
 
 
 

1 

 
 
 
 
 
 
 

 

 

 
4D on GitHub 

By Ayoub Khali, Technical Services Engineer, 4D Inc.  

Technical Note 19-11 



 
 
 

2 

Table of Contents 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Table of Contents ............................................................................................ 2 
Introduction ................................................................................................... 3 
Overview ....................................................................................................... 3 
4D Project Mode ............................................................................................. 3 

Converting a database into a project ................................................................... 4 
Create a new project ...................................................................................... 5 
Contents inside a Project folder ......................................................................... 5 

GIT Architecture .............................................................................................. 6 
Local ......................................................................................................... 6 
Remote ...................................................................................................... 7 

GIT Branching ................................................................................................. 7 
GIT Installation ................................................................................................ 8 

In Windows ............................................................................................... 11 
In macOS ................................................................................................. 11 
Open a terminal window and type the following commands: ..................................... 11 
Creating a First Remote Repository .................................................................. 11 

Implementing GIT with 4D Project ....................................................................... 13 
Git add parameters: ..................................................................................... 15 
Git merge source_branch .............................................................................. 19 

Sample database ........................................................................................... 19 
Demo 1: Interaction with a remote repository ....................................................... 20 

Git reset –hard parameter, the parameter can be as follows: ............................... 21 
Demo 2: Conflict management ........................................................................ 23 
Demo 3: Making use of branches & stashing ....................................................... 31 

Conclusion .................................................................................................. 37 
Resources ................................................................................................... 37 
 



 
 
 

3 

Introduction 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Newbie or full-fledged senior developer, version control has been a staple in every work 
environment where multiple resources tend to collaborate in order to participate in what could 
be called a software’s chain of production. No matter what their scenario might be, what 
language/frameworks they are working with, one piece of advice remains constant: The day a 
program or a webpage contains more than 10 lines of code, GIT becomes a necessity or as 
some may call it: a necessary evil. While getting to know GIT may seem a laborious and 
complicated task at first, once grasping the power and safety that versioning offers, coding 
and conflict management will not be a bother anymore. 

This technical note will introduce GIT the revision control system with GITHUB as the hosting 
service and explain from scratch in details the installation and configuration steps, different 
ways of interacting with GIT repositories using GIT bash. 

 
Overview 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

GIT, similar to its older counterparts (CVS, SVN...) is a revision control system primarily 
developed for Linux but that also runs on Mac and Windows systems. GIT took a radical 
approach that differs immensely from its legacy siblings, for it is distributed rather than 
centralized which means that every user has a complete copy and backup of the repository 
data stored locally, which in turn makes access to file history extremely efficient. 

GIT simplifies teamwork and makes collaborations in projects much more manageable since 
every developer's working directory is itself a branch. All modifications on every branch can be 
merged within the master branch while also taking care of eventual conflicts that may appear. 
This allows multiple collaborators to work on the same files at the same time, knowing that 
merging the final files together won't be much of a hassle. 

 

4D Project Mode 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Since earlier versions 4D has been a supporter of team development and testing, using its 
binary system that allowed team members to work together via 4D server. Starting v17 R5, 4D 
introduced a new way that makes it possible for distributed teams to work on the same source 
which is project mode. This means that now it is possible to convert the binary source (.4DB 
file) into a project folder, with every element from the database (forms, methods…) as a text 
file, while still allowing the compilation of all of the work into a single file for deployment needs. 

Converting into project mode will not affect the .4db file but instead will generate a new 
“Project” folder next to it. This means two things:  

1. This will allow the conversion of the binary database multiple times which could prove 
beneficial for testing. 



 
 
 

4 

2. The conversion is one way only which means that once converted, reintegrating the 
current changes won't into the .4DB won’t be possible. 

Moreover, converting an existing database is not the only feasible way to access project mode, 
creating a fresh database project from scratch remains an available option. 

Converting a database into a project 

The conversion process is simple. From the Design mode, select “File > Export > Structure 
to project…” menu item. 

 

The following prompt message appears once a project has been created. 

 

• Reveal Log: Display the folder containing the log files (JSON) generated during the 
conversion. 

• Open project: Opens the database in project mode. 
• Cancel: Remains in the .4DB mode. While in this mode, an attempt to export the 

structure for the second time will result in an alert informing the user that a project 
folder already exists. The user will be presented with an option to replace it. 



 
 
 

5 

Create a new project 

A new project can be created simply by selecting “File > New > Database Project…”. 

 

Contents inside a Project folder 

Once a project has been generated, the project folder will contain every single element 
from the database (forms, methods, menus, structure…) as text files (.json, .4dm, 
.4DCatalog, and etc.) organized by folders. 

 

• BuildSettings folder contains Buildapp.xml. 
• DerivedData folder contains metadata about methods and forms (timestamp, 

destination, and etc.). 
• Sources folder contains a file for every form, method, triggers, menus in addition to the 

database’s settings and structure. 
• Trash folder contains deleted forms and methods from the Explorer Trash Bin. 
• Test.4DProject 

 



 
 
 

6 

GIT Architecture 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

Let’s first take a quick look at GIT’s architecture and try to grasp the whole structure behind it.  

The diagram could be divided into two major sections: Local and Remote.  

Local 

Working directory: This is where database files are present and where the .git folder will be 
generated. This area is also known as the “untracked” area of GIT. Any changes to these 
files will be marked in the working tree. Making changes in this area and not explicitly 
saving them with GIT can result in data loss. This loss of changes can occur since GIT was 
not aware of the changes made in the working directory. To sum it up GIT will notice any 
modifications made on the files present on the working directory but won’t save them until 
the proper commands are entered. 

Staging area: Or indexing area is where GIT tracks files and stages modifications that occur 
in every file in the working directory. The difference between untracked and unstaged is 
simple: an untracked file is basically every file that was not there in the previous snapshot 
of the repository (new files for example). In the other hand, unstaged state relates more to 
modifications, so every time a change is made in a file, this file becomes unstaged since 
the contents of this file differ from the working tree to the staging area. 

GIT repository (or local repository): This is where all files will be saved every time a commit 
is executed. Committing takes all the changes in the staging area and sends them to the 
local repository available in the local machine, thus every commit is a request to GIT to 
track changes that occurred up to this point using the last commit as a comparison. Once a 
commit is over, the staging area will then remain empty. The one key feature of a 
distributed version control system is locally having access to the full repository history. 



 
 
 

7 

Remote 

Remote GIT repository: A remote in GIT is basically a common repository where all team 
members can send and retrieve files. The remote repository is usually not in the local 
machine, it is stored in a code hosting service like GITHUB for example but could also be 
configured to work in an internal server. Team members can push commits to it when 
ready to share with the team.  Note that using a remote repository remains optional in case 
the team consists of a single developer (unless it’s used as backup). 

 

GIT Branching 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Branching is a key feature in many modern version control systems and so is the case in GIT. 
The main purpose of branching resides in its utility which means that instead of a master single 
branch where every commit will be pushed, different side branches can be involved in this 
process. Implementing workflows with multiple branches allows greater visibility and fewer 
conflicts in bigger projects. The master branch will store the official release history while the 
other branches serve as feature branches that will eventually be integrated/merged with the 
master branch once development is complete. 

Take a look at the diagram below:  

 

The blue branch represents the master branch while the green one is the feature branch. At 
project launch, both are in a common base (which means that no features are there yet), once 
the feature development starts the green branch diverts from the blue one then gets merged 
back to master when it is complete. 

 



 
 
 

8 

GIT Installation 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

The first step would be creating an account on GitHub: https://github.com/join?source=header 

There are 3 steps. Follow each step to complete an account creation. 

Step 1: Create a new account 

 

 



 
 
 

9 

Step 2: select “The basics of GitHub for every developer” 

 

 

 

 

 

 

 



 
 
 

10 

Step 3: specify the user experience and plan to use GitHub. 

 

On Windows and macOS 

1. Download the latest GIT installer: 

• Windows Installer: https://gitforwindows.org/ 
• macOS Installer: https://sourceforge.net/projects/git-osx-installer/files/ 

 
2. Start the installer and follow up with the wizard (next) keeping the default options for 

now. 
3. Open a terminal and verify that the installation was successful by typing the following 

command:  GIT –version 
4. Run the following commands in a terminal replacing XXXX with the actual name and 

email from the GitHub account: 

git config --global user.name "xxxx xxxxx" 
git config --global user.email "xxxxx@xxxx.com" 



 
 
 

11 

Note: Optional but very recommended: Install the git credential helper: Every interaction with the 
remote repository will require entering a username/password combination every time which 
can prove very annoying. Storing them using the GIT credential helper (git-credential-
osxkeychain helper for mac) is simple, take a look at the following: 

In Windows 

To use the GCM, download the latest installer. To install, double-click GCMW-{version}.exe 
and follow the instructions presented. When prompted to select the terminal emulator for 
GIT Bash, choosing Windows’ default console window would be the right choice. 

Link to the installer: https://github.com/Microsoft/Git-Credential-Manager-for-
Windows/releases/tag/1.18.5 

In macOS 

Open a terminal window and type the following commands: 

1. To download the tool 

• curl http://github-media-downloads.s3.amazonaws.com/osx/git-credential-
osxkeychain -o git-credential-osxkeychain 

 

2. Create folders 

• sudo mkdir /usr/local 
• sudo mkdir /usr/local/bin 
 

3. Moving the files to the right directory 

• sudo mv git-credential-osxkeychain /usr/local/bin/ 
 

4. Making the file an executable 

• sudo chmod u+x /usr/local/bin/git-credential-osxkeychain 

5. Configuring git to use osyxkeychain 

• git config --global credential.helper osxkeychain 
 

Creating a First Remote Repository 

• Go to https://github.com and login 
• Click on the upper right corner icon and select “Your repositories”. 



 
 
 

12 

 

• The following displays a list of created remote repositories in the GitHub account.  

 

Click “New”. 

 



 
 
 

13 

Repository name: Name of the remote repository that users will push into once 
created. 

Description: An optional field used to describe the repository’s content 

Public / Private: This configures repositories visibility. 

Initialize this repository with a README:  Initialize the repository with a 
README file that could eventually describe the project in detail. 

Add .gitignore: A file indicating all the files that are not meant to be tracked  

Add a license: Adds a license to the project (GNU, OpenBSD….) 

Implementing GIT with 4D Project 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Now that GIT is installed and the remote repository created, proceeding to the creation of a 
local repository, implementing the 4D project that was either generated from a 4D database or 
newly created becomes the next step. In this case, the local repository will be initiated inside 
the 4D project folder. 

Navigate to the newly generated project folder, right click and choose “Git bash here”. 

 



 
 
 

14 

This will open a GIT bash terminal allowing us to enter commands to perform GIT 
operations. 

 

The next step would be initializing a local repository: 
 

 
 
Git init will create an empty local repository, it simply does so by creating a .git directory 
containing template files and subdirectories. 
 
Since the git init was executed in a 4D project folder, GIT already has a list of untracked 
files available. 
 
The git status command will list all modified files (or new ones) which can be added to the 
local repository. The result shows that 3 elements are not included in the index yet, which 
means that committing changes with these elements cannot be done for now. In order to 
do so, staging (adding to index) these folders and files will be the first step. 
 
 
 
 
 
 
 
 
 
 
 
 
The git add command will prepare the files available in the working tree for the next 
commit by introducing them into the staging zone. 
 

 

 

 

 

 



 
 
 

15 

Git add parameters: 

Git add <directory>: to add all the files in a specific directory to the index. 

Git add <file>: to add a specific file to the index. 

Git add . : Inspects the whole working directory looking for any new, deleted or 
modified files then adds them to the index. 

 

Running git status once more shows that files are ready to be committed. 

 

Git commit sends whatever files were available in the staging area to the local repository, thus 
freeing the index. A commit is a snapshot of the elements in the working directory. However, 
GIT does not copy all files every time a commit is made but instead includes them as a set of 
changes from one repository version to another. 

Git commit –m “message”: The committing messages have to clear and explicit for backup 
purposes.  

Git commit –a –m “message”: The –a parameter is useful when trying to commit changes 
from files that were already added once in their lifetime to the repository. 



 
 
 

16 

 

Now that the files in the working directory have been successfully committed to the local 
repository, the next step would be pushing these changes to the remote repository to be 
shared with the rest of the team. One important note is that before pushing any changes to the 
remote repo., it is considered essential to check beforehand if any recent changes have been 
pushed by a fellow team member. But before doing any of this, linking the remote repository to 
the local one is a priority. 

 

Git remote add origin “link_to_repo”:  Adds a remote repository named “origin” (By default, 
origin is used to define a remote repo, however naming it otherwise won’t matter). Copying the 
repository’s link can be done as follows: 

 

The link is available from GitHub account / upper right icon / repositories / created_repo. 

Git status compares the local branch with its remote counterpart (the remote tracking branch) 
but this does not always mean that the remote tracking branch is up to date. To ensure that, 
running a git fetch will actually update the remote tracking branch thus allowing the branch to 
stay up to date with the remote repository (remote branch). 

 

Running it will display that the working tree is clean with no commits or changes available, 
however, in this case, the newly created repository was initialized with a readme file which is 
not present in our local repository. Running a git push would generate a pretty self-explanatory 
error message: 



 
 
 

17 

 

This remains a special case since an auto-generated README is present on the remote 
repository but not locally. Which leads to the next step which is updating the local repository 
with changes from the remote, it is basically done using the following commands:  

Git pull origin remote_branchname: Downloads and merges changes from the remote 
repository with the local repository. 

Or for a more sophisticated way: 

Git fetch origin remote_branchname: Downloads content from the remote repository but 
does not integrate them in the local repository. 

+ 

Git merge origin/remote_branchname: merges changes fetched by git fetch into the local 
repository. 

In case a newly created repository was initialized with a README file, a simple git pull or git 
fetch + git merge won’t be able to update the local repository with the same files at the 
remote, for they have unrelated histories. 

 

In order to fix this, a parameter (flag) is needed with the git pull command. 

 



 
 
 

18 

Git pull origin remote_branchname --allow-unrelated-histories: will pull from the remote 
repository while ignoring the unrelated histories between the repositories. This only should be 
used as a workaround. 

Now that the initial pull is complete, notice that the README.md file has been added to the 
project folder. Pushing the project to the remote repository now becomes available. 

 

 

Take a look at the remote repository to confirm that all the files have been sent successfully. 

 

Important note: The following GIT command becomes a necessity in order to link the local 
branches with remote branches (upstream). In this case, linking the local master branch with 
the remote master branch is done like this: 



 
 
 

19 

 

Once executed, pushing and pulling from master (remote main branch) will be much easier, 
simply typing git push or git pull without any additional parameters will do the trick. 

In GIT branches can simply be defined as pointers to specific commits. Whenever a feature is 
still in a development phase, pushing the changes to a different branch than master could 
prove very wise since master should always only harbor the tested production ready version. 
There are two types of branches: 

• Local branches: branches available locally in the working tree  
• Remote tracking branches: Branches linking local work to its remote counterpart on the 

central repository. 

TO create a new branch and switch to it, use the commands below:  

• Git branch branch_name 
• Git checkout branch_name   

Git checkout –b branch_name has also the same effect of the two commands. 

Once the feature is ready to be deployed, merging the feature branch with the master branch 
can be done this way: 

Git merge source_branch 

 

Make sure to check out the master branch (to be in it) before attempting to merge it with 
the feature branch. In this case, no changes were made in a feature branch (thus “Already 
up to date”) 

Sample database  
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

A sample database has been provided with this technical note, which will be used to explain in 
details different situations and complications that may appear in a work environment. 

Note 1: The demo was designed in v17R5 since it is the release in which the project mode is 
available. Using an older version won’t be possible. 

Note 2: It is recommended to follow up with the following demos in order to fully grasp GIT’s 
workflow with a 4D database. 

 



 
 
 

20 

Demo 1: Interaction with a remote repository 

1. Go to the project folder and launch a git bash (right click) 
2. Initiate a git repository using git init 
3. Add a remote repository using Git remote add origin “link_to_repo” 
4. Add an upstream link to the remote branch master using Git branch –set-

upstream-to=origin/master master 
5. Add, commit and push the files from the project file to the local and remote 

repository using the following:  

• Git add 
• Git commit –m “committing our project folder” 
• Git push 

Run a git status command to verify the state of the branch (that everything has 
been committed successfully). 

 

This should be the result if all the operations have been executed with success. 

6. Open the sample database my_4D_project (my_4D_project.4DProject) using v17R5 
7. Let’s modify the method “meth_alert_1” by adding a commentary 

 

Running a git status this time will detect that modifications have been made to the 
working tree. 



 
 
 

21 

 

8. Now let’s save our modifications by executing the same commands as in step 5. (try 
to change the commit message). Once done git status should return no more 
untracked or unstaged files. 

9. Let’s say the last commit was faulty, in order to revert it running the following 
commands are necessary: 

Git reset –hard parameter, the parameter can be as follows:  

Git reset –hard HEAD~1: This resets the last commit by HEAD referring to the 
current branch 

Git reset –hard commit_number: This will reset all the commits up to the commit 
which number is passed as a parameter. The first thing to do would be getting the 
list of all commits using the following command: git log 

 



 
 
 

22 

The result shows all the commits done to the local repository with all important details 
(author, date, commit number...). Running the following will successfully reset the 
working directory to its previous state: 

Git reset –hard 66148936b9a91903ca2ce2d188a6dddcd3980f5d 

 

Notice that the commentary has been deleted after the reset. 

A final push is necessary in order to update the remote repository with the method in its 
current state. Running a simple git push won’t work this time since the local branch will 
be behind its remote counterpart (since the commit was reset). 

 

The message suggests running a git pull, however, running it would nullify the effect of 
the reset that was run locally. Solving this is done simply as follows: 

 



 
 
 

23 

 

Git push –force: Will push changes from the local repository to the remote one while 
ignoring the tip’s placement. 

Demo 2: Conflict management 

When working with version control systems in an environment where multiple developers 
tend to collaborate back and forth, managing eventual conflicts becomes an everyday 
dilemma. Let’s take a look at an example of a conflict using 4D methods/forms and GIT. In 
order to achieve this, it is necessary to simulate a secondary user/Local git repository by 
duplicating the database folder (my_4D_project.4dbase). 

Once duplicated, open the copied database in a second instance of v17R5 (no need to 
duplicate the v17R5 folder, launching the exe a second time will open a new instance). 

1. Go to the new project folder and launch a git bash (right click). 
2. In order to simulate a conflict, open meth_alert_2 in the new database and modify it as 

follows: 

 

Running a git_status will detect that a method has been modified. Let’s commit and 
push these new changes. 



 
 
 

24 

 

3. At the same moment, user 1 decided to modify the same method, so modifying the 
same method in the first database will be as follows: 

 

4. Commit and push the new changes. 



 
 
 

25 

 

Forgetting to run a git fetch to check if whether the remote repository has any new 
commits is essential, in this case not doing so and trying to push caused the error 
(updates were rejected…). 

5. Running git pull as suggested will cause a conflict to arise, take a look at the following: 

 

Merging the changes made by user 2 into the local changes could not be solved 
automatically, also notice that the word master has now changed to master | Merging. 
There are three ways of conflict resolution methods available: 

• Git mergetool: A tool that comes along with GIT installation, many other 
mergetools are available and could be download and integrated to GIT. 

• Manual merging: Since all the elements from the 4D database are now 
generated as text files, merging conflicts can be done via simple text editors 
(Notepad…) 



 
 
 

26 

• 4D editor: This is only true for methods since their json file can be properly 
displayed in the editor. Forms for example won’t be displayed since their json 
files must be interpreted and rendered by 4D. 

6. Take a look at the third method (4D editor), in this case dealing with a method conflict: 

 

Notice that both versions are available in the method editor, with HEAD referring to the 
local changes and 59880bc7363992f3b8b7c9381ccb18521d0a81cd representing user 
2 commit number. In order to solve this conflict, simply keep the correct part of the 
code. 

 

7. Concluding the conflict is simple, pick the correct parts of the code, then run the 
following commands to save the changes and merge the conflict: 



 
 
 

27 

 

Once this is done, user 2 can simply run git pull to get the new changes made by user 
1, so that both users can now have the same code in meth_alert_2. 

 

Next let’s take a quick look at the first conflict merging method via git mergetool. 
Supposing that a form conflict was created and needs solving (the same way the 
method conflict was created, take a look at steps 2, 3, 4, 5). Both user 1 and user 2 
modified the 4D form “frm_ok_1” containing 1 ok button, take a look at the following:  

User 1: 



 
 
 

28 

 

User 2: 

 

Following the steps from 2 to 5 the following step would be using git mergetool to solve 
this conflict. 

 

Then press enter: 



 
 
 

29 

 

The screen is divided into 4 zones: 

• Upper left: Json file representing the local form changes. 
• Upper right: Json file representing the remote form changes. 
• Upper center: Json file representing the original form. 
• Lower zone: Final json file that is going to be kept locally after the conflict is 

solved. 

In order to solve the conflict, take a look at the lower zone (modification can be made 
there): 



 
 
 

30 

 

Same as the earlier example (methods), notice the json is delimited by tags 
(<<<<<HEAD and >>>>>>>> commit_number). From the head tag to “======” 
representing the local changes, with the remote changes starting from “======” to the 
tag with the commit number. 

Simply keep the part of the wanted part of text while removing the tags from the file. 
This is how the final result will look like: 



 
 
 

31 

 

Modifications made: 

• Tags removed 
• On version kept 

Demo 3: Making use of branches & stashing 

Branches are no doubt one of the key features of GIT, this demo will make explain basic 
branch features and operations. 

1. Go to the project folder and launch a git bash (right click) 
2. Create a new branch named feature1 



 
 
 

32 

 

Note that the name of the current branch changes when checking out. 

• Git branch branch_name: Creates a new branch named feature1 
• Git checkout branch_name: a git command designed to allow navigation 

between git branches. Checking out a specific branch updates the working 
directory to match the version that is stored in that specific branch. 

• Git checkout –b branch_name: Will create a new branch and navigate to it 
(checkout) 

3. Create a new method named “new_feature_1”, then type in some code 

 

4. To save our changes both locally and remotely, take a look at the following: 

 



 
 
 

33 

 

Next thing would be pushing the changes to the remote repository, but since there is no 
remote branch named feature1 yet, it can be done as follows: 

Git push –set-upstream origin feature1: Will push the local changes to our remote 
repository, creating a new branch named feature1 and linking it to its local counterpart. 

Notice that a new branch has been created in the remote repository. Feature1 contains 
the same files as the master branch + the newly created method (new_feature_1). 

 

Also, notice that switching to the master branch, the newly created method will not 
exist. 

 

The new_feature_1 method doesn’t exist yet in the master branch. Making changes and 
saving them on master won’t affect the feature1 branch. The only way to get these 
changes from one to another would be merging. This way, each branch only contains 
the content that it is supposed to have and nothing else. 



 
 
 

34 

 

5. Let’s merge the changes in feature1 with the master branch: 

 

Git merge feature1: Will merge changes from feature1 into master. Notice that the 
method new_feature_1 has been added to 4D methods. 

 

Important note: Imagine that a developer had to skip the last two steps (4 and 5), 
which could happen for many reasons (not ready to commit, incomplete feature code 
….) and then switched to master branch in order to fix some kind of issue. This looks 
okay at first, but once realizing that all the methods and files from the feature branch 



 
 
 

35 

are now accessible from the master branch, which could eventually end up committed 
into the wrong branch causing production failures and conflicts. 

6. Checkout feature1 branch then creates a new method in 4D named new_feature_2. 
Switch back to the master branch and notice that the method still exists which 
contradicts the whole concept of branching 

 

 

This can be easily prevented by using git stash whenever switching between branches 
becomes necessary while pending changes still are not saved. git stash records the 
current state of the working directory + the index, saving the local modifications. 

7. Note that git stash will only save the files that are being tracked by GIT, running a git 
add will be necessary beforehand. 

 

 

8. Notice that upon switching to master branch once again, the method doesn’t exist 
anymore since it was stashed. 



 
 
 

36 

 

 

9. Once ready to get back to working on the pending feature, switch to feature branch 
then execute git stash apply to get the 4D method new_feature_2 back. 

 

10. Deleting the feature1 branch can be done easily: Git branch –d feature1. Note that it is 
necessary to be on a different branch before deleting. 

 

 



 
 
 

37 

 
 
 
Conclusion 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

This technical note provided general information about GIT architecture and its features, in 
addition to detailed step by step lifelike situations and conflicts that a developer from any 
background may encounter, adapted to a specific 4D context and way of use. By introducing 
project mode, 4D revealed new horizons for its developers that are looking to incorporate 
useful and powerful management tools like GIT, allowing it to quickly become an indispensable 
tool. 

Most of the basic GIT commands were put to use in a multitude of scenarios portraying what a 
4D developer will live to confront in a work environment, yet more advanced commands and 
technics are available to fulfill every little detail and quench the tech-savvy thirst of every senior 
developer out there. 

Implementing version control with the new 4D file system will exploit to a maximum the freshly 
offered flexibility and will embody a foundation stone to a new era of collaboration. 

 

Resources 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Convert an existing database into a Project. (2019, April 24). Retrieved May 22, 2019, from 
https://blog.4d.com/convert-an-existing-database-into-a-project/ 

4D PROJECT: EMBRACE A NEW ERA OF COLLABORATION. (2019, April 24). Retrieved May 
23, 2019, from https://blog.4d.com/4d-projects-embrace-the-new-era-of-collaboration/ 

Git commands. (n.d.). Retrieved May 24, 2019, from https://git-scm.com/doc 

Git workflow. (n.d.). Retrieved May 24, 2019, from https://stackoverflow.com 

Git Credential Caching on Mac OS X. (2013, August 5). Retrieved May 22, 2019, from 
http://tech.lds.org/wiki/Git_Credential_Caching_on_Mac_OS_X 


