

⇒ $Err:=TCP_ReceiveBLOB ($TCP_ID;$Blob_Received)
$Err:=TCP_State ($TCP_ID;$State)
$srcpos:=0
$dstpos:= BLOB size($Blob_All)

`Concatenating received Blobs
COPY BLOB($Blob_Received;$Blob_All;$srcpos;$dstpos;BLOB size($Blob_Received))

Until(($State=0) | ($Err#0))

See Also
TCP_Listen, TCP_Open, TCP_Receive, TCP_SendBLOB.

202 4D Internet Commands Reference

TCP_State IC TCP/IP

version 6.5
__

TCP_State (tcp_ID; statusCode) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP
statusCode Integer ← TCP status code

Function result Integer ← Error Code

Description
The command TCP_State returns the state of a particular TCP connection.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command.

statusCode is an integer variable returned which corresponds to one of the status codes
below.
0 Connection Closed
2 Listening for an incoming connection
8 Established

Example
This example assumes that a valid TCP connection has already been established and is
identified by the Longint value assigned to the $tcp_id variable. In this example, a
command is sent to a web server requesting a page of information and then a loop is
entered to receive the results. Since web servers automatically close their connnections
once they have performed their action, this example keeps receiving until the connection
is dropped or an error occurs.

C_LONGINT($tcp_id)
C_INTEGER(vState;$err)
C_TEXT($command;$buffer;$response)
If (TCP_Send ($tcp_id;$command)=0)

vState:=0
Repeat

$err:=TCP_Receive ($tcp_id;$buffer)
⇒ $err:=TCP_State ($tcp_id;vState)

$response:=$response+$buffer
Until ((vState=0) | ($err#0))

End if

See Also
TCP_Listen, TCP_Open.

4D Internet Commands Reference 203

TCP_Close IC TCP/IP

version 6.5
__

TCP_Close (tcp_ID) → Integer

Parameter Type Description
tcp_ID Longint → Reference to an open TCP session

← 0 = Session successfully closed

Function result Integer ← Error Code

Description
The command TCP_Close closes the TCP session referenced by tcp_ID. If a TCP session is
not closed, it will occupy one of the 64 references available for TCP sessions. If there are
64 sessions open which have not been closed, the user will not be able to open another
session.

tcp_ID is a long integer reference to an open TCP session as established with either the
TCP_Open or TCP_Listen command. This command will return the value of zero into the
tcp_ID parameter upon successful close of the session.

See Also
TCP_Listen, TCP_Open.

204 4D Internet Commands Reference

8

IC Internet

4D Internet Commands Reference 205

206 4D Internet Commands Reference

Special Internet Commands, Overview IC Internet

version 6.5
__

The set of commands included in this section can be used to perform common tasks over
the Internet. Included in this section are commands to 'Ping' and 'Finger' a machine,
obtain the time from a time server, resolve a domain name or IP address, and convert a
domain name or IP address from or to a long integer. These commands are often used in
conjunction with the other 4D Internet Commands.

4D Internet Commands Reference 207

NET_Finger IC Internet

version 6.5
__

NET_Finger (hostName; searchText; results) → Integer

Parameter Type Description
hostName String → Host name or IP address
searchText String → Search text
results Text ← Finger results

Function result Integer ← Error Code

Description
Given an IP address of a machine to search and the text of a user account name on the
machine, the command NET_Finger will return the finger results into results. The unix
finger command is designed to return information about the last login time of a user as
well as any additional information the user chooses to provide within his/her ".plan" and
".project" files.

Two different routes may be specified for the Finger search. A finger search may be
attempted directly at the user's machine. For instance, to get information about "johnt" at
"4d.com", you could perform the search as:
⇒ $error:=NET_Finger ("www.4d.com";"johnt";$fingertext)

The same finger search could also be performed indirectly. An indirect search would ask a
remote server which supports the finger command to perform your query. For instance,
the following will ask the machine identified by the domain name "4d.com" to perform a
remote finger query of the user "johnt@4d.com".
⇒ $error:=NET_Finger ("www.4d.com";"johnt@4d.com";$fingertext)

While the main information returned in each case should be the same, there are likely to
be some subtle differences in the returned text. Different machines may have different
options configured when they execute the finger command and the results could vary
slightly. Also, there is likely to be some formatting difference between the results of a
direct and indirect finger command, with indirect searches often containing additional
linefeeds.

hostName is the host name or IP address of the machine in which the user identified by
searchText has an account.

searchText is either the text to search for on the given finger server, or a machine name
or IP address. If searchText is a user name, the command will search through the directory
of user names on that server for searchText. If searchText is a machine name or IP address,
the command will send a finger request through the finger server in hostName to the
machine specified.

results is the text returned which contains the results of the search.

208 4D Internet Commands Reference

NET_Ping IC Internet

version 6.8.1 (Modified)
__

NET_Ping (hostName; text; alive{; timeout}) → Integer

Parameter Type Description
hostName String → Host name or IP address
text Text → Text to send in ping
alive Integer ← 1 = Alive, 0 = Timeout/Inactive
timeout Integer → # of seconds to wait, 0 = use IT_SetTimeOut
value

Function result Integer ← Error Code

Description
The command NET_Ping provides a mechanism to query a remote IP address to see if it is
currently active. If the pinged machine is currently running the TCP/IP protocol and the
network between the two sites is functional, an 'Alive' status should be returned.
Typically, the pinged machine provides no indication to its user of the activity, assuming
that the machine can respond to ping (ICMP Echo) requests.

NET_Ping will ping a machine specified by either a host name or IP address. Any machine
with an IP address that is accessible via the network can be pinged. This includes end-user
machines. [Some security systems known as "firewalls" may hinder you from pinging
machines under their protection.]

hostName is the host name or IP address of the machine to ping.

text is the text to send in the ping. The text parameter exists only to effect the size of the
TCP packet being sent as the Ping command is executed.

alive is the integer returned corresponding to the state of the machine pinged. A value of
1 indicates the machine is alive. A value of zero indicates the machine is either inactive or
the ping timed out before a response was received.

timeout specifies the number of seconds this command will wait for the Ping to complete.
This is an optional parameter which, if not supplied, will default to zero. A zero value in
this parameter will cause the command timeout if a response is not received by the
number of seconds specified with the IT_SetTimeOut command.

Note: This parameter is not taken into account under Windows 95/98 and Millennium.

See Also
IT_SetTimeOut.

4D Internet Commands Reference 209

NET_Time IC Internet

version 6.5
__

NET_Time (hostName; date; time; offset) → Integer

Parameter Type Description
hostName String → Host name or IP address
date Date ← Date
time Longint ← Time, expressed as seconds since midnight
offset Integer → Hours to offset

Function result Integer ← Error Code

Description
Given the host name or IP address to an Internet Time server, the command NET_Time
will obtain the current date and time from the machine and apply any offset needed to
convert to the user's local time.

Note: This command does not affect the computer's internal clock.

hostName is the host name or IP address of an Internet Time server.

date is a 4D Date returned, containing the resulting date after the offset has been applied.

time is a LongInt value returned, containing the resulting time after the offset has been
applied. The value represents the seconds since midnight on date. See the example below
for a method to convert this value to a 4D Time variable.

offset is the number of hours to add or subtract from the base time values. Internet Time
Servers express their values in Universal Time (Greenwich Mean Time). Even if the time
server is in your geographic region, it is likely that you will need to supply an offset value
to compensate for the difference between your local time and Universal time.

210 4D Internet Commands Reference

Example
The following example obtains the Universal Time from the Time server at "apple.com".
The command then subtracts the seven hours specified as the Offset and returns the
resulting Date and Time (Time is expressed as a Longint value, which can then be
converted using 4D's Time string command, as below).

C_DATE(vNetDate)
C_LONGINT(vNetTime)
C_TIME(vTime)
C_INTEGER(vOffset)

⇒ If (ERRCHECK ("NET_Time";NET_Time ("www.apple.com"; vNetDate; vNetTime; -7)))
vTime:=Time(Time string(vNetTime)) `Convert the LongInt time to a 4D Time

End if

See Also
Time string.

4D Internet Commands Reference 211

NET_NameToAddr IC Internet

version 6.5
__

NET_NameToAddr (hostName; ip_Longint) → Integer

Parameter Type Description
hostName String → Host name or IP address
ip_Longint Longint ← Long Integer reference to the address

Function result Integer ← Error Code

Description
The command NET_NameToAddr takes a host name or IP address and returns a unique
long integer reference to the address.

hostName is the host name or IP address.

ip_Longint is a Longint value representing the IP address specified in the hostName
parameter. All IP address strings can be converted to a signed Longint value.

While the ip_Longint value does not typically have a significant use, some developers may
find this command useful to convert IP addresses into a more compact Longint format
for data-storage.

See Also
NET_AddrToName.

212 4D Internet Commands Reference

NET_AddrToName IC Internet

version 6.5
__

NET_AddrToName (ip_Longint; hostName; ip_Address) → Integer

Parameter Type Description
ip_Longint Longint → Long Integer reference to the address
hostName String ← Host name
ip_Address String ← IP address

Function result Integer ← Error Code

Description
The command NET_AddrToName takes a long integer reference to a host name, and
returns both the host name and the IP address of that host.

ip_Longint is the long integer reference to an IP address.

hostName is the string returned which contains the host name. If the host name is not
able to be resolved, ip_Address will return a null string and no error will be returned.

ip_Address is the string returned which contains the IP address.

See Also
NET_NameToAddr.

4D Internet Commands Reference 213

NET_Resolve IC Internet

version 6.5
__

NET_Resolve (hostName; ipOrHost) → Integer

Parameter Type Description
hostName String → Host name or IP address
ipOrHost String ← Returns the opposite value

Function result Integer ← Error Code

Description
Given a host name in the first parameter, the command NET_Resolve will return the IP
address into the second parameter. If the first parameter is passed an IP address, the
second parameter will yield the registered host name for that machine.

hostName is a string which contains either an IP address or a host name.

ipOrHost - If the first parameter contained a Host Name then this parameter will receive
its IP address. If the IP address was specified in the first parameter then this value will
receive its Host Name.

Example
The following example first passes a host name "www.netcom.com" to the NET_Resolve
command in order to obtain its IP address. The example then makes another call to the
command, passing it the IP address in order to obtain its registered host name.

C_BOOLEAN($ERR)
C_STRING(80;$Resolved) `Can be any sized string or text value

⇒ $ERR:=ERRCHECK ("NET_Resolve";NET_Resolve ("www.netcom.com";$Resolved))
 `$Resolved was returned the value '192.100.81.100'

⇒ $ERR:=ERRCHECK ("NET_Resolve";NET_Resolve ($Resolved;$Resolved))
 `$Resolved was returned the value 'www.netcom.com'

214 4D Internet Commands Reference

9

IC Utilities

4D Internet Commands Reference 215

216 4D Internet Commands Reference

Utility Commands, Overview IC Utilities

version 6.5
__

The commands within this section provide various utilities which are supportive of the
other sections of 4D Internet Commands. Many of these commands help the developer
determine the environment in which a user's machine is operating, the versions of the
software and the state and IP address of their computer.
Other commands within this section help the developer decipher error codes, encode and
decode files, and effect the default timeout value for many of the commands in all
sections.

4D Internet Commands Reference 217

IT_MacTCPInit IC Utilities

version 6.8.1 (Modified)
__

IT_MacTCPInit → Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ← Error Code

Description
The command IT_MacTCPInit opens the TCP driver for use with the 4D Internet
Commands. The command acts as a function and returns an integer value error if the
TCP driver cannot be opened.

It is recommended that users place this command in the On Startup Database Method of
their 4th Dimension database if they are not dial-up scheme users. In this case, the
command only needs to be executed once.

Users of dial-up schemes which are utilized by TCP such as PPP or SLIP may wish to delay
use of this command until a TCP connection is needed as use of this command will cause
these commands to open and initialize their dial-up connection (see IT_PPPStatus
command).

Note: This command must be executed before any 4D Internet command can be
executed.

See Also
IT_PPPConnect.

218 4D Internet Commands Reference

IT_Platform IC Utilities

version 6.5
__

IT_Platform → Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ← Platform Type (0 = 68K Code, 1 = PPC Code,
2 = Windows)

Description
The function IT_Platform returns an integer value indicating which set of 4D Internet
Commands code is currently executing. The function will return a zero if running the
68K code, a one if running the PPC native code or a 2 if running on Windows.

Example

C_BOOLEAN (<>ITnative)
⇒ <>ITnative:=(IT_Platform=1)

4D Internet Commands Reference 219

IT_Version IC Utilities

version 6.5
__

IT_Version → String

Parameter Type Description
This command does not require any parameters

Function result String ← Version String

Description
The function IT_Version returns a String value indicating the version number of 4D
Internet Commands.

Example
The following example presents an alert dialog to the user indicating what version of 4D
Internet Commands they are using.

⇒ ALERT("4D Internet Commands version: "+IT_Version)

220 4D Internet Commands Reference

IT_TCPversion IC Utilities

version 2004 (Modified)
__

IT_TCPversion (stackKind; stackVersion) → Integer

Parameter Type Description
stackKind Integer ← 0 = None, 3 = WinSock, 4 = BSD
stackVersion Text ← Version number of the TCP stack

Function result Integer ← Error Code

Description
The IT_TCPversion command returns information about the type of TCP stack currently
in use by the 4D Internet Commands. The type of Stack varies by platform. Under
Macintosh, only BSD is now supported. Under Windows, the WinSock TCP stack is
supported.

stackKind returns an integer value expressing the type of TCP stack currently in use. The
value returned identifies the following supported TCP stacks:

Code TCP Stack
0 None
1 MacTCP (Obsolete, see Compatibility note)
2 Open Transport (Obsolete, see Compatibility note)
3 WinSock
4 BSD Sockets

Compatibility notes:
• MacTCP is no longer supported (starting from version 6.8). Therefore, the stackKind
parameter will no longer return "1".
• Open Transport is no longer supported (starting from version 2004). Therefore, the
stackKind parameter will no longer return "2".

stackVersion returns a Text value representing the version number of the TCP stack
currently in use and identified by the stackKind parameter.

4D Internet Commands Reference 221

IT_MacTCPVer IC Utilities

version 6.8.1 (Modified)

Compatibility note: The command IT_MacTCPVer has been made obsolete with the
addition of the IT_TCPversion which provides better capability for determining version
information across Open Transport and Winsock.
__

IT_MacTCPVer (versionCode) → Integer

Parameter Type Description
versionCode Integer ← Version Code of MacTCP installed

Function result Integer ← Error Code

Description
Starting with 4D Internet Commands version 6.8, MacTCP is no longer supported.
Consequently, the versionCode parameter systematically returns 0 whatever the platform
and/or OS used.

See Also
IT_TCPversion.

222 4D Internet Commands Reference

IT_MyTCPAddr IC Utilities

version 6.8.1 (Modified)
__

IT_MyTCPAddr (ip_Address; subnet) → Integer

Parameter Type Description
ip_Address String ← IP address of users machine
subnet String ← Subnet Mask in IP form

Function result Integer ← Error Code

Description
The command IT_MyTCPAddr returns the IP address of the machine that executes the
command.

ip_Address is the string returned which contains the IP address.

subnet is the string returned which contains the Subnet mask of the IP address.

Note: Under Windows 95, the subnet parameter returns the default subnet mask for the
address class specified by ip_Address.

4D Internet Commands Reference 223

IT_SetTimeOut IC Utilities

version 6.8.1 (Modified)
__

IT_SetTimeOut (timeout) → Integer

Parameter Type Description
timeout Integer → Timeout in seconds; limited to 0 thru 127

Function result Integer ← Error Code

Description
The IT_SetTimeOut command sets the integer value of the timeout period in seconds. This
value is limited to between zero and 127 seconds. By default, the timeout period is 30
seconds.

timeout is the current value in seconds of the timeout period. The following commands
are affected by IT_SetTimeOut:

TCP_Open
FTP_Login
FTP_Send
FTP_Receive
SMTP_QuickSend
SMTP_Send
POP3_Login
POP3_BoxInfo
POP3_Delete
POP3_Reset
POP3_MsgInfo
POP3_MsgLstInfo
POP3_GetMessage
POP3_MsgLst
POP3_Download
POP3_VerifyID
POP3_UIDToNum
IMAP_Login
IMAP_VerifyID
IMAP_Capability
IMAP_ListMBs
IMAP_SubscribeMB
IMAP_GetMBStatus
IMAP_SetCurrentMB
IMAP_Delete
IMAP_MsgInfo
IMAP_MsgLstInfo

224 4D Internet Commands Reference

IMAP_GetMessage
IMAP_MsgLst
IMAP_SetFlags
IMAP_GetFlags
IMAP_Search
IMAP_MsgFetch
IMAP_Download
IMAP_CopyToMB
IMAP_CreateMB
IMAP_RenameMB
IMAP_DeleteMB
NET_Finger
NET_Ping
NET_Time

Note: Setting the timeout to zero for the TCP_Listen command allows it to listen
indefinitely. Make sure you set the timeout back to some other value after this command.
Also, the timeout value is used for "TCP/IP timeouts" AND "wait for a response timeout".
If you set the timeout to zero, it will never get enough time to wait for a response.

See Also
IT_GetTimeOut.

4D Internet Commands Reference 225

IT_GetTimeOut IC Utilities

version 6.5
__

IT_GetTimeOut (timeout) → Integer

Parameter Type Description
timeout Integer ← Timeout seconds

Function result Integer ← Error Code

Description
The command IT_GetTimeOut returns the current timeout value for the commands listed
in IT_SetTimeOut.

timeout is the current value in seconds of the timeout period.

See Also
IT_SetTimeOut.

226 4D Internet Commands Reference

IT_ErrorText IC Utilities

version 6.5
__

IT_ErrorText (error) → String

Parameter Type Description
error Integer → Error code returned from other commands

Function result String ← Text of the error

Description
The command IT_ErrorText takes an integer error number as its only parameter and
returns the String/Text description of that error. Note that this is one of the few 4D
Internet Commands that does not return an Integer as its functional value.

error is the integer number of the error.

Example
The following is an example of an ErrorCheck routine that will display an alert message
explaining the cause of an error.

`Method: ERRCHECK ("Command Name"; Error#) -> True/False
C_TEXT(vErrorMsg)
$Command:=$1
$Error:=$2
$Result:=True
If ($Error#0)

$Result:=False
⇒ vErrorMsg:=IT_ErrorText ($Error)

ALERT("ERROR -- "+Char(13)+"Command: "+$Command+Char(13)+"Error Code:"
+String($Error)+Char(13)+"Description: "+vErrorMsg)

End if
$0:=$Result

See Also
Appendix A, Programming Tips.

4D Internet Commands Reference 227

IT_Encode IC Utilities

version 6.8.1 (Modified)
__

IT_Encode (fileName; encodedFile; encodedMode) → Integer

Parameter Type Description
fileName Text → A LocalPath to a file
encodedFile Text → LocalPath file specification

← Path to resulting encoded file
encodedMode Integer → 1 = BinHex

2 = Base64 (Data fork only)
3 = AppleSingle
4 = AppleDouble
5 = AppleSingle AND Base64
6 = AppleDouble AND Base64
7 = UUEncode
8 = MacBinary

Function result Integer ← Error Code

Description
The IT_Encode command encodes a file using the encodeMode specified. The specified file
will not be altered and an encoded copy will be created. The name of the encoded file
created will be the original file name plus a suffix appended to specify the encoding
method. For Binhex encoding, the suffix ".hqx" will be appended. For Base64 encoding,
the suffix ".b64" will be appended. For AppleSingle encoding, the suffix ".as" will be
appended.

fileName takes a full pathname specification to a file you want to Encode. If an null string
is passed in this parameter the user will be prompted with a dialog to select a file.

encodedFile can be passed:
• a full LocalPath file specification providing a name and location for the encoded file.
• a full LocalPath folder specification (without specifying the file name) providing the
folder in which the encoded file will be saved; the file name will be the original file name
with a suffix defining the encoding mode.
• a null string (in this case, the IT_Encode command) will provide its own name for the
document, placed in the same folder as the file specified in the first parameter.
Whether specified or not, the final pathname of the encoded document will be returned
in this parameter. Due to the potential for possible naming conflicts within the specified
directory, you should always rely on the returned value as the true reference to the
encoded file, not the original value passed into the command.

228 4D Internet Commands Reference

encodeMode identifies which encoding method to apply to the file. The default value is 1
for binhex encoding. Other methods are:

Code Scheme
1 BinHex
2 Base64 (Data fork only)
3 AppleSingle
4 AppleDouble
5 AppleSingle and Base64
6 AppleDouble and Base64
7 UUEncode
8 MacBinary

When encoding using AppleDouble (encodeModes 4 & 6), two files are created named
"%filename" and "filename".

See Also
IT_Decode.

4D Internet Commands Reference 229

IT_Decode IC Utilities

version 6.8.1 (Modified)
__

IT_Decode (fileName; decodedFile; decodeMode) → Integer

Parameter Type Description
fileName Text → LocalPath to an encoded file
decodedFile Text → LocalPath file specification

← Path of decoded file
decodeMode Integer → 1 = BinHex

2 = Base64 (Data fork only)
3 = AppleSingle
4 = AppleDouble
5 = AppleSingle AND Base64
6 = AppleDouble AND Base64
7 = UUEncode
8 = MacBinary

Function result Integer ← Error Code

Description
The IT_Decode command decodes a file using the decodeMode specified. The specified file
will not be altered and a decoded copy will be created.

fileName takes a full pathname specification to a file you want to decode. If an null string
is passed in this parameter the user will be prompted with a dialog to select a file.

decodedFile can be passed:
• a full LocalPath file specification providing a name and location for the decoded file.
• a full LocalPath folder specification indicating the folder that will receive the decoded
file using the original file name.
• a null string (in this case, the IT_Decode command) will provide its own name for the
document, located in the same folder as the file specified in the first parameter.
Whether specified or not, the full path of the decoded document will be returned in this
parameter.

230 4D Internet Commands Reference

decodeMode identifies which decoding method to apply to the file. The default value is 1
for binhex decoding. Other methods are:

Code Scheme
1 BinHex
2 Base64 (Data fork only)
3 AppleSingle
4 AppleDouble
5 AppleSingle and Base64
6 AppleDouble and Base64
7 UUEncode
8 MacBinary

When decoding using AppleDouble (decodeModes 4 & 6), this command looks for a file
named "%filename" for the resource fork.

See Also
FTP_MacBinary, FTP_Receive, IT_Encode.

4D Internet Commands Reference 231

IT_GetProxy IC Utilities

version 6.8.1 (Modified)
__

IT_GetProxy (protocol; proxyKind; proxyHostName; proxyPort; proxyUserID) → Integer

Parameter Type Description
protocol Integer → 1 = FTP; 2 = SMTP; 3 = POP3; 4 = IMAP
proxyKind Integer ← 0 = None; 1 = SOCKS
proxyHostName String ← Host name or IP address of the SOCKS Proxy host
proxyPort Integer ← Proxy port to connect to
proxyUserID Text ← UserID for SOCKS

Function result Integer ← Error Code

Description
Given a specified protocol, the command IT_GetProxy returns the current settings being
used by the 4D Internet Commands related to the routage of the specified protocol. The
values will be at their default state unless a prior call to IT_SetProxy altered the settings. For
a complete description of the parameters, see IT_SetProxy.

protocol is an integer value that specifies the protocol to examine. A value of 1 will
indicate FTP protocol. A value of 2 will indicate SMTP protocol. A value of 3 will indicate
POP3 protocol. A value of 4 will indicate IMAP protocol.

proxyKind returns the current settings determining if a SOCKS proxy host is used. A value
of 1 routes all requests for the specified protocol through the specified SOCKS Host. A
value of zero does not route requests for the specified protocol through any SOCKS Host.

proxyHostName returns the current settings determining the Host Name or IP address of
the SOCKS Proxy host in use.

proxyPort returns the current settings determining the port number used for the specified
protocol to communicate with the SOCKS Proxy host.

proxyUserID returns the current settings determining the user ID.

See Also
IT_SetProxy.

232 4D Internet Commands Reference

IT_SetProxy IC Utilities

version 6.8.1 (Modified)
__

IT_SetProxy (protocol; proxyKind; proxyHostName; proxyPort; proxyUserID) → Integer

Parameter Type Description
protocol Integer → 1 = FTP; 2 = SMTP; 3 = POP3; 4 = IMAP
proxyKind Integer → 0 = None; 1 = SOCKS
proxyHostName String → Host name or IP address of the SOCKS Proxy
proxyPort Integer → Proxy port to connect to
proxyUserID Text → UserID for SOCKS

Function result Integer ← Error Code

Description
The command IT_SetProxy allows you to negociate a connection using the specified
protocol and then send all further requests through the SOCKs Host (SOCKS Proxy). If
you are just connecting to an intranet, then you will probably not have to communicate
through the SOCKS Host. However, it all depends on how your company has their
firewall set up. The IT_SetProxy settings have an interprocess scope and effect all the
connections using the specified protocol in any 4D process.

Note: Socks (or "SOCKS") is a protocol that a proxy server can use to accept requests from
client users in a company’s network so that it can forward them across the Internet. If
your workstation is located behind a firewall and you want to access an information
located on the Internet, the SOCKS host receives your request, forwards the request
through the firewall, and then returns the information to your client application.

protocol is an integer value that specifies the protocol to be routed through the specified
SOCKS Proxy host. A value of 1 will effect FTP protocol. A value of 2 will effect SMTP
protocol. A value of 3 will effect POP3 protocol. A value of 4 will indicate IMAP protocol.

proxyKind is an integer value indicating whether the specified protocol should be routed
through a SOCKS Proxy host or not. A value of 1 will route all requests for the specified
protocol through the specified SOCKS Host. A value of zero won't route requests for the
specified protocol through any SOCKS Host.

proxyHostName is the Host name or the IP address of the SOCKS Proxy machine.

proxyPort is an integer value that specifies the port to use for the specified protocol to
communicate with the SOCKS Proxy host.

4D Internet Commands Reference 233

proxyUserID is a text value that identifies the user. The user ID is given by your network
administrator. proxyUserID can be an empty text ("").

Example
Using the following method, all FTP connections will be routed through the specified
SOCKS Proxy Host.

⇒ $err:=IT_SetProxy (1;1;$proxyAdd;$proxyPort;"") `FTP SOCKS Proxy
$err:=FTP_Login ("ftp.4d.com";"anonymous";dbody@aol.com";$ftpID)
$err:=FTP_GetFileInfo ($ftpID;$vpath;$vsize;$vmodDate)
$err:=FTP_Receive ($ftpID;$vpath;"";0)
$err:=FTP_Logout ($ftpID)

Note: For clarification purposes, this example does not contain error checking.

The following statement stops routing FTP connections through any SOCKS Proxy Host.

⇒ $err:=IT_SetProxy (1;0;$proxyAdd;$proxyPort;"")

See Also
IT_GetProxy.

234 4D Internet Commands Reference

IT_GetPort IC Utilities

version 6.8.1 (Modified)
__

IT_GetPort (protocol; port) → Integer

Parameter Type Description
protocol Integer → 1 = FTP; 2 = SMTP; 3 = POP3; 4 = IMAP
port Integer ← Port Number

Function result Integer ← Error Code

Description
Given a specified protocol, the command IT_GetPort will get the current port number
being used by the 4D Internet Commands related to the protocol.

See Also
Appendix B, TCP Port Numbers, IT_SetPort.

4D Internet Commands Reference 235

IT_SetPort IC Utilities

version 6.8.1 (Modified)
__

IT_SetPort (protocol; port) → Integer

Parameter Type Description
protocol Integer → 1 = FTP; 2 = SMTP; 3 = POP3; 4 = IMAP
port Integer → Port Number

Function result Integer ← Error Code

Description
Given a specified protocol, the command IT_SetPort will direct all future communication
of the protocol to the specified port.

See Also
Appendix B, TCP Port Numbers, IT_GetPort.

236 4D Internet Commands Reference

IT_PPPConnect IC Utilities

version 6.8.1
__

IT_PPPConnect (pppProfil) → Integer

Parameter Type Description
pppProfil String → Dial-up name = Null string on Mac OS,

fill under Windows

Function result Integer ← Error code

Description
The command IT_PPPConnect opens the current dial-up connection under MacOS or the
specified dial-up connection (pppProfil) parameter under Windows. This command acts as
a function and returns an integer value error if the connection cannot be opened.

This command must be executed each time you need to execute a set of Internet
Commands that works online. On completion, you must execute IT_PPPDisconnect to
close the current connection.

PPP (Point-to-Point Protocol) is a protocol for communication between two computers
using a serial interface, typically a personal computer connected by a phone line to a
server. For instance, your Internet server provider may supply you with a PPP connection
so that the provider’s server can respond to your requests, pass them on to the Internet
and forward your requested Internet responses back to you. Essentially, it packages your
computer’s TCP/IP packets and forwards them to the server where they can actually be
served on the Internet.

PPP is usually preferred over the former de facto standard Serial Line Internet Protocol
(SLIP) because it can handle synchronous as well as asynchronous communication. PPP
can share a line with other users and has an error detection function, neither of which is
true for SLIP. If a choice is possible, PPP is preferred.

See Also
IT_MacTCPInit, IT_PPPDisconnect, IT_PPPStatus.

4D Internet Commands Reference 237

IT_PPPDisconnect IC Utilities

version 6.8.1
__

IT_PPPDisconnect {(pppProfil)} → Integer

Parameter Type Description
pppProfil String → Dial-up name = Null string on Mac OS,

optionally filled under Windows

Function result Integer ← Error code

Description
The command IT_PPPDisconnect closes the current dial-up connection previously opened
by IT_PPPConnect.

pppProfil is a text value specifying the dial-up connection to close.
Under Windows, this parameter may be useful when several PPP connections are opened
simultaneously. Using this parameter will ensure good running whatever the user
network configuration.

Under Windows:
• If only one connection is opened and pppProfil is not passed or is passed as a null string,
IT_PPPDisconnect closes the opened connection.

• If several connections are opened and pppProfil is not passed or is passed as a null string,
IT_PPPDisconnect returns an error and does not close any connection.

• If pppProfil is passed and valid, the specified connection is closed whatever the number
of opened connections.

Under MacOS:
This parameter is not taken into account.

See Also
IT_PPPConnect, IT_PPPStatus.

238 4D Internet Commands Reference

IT_PPPStatus IC Utilities

version 6.8.1
__

IT_PPPStatus {(pppProfil)} → Integer

Parameter Type Description
pppProfil String → Dial-up name = Null string on Mac OS,

optionally filled under Windows

Function result Integer ← 1 if connected; 0 if connecting; -1 if error

Description
The command IT_PPPStatus allows you to check the status of a connection opened with
the IT_PPPConnect command or opened manually.

pppProfil is a text value specifying which opened connection to check.
Under Windows, this parameter is optional but may be useful to ensure good running
whatever the user network configuration.

Under Windows:
- If pppProfil is passed and valid, specified connection status is return.

- If pppProfil is not passed or is passed as a null string, IT_PPPStatus will return:
• -1 if several connections are opened,
• the status of the opened connection if only one connection is opened.

Under MacOS:
This parameter is not taken into account.

IT_PPPStatus returns an integer denoting the connection status. It returns:
• 1 if connected,
• 0 if connecting,
• -1 in case of a connection failure or if not connected.

4D Internet Commands Reference 239

Example
`Method GetMessages (this method is executed in a process)

If(mPPPConnect($vPPPProfil; 120))
$vErrCode:=IT_MacTCPInit
If($vErrCode=0)

$vErrCode:=POP3_Login...
...

Else
ALERT("Connection failed")

End if
End if

`Method mPPPConnect
C_BOOLEAN($0) `returns True if we are currently connected, False if connection failed
C_TEXT($1) `null string if Mac OS, Entry Name if Windows
C_INTEGER($2) `timeout in seconds

⇒ If (IT_PPPStatus =1)
$0:=True `we are already connected

Else
$vTimeoutLength:=$2
$vTimeout:=False
$vErr:=IT_PPPConnect($1)
If($vErr=0)

$vStart:=Current time
Repeat

DELAY PROCESS(Current process;30)
⇒ $vStatus:=IT_PPPStatus($1)

$vTimeout:=((Current time-$vStart)>$vTimeoutLength)
Until (($vStatus=1) | $vTimeout) `we are connected or time out
If(Not($vTimeout))

$0:=True `we are connected
End if

End if `… $Err = 0
End if

See Also
IT_PPPConnect, IT_PPPDisconnect.

240 4D Internet Commands Reference

10

Appendixes

4D Internet Commands Reference 241

242 4D Internet Commands Reference

Appendix A, Programming Tips Appendixes

version 6.5
__

Executing Commands via a Case Statement
In many of the examples in this document, a programming construct is used which is
likely to be unfamiliar to many developers. Many of these examples execute a series of
commands as falsified cases within a 4th Dimension Case statement.

Many of the commands within 4D Internet Commands require that an entire sequence
of commands execute successfully in order to complete. Since the failure of any one
command within the sequence should stop any further processing along that path, it
would become laborious to cascade your If conditions many level deeps:

If (SMTP_New($smtp_id)=0)
If (SMTP_Host ($smtp_id;◊pref_Server)=0)

If (SMTP_From ($smtp_id;vFrom)=0)
If (SMTP_To ($smtp_id;vTo)=0)

…and deeper, and deeper…
End if

End if
End if

End if

An alternative to this method is to rely on the manner in which 4D executes it's case
statements. Each item of a case statement is executed by 4D in order to determine if its
return value is True or False. If all elements of a case statement were to return a false
value, then each element of that case statement's tests would have been run. We can
execute the same code described above by the following:

$SentOK:=False `A flag to indicate if we made it through all of the calls
Case of

: (SMTP_New ($smtp_id)#0)
: (SMTP_Host ($smtp_id;◊pref_Server)#0)
: (SMTP_From ($smtp_id;vFrom)#0)
: (SMTP_To ($smtp_id;vTo)#0)
: (SMTP_Subject ($smtp_id;vSubject)#0)
: (SMTP_Body ($smtp_id;vMessage)#0)

 : (SMTP_Send ($smtp_id)#0)
Else

$SentOK:=True `message was composed and mailed successfully
End case
If ($smtp_id#0) `If a Message Envelope was created we should clear it now

$OK:=SMTP_Clear ($smtp_id)
End if

4D Internet Commands Reference 243

In the above example, every 4D Internet command will return a zero error number if it
successfully completed. In order for 4D to evaluate each case statement, it must actually
execute each external call to obtain its return value. Since each case element compares the
return result to not zero, 4th Dimension will not find an element to stop on until one of
the commands fails. If every command executes successfully, 4D will proceed down to
run the Else condition where we set the $SentOK flag to indicate that the message was
composed and sent successfully.

Suggestions when auto-replying to POP3 or IMAP mail
If you are planning on implementing a mail system within your database in which the
user can "Reply" to mail they have received, there are some standard suggestions for how
to fill out the fields of the reply message. The following suggestions are outlined by
RFC#822:

• The address listed in the "Sender" field should receive notices of any problems during
delivery of the initial messages. If no "Sender" field exists, notices should be sent to the
address listed in the "From" field. The "Sender" mail address should only be sent replies
pertaining to problems in the mail delivery and not replies related to the topic of the
message.

• The "Sender" address should never be used in an automated process of replying to
messages. Instead, the message should either use the "Reply-To" field or the "From" field,
dependent on the conditions described below.

• If the "Reply-To" field exists and contains one or more mail addresses, then any reply
should be directed to the people in that list. Addresses within the "Reply-To" header
override any addresses listed in the "From" header. However, if no "Reply-To" field exists
but a "From" field does exist, replies should be sent to the mailbox(es) indicated in the
"From" header.

These suggestions are only meant to help the decision process when the mail addressing is
programmatically handled in the case of "Reply" type actions. Once the Reply message
has been created, the end-user can certainly override any of these defaults before sending
the message.

244 4D Internet Commands Reference

Appendix B, TCP Port Numbers Appendixes

version 6.5
__

How to choose a port number
• 0 to 1023 (Well Known Ports): The Well Known Ports are assigned by the I.A.N.A.
(Internet Assigned Numbers Authority) and on most systems can only be used by system
(or root) processes or by programs executed by privileged users.

- 20 and 21 FTP;
- 23 TELNET;
- 25 SMTP;
- 37 NTP;
- 80 and 8080 HTTP;
- 443 HTTPS.

• 1024 to 49151 (Registered Ports): The Registered Ports are listed by the I.A.N.A. and on
most systems can be used by ordinary user processes or programs executed by ordinary
users (routers, specific applications...)
• 49152 to 65535 (Dynamic and/or Private Ports) : The Dynamic and/or Private Ports are
free of use.

People who want to use TCP/IP commands to synchronize databases would have to use
port numbers higher than 49151.

For more information, please visit the I.A.N.A. Web site: http://www.iana.org

TCP Port Numbers

daytime 13 Daytime
qotd 17 Quote of the Day
ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet
smtp 25 Simple Mail Transfer
time 37 Time
nicname 43 Who Is
domain 53 Domain Name Server
sql*net 66 Oracle SQL*NET
gopher 70 Gopher
finger 79 Finger
http 80 World Wide Web HTTP
poppassd 106 Password Server
rtelnet 107 Remote Telnet Service
pop2 109 Post Office Protocol - Version 2
pop3 110 Post Office Protocol - Version 3
sunrpc 111 SUN Remote Procedure Call
auth 113 Authentication Service
sftp 115 Simple File Transfer Protocol

4D Internet Commands Reference 245

sqlserv 118 SQL Services
nntp 119 Network News Transfer Protocol
ntp 123 Network Time Protocol
pwdgen 129 Password Generator Protocol
imap2 143 Interactive Mail Access Protocol v2
news 144 NewS
sql-net 150 SQL-NET
multiplex 171 Network Innovations Multiplex
cl/1 172 Network Innovations CL/1
at-rtmp 201 AppleTalk Routing Maintenance
at-nbp 202 AppleTalk Name Binding
at-3 203 AppleTalk Unused
at-echo 204 AppleTalk Echo
at-5 205 AppleTalk Unused
at-zis 206 AppleTalk Zone Information
at-7 207 AppleTalk Unused
at-8 208 AppleTalk Unused
ipx 213 IPX
netware-ip 396 Novell Netware over IP
timbuktu 407 Timbuktu
https 443 Secured protocol
conference 531 chat
netnews 532 readnews
netwall 533 for emergency broadcasts
uucp 540 uucpd
uucp-rlogin 541 uucp-rlogin
whoami 565 whoami
ipcserver 600 Sun IPC server
phonebook 767 phone
accessbuilder 888 AccessBuilder

246 4D Internet Commands Reference

Appendix C, 4D Internet Commands Error Codes Appendixes

version 6.8.1 (Modified)
__

All 4D Internet Commands (with the exception of IT_ErrorText & IT_Version) return an
integer value as the result of the function. This integer contains any error number which
the command needs to convey back to the 4D database. If a command is successful, a
zero will be returned. The source of an error number can usually be determined by the
range of values which the error falls within. The following table provides an index to the
most likely creator of an error in any given range:

Error Number Generated by
Error < Zero Operating System Error
Zero No Error
Error >= 10000 4D Internet Commands Error

4D Internet Commands Error Codes
Iif an error occurs during any operation, a numeric value from the following table will be
returned:

10000 user cancelled a dialog or progress.
10001 unimplemented Internet command.
10002 invalid array type.
10003 no more (TCP,SMTP,POP3, etc.) references available.
10004 invalid reference.
10005 need a "Host" for use in the "SMTP_Send" command.
10006 need a "From" for use in the "SMTP_Send" command.
10007 need a recipient for use in the "SMTP_Send" command.
10008 already logged in.
10009 error trying to make a POP3 connection.
10010 error with POP3 USER.
10011 error with POP3 PASS.
10012 error with POP3 QUIT.
10013 error with POP3 STAT.
10014 error with POP3 LIST.
10015 error with POP3 UIDL.
10016 error with POP3 DELE.
10017 error with POP3 RSET.
10018 invalid message number.
10019 invalid character offset.
10020 invalid character length.
10021 error with POP3 RETR.
10022 field was not found in mail Header.
10023 no attachments found.
10024 error in processing BinHex.
10025 BinHex checksum error.

4D Internet Commands Reference 247

10026 Internet commands unavailable. Probably because MacTCP is not installed
10027 Connection no longer exists
10028 Exceeded 32k limit
10029 Error with POP3 NOOP
10030 POP3 session was closed by the server
10031 Error with POP3 APOP
10032 Unknown or invalid response.
10033 SMTP 421 - Service not available, closing transmission channel.
10034 SMTP 450 - Requested mail action not taken: mailbox unavailable.
10035 SMTP 451 - Requested action aborted: local error in processing.
10036 SMTP 452 - Requested action not taken: insufficient system storage.
10037 SMTP 500 - Syntax error, command unrecognized.
10038 SMTP 501 - Syntax error in parameters or arguments.
10039 SMTP 502 - Command not implemented.
10040 SMTP 503 - Bad sequence of commands.
10041 SMTP 504 - Command parameter not implemented.
10042 SMTP 550 - Requested action not taken: mailbox unavailable.
10043 SMTP 551 - User not local; please try <forward-path>.
10044 SMTP 552 - Requested mail action aborted: exceeded storage allocation.
10045 SMTP 553 - Requested action not taken: mailbox name not allowed.
10046 SMTP 554 - Transaction failed.
10047 FTP 421 - Service not available, closing control connection.
10048 FTP 425 - Can't open data connection.
10049 FTP 426 - Connection closed; transfer aborted.
10050 FTP 450 - Requested file action not taken. File unavailable (e.g.,file busy).
10051 FTP 451 - Requested action aborted: local error in processing.
10052 FTP 452 - Requested action not taken. Insufficient storage space in system.
10053 FTP 500 - Syntax error, command unrecognized.
10054 FTP 501 - Syntax error in parameters or arguments.
10055 FTP 502 - Command not implemented.
10056 FTP 503 - Bad sequence of commands.
10057 FTP 504 - Command not implemented for that parameter.
10058 FTP 530 - Not logged in.
10059 FTP 532 - Need account for storing files.
10060 FTP 550 - Requested action not taken. File unavailable

(e.g., file not found, no access).
10061 FTP 551 - Requested action aborted: page type unknown.
10062 FTP 552 - Requested file action aborted. Exceeded storage allocation

(for current directory or dataset).
10063 FTP 553 - Requested action not taken. File name not allowed.
10064 No response has been received within the given timeout period.
10065 Not an FTP file.
10066 Error in processing Base64.
10067 Error in processing AppleSingle.
10068 Error in processing Quoted-Printable.
10069 FTP session was closed by the server.
10070 Not an FTP directory.
10071 TCP session was closed by the server

248 4D Internet Commands Reference

10072 Invalid encode kind
10073 Invalid decode kind
10074 An asynchronous DNR call did not complete
10075 An asynchronous OpenTransport call did not complete
10076 OpenTransport bind failed
10077 OpenTransport connect failed
10078 Maximum MacTCP streams reached
10079 Error in processing uuencode
10080 Cannot load ICMP library
10081 Error in processing MacBinary
10082 MacBinary checksum error
10083 Could not open a file
10084 No FTP information received
10085 Unknown FTP information received
10086 Proxy connection failed
10087 Standard file I/O error
10088 FTP reentrant error

4D Internet Commands Error Codes
New SSL and IMAP error codes are given in the following list:

10089 SLI.DLL is not loaded
10091 Error trying to make an IMAP connection
10092 A maibox is not selected
10093 Invalid message part
10094 Error with IMAP LOGIN
10095 Error with IMAP LOGOUT
10096 Error with IMAP CAPABILITY
10097 Error with IMAP SELECT
10098 Error with IMAP FETCH
10099 Error with IMAP PARTIAL
10100 Error with IMAP STORE
10101 Error with IMAP EXPUNGE
10102 Error with IMAP SEARCH
10103 Error with IMAP COPY
10104 Error with IMAP CREATE
10105 Error with IMAP DELETE
10106 Error with IMAP RENAME
10107 Error with IMAP SUBSCRIBE
10108 Error with IMAP UNSUBSCRIBE
10109 Error with IMAP LIST
10110 Error with IMAP LSUB
10111 Error with IMAP STATUS
10112 Error with IMAP CLOSE

Open Transport Error Codes
-3211 Open Transport Out of Memory
-3201 Open Transport Not Found

4D Internet Commands Reference 249

-3216 Open Transport duplicate found
-3150 A Bad address was specified
-3151 A Bad option was specified
-3152 Missing access permission
-3153 Bad provider reference
-3154 No address was specified
-3155 Call issued in wrong state
-3156 Sequence specified does not exist
-3157 A system error occurred
-3158 An event occurred - call Look()
-3159 An illegal amount of data was specified
-3160 Passed buffer not big enough
-3161 Provider is flow-controlled
-3162 No data available for reading
-3163 No disconnect indication available
-3164 No Unit Data Error indication available
-3165 A Bad flag value was supplied
-3166 No orderly release indication available
-3167 Command is not supported
-3168 State is changing - try again later
-3169 Bad structure type requested for OTAlloc
-3170 A bad endpoint name was supplied
-3171 A Bind to an in-use addr with qlen > 0
-3172 Address requested is already in use
-3173 Accept failed because of pending listen
-3174 Tried to accept on incompatible endpoint
-3175 kOTResQLenErr
-3176 kOTResAddressErr
-3177 kOTQFullErr
-3178 An unspecified provider error occurred
-3179 A synchronous call at interrupt time
-3180 The command was cancelled
-3200 Permission denied
-3201 No such file or directory
-3202 No such resource
-3203 Interrupted system service
-3204 I/O error
-3205 No such device or address
-3208 Bad file number
-3210 Try operation again later
-3211 Not enough space
-3212 Permission denied
-3213 Bad address
-3215 Device or resource busy
-3216 File exists
-3218 No such device
-3221 Invalid argument
-3224 Not a character device

250 4D Internet Commands Reference

-3231 Broken pipe
-3233 Message size too large for STREAM
-3234 Call would block, so was aborted
-3234 or a deadlock would occur
-3236 kEALREADYErr
-3237 Socket operation on non-socket
-3238 Destination address required
-3239 Message too long
-3240 Protocol wrong type for socket
-3241 Protocol not available
-3242 Protocol not supported
-3243 Socket type not supported
-3244 Operation not supported on socket
-3247 Address already in use
-3248 Can't assign requested address
-3249 Network is down
-3250 Network is unreachable
-3251 Network dropped connection on reset
-3252 Software caused connection to abort
-3253 Connection reset by peer
-3254 No buffer space available
-3255 Socket is already connected
-3256 Socket is not connected
-3257 Can't send after socket shutdown
-3258 Too many references: can't splice
-3259 Connection timed out
-3260 Connection refused
-3263 Host is down
-3264 No route to host
-3269 kEPROTOErr
-3270 kETIMEErr
-3271 kENOSRErr
-3272 kEBADMSGErr
-3273 kECANCELErr
-3274 kENOSTRErr
-3275 kENODATAErr
-3276 kEINPROGRESSErr
-3277 kESRCHErr
-3278 kENOMSGErr
-3279 kOTClientNotInittedErr
-3280 kOTPortHasDiedErr
-3281 kOTPortWasEjectedErr
-3282 kOTBadConfigurationErr
-3283 kOTConfigurationChangedErr
-3284 kOTUserRequestedErr
-3285 kOTPortLostConnection

4D Internet Commands Reference 251

MacTCP & Miscellaneous Error Codes
Some of these error codes are no longer useful since MacTCP is no longer supported
starting from 4D Internet Commands version 6.8.1.

-33 Unable to write to the disk. The File Directory is full.
-34 Unable to write to the disk. The disk is full.
-35 No such volume.
-36 I/O error.
-37 Bad file name or volume name.
-38 File is not open for reading or writing.
-39 Unable to read from the file. The end of file was reached.
-42 Unable to continue because too many files are open.
-43 The file cannot be found.
-44 The volume is locked at the hardware level.
-45 The file is locked.
-46 The volume is locked at the software level.
-47 One or more files are already open by another application.
-48 A file with this name already exists.
-49 File already open with write permission.
-54 Permissions error on opened file.
-57 Not a Macintosh volume.
-59 An error occured while trying to rename the file.
-61 Write permissions error.
-108 Insufficient amount of memory.
-120 Directory not found.
-23000 Unable to initialize the local network handler.
-23001 The manually set address is configured improperly.
-23002 A configuration resource is missing.
-23003 Not enough room in the application heap to load MacTCP.
-23004 Error in getting an address from a server or the address is already in use

by another machine.
-23005 A TCPClose command was already issued so there is no more data to send on this

connection.
-23006 The total amount of data described by the WDS was either 0 or

greater than 65,535 bytes.
-23007 The TCP or UDP stream already has an open connection.
-23008 This TCP stream has no open connection.
-23009 Maximum TCP or UDP streams are already open.
-23010 The specified TCP or UDP stream is not open.
-23011 An open stream is already using this receive buffer area.
-23012 The TCP connection was broken.
-23013 The receive buffer area pointer is 0.
-23014 Invalid RDS or WDS buffers.
-23015 The connection came halfway up and then failed.
-23016 The specified command action was not completed in the specified time period.
-23017 A stream is already open using this local UDP port or a TCP connection

already exists between this local IP address and TCP port, and the specified
remote IP address and TCP port.

252 4D Internet Commands Reference

-23032 The packet is too large to send without fragmenting and the
Don’t Fragment flag is set.

-23033 The destination host is not responding to address resolution requests.
-23035 The icmp echo packet was not responded to in the indicated timeout period.
-23036 Insufficient internal driver buffers available to fragment this packet on send.
-23037 No gateway available to manage routing of packets to off-network destinations.
-23041 The hostName field had a syntax error. The address was given in dot notation

(that is, W.X.Y.Z) and did not conform to the syntax for an IP address.
-23042 The name specified cannot be found in the cache. The domain name resolver

will now query the domain name server and return the answer in the
call-back procedure.

-23043 No result procedure is passed to the address translation call when the resolver
must be used to find the address.

-23044 No name server can be found for the specified name string.
-23045 This domain name does not exist.
-23046 None of the known name servers are responding.
-23047 The domain name server has returned an error.
-23048 Not enough memory is available to issue the needed DNR query or to build

the DNR cache.

WinSock Error Codes
-10004 Blocking call cancelled
-10013 Permission denied
-10014 Bad address
-10022 Invalid argument
-10024 No more sockets available
-10035 Non-blocking socket would block
-10036 Illegal WinSock function invoked while a blocking function is in progress
-10037 An attempt was made to cancel an asynchronous operation that has already

completed
-10038 Specified socket descriptor is not valid for this application
-10039 Destination address was required but none was supplied to the function
-10040 Datagram too large for buffer
-10041 Specified protocol does not match the other parameters in the call
-10042 Protocol option is unknown or invalid
-10043 Specified protocol is not supported by the Windows Sockets implementation
-10044 Specified socket type is not supported by the specified address family
-10045 Socket does not support the specified operation
-10046 Protocol family not supported
-10047 Specified address family is not supported by the Windows Sockets

implementation or cannot be used with the indicated socket
-10048 Specified address is already in use
-10049 Specified address is not available from the local machine
-10050 Problem with the network subsystem
-10051 Network cannot be reached from this host at this time
-10052 Connection was dropped and must be reset
-10053 Connection was aborted because of a timeout or other error condition

4D Internet Commands Reference 253

-10054 Connection was reset by the remote host
-10055 Windows Sockets implementation is out of buffer space or the space provided in

an API call by the application was too small to hold the requested information
-10056 Specified socket is already connected
-10057 Specified socket is not connected
-10058 Socket has had the requested functionality shut down
-10060 Connection attempt timed out before the connection could be established
-10061 Connection attempt was forcefully rejected
-10091 Network subsystem is not yet ready for communication
-10092 Windows Sockets DLL does not support the requested Winsock protocol version
-10093 Windows Sockets not initialized
-11001 Requested database information does not exist; as confirmed by an

authoritative host
-11002 Requested information was not found but the answer was not authoritative
-11003 Non-recoverable error occurred
-11004 Name supplied was valid but no information of the requested type is

in the database

SMTP RFC Values
The following items are not error codes returned by any of the external commands. These
are response codes which the SMTP protocol has defined to communicate various states
during client-server communication. Developers may find this list useful if they are
writing their own mail communication procedures using low-level TCP commands.

211 System status, or system help reply
214 Help message [Information on how to use the receiver or the meaning

of a particular non-standard command; this reply is useful only to the
human user]

220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>
354 Start mail input; end with <CRLF>.<CRLF>
421 <domain> Service not available, closing transmission channel [This may be

a reply to any command if the service knows it must shut down]
450 Requested mail action not taken: mailbox unavailable [e.g., mailbox busy]
451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage
500 Syntax error, command unrecognized [This may include errors such as

command line too long]
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: mailbox unavailable [e.g., mailbox not found,

no access]
551 User not local; please try <forward-path>
552 Requested mail action aborted: exceeded storage allocation

254 4D Internet Commands Reference

553 Requested action not taken: mailbox name not allowed
[e.g., mailbox syntax incorrect]

554 Transaction failed

FTP RFC Values
The following items are not error codes returned by any of the external commands. These
are response codes which the FTP protocol has defined to communicate various states
during client-server communication. Developers may find this list useful when writing
their own file transfer procedures using low-level TCP commands.

110 Restart marker reply. In this case, the text is exact and not left to the particular
implementation; it must read:
MARK yyyy = mmmm
Where yyyy is User-process data stream marker, and mmmm server's equivalent
marker (note the spaces between markers and "=").

120 Service ready in nnn minutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.
200 Command okay.
202 Command not implemented, superfluous at this site.
211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message on how to use the server or the meaning of a particular

non-standard command. This reply is useful only to the human user.
215 NAME system type. Where NAME is an official system name from the list in the

Assigned Numbers document.
220 Service ready for new user.
221 Service closing control connection. Logged out if appropriate.
225 Data connection open; no transfer in progress.
226 Closing data connection. Requested file action successful

(e.g., file transfer or file abort).
227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
230 User logged in, proceed.
250 Requested file action okay, completed.
257 "PATHNAME" created.
331 User name okay, need password.
332 Need account for login.
350 Requested file action pending further information.
421 Service not available, closing control connection. This may be a reply to

any command if the service knows it must shut down.
425 Can't open data connection.
426 Connection closed; transfer aborted.
450 Requested file action not taken. File unavailable (file busy).
451 Requested action aborted: local error in processing.
452 Requested action not taken. Insufficient storage space in system.
500 Syntax error, command unrecognized. This may include errors such as

command line too long.

4D Internet Commands Reference 255

501 Syntax error in parameters or arguments.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.
530 Not logged in.
532 Need account for storing files.
550 Requested action not taken. File unavailable (e.g., file not found, no access).
551 Requested action aborted: page type unknown.
552 Requested file action aborted. Exceeded storage allocation

(for current directory or dataset).
553 Requested action not taken. File name not allowed.

256 4D Internet Commands Reference

Appendix D, Additional Information... Appendixes

version 6.8.1 (Modified)
__

The references below contain WWW (World Wide Web) pointers to additional sources of
information related to the internet protocols. Web documents may be accessed via
programs like Netscape or Internet Explorer.

http://www.internic.net/: To understand what a Domain Name is and what you have to do
to register one.

http://www.ietf.org/: Internet Engineering Task Force (IETF) site.

http://www.rfc-editor.org/: To understand what an RFC is and to search for RFCs and sites
related to the RFC series (http://www.rfc-editor.org/rfc.html).

ftp://ftp.isi.edu/in-notes/rfc821.txt: Simple Mail Transfer Protocol -- RFC 821.

http://www.w3c.org/: All you need to know about the World Wide Web.

http://www.imap.org: Site reserved for IMAP protocol. You will find all the useful
information concerning this protocol there.

4D Internet Commands Reference 257

258 4D Internet Commands Reference

Command Index

F
FTP_Append 182
FTP_ChangeDir 170
FTP_Delete 177
FTP_GetDirList 168
FTP_GetFileInfo 172
FTP_GetPassive 190
FTP_GetType 183
FTP_Login 166
FTP_Logout 188
FTP_MacBinary 178
FTP_MakeDir 174
FTP_PrintDir 171
FTP_Progress 164
FTP_Receive 186
FTP_RemoveDir 175
FTP_Rename 176
FTP_Send 180
FTP_SetPassive 189
FTP_SetType 184
FTP_System 185
FTP_VerifyID 173

I
IMAP_Capability 99
IMAP_CloseCurrentMB 110
IMAP_CopyToMB 139
IMAP_CreateMB 141
IMAP_Delete 111
IMAP_DeleteMB 142
IMAP_Download 130
IMAP_GetCurrentMB 109
IMAP_GetFlags 122
IMAP_GetMBStatus 105
IMAP_GetMessage 113
IMAP_GetPrefs 95

4D Internet Commands Reference 259

IMAP_ListMBs 100
IMAP_Login 96
IMAP_Logout 144
IMAP_MsgFetch 123
IMAP_MsgInfo 112
IMAP_MsgLst 117
IMAP_MsgLstInfo 115
IMAP_MsgNumToUID 133
IMAP_RenameMB 143
IMAP_Search 134
IMAP_SetCurrentMB 107
IMAP_SetFlags 119
IMAP_SetPrefs 94
IMAP_SubscribeMB 104
IMAP_UIDToMsgNum 132
IMAP_VerifyID 98
IT_Decode 230
IT_Encode 228
IT_ErrorText 227
IT_GetPort 235
IT_GetProxy 232
IT_GetTimeOut 226
IT_MacTCPInit 218
IT_MacTCPVer 222
IT_MyTCPAddr 223
IT_Platform 219
IT_PPPConnect 237
IT_PPPDisconnect 238
IT_PPPStatus 239
IT_SetPort 236
IT_SetProxy 233
IT_SetTimeOut 224
IT_TCPversion 221
IT_Version 220

M
MSG_Charset 158
MSG_Delete 157

260 4D Internet Commands Reference

MSG_Extract 156
MSG_FindHeader 150
MSG_GetBody 153
MSG_GetHeaders 152
MSG_GetMessage 154
MSG_GetPrefs 149
MSG_HasAttach 155
MSG_MessageSize 151
MSG_SetPrefs 148

N
NET_AddrToName 213
NET_Finger 208
NET_NameToAddr 212
NET_Ping 209
NET_Resolve 214
NET_Time 210

P
POP3_BoxInfo 75
POP3_Charset 84
POP3_Delete 73
POP3_DownLoad 82
POP3_GetMessage 77
POP3_GetPrefs 68
POP3_Login 69
POP3_Logout 74
POP3_MsgInfo 76
POP3_MsgLst 80
POP3_MsgLstInfo 78
POP3_Reset 72
POP3_SetPrefs 67
POP3_UIDToNum 83
POP3_VerifyID 71

4D Internet Commands Reference 261

S
SMTP_AddHeader 51
SMTP_Attachment 56
SMTP_Auth 60
SMTP_Bcc 44
SMTP_Body 54
SMTP_Cc 43
SMTP_Charset 58
SMTP_Clear 33
SMTP_Comments 48
SMTP_Date 34
SMTP_Encrypted 50
SMTP_From 36
SMTP_GetPrefs 27
SMTP_Host 31
SMTP_InReplyTo 46
SMTP_Keywords 49
SMTP_New 30
SMTP_QuickSend 28
SMTP_References 47
SMTP_ReplyTo 40
SMTP_Send 32
SMTP_Sender 38
SMTP_SetPrefs 25
SMTP_Subject 53
SMTP_To 42

T
TCP_Close 204
TCP_Listen 197
TCP_Open 195
TCP_Receive 200
TCP_ReceiveBLOB 202
TCP_Send 199
TCP_SendBLOB 201
TCP_State 203

262 4D Internet Commands Reference

	Cover Page
	Contents
	 4D Internet Commands
	Preface
	Installation and Software Requirements
	Glossary and Terminology
	Parameter Formats

	IC Send Mail
	Sending Mail, Overview
	SMTP_SetPrefs
	SMTP_GetPrefs
	SMTP_QuickSend
	SMTP_New
	SMTP_Host
	SMTP_Send
	SMTP_Clear
	SMTP_Date
	SMTP_From
	SMTP_Sender
	SMTP_ReplyTo
	SMTP_To
	SMTP_Cc
	SMTP_Bcc
	SMTP_InReplyTo
	SMTP_References
	SMTP_Comments
	SMTP_Keywords
	SMTP_Encrypted
	SMTP_AddHeader
	SMTP_Subject
	SMTP_Body
	SMTP_Attachment
	SMTP_Charset
	SMTP_Auth

	IC POP3 Review Mail
	Receiving Mail, Overview
	POP3_SetPrefs
	POP3_GetPrefs
	POP3_Login
	POP3_VerifyID
	POP3_Reset
	POP3_Delete
	POP3_Logout
	POP3_BoxInfo
	POP3_MsgInfo
	POP3_GetMessage
	POP3_MsgLstInfo
	POP3_MsgLst
	POP3_DownLoad
	POP3_UIDToNum
	POP3_Charset

	IC IMAP Review Mail
	IMAP4 Commands, Overview
	IMAP_SetPrefs
	IMAP_GetPrefs
	IMAP_Login
	IMAP_VerifyID
	IMAP_Capability
	IMAP_ListMBs
	IMAP_SubscribeMB
	IMAP_GetMBStatus
	IMAP_SetCurrentMB
	IMAP_GetCurrentMB
	IMAP_CloseCurrentMB
	IMAP_Delete
	IMAP_MsgInfo
	IMAP_GetMessage
	IMAP_MsgLstInfo
	IMAP_MsgLst
	IMAP_SetFlags
	IMAP_GetFlags
	IMAP_MsgFetch
	IMAP_Download
	IMAP_UIDToMsgNum
	IMAP_MsgNumToUID
	IMAP_Search
	IMAP_CopyToMB
	IMAP_CreateMB
	IMAP_DeleteMB
	IMAP_RenameMB
	IMAP_Logout

	IC Downloaded Mail
	Downloading Mail, Overview
	MSG_SetPrefs
	MSG_GetPrefs
	MSG_FindHeader
	MSG_MessageSize
	MSG_GetHeaders
	MSG_GetBody
	MSG_GetMessage
	MSG_HasAttach
	MSG_Extract
	MSG_Delete
	MSG_Charset

	IC File Transfer
	File Transfer, Overview
	FTP_Progress
	FTP_Login
	FTP_GetDirList
	FTP_ChangeDir
	FTP_PrintDir
	FTP_GetFileInfo
	FTP_VerifyID
	FTP_MakeDir
	FTP_RemoveDir
	FTP_Rename
	FTP_Delete
	FTP_MacBinary
	FTP_Send
	FTP_Append
	FTP_GetType
	FTP_SetType
	FTP_System
	FTP_Receive
	FTP_Logout
	FTP_SetPassive
	FTP_GetPassive

	IC TCP/IP
	Low Level Routines, Overview
	TCP_Open
	TCP_Listen
	TCP_Send
	TCP_Receive
	TCP_SendBLOB
	TCP_ReceiveBLOB
	TCP_State
	TCP_Close

	IC Internet
	Special Internet Commands, Overview
	NET_Finger
	NET_Ping
	NET_Time
	NET_NameToAddr
	NET_AddrToName
	NET_Resolve

	IC Utilities
	Utility Commands, Overview
	IT_MacTCPInit
	IT_Platform
	IT_Version
	IT_TCPversion
	IT_MacTCPVer
	IT_MyTCPAddr
	IT_SetTimeOut
	IT_GetTimeOut
	IT_ErrorText
	IT_Encode
	IT_Decode
	IT_GetProxy
	IT_SetProxy
	IT_GetPort
	IT_SetPort
	IT_PPPConnect
	IT_PPPDisconnect
	IT_PPPStatus

	Appendixes
	Appendix A, Programming Tips
	Appendix B, TCP Port Numbers
	Appendix C, 4D Internet Commands Error Codes
	Appendix D, Additional Information...

	Command Index

