4D on GitHub

By Ayoub Khali, Technical Services Engineer, 4D Inc.

Technical Note 19-11

Table of Contents

Table Of CONtENTS Luuii i s 2
(T 111 o o 3
L =T 3
I B e 10 =T o7 B/ o T = 3
Converting a database iNt0 @ ProJeCt.....ovveiiiiiiiiiii i e 4
Create @ NEW PrOJECT ..ttt e s r e s ras 5
Contents inside a Project folder......o.vviiiiiiiiiii i e 5
LI e o o1 (=T o 6
5 = | 6
TS 0 T (R 7
LI = 1= U T o1 1 T 7
LI 1013 =1 1= 11T o 8
T g T [0 1 11

0 =T 1 11
Open a terminal window and type the following commands:..........cooeviiiiiiiiiiiininnenns 11
Creating a First Remote RepOSitOryuiviueeiiiiiiiiiiiiiii s snneees 11
Implementing GIT With 4D ProjeCtovuiiiiiiiiiii i e e aees 13
Git add Parameters: .. e 15
Git Merge SOUrCE_BranCh ... s s s s e e e e anannnees 19
Sample databasecviii e 19
Demo 1: Interaction with a remote repoSItOryovvueiiiiiiiii i e 20
Git reset —hard parameter, the parameter can be as follows:c.vvviiiiiiiiinnnns 21

Demo 2: Conflict managementoviiiiiii i s 23
Demo 3: Making use of branches & stashingcocvvviiiiiiiiiiiii s 31
L7 0] 0T 11011) o 37
RS OUICES . uutiii ittt e s e 37

Introduction

Newbie or full-fledged senior developer, version control has been a staple in every work
environment where multiple resources tend to collaborate in order to participate in what could
be called a software’s chain of production. No matter what their scenario might be, what
language/frameworks they are working with, one piece of advice remains constant: The day a
program or a webpage contains more than 10 lines of code, GIT becomes a necessity or as
some may call it: a necessary evil. While getting to know GIT may seem a laborious and
complicated task at first, once grasping the power and safety that versioning offers, coding
and conflict management will not be a bother anymore.

This technical note will introduce GIT the revision control system with GITHUB as the hosting

service and explain from scratch in details the installation and configuration steps, different
ways of interacting with GIT repositories using GIT bash.

Overview

GIT, similar to its older counterparts (CVS, SVN...) is a revision control system primarily
developed for Linux but that also runs on Mac and Windows systems. GIT took a radical
approach that differs immensely from its legacy siblings, for it is distributed rather than
centralized which means that every user has a complete copy and backup of the repository
data stored locally, which in turn makes access to file history extremely efficient.

GIT simplifies teamwork and makes collaborations in projects much more manageable since
every developer's working directory is itself a branch. All modifications on every branch can be
merged within the master branch while also taking care of eventual conflicts that may appear.
This allows multiple collaborators to work on the same files at the same time, knowing that
merging the final files together won't be much of a hassle.

4D Project Mode

Since earlier versions 4D has been a supporter of team development and testing, using its
binary system that allowed team members to work together via 4D server. Starting v17 R5, 4D
introduced a new way that makes it possible for distributed teams to work on the same source
which is project mode. This means that now it is possible to convert the binary source (.4DB
file) into a project folder, with every element from the database (forms, methods...) as a text
file, while still allowing the compilation of all of the work into a single file for deployment needs.

Converting into project mode will not affect the .4db file but instead will generate a new
“Project” folder next to it. This means two things:

1. This will allow the conversion of the binary database multiple times which could prove
beneficial for testing.

2. The conversion is one way only which means that once converted, reintegrating the
current changes won't into the .4DB won’t be possible.

Moreover, converting an existing database is not the only feasible way to access project mode,
creating a fresh database project from scratch remains an available option.

Converting a database into a project

The conversion process is simple. From the Design mode, select “File > Export > Structure
to project...” menu item.

O‘b Edit Run Design Records Tools Window Help

N

New
Open
Open Recent Databases

Close Database... Ctrl+Alt+Shift+W
Close Test - Explorer Ctrl+W
Close All Windows Ctrl+ Alt+W
Save Test - Explorer Ctrl+S
Save All Ctrl+Alt+S
Revert...

Flush Data Buffers Ctrl+Alt+Shift+S
Backup...

Restore...

Import data from file...

>
>

>

Export >
Cag
Page Setup... Ctrl+Shift+P
Print... Ctrl+P
. Quit Ctri+Q
[pa

u:_ m o |p
ructure Compiler Find in design
Data to file...

Structure definition to XML file...
Structure definition to HTML...
Structure to text files...

Structure to project...

The following prompt message appears once a project has been created.

7

4D

Do you want to open the project?

Conversion successful.

[Reveallog | | Openproject | { Cancel]

Reveal Log: Display the folder containing the log files (JSON) generated during the

conversion.

Open project: Opens the database in project mode.

Cancel: Remains in the .4DB mode. While in this mode, an attempt to export the
structure for the second time will result in an alert informing the user that a project
folder already exists. The user will be presented with an option to replace it.

Create a new project

A new project can be created simply by selecting “File > New > Database Project...”.

Edit Run Design Records Tools Window Help

New 4 Database Project...

Open » Database... Ctrl+N
Open Recent Databases » Database From Structure Definition...

Close Database... Ctrl+Alt+Shift+W Data File...

Close new_project - Explorer Ctrl+W Object Library...

Close All Windows Ctrl+Alt+W Table...

~ new_project - Explorer _ J'I-i e Ctrl+ Shift L
el Cre A Method... Ctrl= Shift+K
Revert T

Contents inside a Project folder

Once a project has been generated, the project folder will contain every single element
from the database (forms, methods, menus, structure...) as text files (.json, .4dm,
.4DCatalog, and etc.) organized by folders.

BuildSettings 16/05/2019 14:03 Dossier de fichiers
DerivedData 16/05/2019 14:39 Dossier de fichiers
Sources 16/05/2019 14:03 Dossier de fichiers
Trash 16/05/2019 14:03 Dossier de fichiers
.| Test4DProject 16/05/2019 14:03 Fichier 4dDPROJECT 1 Ko

e BuildSettings folder contains Buildapp.xml.

e DerivedData folder contains metadata about methods and forms (timestamp,
destination, and etc.).

e Sources folder contains a file for every form, method, triggers, menus in addition to the
database’s settings and structure.

e Trash folder contains deleted forms and methods from the Explorer Trash Bin.

o Test.4DProject

GIT Architecture

Git Workflow — Moving Forward

Local 1 Remote
Working Staging Git I GitHub
Directory Area Repository I
< pull I
e “
[
| add r

r
pull

Let’s first take a quick look at GIT’s architecture and try to grasp the whole structure behind it.
The diagram could be divided into two major sections: Local and Remote.

Local

Working directory: This is where database files are present and where the .git folder will be
generated. This area is also known as the “untracked” area of GIT. Any changes to these
files will be marked in the working tree. Making changes in this area and not explicitly
saving them with GIT can result in data loss. This loss of changes can occur since GIT was
not aware of the changes made in the working directory. To sum it up GIT will notice any
modifications made on the files present on the working directory but won’t save them until
the proper commands are entered.

Staging area: Or indexing area is where GIT tracks files and stages modifications that occur
in every file in the working directory. The difference between untracked and unstaged is
simple: an untracked file is basically every file that was not there in the previous snapshot
of the repository (new files for example). In the other hand, unstaged state relates more to
modifications, so every time a change is made in a file, this file becomes unstaged since
the contents of this file differ from the working tree to the staging area.

GIT repository (or local repository): This is where all files will be saved every time a commit
is executed. Committing takes all the changes in the staging area and sends them to the
local repository available in the local machine, thus every commit is a request to GIT to
track changes that occurred up to this point using the last commit as a comparison. Once a
commit is over, the staging area will then remain empty. The one key feature of a
distributed version control system is locally having access to the full repository history.

Remote

Remote GIT repository: A remote in GIT is basically a common repository where all team
members can send and retrieve files. The remote repository is usually not in the local
machine, it is stored in a code hosting service like GITHUB for example but could also be
configured to work in an internal server. Team members can push commits to it when
ready to share with the team. Note that using a remote repository remains optional in case
the team consists of a single developer (unless it’s used as backup).

GIT Branching

Branching is a key feature in many modern version control systems and so is the case in GIT.
The main purpose of branching resides in its utility which means that instead of a master single
branch where every commit will be pushed, different side branches can be involved in this
process. Implementing workflows with multiple branches allows greater visibility and fewer
conflicts in bigger projects. The master branch will store the official release history while the
other branches serve as feature branches that will eventually be integrated/merged with the
master branch once development is complete.

Take a look at the diagram below:

New merge
commit

N2 %

Master tip

1\

Common base

™

Feature tip

The blue branch represents the master branch while the green one is the feature branch. At
project launch, both are in a common base (which means that no features are there yet), once
the feature development starts the green branch diverts from the blue one then gets merged
back to master when it is complete.

GIT Installation

The first step would be creating an account on GitHub: https://github.com/join?source=header
There are 3 steps. Follow each step to complete an account creation.

Step 1: Create a new account

Step 1:
Set up your account

Create your personal account You'll love GitHub

Username *

Unlimited public repositories

o — Unlimited private repositories
This will be your username. You can add the name of your organization later.

Email address * + Limitless collaboration
+ Frictionless development

We'll occasionally send updates about your account to this inbox. We'll never + Open source community
share your email address with anyone.

Password *

Make sure it's at least 15 characters OR at |least 8 characters including a
number and a lowercase letter. Learn more.

Verify account

Please solve this puzzle so we
know you are a real person

Verify

1)

By clicking “Create an account” below, you agree to our Terms of
Service and Privacy Statement. We'll occasionally send you account-
related emails.

B

Step 2: select “The basics of GitHub for every developer”

Completed [[u Step 2:
Set up your account Choose your subscription

Choose your subscription

With tools developers love and the world's largest open source community, there’s no wrong

choice.
Free Pro
The basics of GitHub for every developer Pro tools for developers with advanced
requirements
per month $ 7
per month
Includes:
oo Unlimited public and private Includes:
repositories oo Unlimited public and private
v 3 collaborators for private repositories
repositories oo Unlimited collaborators
v Issues and bug tracking v Issues and bug tracking
v Project management v Project management
v Advanced tools and insights
Are you a student? Get access to
the best developer tools for free
with the GitHub Student Developer
Pack.

() Help me set up an organization next
Organizations are separate from personal accounts and are best suited for businesses who need to manage permissions for many employees.
Learn more about organizations

¥ Send me updates on GitHub news, offers, and events
Unsubscribe anytime in your email preferences. Learn more

Step 3: specify the user experience and plan to use GitHub.

\/ Completed [[D Step 2: Step 3:
Set up a personal account Choose your subscription Tailor your experience

What is your level of programming experience?
None—I don't program at all
New to programming
Somewhat experienced

® Very experienced

What do you plan to use GitHub for? (Select up to 3)
Learning to code
Learning Git and GitHub
Host a project (repository)
Creating a website with GitHub Pages
Collaborating with my team
Finding a project to contribute to
School work / School-related project
The GitHub API
| don't know yet

Other (please specify)

What are you interested in?

e.g. tutorials, android, ruby, web-development, machine-learning, open-source

m skip this step

On Windows and macOS
1. Download the latest GIT installer:

e Windows Installer: https://gitforwindows.org/
e macOS Installer: https://sourceforge.net/projects/qit-osx-installer/files/

2. Start the installer and follow up with the wizard (next) keeping the default options for
now.

3. Open a terminal and verify that the installation was successful by typing the following
command: GIT —version

4. Run the following commands in a terminal replacing XXXX with the actual name and
email from the GitHub account:

git config --global user.name "xxxx xxxxx"
git config --global user.email "xxxxx@xxxx.com"

10

Note: Optional but very recommended: Install the git credential helper: Every interaction with the

remote repository will require entering a username/password combination every time which

can prove very annoying. Storing them using the GIT credential helper (git-credential-
osxkeychain helper for mac) is simple, take a look at the following:

In Windows

To use the GCM, download the latest installer. To install, double-click GCMW-{version}.exe

and follow the instructions presented. When prompted to select the terminal emulator for

GIT Bash, choosing Windows’ default console window would be the right choice.

Link to the installer: https://github.com/Microsoft/Git-Credential-Manager-for-
Windows/releases/tag/1.18.5

In macOS

Open a terminal window and type the following commands:

1.

To download the tool

e curl http://github-media-downloads.s3.amazonaws.com/osx/git-credential-
osxkeychain -o git-credential-osxkeychain

Create folders

e sudo mkdir /usr/local

e sudo mkdir /usr/local/bin

Moving the files to the right directory

e sudo mv git-credential-osxkeychain /usr/local/bin/

Making the file an executable
e sudo chmod u+x /usr/local/bin/git-credential-osxkeychain
Configuring git to use osyxkeychain

e git config --global credential.helper osxkeychain

Creating a First Remote Repository

e Go to https://github.com and login
e Click on the upper right corner icon and select “Your repositories”.

11

Signed in as
addkomon

@ Setstatus

Your profile

Your repositories

Your projects
Your stars

Your gists

Help
Settings
Sign out

The following displays a list of created remote repositories in the GitHub account.

ProTip! Updating your profile with your name, location, and a profile picture helps other GitHub users get to know you. #' Edit profile x

Overview Repositories 3 Projects 0 Stars 0 Followers 0 Following 0

Type: All » Language: All -

Click “New”.

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository elsewhere?

Import a repository.

Owner Repository name *
7 ayoub-kiv /
Great repository names are short and memorable. Need inspiration? How about curly-rotary-phone?

Description (optional)

. Public

Anyone can see t

who can commit

Private

who can see and commit to this repository

Initialize this repository with a README

t you immediately clone the repository to your computer. Skip this step if you'r

mporting an existing repository

Add gitignore: None v Add a license: None > |

Repository name: Name of the remote repository that users will push into once
created.

Description: An optional field used to describe the repository’s content
Public / Private: This configures repositories visibility.

Initialize this repository with a README: Initialize the repository with a
README file that could eventually describe the project in detail.

Add .gitignore: A file indicating all the files that are not meant to be tracked

Add a license: Adds a license to the project (GNU, OpenBSD....)

Implementing GIT with 4D Project

Now that GIT is installed and the remote repository created, proceeding to the creation of a
local repository, implementing the 4D project that was either generated from a 4D database or
newly created becomes the next step. In this case, the local repository will be initiated inside
the 4D project folder.

Navigate to the newly generated project folder, right click and choose “Git bash here”.

‘ » my_4D_projectddbase » Project »

rv Inclure dans la bibliotheque Partager avec v Graver Nouveau dossier
= Nom Modifié le Type Taille
ris
reau DerivedData 22/05/2019 10:35 Dossier de fichiers
iplacements récer Sources 22/05/2019 10:35 Dossier de fichiers
échargements .| my_4D_project.4DProject 22/05/2019 10:35 Fichier dDPROJECT

% AMD Catalyst Control Center
othéques
cuments Affichage 4
ages Trier par »
1sique Regrouper par >
|€os Actualiser

Personnaliser ce dossier...
nateur

(C) Coller
Git GUI Here

au Git Bash Here
_oller le raccourci

Annuler la copie Ctrl+Z
Partager avec »

Nouveau 4

Propriétés

13

This will open a GIT bash terminal allowing us to enter commands to perform GIT
operations.

The next step would be initializing a local repository:

MINGW®64:/c/Users/Ayoub/Desktop/my_4D_project.4dbase/Project

$§ gt 1nmt
Initialized empty Git repository :/Users /Ayoub/Desktop/my_4D_project.4dbase/Project/.git

Git init will create an empty local repository, it simply does so by creating a .git directory
containing template files and subdirectories.

Since the git init was executed in a 4D project folder, GIT already has a list of untracked
files available.

The git status command will list all modified files (or new ones) which can be added to the
local repository. The result shows that 3 elements are not included in the index yet, which
means that committing changes with these elements cannot be done for now. In order to
do so, staging (adding to index) these folders and files will be the first step.

roject.4dbase/Project
$ g1t status
On branch master

No commits yet

Untracked files:
(use "git add <fFile>..." o include in what wi1l be comm tted)

nothing added to commit but untracke 1les present (use "git add”

The git add command will prepare the files available in the working tree for the next
commit by introducing them into the staging zone.

ny_4D_project.4dbase/Project

$ git add

warning: W replaced by CRLF in DerivedData/formAttributes

The file w 1 av its original line endings in your working direc
warning: will placed by CRLF in DerivedData/methodAttribut

The file wall V original Tine endings in y ~ working direc
warni will b placed by CRLF in Sources ok_1/for
The 1 will original Tine endings 1n your working directory

warning: W > laced by CRLF in Sources/catal .4DCatalog.
The file will have 1ts original Tine endings in your w cing directory

warning: wi be replaced by CRLF in Sources/folders. on.
The file will ave 1ts original Tine endings in vour w ing directory
be replaced by CRLF in Sources/menus
ve its original Tine
warning: will be replaced by CRLF in S
The file will ave 1ts original 1ine endings in WO C rectory 14

Git add parameters:
Git add <directory>: to add all the files in a specific directory to the index.
Git add <file>: to add a specific file to the index.

Git add . : Inspects the whole working directory looking for any new, deleted or
modified files then adds them to the index.

$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..."” to unstage)

Running git status once more shows that files are ready to be committed.

~/Desktop/my_4D_project. 4dk e/Pro
$ git coomit -m "Committing the 4D database my_4D_project
Imaster (root-commit) 575a411] Committing the 4D database my_4D_project
10 files changed, 199 1insertion)
create mode DerivedData/ mAttributes. J
create mode 4 DerivedData/methodAttribute
create mode 4 Sources/Forms,/frm_ok_1/form.4DForm
create mode : urces /Methods /meth_alert_1.4dm
create mode 4 urces /Methods /meth_alert_2.4dm
create mode : urces/catalog.4DCatalog
create mode 644 Sources/folders. json
create mode 4.4 urces,/menus. J n
create mode 44 urces/settings.4DSettings
create mode 44 my_4D_project.4DProject

Git commit sends whatever files were available in the staging area to the local repository, thus
freeing the index. A commit is a snapshot of the elements in the working directory. However,
GIT does not copy all files every time a commit is made but instead includes them as a set of
changes from one repository version to another.

Git commit -m “message”: The committing messages have to clear and explicit for backup
purposes.

Git commit —a -m “message”: The —a parameter is useful when trying to commit changes
from files that were already added once in their lifetime to the repository.

15

Now that the files in the working directory have been successfully committed to the local
repository, the next step would be pushing these changes to the remote repository to be
shared with the rest of the team. One important note is that before pushing any changes to the
remote repo., it is considered essential to check beforehand if any recent changes have been
pushed by a fellow team member. But before doing any of this, linking the remote repository to
the local one is a priority.

~/Desktop/my_4D_project.4dbase/Project

git remote add origin "https://github. com/ayoub-k1/4D_git_tuto.git"

Git remote add origin “link_to_repo”: Adds a remote repository named “origin” (By default,
origin is used to define a remote repo, however naming it otherwise won’t matter). Copying the
repository’s link can be done as follows:

Create new file =~ Upload files Find File Clone or download v

Clone with HTTPS ® Use SSH

Use Git or checkout with SVN using the web URL.

https://github.com/ayoub-k1/4D_git_tuto. [

Open in Desktop Download ZIP

The link is available from GitHub account / upper right icon / repositories / created_repo.

Git status compares the local branch with its remote counterpart (the remote tracking branch)
but this does not always mean that the remote tracking branch is up to date. To ensure that,
running a git fetch will actually update the remote tracking branch thus allowing the branch to
stay up to date with the remote repository (remote branch).

~/Desktop,//my_

$ Git status
On branch master
nothing to commit, working tree clean

Running it will display that the working tree is clean with no commits or changes available,
however, in this case, the newly created repository was initialized with a readme file which is
not present in our local repository. Running a git push would generate a pretty self-explanatory
error message:

16

my _—1[:'_[3#' I:Ij =

$ git push origin m
git: 'credential-os v in" 1s not a git command. See "git --help’.
To https://github. com/ayoub-kl1/4D_git_tuto.git

master ->» master (fetch first)

hint:
hint:
hint:
hint:
hint:

This remains a special case since an auto-generated README is present on the remote
repository but not locally. Which leads to the next step which is updating the local repository
with changes from the remote, it is basically done using the following commands:

Git pull origin remote_branchname: Downloads and merges changes from the remote
repository with the local repository.

Or for a more sophisticated way:

Git fetch origin remote_branchname: Downloads content from the remote repository but
does not integrate them in the local repository.

+

Git merge origin/remote_branchname: merges changes fetched by git fetch into the local
repository.

In case a newly created repository was initialized with a README file, a simple git pull or git
fetch + git merge won’t be able to update the local repository with the same files at the
remote, for they have unrelated histories.

~/Desktop/my_4D_project. 4db:
$§ git pull origin master

From https://github. com/ayoub-k1/4D_git_tuto
branch master -> FETCH_HEAD
fatal: refusing to merge unrelated histories

In order to fix this, a parameter (flag) is needed with the git pull command.

~ /D top,/my_4D_project.4dbase
git pull origin master Tow-unrelated-histories
rom https://github. com/ayoub-k1/4D_git_tuto
branch master -> FETCH_HEAD
nint: Waiting for your editor to close the file...

Merge made by the 'recursive' strategy.
README.md | 1

1 file changed, 1 insertion(+)

create mode 100644 README.md

17

Git pull origin remote_branchname --allow-unrelated-histories: will pull from the remote
repository while ignoring the unrelated histories between the repositories. This only should be
used as a workaround.

Now that the initial pull is complete, notice that the README.md file has been added to the
project folder. Pushing the project to the remote repository now becomes available.

NI VIDUIIE 1E 1ype 1anne
.git 22/05/2019 14:13 Dossier de fichie
DerivedData 22/05/2019 10:35 C er de =
Sources 22/05/2019 10:35 Dossier de fichiers
|| my_4D_project4DProject 22/05/2019 10:35 Fichier dDPROJECT 1
&'| README.md 22/05/2019 14:13 Fichier ML 1

~/Desktop,/my_4D_project. 4
git push origin master
git: 'credential- eychain' is not a git command. See 'git --help’'.
Enumerating objec 0, d
Counting objects: 1002 20), done.

Delta compre 0 ing up 8 threads

Compressing objects: 100% (15/15), done.

Writing objects: 100% (19/19), 2.70 KiB | .3 1B/s, done.
Total 19 (delta 1), reused 0 (delta 0)

remote: Resolving deltas: 100% (1/1), done.

To /github. com/ :)_git_tuto.git

Take a look at the remote repository to confirm that all the files have been sent successfully.

ayoub-kl / 4D_git_tuto ®OWatchv 0 | HStar 0 0
<> Code Issues 0 Pull requests 0 Projects 0 Wik Security Insights Settings
lo ebsite, or topics provided Edit
D 3 commits ¥ 1 branch O 0 releases 22 1 contributor
Branch: master v New pull request Create new file = Upload files = Find File m
ayoub-kl Merge branch 'master’ of https://github.com/ayoub-ki/4D_git_tuto jtest ni 4
DerivedData Committing the 4D database my_4D_; e
Sources Committing the 4D database my_4D_project
README.md
my_4D_project4DProject Committing the 4D database my_4D_project

Important note: The following GIT command becomes a necessity in order to link the local
branches with remote branches (upstream). In this case, linking the local master branch with

the remote master branch is done like this:
18

-/Desktop/my_4D_project.4dbase/Projec

$ git branch --set-upstream-to=origin/master master
Branch 'master' set up to track remote branch 'master' from 'origin'.

Once executed, pushing and pulling from master (remote main branch) will be much easier,
simply typing git push or git pull without any additional parameters will do the trick.

In GIT branches can simply be defined as pointers to specific commits. Whenever a feature is
still in a development phase, pushing the changes to a different branch than master could
prove very wise since master should always only harbor the tested production ready version.
There are two types of branches:

e Local branches: branches available locally in the working tree

e Remote tracking branches: Branches linking local work to its remote counterpart on the

central repository.

TO create a new branch and switch to it, use the commands below:

e Git branch branch_name
¢ Git checkout branch_name

Git checkout -b branch_name has also the same effect of the two commands.

Once the feature is ready to be deployed, merging the feature branch with the master branch
can be done this way:

Git merge source_branch

git merge my_feature_branch

Iready up to date.

Make sure to check out the master branch (to be in it) before attempting to merge it with
the feature branch. In this case, no changes were made in a feature branch (thus “Already
up to date”)

Sample database

A sample database has been provided with this technical note, which will be used to explain in
details different situations and complications that may appear in a work environment.

Note 1: The demo was designed in v17R5 since it is the release in which the project mode is
available. Using an older version won’t be possible.

Note 2: It is recommended to follow up with the following demos in order to fully grasp GIT’s
workflow with a 4D database.

19

Demo 1: Interaction with a remote repository

1. Go to the project folder and launch a git bash (right click)

2. Initiate a git repository using git init

3. Add a remote repository using Git remote add origin “link_to_repo”

4. Add an upstream link to the remote branch master using Git branch -set-
upstream-to=origin/master master

5. Add, commit and push the files from the project file to the local and remote
repository using the following:

e Gitadd
¢ Git commit -m “committing our project folder”
e Git push

Run a git status command to verify the state of the branch (that everything has
been committed successfully).

- Df;L,,tl:zp my

$ Gt status
On branch master
nothing to commit, working tree clean

This should be the result if all the operations have been executed with success.

6. Open the sample database my_4D_project (my_4D_project.4DProject) using v17R5
7. Let’s modify the method “meth_alert_1” by adding a commentary

k2) my_4D_project-4D - [M alert_1

'® File Edit Run Design Records Tools Method Window Help

= O . O =

New Open Explorer Tool Box Structure Compi

1 &=

1 ALERT ("this is method 1")

o~ |

E[

'/this 1s a com

Running a git status this time will detect that modifications have been made to the
working tree.

20

~/Desktop/my_4D_proj
% git status
Dn branch m
‘our branch is up to date with "origin/master’.

not staged for commit:
"git add <file>..." to update what will be committed)

"git checkout -- <file>..." to discard changes in working directory)

no changes added to commit (use "git add” and/or "git commit -a")

8. Now let’s save our modifications by executing the same commands as in step 5. (try
to change the commit message). Once done git status should return no more
untracked or unstaged files.

9. Let’s say the last commit was faulty, in order to revert it running the following
commands are necessary:

Git reset —hard parameter, the parameter can be as follows:

Git reset ~hard HEAD~1: This resets the last commit by HEAD referring to the
current branch

Git reset ~hard commit_number: This will reset all the commits up to the commit
which number is passed as a parameter. The first thing to do would be getting the
list of all commits using the following command: git log

$ git log

utlook. com
9 2019 +0000

commiting new changes to method meth_alert_1

D 5d (new_feature_branch, my_feature_branch)
75a411 alf86

Author: ayoub <ayoub-kl¢

Date: wed May 22 14:13:13 2019 +0000

Merge branch 'master' of https://github. com/ayoub-k1/4D_git_tuto

Initial commit

: ayoub)
Wed May 22 :27:29 2019 +0000

Committing the 4D database my_4D_project

21

The result shows all the commits done to the local repository with all important details
(author, date, commit number...). Running the following will successfully reset the
working directory to its previous state:

Git reset —hard 66148936b9a91903ca2ce2d188a6dddcd3980f5d

&) my_4D_project-4D - [Method: meth_alert 11 NG

.& File Edit Run Design Records Tools Method Window Helg

| ;| fH —l—-L_

=+ . O . L £
New Open Explorer Tool Box Structure Co

B~ Q | B ~|*— =

ALERT ("this is method 1")

L]

Notice that the commentary has been deleted after the reset.

A final push is necessary in order to update the remote repository with the method in its
current state. Running a simple git push won’t work this time since the local branch will
be behind its remote counterpart (since the commit was reset).

-/Desktop/my_4D_project.4dbase/Project

$ g1t push

git: 'credential-osxkeychain' is not a git command. See 'git --help’.
To https://github. com/

master -> master (non-fast-forward)

The message suggests running a git pull, however, running it would nullify the effect of
the reset that was run locally. Solving this is done simply as follows:

22

$ git push --force
git: 'credential-osxkeychain' 1s not a g1t command. See 'git --help’'.
Enumerating object 7, done.

Counting objects: 100% (7/7), done.

Delta compression using up to 8 threads

Compressing objects: 100% (4/4), done.

wWriting objects: 100% (4/4), 459 bytes | s, done.

otal 4 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100%)

), completed with 2 local objects.
o https://github. com/ay git_tuto.git
+ 4ef8lea...6ebdecd master -> master (forced update)

Git push -force: Will push changes from the local repository to the remote one while
ignoring the tip’s placement.

Demo 2: Conflict management

When working with version control systems in an environment where multiple developers
tend to collaborate back and forth, managing eventual conflicts becomes an everyday
dilemma. Let’s take a look at an example of a conflict using 4D methods/forms and GIT. In
order to achieve this, it is necessary to simulate a secondary user/Local git repository by
duplicating the database folder (my_4D_project.4dbase).

Once duplicated, open the copied database in a second instance of v17R5 (no need to
duplicate the v17R5 folder, launching the exe a second time will open a new instance).

1. Go to the new project folder and launch a git bash (right click).
2. In order to simulate a conflict, open meth_alert_2 in the new database and modify it as
follows:

@ my_4D_project-4D - [Method: meth_alert_2]

L# File Edit Run Design Records Tools Method Window Help

| - H e (!

= . O . O = B . »

New Open Explorer Tool Box Structure Compiler Find in de
- - 8---=814 B0000c
1 ALERT ("this is method 3 !") modified by user 2

Running a git_status will detect that a method has been modified. Let’s commit and
push these new changes.

23

git add .
varning: LF will
he file wall

ktop/my

_4D_project.4dbase - Copie/Pri

be replaced by CRLF in DerivedData/methodAttributes. json
have 1ts original

Tine endings 1n your working directory

ktop/my_4D_project. 4dbas e/Project
git commit -m “"commiting changes to meth_alert
[master c9d9fed4] commiting changes to meth_alert_2
2 files changed, 3 insertions(+), 3 deletions(-)
- Copie
git push
it: 'credential-osxkeychain' 1s not a git command.
numerating object ;, done.
ounting objects: 10 (13/13),
)elta compression using up to 8 threads
ompressing objects: 10 (7
Nriting
otal 7

Project

See 'git --help’.
done.

: done.
objects: 100

| 708.00 KiB/s, done.
(delta 3)
~emote: Resolving deltas: 100% (3/3), completed with 3 local objects.
o https://github. com/ayoub-k1/4D_git_tuto.git
6ebdecd. .c9d9%Fed4 master -> master
3.

At the same moment, user 1 decided to modify the same method, so modifying the
same method in the first database will be as follows:

@ my_4D_project-4D - [Method: meth_alert_2]

'#® File Edit Run Design Records Tools Method Window Help

H . O . A iay M| . |e
New Open Explorer Tool Box Structure Compiler
&+

- E, b— ¥ E [

modified

4. Commit and push the new changes.

~:_r] o
(LY

ALERT ("this is method 4

)

24

-/Desktop/my_4D_project.4db
$§ g1t add .
warning: LF will be replaced by CRLF in DerivedData/methodAttributes. 3
The file will have 1ts original Tine endings in your working directory
gl

~/De op/my
$ git conmit -m "commiting new changes to meth_alert_2"
[master d8cdb79] commiting new changes to meth_alert_2
2 files changed, 2 insertions(+), 2 deletions(-)

-/Desktop/my_4D_project.4dbase
$§ g1t push
git: 'credential-osxkeychain' 1s not a git command.
To https://github. com/ayoub-k1/4D_git_tuto.git
aster -» master (fetch first)

hint:
hint:
hint:

hint: ey G 11 ... yushing again.
hint: "N abou as orwards' in 'git push

Forgetting to run a git fetch to check if whether the remote repository has any new
commits is essential, in this case not doing so and trying to push caused the error
(updates were rejected...).

Running git pull as suggested will cause a conflict to arise, take a look at the following:

: Compr
: Total
npacking obje

ge C

vedData/metho)
ge conflict DerivedData/methodAttributes. json

Fix conflicts and then commit the result.

Merging the changes made by user 2 into the local changes could not be solved
automatically, also notice that the word master has now changed to master | Merging.
There are three ways of conflict resolution methods available:

e Git mergetool: A tool that comes along with GIT installation, many other
mergetools are available and could be download and integrated to GIT.

e Manual merging: Since all the elements from the 4D database are now
generated as text files, merging conflicts can be done via simple text editors
(Notepad...)

25

e 4D editor: This is only true for methods since their json file can be properly
displayed in the editor. Forms for example won’t be displayed since their json
files must be interpreted and rendered by 4D.

6. Take alook at the third method (4D editor), in this case dealing with a method conflict:

&) my_4D_project-4D - [Method: meth_alert_2]
/% File Edit Run Design Records Tools Method Window Help

= . O . O = B A . (e

New Open Explorer Tool Box Structure Compiler Find in ¢

CCC— - (ﬂl - - —) = -

B~ Q E-— =8¢ &r0000C
1 |<< << << <HEAD

2 ALERT ("this is method 4 !!") // modified by user 1

3 ————————

B ALERT ("this is method 3 !") // modified by user 2

5 >> >> >> >59880bc7363992f3b8b7c9381cchl18521d0a8lcd
[3)

Notice that both versions are available in the method editor, with HEAD referring to the
local changes and 59880bc7363992f3b8b7¢9381ccb18521d0a81cd representing user
2 commit number. In order to solve this conflict, simply keep the correct part of the

code.

@ my_4D_project-4D - [Method: meth_alert_2]
L% File Edit Run Design Records Tools Method Window Help

. O . 0 = N A . [e
New Open Explorer Tool Box Structure Compiler Find il
- Q - E-rm=01d o 0000

ALERT ("this is method 3 !") // modified by user 2
ALERT ("this is method 4 !!") // modified by user 1

W N

7. Concluding the conflict is simple, pick the correct parts of the code, then run the
following commands to save the changes and merge the conflict:

26

$ g1t add
varning: LF will be replaced by CRLF in DerivedData/methodAttributes
he file will have its original Tine endings in your working directory

“ p,/my_4D_project. 4dbas
git commit -m "conflict V meth_alert_2 keeping both codes”
[master e9446dc] v for meth_alert_2 keeping both codes

my_4D_project.4dbase/Project
$ git status
Dn branch master
Your branch 1s ahead of "origin/master’' by 2 commits.
(use "git push” to publish your Tocal commits)

nothing to commit, working tree clean

roject.4dbase/Project
git push
git: 'credential-o \ is not a git command. See 'git --help’.
numerating object
Counting objects: 26/ , done.
8 threads
Compressing object 2 , done.
Nriting objects: 1((14/14), 1.35 KiB | 1.35 MiB/s, done.
14 (delta 7), 0 (delta 0)
Resolving deltas: g), completed with 4 local objects.
//github. com/ayo 4 _git_tuto.git
59880bc. .e%446dc master -> master

-y

Once this is done, user 2 can simply run git pull to get the new changes made by user
1, so that both users can now have the same code in meth_alert_2.

~/Desktop/my_4D_project.4dbase - Copie/Project
$ git pull
remote: Enumerating objects done.
remote: Counting objects: 1 , done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 14 (delta 7), reused 14 (delta 7), pack-reused 0
king objects: 100% (14/14), done.

o1

https://github. com/ayoub-k1/4D_git_tuto
59880bc. .e%446dc master -» origin/master
Updating 59880bc. . e9%446dc
Fast-forward
DerivedData/methodAttributes

Methods /meth_alert

les changed, 7 1

Next let’s take a quick look at the first conflict merging method via git mergetool.
Supposing that a form conflict was created and needs solving (the same way the
method conflict was created, take a look at steps 2, 3, 4, 5). Both user 1 and user 2
modified the 4D form “frm_ok_1” containing 1 ok button, take a look at the following:

User 1:

27

very ok not ok

User 2:

hi bye

Following the steps from 2 to 5 the following step would be using git mergetool to solve
this conflict.

4D_project.4dbase

is not confi
r 'git help fig' for more
attempt to use one of the following to

tkdiff xx 1d torto erge imdiff diffuse diffmerge ecmerge pd4merge arax bc codecompare emerge vimdiff
LF will be replaced by CRLF in DerivedD /FormAttribute
The file will have it ine endings in rking direc

in DerivedD ethodAttribut
endings in your working directc

ok_1/form.4DForm' :
modified fi
modified file
Hit return to start merge resolution tool (vimdiff

Then press enter:

28

The screen is divided into 4 zones:

Upper left: Json file representing the local form changes.

Upper right: Json file representing the remote form changes.

Upper center: Json file representing the original form.

Lower zone: Final json file that is going to be kept locally after the conflict is
solved.

In order to solve the conflict, take a look at the lower zone (modification can be made
there):

29

<<<<<<< HEAD

J

Buttonl1™: {

“type"”: “"button"”,
<<<<<<< HEAD
“text”: "bye"”,
“top": 117,
"left": 392,
“width": 301,
“height™: 68,

"text": "not ok",

Sources /Forms/frm_ok_1/form.4DForm [dos] (3:23 29/05/2019)

Same as the earlier example (methods), notice the json is delimited by tags
(<<<<<HEAD and >>>>>>>> commit_number). From the head tag to “======"
representing the local changes, with the remote changes starting from “======"to the
tag with the commit number.

Simply keep the part of the wanted part of text while removing the tags from the file.
This is how the final result will look like:

30

- e —— -—

]’
"pageFormat™: {
"paperName™: "aA4",
"paperWidth": "585pt"™,
"paperHeight": "g84l1pt"™
1‘1
"pages": [
null,
{
"objects": {
"Button": {
"cype™: "button”,
"top™: 113,
"left™: 96,
"width": 273,
"height": 72,

Trext ™ "hi",

"focusable": false,
"events": [
"onClick"™
]
I
"Buttonl™: {
"cype": "button”,

"text": "bye",
"top™: 117,
"lefc": 382,
"width": 301,
"height™": 68,

"events": [
"onClick"™

]

Modifications made:

e Tags removed
e On version kept

Demo 3: Making use of branches & stashing

Branches are no doubt one of the key features of GIT, this demo will make explain basic
branch features and operations.

1. Go to the project folder and launch a git bash (right click)
2. Create a new branch named feature1

git branch featurel

git checkout featurel
Switched to branch 'featurel’

ktop

Note that the name of the current branch changes when checking out.

e Git branch branch_name: Creates a new branch named feature1

e Git checkout branch_name: a git command designed to allow navigation
between git branches. Checking out a specific branch updates the working
directory to match the version that is stored in that specific branch.

e Git checkout -b branch_name: Will create a new branch and navigate to it
(checkout)

3. Create a new method named “new_feature_1”, then type in some code

€2) my_4D_project-4D - [Method: new_feature_1]
.® File Edit Run Design Records Tools Method Window Help

H . O . o =

New Open Explorer Tool Box Structure Com

n s A | }

[¥f

‘

. <
v lﬂ|

q

i

N

|
[

4. To save our changes both locally and remotely, take a look at the following:

ktop/my_4D_pro
$ g1t add
varning: LF will be replaced by CRLF in DerivedData/methodAttributes. json.
he file will have its original Tine endings in your working directory
varning: LF will be replaced by CRLF in Sources/catalog.4DCatalog.
he file will have 1ts original 1ine endings in your working directory
varning: LF 1 be replaced by CRLF in DerivedData/1/formAttributes. json.
he file will have its original Tine endings in your working directory

-/Desktop/my_4D_project.4dbase/Project
$ git commit -m “"committing method nesx eature_1 in featurel branch”
[featurel 7bd8e22] committing method new_feature_1 in featurel branch
4 files changed, 13 insertions(+), 2 deletions(-)
create mode 100644 DerivedData/1/formAttribute
create mode 100644 Sources/Methods/new_feature_

~ ktop/my_4D_proj
$ g1t push --set-upstream origin featurel
git: 'credential-« eychain' 1s not a git command. See 'git --help’.
Enumerating objec 15, done.

Counting objects: 100% (15/15), done.

Delta compression using up t threads

Compressing objects), done.

Writing objects: 100% (10/10), 1.04 KiB | 213.00 KiB/s, done.

otal 10 (delta 2), reused 0 (delta 0)

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
remote:

remote: Create a pull request for 'featurel' on GitHub by visiting:
remote: https://github. com/ayoub-k1/4D_git_tuto/pull/new/featurel
remote:

o https://github. com/ayoub-k1,/4D_git_tuto.git

[new branch] featurel -» featurel
Branch 'featurel' set up to track remote branch 'featurel' from 'origin’.

Next thing would be pushing the changes to the remote repository, but since there is no
remote branch named featurei yet, it can be done as follows:

Git push -set-upstream origin feature1: Will push the local changes to our remote
repository, creating a new branch named feature1 and linking it to its local counterpart.

Notice that a new branch has been created in the remote repository. Feature1 contains
the same files as the master branch + the newly created method (new_feature_1).

I featurel (7 minutes ago

Branch: master v New pull request Create new file = Upload files = Find File

Switch branches/tags

Branches

v master Committing the 4D database my_4D_project
EE README.md ’

Also, notice that switching to the master branch, the newly created method will not
exist.

~/Desktop/my_<

git checkout master

Switched to branch 'master’
Your branch is up to date with 'origin/master’.

The new_feature_1 method doesn’t exist yet in the master branch. Making changes and
saving them on master won’t affect the feature1 branch. The only way to get these
changes from one to another would be merging. This way, each branch only contains
the content that it is supposed to have and nothing else.

33

€2) my_4D_project-4D - [my_4D_project - Explorer]

&6 File Edit Run Design Records Tools Window

1 | — M Nl
= . O . O b
New Open Explorer Tool Box :
Methods
el 4 Project Methods .
Home

,‘:::’,D meth_alert_1
&8 meth_alert_2
Component Methods
R Database Methods
Triggers
Project Form Methods
Table Form Methods
é@ 4D Mobile Methods

Forms

5. Let’s merge the changes in feature1 with the master branch:

$ git merge featurel
Updating e9446dc..7bd8e22
Fast-forward
DerivedData/1/formAttributes
DerivedData/methodAttributes. json
Sources /Methods /new_feature_1.4dm
Sources/catalog.4DCatalog
4 files changed, 13 insertior , 2 deletions(-)
create mode 10 4 DerivedData/1/formAttributes. json
create mode 100644 Sources/Methods/new_feature_1.4dm

3
3

w

Git merge feature1: Will merge changes from feature1 into master. Notice that the
method new_feature_1 has been added to 4D methods.

N Methods
Laf 4 Project Methods of b
Home 23 meth_alert 1 k // Modified by: Ayoub (27/05/2019)
&P meth_alert 2 4 ALERT ("This is a new feature !")
-8 new_feature_1 5
Tables Component Methods
Database Methods

Important note: Imagine that a developer had to skip the last two steps (4 and 5),
which could happen for many reasons (not ready to commit, incomplete feature code
....) and then switched to master branch in order to fix some kind of issue. This looks
okay at first, but once realizing that all the methods and files from the feature branch

34

are now accessible from the master branch, which could eventually end up committed
into the wrong branch causing production failures and conflicts.

6. Checkout feature1 branch then creates a new method in 4D named new_feature 2.
Switch back to the master branch and notice that the method still exists which
contradicts the whole concept of branching

~/Desktop/my_4D_proj
$ g1t checkout featurel
Switched to branch 'featurel’
DerivedData/methodAttributes. json

ctop/my_4D_project. 4c =
git checkout master

Switched to branch 'master'’

v DerivedData/methodAttributes. json
Your branch i1s ahead of 'origin/master' by 1 commit.
(use "git push” to publish your Tocal commits)
Methods
4 Project Methods - (1 ALERT ("testing")

b meth_alert_1
&8 meth_alert 2
70 new_feature_1

&8 new_feature_2

This can be easily prevented by using git stash whenever switching between branches
becomes necessary while pending changes still are not saved. git stash records the
current state of the working directory + the index, saving the local modifications.

7. Note that git stash will only save the files that are being tracked by GIT, running a git
add will be necessary beforehand.

F g1t status
Dn branch featurel
Intracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add” to track)

~ top/my_4D_project.4dbase/Pro]
§ g1t add Sources/Methods/new_feature_2.4dm

~/Desktop/my_4D_project.4dbase/Pro
g1t stash
Gaved working directory and index state WIP on featurel: 7bd8e22 committing method new_feature_1 in featurel branch

8. Notice that upon switching to master branch once again, the method doesn’t exist
anymore since it was stashed.

35

~/Desktop/my_4D_project.4dbase/Proj

% git checkout master

Switched to branch 'master’
Your branch is ahead of "origin/master’ by 1 commit.

vy wpen LapIUI T Tuur puA Suuniue Cumpne ViU B ucsgn rauics
i Methods
L 4 Project Methods
Home :C:]Dmeth_aler‘t_l = / Modified by: Ayoub (2 o/ 2013)
28 meth_alert_2 i . .
= = - ALERT ("This is a new feature !")
28 new_feature_1 -
Tables B
Component Methods
@ Database Methods

9. Once ready to get back to working on the pending feature, switch to feature branch
then execute git stash apply to get the 4D method new_feature_2 back.

~/Desktop/my_4D_project.4dbase/Pro
$ g1t checkout featurel
Switched to branch 'featurel’
DerivedData/methodAttributes. json

~/Desktop/my_4D_project.4dbase/
$ git stash apply
On branch featurel
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

not staged for commit:
"git add <file>..." to update what will be committed)
"git checkout -- <file>..." to discard changes in working directory)

10. Deleting the feature1 branch can be done easily: Git branch -d feature1. Note that it is
necessary to be on a different branch before deleting.

$ git branch -d featurel

Deleted branch featurel (was 7bd8e2

36

Conclusion

This technical note provided general information about GIT architecture and its features, in
addition to detailed step by step lifelike situations and conflicts that a developer from any
background may encounter, adapted to a specific 4D context and way of use. By introducing
project mode, 4D revealed new horizons for its developers that are looking to incorporate
useful and powerful management tools like GIT, allowing it to quickly become an indispensable
tool.

Most of the basic GIT commands were put to use in a multitude of scenarios portraying what a
4D developer will live to confront in a work environment, yet more advanced commands and
technics are available to fulfill every little detail and quench the tech-savvy thirst of every senior
developer out there.

Implementing version control with the new 4D file system will exploit to a maximum the freshly
offered flexibility and will embody a foundation stone to a new era of collaboration.

Resources

Convert an existing database into a Project. (2019, April 24). Retrieved May 22, 2019, from
https://blog.4d.com/convert-an-existing-database-into-a-project/

4D PROJECT: EMBRACE A NEW ERA OF COLLABORATION. (2019, April 24). Retrieved May
23, 2019, from https://blog.4d.com/4d-projects-embrace-the-new-era-of-collaboration/

Git commands. (n.d.). Retrieved May 24, 2019, from https://git-scm.com/doc

Git workflow. (n.d.). Retrieved May 24, 2019, from https://stackoverflow.com

Git Credential Caching on Mac OS X. (2013, August 5). Retrieved May 22, 2019, from
http://tech.lds.org/wiki/Git_Credential_Caching_on_Mac_OS_X

37

